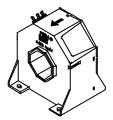
For the electronic measurement of currents : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

I _{PN} I _P R _M	Primary nominal r.m.s. current Primary current, measuring range Measuring resistance		1000 0 ± 1800 R_{M min} R_{M ma}		A A
	with ± 15 V	$@ \pm 1000 A_{max}$	0	22	Ω
		@ ± 1800 A _{max}	0	5	Ω
I _{sn}	Secondary nominal r.m.s. current		333		mΑ
K _N	Conversion ratio		1:3000		
Vc	Supply voltage (± 5 %)		± 15		V
I _c	Current consumption		25 + I _s		mΑ
Ň _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		6		kV
V _b	R.m.s. rated voltage ¹⁾ , safe separation		1750		V
5		basic isolation	3500		V

Accuracy - Dynamic performance data

Overall accuracy @ I_{PN} , $T_A = 25^{\circ}C$ Linearity		± 0.4 < 0.1		% %
Offset current @ $I_p = 0$, $T_A = 25^{\circ}C$ Thermal drift of I_o	- 25°C + 70°C			m A m A
Response time ²⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC 7	150	μs A/μs kHz
	Linearity Offset current @ $I_p = 0$, $T_A = 25^{\circ}C$ Thermal drift of I_0 Response time ²⁾ @ 90 % of I_{PN} di/dt accurately followed	Linearity Offset current @ $I_p = 0$, $T_A = 25^{\circ}C$ Thermal drift of I_0 - 25^{\circ}C + 70^{\circ}C Response time ² @ 90 % of I_{PN} di/dt accurately followed	Linearity< 0.1	Linearity< 0.1


General data

$ \begin{array}{ll} \textbf{T}_{A} & \text{Ambient operating temperature} \\ \textbf{T}_{S} & \text{Ambient storage temperature} \\ \textbf{R}_{S} & \text{Secondary coil resistance} @ \textbf{T}_{A} = 70^{\circ}\text{C} \\ \textbf{m} & \text{Mass} \\ & \text{Standards} \end{array} $	- 25 + 70 - 40 + 85 17 600 EN 50155	°C ℃ Ω
---	---	--------------

Notes : 1) Pollution class 2. With a non insulated primary bar which fills the through-hole

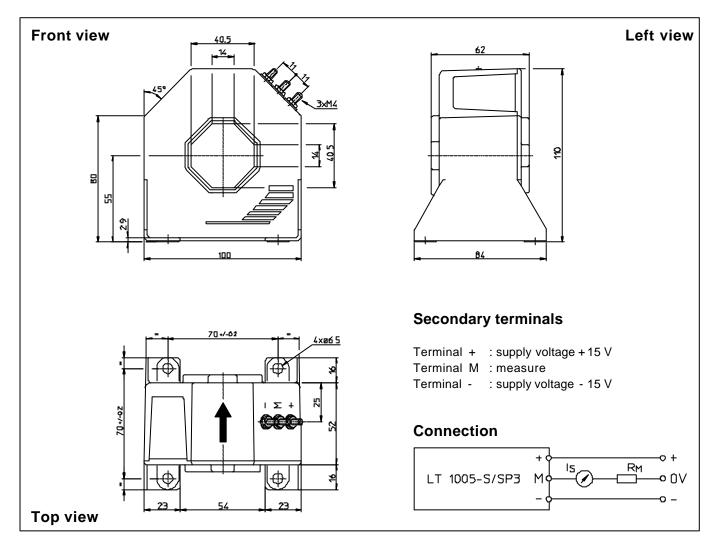
²⁾ With a di/dt of 100 A/ μ s.

Features

- Closed loop (compensated) current transducer using the Hall effect
- Isolated plastic case recognized according to UL 94-V0.

Special features

- $I_{p} = 0 .. \pm 1800 \text{ A}$
- $\mathbf{K}_{N} = 1:3000$
- V_c = ±15(±5%) V
- $\mathbf{T}_{A} = -25^{\circ}\text{C}..+70^{\circ}\text{C}$
- Connection to secondary circuit on M4 threaded studs
- Potted
- Railway equipment.


Advantages

- Excellent accuracy
- · Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- · High immunity to external interference
- · Current overload capability.

Applications

- · AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- · Power supplies for welding applications.

Dimensions LT 1005-S/SP3 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Primary through-hole
- Connection of secondary Fastening torque

±1mm

4 holes Ø 6.5 mm 40.5 x 40.5 mm M4 threaded studs 1.2 Nm or .88 Lb. - Ft.

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.

单击下面可查看定价,库存,交付和生命周期等信息

>>LEM(莱姆)