# Current Transducer LT 1005-S/SP28

1000 A 

For the electronic measurement of currents : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).



CE



| Electrical data |                                                   |                           |                                         |                       |         |                              |       |                         |    |  |  |
|-----------------|---------------------------------------------------|---------------------------|-----------------------------------------|-----------------------|---------|------------------------------|-------|-------------------------|----|--|--|
|                 | Primary nominal r.m.s. current                    |                           |                                         |                       |         |                              | 1000  |                         |    |  |  |
| I <sub>P</sub>  | Primary current, measuring range                  |                           |                                         |                       | 0±      |                              |       | 0                       | Α  |  |  |
| Ŕ               | Measuring resistance @                            |                           | $\mathbf{T}_{A} = 70^{\circ}\mathrm{C}$ |                       |         | <b>T</b> <sub>A</sub> = 85°C |       |                         |    |  |  |
|                 |                                                   |                           | $\mathbf{R}_{_{Mmin}}$                  | $\mathbf{R}_{M \max}$ |         | F                            | M min | $\mathbf{R}_{\rm Mmax}$ |    |  |  |
|                 | with ± 15 V                                       | @ ± 1300 A <sub>max</sub> | 0                                       | 10                    | @ ± 125 | 0 A 1)                       | 0     | 10                      | Ω  |  |  |
|                 |                                                   | @ ± 1400 A max            | 0                                       | 7                     |         |                              | 0     | 5                       | Ω  |  |  |
|                 |                                                   | @ ± 1500 A <sub>max</sub> | 0                                       | 4                     | @ ± 145 | 0 A 1)                       | 0     | 3                       | Ω  |  |  |
|                 | with ± 24 V                                       | @ ± 2200 A max            | 0                                       | 10                    | @ ± 210 | 0 A 1)                       | 3     | 10                      | Ω  |  |  |
|                 |                                                   | @ ± 2300 A max            | 0                                       | 7                     |         |                              | 3     | 5                       | Ω  |  |  |
|                 |                                                   | @ ± 2400 A <sub>max</sub> | 0                                       | 5                     |         |                              | 3     | 3                       | Ω  |  |  |
| I <sub>sn</sub> | Secondary nominal r.m.s. current                  |                           |                                         |                       |         | 200                          |       |                         | mΑ |  |  |
| K <sub>N</sub>  | Conversion ratio                                  |                           |                                         |                       |         | 1:5                          | 000   |                         |    |  |  |
| v               | Supply voltage (± 5 %)                            |                           |                                         |                       |         | ± 15                         | 24    | 4                       | V  |  |  |
| ı_              | Current consumption                               |                           |                                         |                       |         | $30(@\pm 24V) + I_{s} mA$    |       |                         |    |  |  |
| Ňď              | R.m.s. voltage for AC isolation test, 50 Hz, 1 mn |                           |                                         |                       |         |                              |       | U                       | kV |  |  |
| -               |                                                   |                           |                                         |                       |         | 1.5 <sup>3</sup>             | )     |                         | kV |  |  |
| V_              | R.m.s. voltage for                                | or partial discharg       | e extin                                 | ction (               | @ 10 pC | 4.1                          |       |                         | kV |  |  |

| Accuracy - Dynamic performance data                |                                                                                                                    |                                                                                    |                                |                                |                       |  |  |  |  |  |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------|--------------------------------|-----------------------|--|--|--|--|--|
| X <sub>G</sub>                                     | Overall accuracy $@$ $I_{PN,} T_A = 25^{\circ}C$<br>Linearity error                                                |                                                                                    | ± 0.5<br>< 0.1                 |                                | %<br>%                |  |  |  |  |  |
| I <sub>о</sub><br>I <sub>от</sub>                  | Offset current @ $\mathbf{I}_{p} = 0$ , $\mathbf{T}_{A} = 25^{\circ}$ C<br>Thermal drift of $\mathbf{I}_{o}$       | - 25°C + 70°C<br>- 50°C + 85°C                                                     | Тур<br>± 0.2                   | Max<br>± 0.4<br>± 0.5<br>± 0.8 | mA<br>mA<br>mA        |  |  |  |  |  |
| t <sub>r</sub><br>di/dt<br>f                       | Response time <sup>4)</sup> @ 90 % of I <sub>PN</sub><br>di/dt accurately followed<br>Frequency bandwidth (- 1 dB) |                                                                                    | < 1<br>> 50<br>DC 1            | 50                             | μs<br>A/μs<br>kHz     |  |  |  |  |  |
| G                                                  | eneral data                                                                                                        |                                                                                    |                                |                                |                       |  |  |  |  |  |
| T <sub>A</sub><br>T <sub>s</sub><br>R <sub>s</sub> | Ambient operating temperature<br>Ambient storage temperature<br>Secondary coil resistance @                        | $\mathbf{T}_{A} = 70^{\circ}\mathrm{C}$<br>$\mathbf{T}_{A} = 85^{\circ}\mathrm{C}$ | - 40 (-5<br>- 50 +<br>40<br>42 | 50) +<br>+ 85                  | 85 °C<br>°C<br>Ω<br>Ω |  |  |  |  |  |
| m                                                  | Mass<br>Standards                                                                                                  | A                                                                                  | 700<br>EN 50 <sup>-</sup>      | 155                            | g                     |  |  |  |  |  |

Notes : <sup>1)</sup> I<sub>P max</sub> @ +85°C & customer measuring resistance. <sup>2)</sup> Between primary and secondary + internal shield + screened cable. <sup>3)</sup> Between secondary and internal shield + screened cable. <sup>4)</sup> With a di/dt of 100 A/µs.

## Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

#### **Special features**

- $I_{P} = 0 ... \pm 2400 \text{ A}$
- $\mathbf{V}_{c} = \pm 15 ... 24 \text{ V} (\pm 5 \%)$
- V<sub>d</sub> = 12 kV
- $\mathbf{T}_{A}^{\circ} = -40^{\circ}\text{C} (-50^{\circ}\text{C}) ... + 85^{\circ}\text{C}$
- Secondary connection on screened cable 3 x 0.5 mm<sup>2</sup>
- Shield between primary and secondary connected to the cable screening
- Railway equipment
- Customer marking
- Reinforced mounting feet.

#### **Advantages**

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

#### **Applications**

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

# Dimensions LT 1005-S/SP28 (in mm. 1 mm = 0.0394 inch)



### **Mechanical characteristics**

- General tolerance
- Fastening
- Primary through-hole
- Connection of secondary
- Connection to terminal E Fastening torque
- ± 0.5 mm
- 4 holes  $\emptyset$  6.5 mm
- 40.5 x 40.5 mm
- screened cable 3 x 0.5 mm<sup>2</sup>
  - M4 threaded stud
  - 1.2 Nm or .88 Lb. Ft.

## Remarks

- $I_s$  is positive when  $I_p$  flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.

单击下面可查看定价,库存,交付和生命周期等信息

>>LEM(莱姆)