

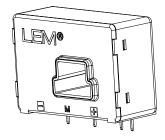
Current Transducer LA 125-P/SP4

For the electronic measurement of currents: DC, AC, pulsed..., with galvanic separation between the primary circuit and the secondary circuit.

CE c¶Us R⊠HS

Electrical data

$I_{_{\mathrm{PN}}}$	Primary nominal cur	rent rms		125	5		А
I _{PM}	Primary current, measuring range			0 ± 300			Α
R _M	Measuring resistance		$T_{A} =$	$T_{A} = 70 \text{ °C} T_{A} = 85 \text{ °C}$			
			R _{Mn}	nin R _{M max}		min R _{M max}	
	with ± 12 V	@ ± 125 A _{max}	0	89	0	85	Ω
		@ ± 200 A _{max}	0	29	0	25	Ω
	with ± 15 V	@ ± 125 A _{max}	0	134	0	130	Ω
		@ ± 200 A _{max}	0	54	0	50	Ω
		@ ± 300 A _{max}	0	11	0	7	Ω
$I_{_{\rm SN}}$	Secondary nominal current rms			62.5			mΑ
κ _N	Conversion ratio			1 : 2000			
U _c	Supply voltage (± 5	%)		± 1	2 1	5	V
I _c	Current consumption			16 (@ ± 15 V) + $I_{\rm S}$ mA			


Accuracy - Dynamic performance data

x	Accuracy @ I_{PN} , T_{A} = 25 °C	@ ± 15 V (± 5 %)	± 0.60		%
	@ ± 1	2 15 V (± 5 %)	± 0.80		%
ε	Linearity error		< 0.15		%
-			Тур	Max	
$I_{\rm o}$	Offset current @ $I_{\rm P}$ = 0, $T_{\rm A}$ = 25 °	°C		± 0.20	mA
I _{om}	Magnetic offset current ¹⁾ @ I_{P} =				
OW	-	overload of 3 x I_{PN}^{M}		± 0.25	mA
$I_{\rm ot}$	Temperature variation of I_{0} -	1.11	± 0.20	± 0.50	mA
01	0	40 °C 25 °C	± 0.30	± 0.80	mA
t _{ra}	Reaction time		< 500		ns
ť	Step response time ^{2) 3)} to 90 % of	of I _{PN}	< 1		μs
ḋ <i>i/</i> dt	di/dt accurately followed 4)		> 200		A/µs
BW	Frequency bandwidth ⁴⁾ (- 1 dB)		DC 1	100	kHz
G	eneral data				
T _A	Ambient operating temperature		- 40 +	F 85	°C
$T_{\rm s}$	Ambient storage temperature		- 45		°C
R _s	Secondary coil resistance	@ T _A = 70 °C	76	100	Ω
N _S	Cecondary con resistance	$(0, T_{A}) = 85 °C$	80		Ω
m	Mass	$W_{A} = 00$ C	55		
т	Standard			155: 199	g NF
	Stanuaru			100. 198	50

Notes: 1) Result of the coercive field of the magnetic circuit

- ²⁾ With a d*i*/d*t* of 100 A/µs
- ³⁾ The primary conductor is best filling the through-hole and/or the return of the primary conductor is above the top of the transducer.

*I*_{PN} = 125 A

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulating plastic case recognized according to UL 94-V0.

Special features

- K_N = 1:2000
- T_A = 40 °C .. + 85 °C
- Potted.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies
 (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Application domain

• Traction.

25April2013/version 15

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without prior notice

Current Transducer LA 125-P/SP4

Isolation characteristics				
U _d	Rms voltage for AC insulation test, 50 Hz, 1 min	4.5	kV	
ŭ		8.4 ¹⁾	kV	
		Min		
d _{cn}	Creepage distance	8.8	mm	
d _{Cp} d _{CI}	Clearance	8.8	mm	
CTI	Comparative Tracking Index (group IIIa)	175		

Note: ¹⁾ Voltage measured with a primary bar in low position in the through hole.

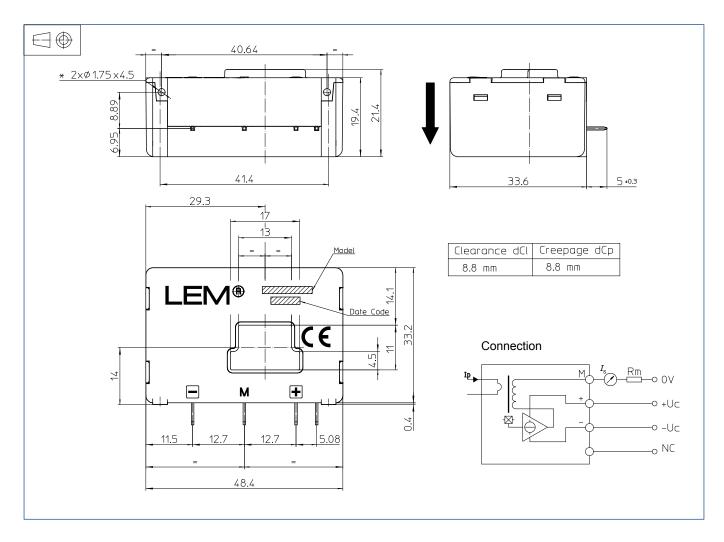
Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions LA 125-P/SP4 (in mm)

Mechanical characteristics

General tolerance	± 0.2 mm
 Primary through-hole 	17 × 4.5 mm
or	13 × 11 mm
Fastening & Connection of second	lary 4 pins
	0.63 x 0.56 mm
Recommended PCB hole	0.9 mm
 Supplementary fastening 	2 holes Ø 1.75 mm
Recommended PCB hole	2.4 mm
Recommended screws	PT KA 22 x 6
Recommended fastening torque	0.5 N·m

Remarks

- $I_{\rm s}$ is positive when $I_{\rm p}$ flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100 °C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.

单击下面可查看定价,库存,交付和生命周期等信息

>>LEM(莱姆)