

Current Transducer LA 305-S/SP1

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

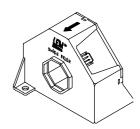
16173

Electrical data

I _{PN} I _P R _M	Primary nominal r.m.s. current Primary current, measuring range Measuring resistance @		$\begin{array}{c} 500 \\ 0 \dots \pm 800 \\ \textbf{T}_{A} = 70^{\circ} \textbf{C} \\ \textbf{R}_{M \text{ min}} \ \textbf{R}_{M \text{ max}} \\ \end{array} \begin{array}{c} \textbf{T}_{A} = 85^{\circ} \textbf{C} \\ \textbf{R}_{M \text{ min}} \ \textbf{R}_{M \text{ max}} \end{array}$				A A
	with $\pm 12 \text{ V}$ with $\pm 15 \text{ V}$	@ $\pm 500 \text{ A}_{max}$ @ $\pm 750 \text{ A}_{max}$ @ $\pm 500 \text{ A}_{max}$ @ $\pm 800 \text{ A}_{max}$	0 0 1.2 1.2	15 1 25 6	0 0 ¹⁾ 9 9 ¹⁾	14 2 ¹⁾ 24 9 ¹⁾	Ω Ω Ω
I _{SN} K _N V _C I _C	Secondary nominal r.m.s. current Conversion ratio Supply voltage (± 5 %) Current consumption R.m.s. rated voltage ²⁾ , safe separation basic isolation		250 m 1:2000 ± 1215 20(@±15V)+I _s m 1750 3500				mA V mA V

Accuracy - Dynamic performance data

\mathbf{X}_{G}	Overall accuracy @ I _{PN} , T _A = 25°C		± 0.8		%
$\mathbf{e}_{\scriptscriptstyle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	Linearity error		< 0.1		%
			Тур	Max ± 0.25	
I_{\circ}	Offset current @ $I_p = 0$, $T_A = 25$ °C			± 0.25	mΑ
I _{OM}	Residual current 3) @ I _P = 0, after an o	overload of 3 x I _{PN}		± 0.50	mΑ
I _{OT}	Thermal drift of I _o	10°C + 85°C	± 0.15	± 0.30	mΑ
\mathbf{t}_{ra}	Reaction time @ 10 % of I _{PN}		< 500		ns
t ,	Response time 4) @ 90 % of I _{PN}		< 1		μs
di/dt	di/dt accurately followed		> 100		A/µs
f	Frequency bandwidth (- 3 dB)		DC 1	00	kHz


General data

_	Ambient energting temperature		10 . 05	۰.	
I _A	Ambient operating temperature		- 10 + 85	°C	
$T_{\rm s}$	Ambient storage temperature		- 40 + 90	°C	
\mathbf{R}_{s}	Secondary coil resistance @	$T_A = 70^{\circ}C$	27	Ω	
Ü		$T_A = 85^{\circ}C$	28	Ω	
m	Mass		230	g	
	Standards 5)		EN 50178 : 1997		

Notes: 1) Measuring range limited to ± 710 A man

- ²⁾ Pollution class 2. With a non insulated primary bar which fills the through-hole
- 3) The result of the coercive field of the magnetic circuit
- 4) With a di/dt of 100 A/µs
- ⁵⁾ A list of corresponding tests is available.

$I_{PN} = 500 A$

Features

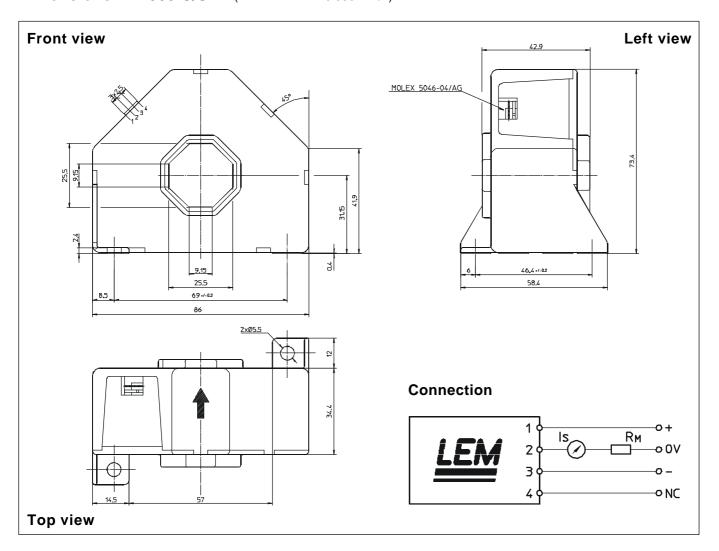
- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

- I_{PN} = 500 A
- I_P = 0..±800 A
- $\mathbf{K}_{N} = 1:2000$
- Partly potted.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

060628/5

Dimensions LA 305-S/SP1 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening

Fastening torque, max.

- Primary through-hole
- Connection of secondary
- ± 0.5 mm 2 holes Ø 5.5 mm 2M5 steel screws 4 Nm or 2.95 Lb. - Ft. 25.5 x 25.5 mm Molex 5046-04/AG

Remarks

- \mathbf{I}_{S} is positive when \mathbf{I}_{P} flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.

单击下面可查看定价,库存,交付和生命周期等信息

>>LEM(莱姆)