

Current Transducer LT 1005-S/SP1

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

1000 A

Electrical data

I _{PN}	Primary nominal r.m.s. current		1000		Α
I _P	Primary current, measuring range		0 ± 2000		Α
$\mathbf{R}_{\scriptscriptstyleM}$	Measuring resistance		$\mathbf{R}_{_{ ext{M min}}}$	\mathbf{R}_{Mmax}	
	with ± 24 V	@ ± 1000 A _{max}	0	65	Ω
		@ ± 2000 A _{max}	0	10	Ω
$I_{_{\mathrm{SN}}}$	Secondary nominal r.m.s. current		200		mA
$\mathbf{K}_{_{\mathrm{N}}}$	Conversion ratio		1:5000)	
\mathbf{V}_{c}	Supply voltage (± 10 %)		± 24		V
I _C	Current consumption				m A
\mathbf{V}_{d}	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		6 ¹⁾		k۷
			1 2)		kV
$V_{_{\mathrm{b}}}$	R.m.s. rated voltage 3),	safe separation	1750		V
		basic isolation	3500		V

Accuracy - Dynamic performance data

X _G e _L	Overall accuracy @ $\mathbf{I}_{PN,}$ \mathbf{T}_{A} = 25°C Linearity		± 0.4 < 0.1		% %
l _o l _{ot} t _r di/dt f	Offset current @ $\mathbf{I}_{\mathrm{P}} = 0$, $\mathbf{T}_{\mathrm{A}} = 25^{\circ}\mathrm{C}$ Thermal drift of \mathbf{I}_{O} Response time 4) @ 90 % of \mathbf{I}_{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)	- 25°C + 70°C	Typ ± 0.2 < 1 > 50 DC 1	•	m A m A µs A/µs kHz

General data

T _A	Ambient operating temperature Ambient storage temperature	- 25 + 70 - 40 + 85	°C
$\mathbf{R}_{\mathrm{s}}^{\mathrm{s}}$	Secondary coil resistance @ T _A = 70°C	43	Ω
m	Mass	600	g
	Standards	EN 50155	

Notes: 1) Between primary and secondary + shield

- 2) Between secondary and shield
- 3) Pollution class 2. With a non insulated primary bar which fills the through-hole.
- 4) With a di/dt of 100 A/µs.

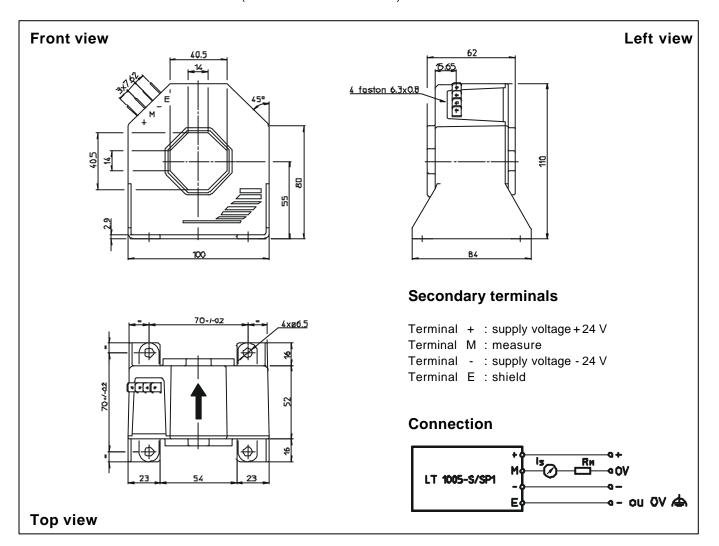
Features

- Closed loop (compensated) current transducer using the Hall effect
- Isolated plastic case recognized according to UL 94-V0.

Special features

- $V_c = \pm 24 (\pm 10 \%) V$
- $T_A = -25^{\circ}C ... + 70^{\circ}C$
- Shield between primary and secondary
- Potted
- · Railway equipment.

Advantages


- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- · Power supplies for welding applications.

Dimensions LT 1005-S/SP1 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

General tolerance

Fastening

• Primary through-hole

• Connection of secondary

± 0.5 mm

4 holes \varnothing 6.5 mm

40.5 x 40.5 mm

Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.

单击下面可查看定价,库存,交付和生命周期等信息

>>LEM(莱姆)