

Current Transducer LT 4000-S/SP35

 $I_{DN} = 4000 A$

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

 R_{T}

PN	Primary nominal r.m.s. current		4000		Α.
l _P	Primary current, measuring range		0 ± 6000		Α
R _M	Measuring resistance		$R_{_{Mmin}}$	R_{Mm}	ax
	with ± 24 V	@ $\pm 2500 A_{max}$	0	23	Ω
		@ $\pm 4000 \text{ A}_{\text{max}}$	0	9	Ω
		@ \pm 6000 A _{max}	0	1	Ω
SN	Secondary nominal r.m.s. current		800		mΑ
\ N	Conversion ratio		1:500	0	
/ c	Supply voltage 1)		± 24		V
5	Current consumption	41 + I _s		mΑ	
Ĭ _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		12 ²		kV
•			1 ³⁾		
/ e	R.m.s. voltage for par	rtial discharge extinction			
Ü	@ 10 pC		2.5		kV

Accuracy - Dynamic performance data								
X _G	Overall accuracy @ I_{PN} , $T_{A} = 25^{\circ}C$	± 0.5	%					
$\mathbf{e}_{\scriptscriptstyle\! \scriptscriptstyle L}$	Linearity error	< 0.1	%					
		Typ Max						
Io	Offset current @ $I_p = 0$, $T_A = 25^{\circ}C$	Typ Max ± 0.8	mΑ					
I _{OT}	Thermal drift of I_0 - 40°C + 70°C	± 0.4 ± 0.8	mΑ					
t _r	Response time 4 @ 90 % of I _{PN}	< 1	μs					
di/dt	di/dt accurately followed	> 50	A/µs					
f	Frequency bandwidth (- 1 dB)	DC 100	kHz					
Test circuit								
$\mathbf{N}_{\scriptscriptstyle op}$	Number of turns	1000						

Α
°C
°C
Ω
kg
95
(

Notes: 1) ± 24 V (- 12.5 %, + 10 %)

- ²⁾ Between primary and secondary + shield + test
- 3) Between secondary and test and shield
- $^{\scriptscriptstyle 4)}$ With a di/dt of 100 A/µs.

Resistance of test circuit @ $T_A = 70$ °C

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

- $V_d = 12 \text{ kV}^{2}$
- $N_{T} = 1000 \text{ turns}$
- $T_{\Delta} = -40^{\circ}C ... + 70^{\circ}C$
- Internal shield connected to the external shield
- Connection to secondary circuit on LEMO EGJ. 1B. 305. CYC.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- · Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- Single or three phases inverter
- Propulsion and braking chopper
- Propulsion converter
- Auxiliary converter
- Battery charger.

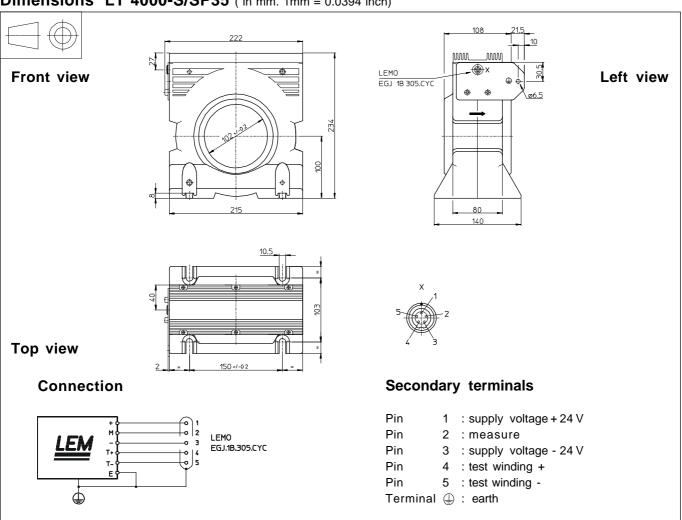
Application Domaine

Traction

 $LEM\ reserves\ the\ right\ to\ carry\ out\ modifications\ on\ its\ transducers, in\ order\ to\ improve\ them,\ without\ previous\ notice.$

22

041117/4 page 1/2


Frequency response of LT 4000-S/SP35 in the bandwidth 20 Hz < f < 200 Hz										
	Line current of 0 A		Line current of 20 A		Line current of 400 A					
AC current (20200 Hz)	Amplitude error [%]	Phase error [°]	Amplitude error [%]	Phase error [°]	Amplitude error [%]	Phase error [°]				
1 A (at 50 Hz)	± 20.6	-15	± 6.7	-3.6	± 6.7	-3.6				
2 A (at 50 Hz)	± 11.9	-7	± 4.1	-3	± 4.1	-3				

Amplitude error : in % of the measured signal

Phase error: in degrees with respect to the measured signal

Maximum amplitude and phase errors for small AC currents added to different DC line currents.

Dimensions LT 4000-S/SP35 (in mm. 1mm = 0.0394 inch)

Mechanical characteristics

- General tolerance ± 1mm
- Transducer fastening
 4 slots Ø 10.5 mm

4 M10 steel screws

Recommended fastening torque 11.5 Nm or 8.48 Lb. -Ft.

Ø 102 mm

Connection of secondary

• Primary through-hole

LEMO EGJ.1B.305.CYC

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.

041117/4 Page 22

 ${\tt LEM\ reserves\underline{\ } the\ right\ to\ carry\ out\ modifications\ on\ its\ transducers, in\ order\ to\ improve\ them,\ without\ previous\ notice.}}$

LEM Components www.lem.com

单击下面可查看定价,库存,交付和生命周期等信息

>>LEM(莱姆)