

Current Transducer LT 1005-S/SP29

 $I_{DN} = 1000 A$

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

1	62	05

			_			
_		_4.	-:		_	-1-
_	\mathbf{a}			-2		этэ
_				-ca	u	ata

I _{PN}	Primary nominal					1000		•	Α
I _P	Primary current,	measuring rang	je			0 ±	240	U	Α
$R_{\scriptscriptstyle M}$	Measuring resist	ance @	$T_A = 7$	0°C		Τ,	$\frac{1}{2} = 8$	5°C	
			$\mathbf{R}_{\mathrm{M}\ \mathrm{min}}$	$\mathbf{R}_{ ext{M max}}$		R	M min	$\mathbf{R}_{ ext{M max}}$	
	with ± 15 V	@ ± 1300 A _{max}	0	10	@ ± 1250) A 1)	0	10	Ω
		@ ± 1400 A _{max}	0	7			0	5	Ω
		@ ± 1500 A _{max}	0	4	@ ± 1450) A 1)	0	3	Ω
	with ± 24 V	@ ± 2200 A max	0	10	@ ± 2100) A 1)	3	10	Ω
		@ ± 2300 A max		7			3	5	Ω
		@ ± 2400 A max	0	5			3	3	Ω
I _{SN}	Secondary nominal r.m.s. current 200					mΑ			
K _N	Conversion ratio					1:50	000		
V _c	Supply voltage	(± 5 %)				± 15	24	1	V
Ic	Current consumption 30(@±24V)+I _s m/					mΑ			
V _d	R.m.s. voltage for	or AC isolation te	st, 50 l	Hz, 1 r	mn	122)			kV
						1.53)			kV
$V_{_{ m e}}$	R.m.s. voltage for	or partial discharg	je extin	ction (@ 10 pC	4.1			kV

Accuracy - Dynamic performance data

/ /	boaracy Bynamic periorin	arroc data			
X _G	Overall accuracy @ I _{PN,} T _A = 25°C Linearity error		± 0.5 < 0.1		% %
I _о I _{от}	Offset current @ $I_p = 0$, $T_A = 25$ °C Thermal drift of I_O	- 40°C + 85°C	+0.1	Max ±0.25 ±0.50	mA mA
t, di/dt f	Response time ⁴⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC	150	μs A/μs kHz

General data

LEM

т —	Ambient energting temperature		40 · 05	°C
I A	Ambient operating temperature		- 40 + 85	C
T_{s}	Ambientstoragetemperature		- 50 + 85	°C
$\mathbf{R}_{\mathrm{s}}^{T}$	Secondary coil resistance @	$T_A = 70^{\circ}C$	40	Ω
		$T_A = 85^{\circ}C$	42	Ω
m	Mass		700	g
	Standards ⁵⁾		EN 50155	

Notes: 1) I_{Pmax} @ +85°C & customer measuring resistance. 2) Between primary and secondary + internal shield + screened cable. 3) Between secondary and internal shield + screened cable. 4) With a di/dt of 100 A/µs 5) A list of corresponding tests is available.

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

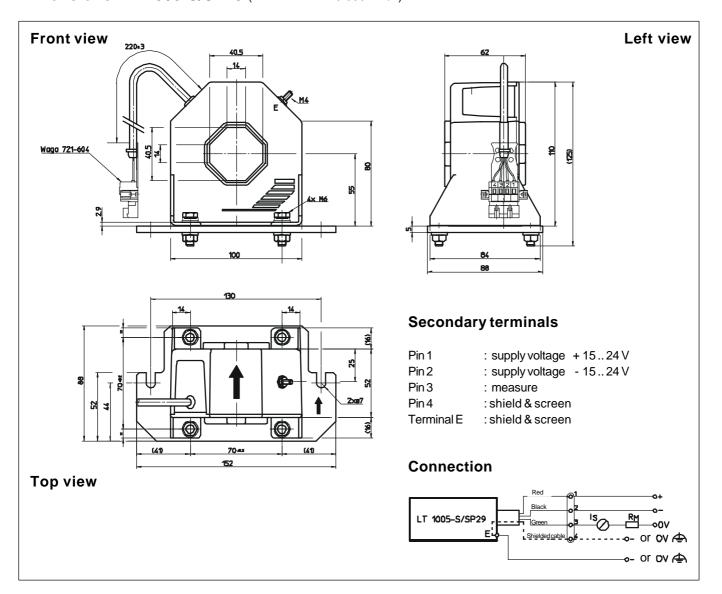
Special features

- $I_p = 0 .. \pm 2400 A$
- $V_C = \pm 15 ... 24 \text{ V } (\pm 5 \%)$
- **V**_d = 12 kV
- **T**_A = -40°C .. +85°C
- Secondary connection on screened cable and Wago 721-604 connector
- Shield between primary and secondary connected to the cable screening and to 4 pin of connector
- Railway equipment
- · Customer marking.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications


- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

060829/1

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.

Dimensions LT 1005-S/SP29 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

Fastening

• Primary through-hole

• Connection of secondary

± 0.5 mm

4 holes Ø 6.5 mm

40.5 x 40.5 mm

Wago 721-604 connector

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.

060829/1

Page 2/2

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.

单击下面可查看定价,库存,交付和生命周期等信息

>>LEM(莱姆)