

Current Transducer LT 1005-S/SP19

For the electronic measurement of currents : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

٧_

Electrical data

I _{PN}	Primary nominal r.m.s. current				1000			Α	
I_P	Primary current, measuring range				0 ± 2400			Α	
$\mathbf{R}_{\scriptscriptstyle{M}}$	Measuring resistance @		$T_{\Delta} = 70^{\circ}C$		$T_{\Delta} = 85^{\circ}C$				
			\mathbf{R}_{Mmin}	\mathbf{R}_{Mmax}		R	M min	\mathbf{R}_{Mmax}	
	with ± 15 V	$@ \pm 1300 \text{ A}_{max}$	0	10	@ ± 125			10	Ω
		@ ± 1400 A _{max}	0	7			0	5	Ω
		@ ± 1500 A _{max}	0	4	@ ± 145	0 A 1)	0	3	Ω
	with ± 24 V	$@ \pm 2200 \text{ A}_{max}$	0	10	@ ± 210	0 A 1)	3	10	Ω
		@ $\pm 2300 A_{max}$	0	7			3	5	Ω
		$@ \pm 2400 \text{ A}_{max}$	0	5			3	3	Ω
I _{SN}	Secondary nominal r.m.s. current					200			mΑ
K _N	Conversion ratio				1:50	000			
V _c	Supply voltage (± 5 %)					± 15	24	ļ.	V
I _C	Current consumption				$30(@\pm 24V)+I_{S} mA$			mA	
V _d	R.m.s. voltage for	or AC isolation te	st, 50	Hz, 1 r	mn	12 ²⁾			kV

Accuracy - Dynamic performance data

X _G	Overall accuracy @ $\mathbf{I}_{PN,}$ \mathbf{T}_{A} = 25°C Linearity error		± 0.5 < 0.1		% %
I _o	Offset current @ $\mathbf{I}_{\rm p}$ = 0, $\mathbf{T}_{\rm A}$ = 25°C Thermal drift of $\mathbf{I}_{\rm O}$	- 25°C + 70°C - 50°C + 85°C	Typ ± 0.2	Max ± 0.4 ± 0.5 ± 0.8	
t _, di/dt f	Response time 4) @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC 1	150	μs A/μs kHz

R.m.s. voltage for partial discharge extinction @ 10 pC 4.1

General data

LEM

T _A	Ambient operating temperature		- 40 (-50) +	- 85 °C
T _s	Ambient storage temperature		- 50 + 85	°C
\mathbf{R}_{s}	Secondary coil resistance @	$T_A = 70^{\circ}C$	40	Ω
Ü		$T_A = 85^{\circ}C$	42	Ω
m	Mass		700	g
	Standards		EN 50155 : 1	1955

Notes : 1) I_{P max} @ +85°C & customer measuring resistance

- 2) Between primary and secondary + internal shield + screened cable
- 3) Between secondary and internal shield + screened cable
- 4) With a di/dt of 100 A/µs.

1000 A

Features

- Closed loop (compensated) current transducer using the Hall effect
- · Insulated plastic case recognized according to UL 94-V0.

Special features

- $I_p = 0 .. \pm 2400 A$
- $V_c = \pm 15 ... 24 V (\pm 5 \%)$
- **V**_d = 12 kV
- $T_A = -40$ °C (-50°C) .. + 85°C
- Secondary connection on screened cable 3 x 0.5 mm²
- · Shield between primary and secondary connected to the cable screening
- Railway equipment
- · Customer marking.

Advantages

kV

kV

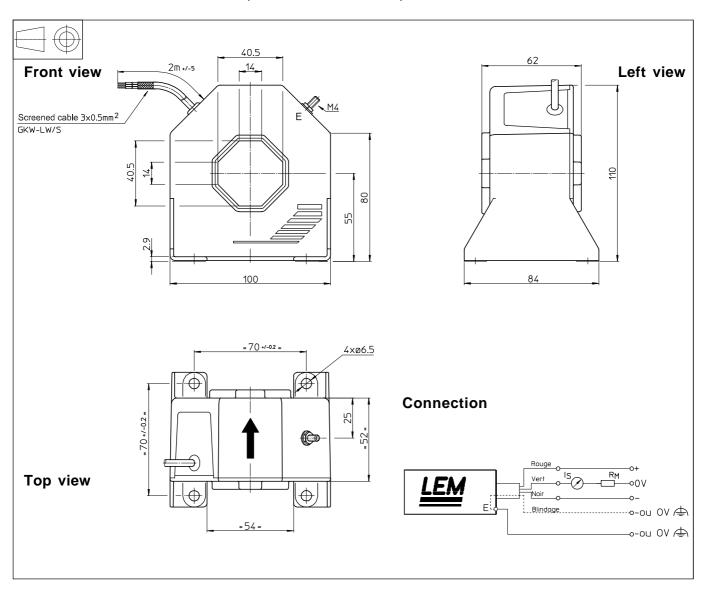
- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

060424/3

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice


1.5³⁾

Page 1/2

www.lem.com

Dimensions LT 1005-S/SP19 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

• Transducer fastening

Recommended fastening torque 5 Nm or 3.69 Lb. - Ft

• Primary through-hole

LEM

Connection of secondary

Connection to terminal E

Recommended fastening torque

± 0.5 mm

4 holes \varnothing 6.5 mm

4 x M6 steel screws

3 MIII 01 3.09 LD.

40.5 x 40.5 mm

screened cable 3 x 0.5 mm²

M4 threaded stud

1.2 Nm or 0.88 Lb. - Ft.

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.

060328/4

www.lem.com

Page 2/2

 $LEM\ reserves\ the\ right\ to\ carry\ out\ modifications\ on\ its\ transducers, in\ order\ to\ improve\ them,\ without\ previous\ notice.$

单击下面可查看定价,库存,交付和生命周期等信息

>>LEM(莱姆)