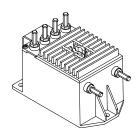


Voltage Transducer CV 3-100/SP3

For the electronic measurement of voltages: DC, AC, pulsed..., with galvanic separation between the primary circuit and the secondary circuit

Electrical data				
V_{PN}	Primary nominal RMS voltage	85	V	
V_{PM}	Primary voltage, measuring range	0 ±130	V	
$V_{\mathtt{S}}$	Secondary voltage @ $V_{\rm Pmax}$	6.5	V	
K_{N}	Conversion ratio	100 V : 5 V		
R_{L}	Load resistance	≥ 1	kΩ	
C_{L}	Capacitive loading	≤ 5	nF	
U_{C}	Supply voltage (±10 %)	±15	V	
$I_{\mathtt{C}}$	Current consumption	32 + $V_{\rm S}$ / $R_{\rm L}$	mA	

A	Accuracy - Dynamic performance data		
		Max	
X_{G}	Overall accuracy @ V_{PN} , T_{Δ} = 25 °C	±0.2	
Ü	−25 +75 °C	±0.5	
	−40 +75 °C	±0.6	
V.	Offset voltage @ $V_{\rm c}$ = 0. $T_{\rm c}$ = 25 °C	+5	


-40 +75 °C	±0.6	%
fset voltage @ V_P = 0, T_A = 25 °C	±5	mV
−25 +75 °C	±10	mV
−40 +75 °C	±18	mV
ep response time to 90 % of $V_{\scriptscriptstyle {\sf P}{\sf N}}^{}$	0.4	μs
equency bandwidth (-1 dB) @ $V_{\scriptscriptstyle PN}$	DC 700	kHz
		fset voltage @ $V_{\rm P}$ = 0, $T_{\rm A}$ = 25 °C ± 5 $-25 \dots +75$ °C ± 10 $-40 \dots +75$ °C ± 18 ep response time to 90 % of $V_{\rm PN}^{-1}$ 0.4

	General data			
T_{A}	Ambient operating temperature	-40 + 75	°C	
$T_{\mathtt{S}}$	Ambient storage temperature	-40 +85	°C	
P_{P}	Total primary power loss	3.1	W	
R_{P}	Resistance of primary (winding)	6.4	kΩ	
m	Mass	550	g	
	Standards	EN 50155: 200	EN 50155: 2007 ²⁾	
		EN 50121-3-2	EN 50121-3-2: 2015	

Notes: 1) For a $dv/dt = 160 \text{ V/}\mu\text{s}$.

15November2017/Version 10

Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Insulating plastic case recognized according to UL 94-V0.

Special features

- $V_{PN} = 85 \text{ V}$
- $V_{PM} = 0 \dots \pm 130 \text{ V}$
- T_∧ = -40 ... +75 °C
- Burn-in.

%

Advantages

- · Excellent accuracy
- Very good linearity
- Low temperature drift
- · Optimized response time
- Wide frequency bandwidthHigh immunity to external
- interferenceLow disturbance in common

Applications

mode.

- Single or three phase inverters
- Propulsion and braking choppers
- Propulsion converters
- Auxiliary converters
- · Battery chargers.

Application Domain

Traction.

N° 97.76.34.003.0 Page 1/3

Downloaded From Oneyac.com

²⁾ Variation of the offset during the test IEC 61000-4-3 between 100 to 200 MHz :15% of nominal value.

Voltage Transducer CV 3-100/SP3

Insulation coordination				
U_{d}	RMS voltage for AC insulation test, 50 Hz, 1 min	6	kV	
U_{e}	Partial discharge extinction RMS voltage @ 10 pC	2	kV	
		Min		
d_{Cp}	Creepage distance	83.8	mm	
d_{CI}	Clearance	76.4	mm	
CTI	Comparative tracking index (group I)	600		

Safety

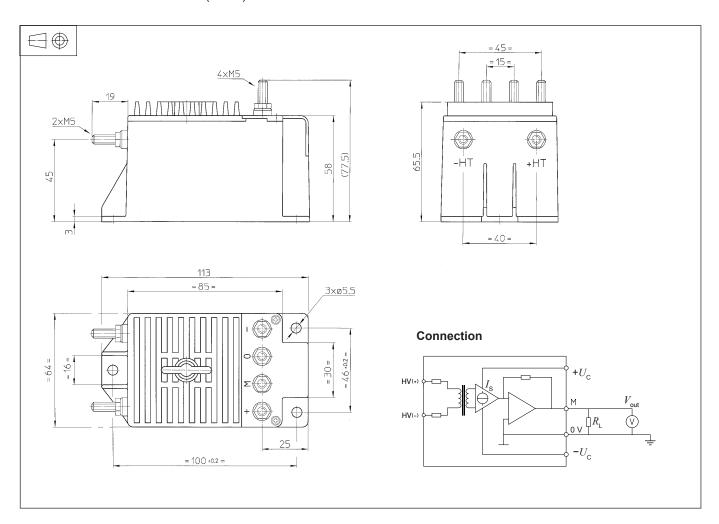
This transducer must be used in limited-energy secondary circuits according to IEC 61010-1.

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (e.g. primary connections, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions CV 3-100/SP3 (in mm)

Mechanical characteristics

General tolerance

Transducer fastening

Recommended fastening torque

· Connection of primary

Connection of secondary

Recommended fastening torque 2.2 N·m

±0.3 mm

3 holes Ø 5.5 mm

3 steel screws M5

3.8 N·m

2 threaded studs M5

4 threaded studs M5

Remarks

- $\bullet \ \ V_{\rm S}$ is positive when $V_{\rm P}$ is applied on terminal +HV.
- EMC tested with a shielded secondary cable. Installation of the transducer must be done unless otherwise specified on the datasheet, according to LEM Transducer Generic Mounting Rules. Please refer to LEM document N°ANE120504 available on our Web site: Products/Product Documentation.

单击下面可查看定价,库存,交付和生命周期等信息

>>LEM(莱姆)