

Current Transducer LT 1005-S

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

0623

. . . .

1000 A

Electrical data

I _{PN}	Primary nominal r.m.s. current			1000			
I _P	Primary current, measuring range			0 ± 2000			Α
$\dot{R}_{_{\mathrm{M}}}$	Measuring resistance @		T _A =	$T_A = 70^{\circ}C \mid T_A = 85^{\circ}$;
•••			R _{M mi}	$\mathbf{R}_{M\;max}$	R _{M mi}	${}_{n}R_{Mmax}$	
	with ± 15 V	@ \pm 1000 A _{max}	0	22.5	0	18.5	Ω
		@ ± 1200 A max	0	11	0	8	Ω
	with ± 24 V	@ ± 1000 A max	0	65	0	62	Ω
		@ ± 2000 A max	0	10	0	7	Ω
I _{SN}	Secondary nominal r.m.s.	. current		200)		mΑ
K _N	Conversion ratio			1:	5000		
V _C	Supply voltage (± 5 %)			± 15 24			V
ľ	Current consumption			$30(@ \pm 24 V) + I_s mA$			
$\check{\mathbf{V}}_{_{d}}$	R.m.s. voltage for AC isola	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		6		3	kV
V _b	R.m.s. rated voltage ¹⁾ , safe separation			175	50		V
Б	-	basic isolation		350	00		V

Accuracy - Dynamic performance data

X _G	Overall accuracy @ $\mathbf{I}_{PN_{i}}$ \mathbf{T}_{A} = 25°C Linearity		± 0.4 < 0.1		% %
I _о I _{от}	Offset current @ $\mathbf{I}_{\mathrm{p}} = 0$, $\mathbf{T}_{\mathrm{A}} = 25^{\circ}\mathrm{C}$ Thermal drift of \mathbf{I}_{O}	- 10°C + 85°C	Тур ± 0.3	Max ± 0.4 ± 0.5	mA mA
t _r di/dt f	Response time ²⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC 1	150	μs A/μs kHz

General data

$T_{_{\rm A}}$	Ambient operating temperature		- 10 + 85	°C	
T _s	Ambient storage temperature		- 25 + 100	°C	
\mathbf{R}_{s}	Secondary coil resistance @	$T_A = 70^{\circ}C$	43	Ω	
Ü		$T_A = 85^{\circ}C$	46	Ω	
m	Mass		550	g	
	Standards		EN 50178: 1997		

Features

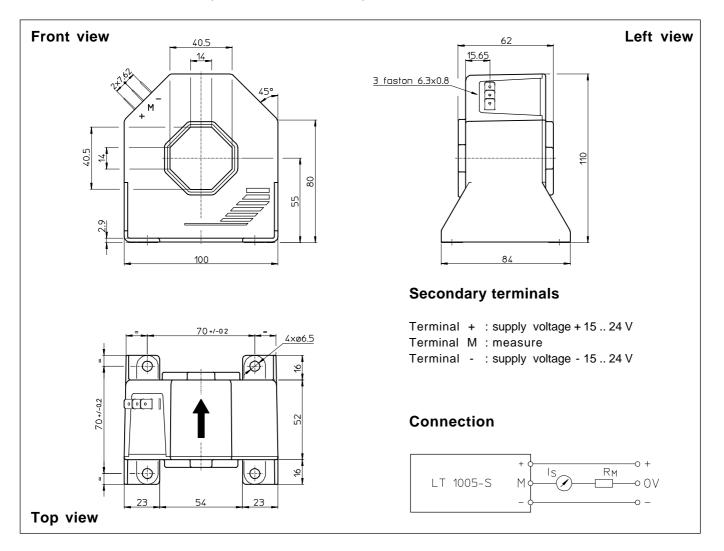
- Closed loop (compensated) current transducer using the Hall effect
- Isolated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.


Notes: 1) Pollution class 2. With a non insulated primary bar which fills the through-hole.

2) With a di/dt of 100 A/µs.

070807/7

Dimensions LT **1005-S** (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Primary through-hole
- Connection of secondary
- ± 0.5 mm
- 4 holes \varnothing 6.5 mm
- 40.5 x 40.5 mm

Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.

单击下面可查看定价,库存,交付和生命周期等信息

>>LEM(莱姆)