Current Transducer HOP 800 ... 2000-SB For the electronic measurement of currents: DC, AC, pulsed..., with galvanic separation between the primary circuit and the secondary circuit. # $I_{PN} = 800 \dots 2000 A$ #### **Electrical data** | | Туре | Primary nominal | Primary curre | nt, | |--------------------|-----------------------|-----------------|---------------|-----| | | | RMS current | measuring ran | ge | | | | $I_{PN}(A)$ | $I_{PM}(A)$ | | | | HOP 800-SB | 800 | ±1600 | | | | HOP 1000-SB | 1000 | ±2000 | | | | HOP 1500-SB | 1500 | ±3000 | | | | HOP 2000-SB | 2000 | ±3000 | | | U_{out} | Output voltage (Analo | g) | ±4 | V | | $R_{\rm L}$ | Load resistance | | > 10 | kΩ | | U_{c} | Supply voltage (±5 %) | | ±12 15 | V | | I_{\circ} | Current consumption | | 20 | mA | #### Accuracy - Dynamic performance data | $\varepsilon_{ m tot}$ | Total error ¹⁾ @ I_{PN} , T_A = 25 °C, @ ±12 15 V (±5 %) | ≤ ±2 | | % | |------------------------|---|------------|------|-----| | ε_{L} | Linearity error 1) | ≤ ±1 | | % | | | | Тур | Max | | | U_{OE} | Electrical offset voltage @ I_P = 0, T_A = 25 °C | ±10 | ±20 | mV | | U_{OM} | Magnetic offset voltage @ $I_P = 0$ and specified R_M , | | | | | | after an overload of $3 \times I_{PN}$ | ±10 | ±20 | mV | | U_{oT} | Temperature variation of U_0 = -10 °C +70 °C | ±10 | ±25 | mV | | TCU_{out} | Temperature coefficient of U_{out} = -10 °C +70 °C | ±80 | ±150 | mV | | t _{D 90} | Delay time to 90 % of the final output value for I_{PN} |) step < 1 | 10 | μs | | BW | Frequency bandwidth (-1 dB) | DC | 10 | kHz | #### **General data** | T_{A} | Ambient operating temperature | -10 + 70 | °C | |-----------|-------------------------------|-----------------|----| | T_{Ast} | Ambient storage temperature | −25 + 85 | °C | | m | Mass | 590 | g | | | Standards | EN 50178: 1997 | | | | | UL 508: 2013 | | #### **Features** - Open loop Hall effect transducer - Insulating plastic case recognized according to UL 94-V0. #### **Advantages** - Low power consumption - Split core easy for mounting - Through-hole, no insertion losses. #### **Applications** - Power supplies for TELECOM (monitoring & measuring) - Uninterruptible Power Supplies (UPS) - Switched Mode Power Supplies (SMPS) - Electrical chemistry - Chopper - Battery supplied applications. #### **Application domain** Industrial. Notes: 1) Excludes the electrical offset ²⁾ For a di/dt = 50 A/µs. #### Current Transducer HOP 800 ... 2000-SB | Ins | sulation coordination | | | |-------------------|--|-------|----| | U_{d} | RMS voltage for AC insulation test, 50 Hz, 1 min | 5 | kV | | U_{Ni} | Impulse withstand voltage 1.2/50 μs | > 12 | kV | | $U_{\rm e}$ | Partial discharge extinction RMS voltage | > 1.5 | kV | | Ü | | Min | | | d_{Cp} | Creepage distance 1) | 21.2 | mm | | $d_{Cp} \ d_{Cl}$ | Clearance 1) | 16 | mm | | CTI | Comparative tracking index (group IIIa) | 250 | | Note: 1) On housing from pin to primary hole. #### **Applications examples** According to EN 50178 and IEC 61010-1 standards and following conditions: - Over voltage category OV 3 - Pollution degree PD2 - Non-uniform field | | EN 50178 | IEC 61010-1 | |---|--------------------------|-----------------| | $d_{\mathrm{Cp}},d_{\mathrm{Cl}},U_{\mathrm{Ni}}$ | Rated insulation voltage | Nominal voltage | | Basic insulation | 1500 V | 2000 V | | Reinforced insulation | 1000 V | 1000 V | #### **Safety** This transducer must be used in limited-energy secondary circuits according to IEC 61010-1. This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions. Caution, risk of electrical shock When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply). Ignoring this warning can lead to injury and/or cause serious damage. This transducer is a build-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used. Main supply must be able to be disconnected. Page 2/3 #### Dimensions HOP 800 ... 2000-SB (in mm) #### **Mechanical characteristics** General tolerance ±1 mm 104 × 40 mm Primary through hole Busbar fastening or panel mounting 1 hole Ø 5.5 mm and 2 slots 5.5 × 35 mm Recommended fastening torque 2.4 N·m Panel mounting 4 × holes 3.3 mm Recommended fastening torque 1 N·m Distance between holes axes 15 × 150 mm Secondary connection Molex 5045-04AG "Malting connector provided with the transducer" #### Remarks - $\bullet \ \ U_{\rm out}$ is positive when $I_{\rm P}$ flows in the direction of the arrow. - The return busbar and primary conductor elbow must be located at least at 2.5 × window length more far away from the transducer case. - Temperature of the primary conductor should not exceed 100°C - Installation of the transducer must be done unless otherwise specified on the datasheet, according to LEM Transducer Generic Mounting Rules. Please refer to LEM document N°ANE120504 available on our Web site: https://www.lem.com/en/file/3137/download/. - Dynamic performances are best with a single busbar completely filling the primary hole. - This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us. Page 3/3 ## 单击下面可查看定价,库存,交付和生命周期等信息 ## >>LEM(莱姆)