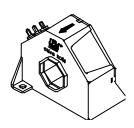


Current Transducer LA 305-S/SP6

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data Primary nominal r.m.s. current 300 Α I_{PN} Primary current, measuring range 0 .. ± 800 R_{M} Measuring resistance @ $T_{A} = 70^{\circ}C$ $T_A = 85^{\circ}C$ $R_{M \min} R_{M \max}$ @ ± 300 A max 91 with ± 15 V 86 Ω @ ± 500 A _{max} 0 25 0 20 Ω @ ± 300 A _{max} 15 200 20 195 Ω with ± 24 V @ ±800 A _{max} 15 30 20 25 Ω Secondary nominal r.m.s. current 75 mΑ Conversion ratio 1:4000 Supply voltage (± 5 %) ± 15 .. 24 Current consumption $20(@\pm15V)+I_{s} mA$ R.m.s. rated voltage 1), safe separation 1750 basic isolation 3500


Accuracy - Dynamic performance data								
X _G	Overall accuracy @ I _{PN} , T _A = 25°C	± 0.8		%				
$\mathbf{e}_{\scriptscriptstyle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	Linearity	< 0.1		%				
		Тур	Max					
I_{\circ}	Offset current @ $I_p = 0$, $T_A = 25$ °C		Max ± 0.15	m A				
I _{OM}	Residual current ²⁾ @ $I_p = 0$, after an overload of $3 \times I_{pN}$		± 0.25	m A				
I _{OT}	Thermal drift of I_0 - 25°C + 85°C	± 0.08	± 0.25	m A				
t _{ra}	Reaction time @ 10 % of I _{PN}	< 500		ns				
t,	Response time ³⁾ @ 90 % of I _{PN}	< 1		μs				
di/dt	di/dt accurately followed	> 100		A/µs				
f	Frequency bandwidth (- 3 dB)	DC 1	100	kHz				

General data							
\mathbf{T}_{A}	Ambient operating temperature		- 25 + 85	°C			
T _s	Ambient storage temperature		- 40 + 90	°C			
$\ddot{R_s}$	Secondary coil resistance @	$T_A = 70^{\circ}C$	80	Ω			
Ü		$T_A = 85^{\circ}C$	85	Ω			
m	Mass		260	g			
	Standards 4)		EN 50155				

 $\underline{\text{Notes}}$: 1) Pollution class 2. With a non insulated primary bar which fills the through-hole

- 2) The result of the coercive field of the magnetic circuit
- 3) With a di/dt of 100 A/µs
- ⁴⁾ A list of corresponding tests is available.

$I_{PN} = 300 \text{ A}$

Features

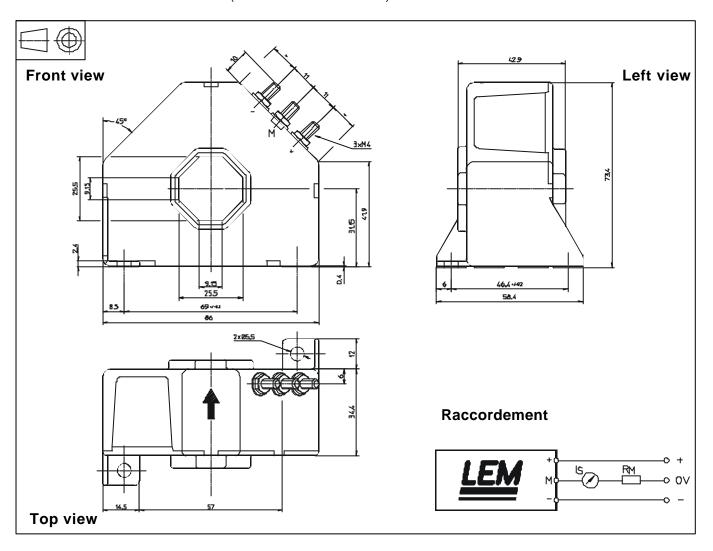
- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

- $I_p = 0.. \pm 800 \text{ A}$
- $\mathbf{K}_{N} = 1:4000$
- $V_C = \pm 15 ... 24 (\pm 5 \%) V$
- Connection to secondary circuit on 3 M4 threaded studs
- Potted
- Railway equipment.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

021213/4

Dimensions LA 305-S/SP6 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening

Fastening torque, max.

- Primary through-hole
- Connection to secondary Fastening torque
- ± 0.5 mm 2 holes Ø 5.5 mm 2 M5 steel screws 4 Nm or 2.95 Lb. - Ft. 25.5 x 25.5 mm M4 threaded studs 1.2 Nm or .88 Lb - Ft

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.

单击下面可查看定价,库存,交付和生命周期等信息

>>LEM(莱姆)