

Current Transducer LA 305-S/SP8

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

I _{PN}	Primary nominal r.m.s. current			300			Α
I _P	Primary current, measuring range			0 ± 500			Α
$\dot{R}_{_{\mathrm{M}}}$	Measuring resistance @ T		$T_{A} =$	70°C	T _ =	= 85°C	;
			\mathbf{R}_{Mmin}^{n}	$\mathbf{R}_{\mathrm{Mmax}}$	R _{M min}	$\mathbf{R}_{\mathrm{M}\mathrm{max}}$	
	with ± 12 V	$@ \pm 300 \text{ A}_{max}$	0	47	0	45	Ω
		@ ± 500 A _{max}	0	14	0	12	Ω
	with ± 15 V	@ ± 300 A _{max}	0	70	5	68	Ω
		@ ± 500 A max	0	28	5	26	Ω
I _{SN}	Secondary nominal r.m.s. current			120)		mΑ
K _N	Conversion ratio			1:	2500		
V _C	Supply voltage (± 5 %)			± 12 15			V
I _c	Current consumption			20 (@ ±15 V) + I _s mA			mA
$\dot{\mathbf{V}}_{_{\mathrm{b}}}$	R.m.s. rated voltage 1), sa	afe separation		175	50	Ü	V
ž	ba	asic isolation		350	00		V
V _d	R.m.s. voltage for AC isol	lation test, 50 Hz,	1 mn	6			kV

Accuracy - Dynamic performance data

$\mathbf{X}_{_{\mathrm{G}}}$	Overall accuracy @ I_{PN} , $T_A = 25^{\circ}C$	± 0	.8	%
X _G	Linearity error	< 0	.1	%
		Ty	/р Max ± 0.20	
I_{\circ}	Offset current @ $I_p = 0$, $T_A = 25$ °C		± 0.20	mΑ
I _{OM}	Residual current $^{2)}$ @ $I_p = 0$, after an overload of	3 x I _{PN}	± 0.40	mΑ
I _{OT}	Thermal drift of I _o - 40°C + 8	35°C ± 0	0.2 ± 0.50	mΑ
t _{ra}	Reaction time @ 10 % of I _{PN}	< 5	00	ns
t _r	Response time 3 @ 90 % of I _{PN}	< 1		μs
di/dt	di/dt accurately followed	> 1	00	A/µs
f	Frequency bandwidth (- 3 dB)	DC	100	kHz


General data

T _Δ	Ambient operating temperature		- 40 + 85	°C
T _s	Ambient storage temperature		- 50 + 90	°C
Rs	Secondary coil resistance @	$T_{\Delta} = 70^{\circ}C$	35	Ω
Ü		T_{Δ} = 85°C	37	Ω
m	Mass	A	290	g
	Standards	EN 50155(95.11.0		.11.01)

 $\underline{\text{Notes}}$: 1) Pollution class 2. With a non insulated primary bar which fills the through-hole

- 2) The result of the coercive field of the magnetic circuit
- 3) With a di/dt of 100 A/µs.

$I_{DN} = 300 \text{ A}$

Features

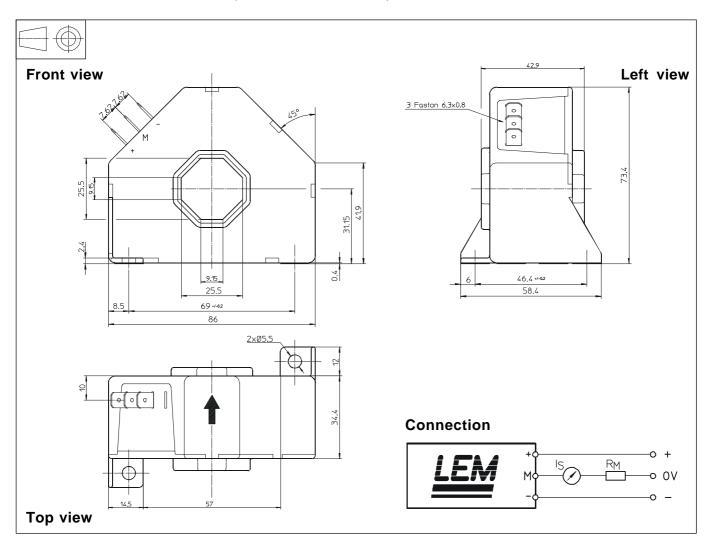
- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Specials features

- $T_A = -40^{\circ}C ... + 85^{\circ}C$
- Connection to secondary circuit on 3 Faston 6.3 x 0.8 mm.
- Potted
- Railway equipment.

Advantages

- Excellent accuracy
- · Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

060913/4

Dimensions LA 305-S/SP8 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening

Fastening torque, max.

- Primary through-hole
- Connection of secondary
- ± 0.5 mm
- 2 holes \varnothing 5.5 mm
- 2 M5 steel screws
- 4 Nm or 2.95 Lb. Ft.
- 25.5 x 25.5 mm

Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.

单击下面可查看定价,库存,交付和生命周期等信息

>>LEM(莱姆)