

Current Transducer LT 1005-S/SP26

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).



1000 A

Electrical data

I _{PN} I _P R _M				$ \begin{array}{c} 1000 \\ 0 \pm 2800 \\ 20 \\ \mathbf{T}_{A} = 70^{\circ}\text{C} \mid \mathbf{T}_{A} = 85^{\circ}\text{C} \end{array} $			A A kA
	with ± 24 V	@ ± 1000 A max @ ± 2000 A max @ ± 2800 A max	R _{M min} 2 2 2 2	R _{Mmax} 60 16 3.6	2.4 5 2.4 1	8.5 4.5	Ω Ω Ω
I _{SN} K _N V _C I _C V _d	Secondary nominal r.m.s. Conversion ratio Supply voltage (± 3 %) Current consumption R.m.s. voltage for AC isola	current		250	4000 4		mA V mA kV

Accuracy - Dynamic performance data

X _G	Overall accuracy @ $\mathbf{I}_{\text{PN,}}$ \mathbf{T}_{A} = 25°C Linearity		± 0.4 < 0.1		% %
I _о	Offset current @ \mathbf{I}_{p} = 0, \mathbf{T}_{A} = 25°C Thermal drift of \mathbf{I}_{O}	- 40°C 25°C	± 0.35	Max ± 0.50 ± 0.80	mA mA
				± 0.30 ± 0.70	mA mA
t _r di/dt f	Response time ²⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC ^	150	μs A/μs kHz

General data

T _A T _S R _S	Ambient operating temperature Ambient storage temperature Secondary coil resistance	@ T _A = 70°C	- 40 + 85 - 45 + 95 28	°C °C Ω
		@ $T_A = 85^{\circ}C$	29.5	Ω
m	Mass		600	g
	Standards		EN 50155 : 19	995

Notes : 1) Measuring range limited to \pm 2680 A @ T_{A} = 85°C

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

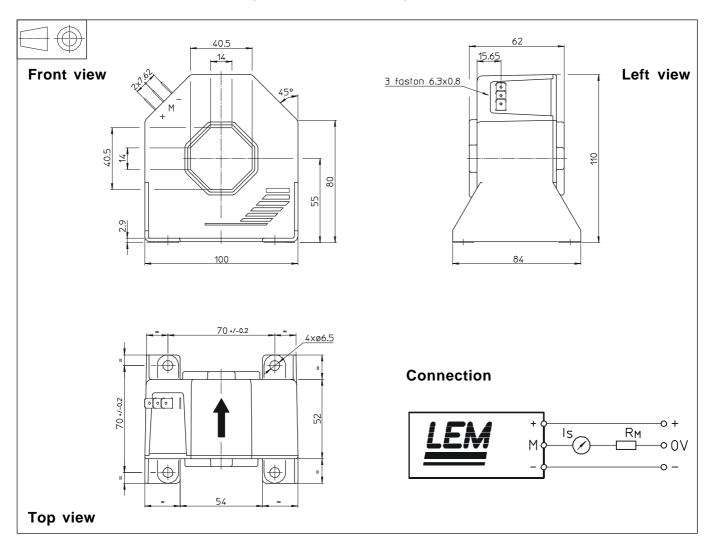
Special features

- $I_{p} = 0 .. \pm 2800 A$
- $V_c = \pm 24 (\pm 3 \%) V$
- $\mathbf{K}_{N} = 1 : 4000$
- $T_A = -40^{\circ}C .. + 85^{\circ}C$
- Potted
- · Railway equipment.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- · High immunity to external interference
- Current overload capability.

Applications


- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

070807/4

²⁾ With a di/dt of 100 A/µs.

Dimensions LT 1005-S/SP26 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening

Recommended fastening torque 5 Nm or 3.69 Lb - Ft

- Primary through-hole
- · Connection of secondary
- ± 1.0 mm
- 4 holes Ø 6.5 mm
- 4 M6 steel screws
- 40.5 x 40.5 mm Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow
- Temperature of the primary conductor should not exceed
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.

单击下面可查看定价,库存,交付和生命周期等信息

>>LEM(莱姆)