

# **Current Transducer LT 1005-S/SP36**

 $I_{DN} = 1000 A$ 

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).







| FI | ectr | ical | data |
|----|------|------|------|
|    | せいい  | ıvaı | uata |

| I <sub>PN</sub>                 | Primary nominal                  | r.m.s. current               |                              |                     |          | 1000                       | )     |                           | Α        |
|---------------------------------|----------------------------------|------------------------------|------------------------------|---------------------|----------|----------------------------|-------|---------------------------|----------|
| I <sub>P</sub>                  | Primary current,                 | measuring rang               | е                            |                     |          | 0 ±                        | 240   | 0                         | Α        |
| $\dot{\mathbf{R}}_{\mathrm{M}}$ | Measuring resistance @           |                              | $T_{\Delta} = 70^{\circ}C$   |                     |          | $T_{\Delta} = 85^{\circ}C$ |       | 5°C                       |          |
|                                 |                                  |                              | $\mathbf{R}_{\mathrm{Mmin}}$ | $\mathbf{R}_{Mmax}$ |          | R                          | M min | $R_{\text{M max}}$        |          |
|                                 | with ± 15 V                      | $@ \pm 1300 \text{ A}_{max}$ | 0                            | 10                  | @ ± 1250 | ) A 1)                     | 0     | 10                        | $\Omega$ |
|                                 |                                  | @ ± 1400 A max               | 0                            | 7                   |          |                            | 0     | 5                         | Ω        |
|                                 |                                  | @ ± 1500 A <sub>max</sub>    | 0                            | 4                   | @ ± 1450 | ) A 1)                     | 0     | 3                         | Ω        |
|                                 | with ± 24 V                      | @ ± 2200 A <sub>max</sub>    | 0                            | 10                  | @ ± 2100 | ) A 1)                     | 3     | 10                        | Ω        |
|                                 |                                  | @ ± 2300 A <sub>max</sub>    | 0                            | 7                   |          |                            | 3     | 5                         | Ω        |
|                                 |                                  | @ ± 2400 A max               | 0                            | 5                   |          |                            | 3     | 3                         | Ω        |
| $I_{\rm SN}$                    | Secondary nominal r.m.s. current |                              |                              |                     | 200      |                            |       | mΑ                        |          |
| K                               | Conversion ratio                 |                              |                              | 1:50                | 000      |                            |       |                           |          |
| <b>V</b> <sub>c</sub>           | Supply voltage                   | (± 5 %)                      |                              |                     |          | ± 15                       | 24    |                           | V        |
| I <sub>c</sub>                  | Current consum                   | nption                       |                              |                     |          | 30(@                       | ± 24  | V)+ <b>I</b> <sub>s</sub> | mA       |
| $\mathbf{V}_{d}$                | R.m.s. voltage for               | or AC isolation te           | st, 50 H                     | Hz, 1 r             | mn       | 12 2)                      |       | Ü                         | kV       |
| ŭ                               |                                  |                              |                              |                     |          | $1.5^{3)}$                 |       |                           | kV       |
| ٧.                              | R.m.s. voltage for               | or partial discharg          | e extin                      | ction (             | @ 10 pC  | 4.1                        |       |                           | kV       |

## **Accuracy - Dynamic performance data**

| $\mathbf{X}_{G}$             | Overall accuracy @ $\mathbf{I}_{PN,}$ $\mathbf{T}_{A}$ = 25°C Linearity error                                |                                | ± 0.5<br>< 0.1      |                                | %<br>%            |
|------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------|--------------------------------|-------------------|
| I <sub>o</sub>               | Offset current @ $\mathbf{I}_{\rm p}$ = 0, $\mathbf{T}_{\rm A}$ = 25°C Thermal drift of $\mathbf{I}_{\rm O}$ | - 25°C + 70°C<br>- 50°C + 85°C | + 0.2               | Max<br>± 0.4<br>± 0.5<br>± 0.8 | mA<br>mA<br>mA    |
| t <sub>,</sub><br>di/dt<br>f | Response time 4) @ 90 % of I <sub>PN</sub> di/dt accurately followed Frequency bandwidth (- 1 dB)            |                                | < 1<br>> 50<br>DC 1 | 150                            | μs<br>A/μs<br>kHz |

### General data

LEM

| $T_A$                     | Ambient operating temperature |                     | - 40 (-50) +    | - 85 °C  |  |
|---------------------------|-------------------------------|---------------------|-----------------|----------|--|
| $T_{\rm s}$               | Ambient storage temperature   |                     | - 50 + 85       | °C       |  |
| $\mathbf{R}_{\mathrm{s}}$ | Secondary coil resistance @   | $T_A = 70^{\circ}C$ | 40              | $\Omega$ |  |
| J                         |                               | $T_A = 85^{\circ}C$ | 42              | Ω        |  |
| m                         | Mass                          |                     | 700             | g        |  |
|                           | Standards                     |                     | EN 50155 : 1995 |          |  |
|                           |                               |                     |                 |          |  |

#### **Features**

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

### Special features

- $I_p = 0 .. \pm 2400 A$
- $V_{C} = \pm 15 ... 24 \text{ V } (\pm 5 \%)$
- $V_d = 12 \text{ kV}^{2)}$
- $T_A = -40^{\circ}C (-50^{\circ}C) ... + 85^{\circ}C$
- Secondary connection on screened cable 3 x 0.5 mm<sup>2</sup> and connector SUB-D 9P (female)
- Shield between primary and secondary connected to the cable screening.

#### **Advantages**

- · Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

#### **Applications**

- Single or three phases inverter
- Propulsion and braking chopper
- Propulsion converter
- · Auxiliary converter
- Battery charger.

### **Application Domain**

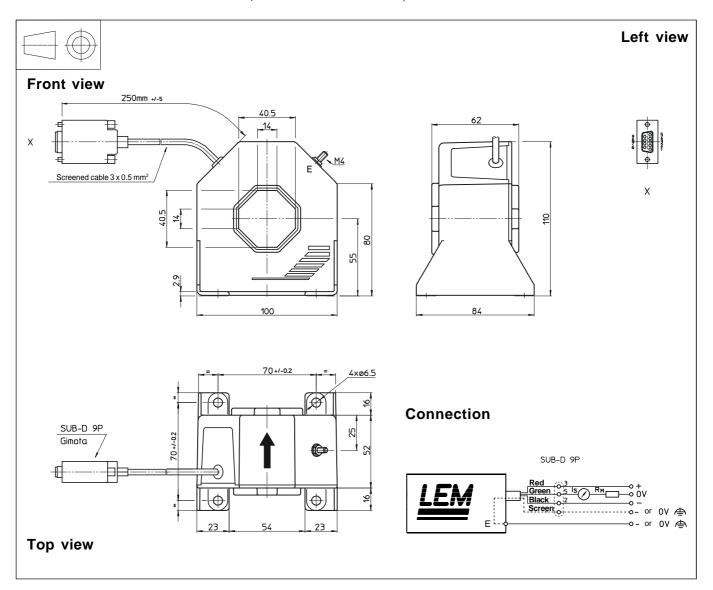
Traction

Notes: 1) I<sub>P max</sub> @ +85°C & customer measuring resistance

<sup>2)</sup> Between primary and secondary + internal shield + screened cable

3) Between secondary and internal shield + screened cable

4) With a di/dt of 100 A/µs.


 $LEM\ reserves\ the\ right to\ carry\ out\ modifications\ on\ its\ transducers, in\ order\ to\ improve\ them,\ without\ previous\ notice.$ 

060620/2 page 1/2

www.lem.com



#### **Dimensions** LT 1005-S/SP36 (in mm. 1 mm = 0.0394 inch)



#### **Mechanical characteristics**

• General tolerance ± 0.5 mm

ullet Transducer fastening 4 holes  $\varnothing$  6.5 mm

4 M6 steel screws

Recommended fastening torque

5 Nm or 3.69 Lb. - Ft.

Primary through-hole
Connection of secondary
40.5 x 40.5 mm
screened cable 3

screened cable 3x0.5 mm<sup>2</sup>

and connector SUB-D 9P

(female)

Connection to terminal E M4 threaded stud
Recommended fastening torque 1.2 Nm or .88 Lb. - Ft.

# Remarks

- $I_s$  is positive when  $I_p$  flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.

060620/2

page 2/2

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.

LEM www.lem.com

# 单击下面可查看定价,库存,交付和生命周期等信息

# >>LEM(莱姆)