

### **Current Transducer HXS 20-NP/SP30**

For the electronic measurement of currents: DC, AC, pulsed..., with galvanic separation between the primary circuit and the secondary circuit.





All data are given with  $R_1 = 10 \text{ k}\Omega$ 

#### **Electrical data** Primary nominal rms current ±20 Α $I_{\scriptscriptstyle{\mathsf{PN}}}$ Α Primary current, measuring range ±60 $I_{\scriptscriptstyle{\mathsf{PM}}}$ $V/I_{PN}$ $G_{\mathsf{TH}}$ Theoretical sensitivity 0.625 Output voltage (Analog) @ I<sub>D</sub> $V_{\rm out}$ $V_{\rm OF} \pm (0.625 \cdot I_{\rm P}/I_{\rm PN}) V$ Reference voltage 1) Output voltage 2.5 ±0.025 Output impedance Typ. 200 Ω Load impedance ≥200 kΩ Load resistance ≥2 kΩ Output internal resistance <5 Ω Capacitive loading (±20 %) =4.7 nF Supply voltage (±5 %) 2) 5 V Current consumption @ $U_c$ = 5 V 19 mΑ

### Accuracy - Dynamic performance data

| X                                         | Accuracy 3) @ $I_{PN}$ , $T_{\Delta} = 2$                                                             | 25 °C                                                                                                                       | ≤±1                                | %                             |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------|
| $\varepsilon_{_{\!\scriptscriptstyle L}}$ | Linearity error                                                                                       | $0 \dots I_{PN}$                                                                                                            | ≤±0.5                              | %                             |
| _                                         | (                                                                                                     | 0 3 × I <sub>PN</sub>                                                                                                       | ≤±1                                | %                             |
| $TCV_{OE}$                                | Temperature of coefficient                                                                            | nt of V <sub>OE</sub> (+25 85 °C)                                                                                           | ≤±0.4                              | mV/K                          |
|                                           |                                                                                                       | (-40 +25 °C)                                                                                                                | ≤±0.525                            | mV/K                          |
| $TCV_{ref}$                               | Temperature of coefficient                                                                            | nt of <i>V</i> <sub>ref</sub> (+25 85 °C)                                                                                   | ≤±0.01                             | %/K                           |
|                                           |                                                                                                       | (-40 +25 °C)                                                                                                                | ≤±0.015                            | % /K                          |
| TCV <sub>OE</sub> /V <sub>re</sub>        | Temperature of coefficier                                                                             | nt of $V_{\text{OE}}/V_{\text{ref}}$                                                                                        | ≤±0.15                             | mV/K                          |
| TCG                                       | Temperature of coefficient                                                                            | nt of G                                                                                                                     | ≤±0.07 % of rea                    | ading /K                      |
| 1.7                                       |                                                                                                       | O T O T OF 00                                                                                                               |                                    |                               |
| $V_{_{ m OE}}$                            | Electrical offset voltage (                                                                           | @ $I_{\rm P} = 0$ , $I_{\rm A} = 25$ °C                                                                                     | $V_{\rm ref} \pm 0.0125$           | V                             |
| $V_{_{ m OE}}$                            | Magnetic offset voltage (                                                                             |                                                                                                                             | V <sub>ref</sub> ± 0.0125          | V                             |
|                                           | Magnetic offset voltage (                                                                             |                                                                                                                             | V <sub>ref</sub> ± 0.0125<br><±1.2 | V<br>%                        |
|                                           | Magnetic offset voltage (                                                                             | @ $I_p = 0$ after an overload of $3 \times I_{PN}$                                                                          | 161                                | •                             |
| $V_{\text{OM}}$                           | Magnetic offset voltage ( Output voltage noise (                                                      | @ $I_p = 0$ after an overload of $3 \times I_{PN}$                                                                          | <±1.2                              | %                             |
| V <sub>om</sub>                           | Magnetic offset voltage ( Output voltage noise (                                                      | @ $I_{\rm p}$ = 0 after an overload of 3 × $I_{\rm PN}$ (DC 10 kHz) (DC 1 MHz)                                              | <±1.2<br><20                       | %<br>mVpp                     |
| $V_{\text{OM}}$                           | Magnetic offset voltage ( Output voltage noise (                                                      | @ $I_{\rm p}$ = 0 after an overload of 3 × $I_{\rm PN}$ (DC 10 kHz) (DC 1 MHz) f $I_{\rm PN}$ step                          | <±1.2<br><20<br><40                | %<br>mVpp<br>mVpp             |
| $V_{OM}$ $V_{no}$ $t_{ra}$                | Magnetic offset voltage ( Output voltage noise ( Reaction time to 10 % of                             | @ $I_{\rm P}$ = 0 after an overload of 3 × $I_{\rm PN}$ (DC 10 kHz) (DC 1 MHz) f $I_{\rm PN}$ step 0 % of $I_{\rm PN}$ step | <±1.2<br><20<br><40<br><3          | %<br>mVpp<br>mVpp<br>µs       |
| $V_{OM}$ $V_{no}$ $t_{ra}$ $t_{r}$        | Magnetic offset voltage (  Output voltage noise (  Reaction time to 10 % of  Step response time to 90 | @ $I_p = 0$ after an overload of $3 \times I_{PN}$ (DC 10 kHz) (DC 1 MHz)  f $I_{PN}$ step 0 % of $I_{PN}$ step             | <±1.2<br><20<br><40<br><3<br><5    | %<br>mVpp<br>mVpp<br>µs<br>µs |

Notes: 1) It is possible to overdrive  $V_{ref}$  with an external reference voltage between 1.5 - 2.8 V providing its ability to sink or source approximately 5 m<sup> $\Delta$ </sup>

- <sup>2)</sup> Maximum supply voltage (not operating) <6.5 V
- 3) Excluding offset and Magnetic offset voltage
- <sup>4)</sup> Small signal only to avoid excessive heatings of the magnetic core.

# $I_{\rm PN}$ = 5, 10, 20 A



#### **Features**

- · Hall effect measuring principle
- Multirange current transducer through PCB pattern lay-out
- Galvanic separation between primary and secondary circuit
- Insulation test voltage 3500 V
- Extremely low profile <11 mm
- · Fixed offset & sensitivity
- Low power consumption
- Single power supply +5 V
- Insulating plastic case recognized according to UL 94-V0.

#### **Special feature**

• Designed to avoid heating.

#### **Advantages**

- Small size and space saving
- Only one design for wide current ratings range
- High immunity to external interference
- V<sub>ref</sub> IN/OUT.

### **Applications**

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

#### **Application domain**

Industrial.

N° 74.90.17.030.0



#### **Current Transducer HXS 20-NP/SP30**

| G                   | eneral data                   |                      |        |
|---------------------|-------------------------------|----------------------|--------|
| $T_{_{\mathrm{A}}}$ | Ambient operating temperature | -40 +85              | °C     |
| $T_{\rm s}$         | Ambient storage temperature   | -40 +85              | °C     |
| m                   | Mass<br>Standards             | 10<br>EN 50178: 1997 | g<br>7 |

| Ins                                       | Insulation coordination                          |            |    |  |
|-------------------------------------------|--------------------------------------------------|------------|----|--|
| $U_{\rm d}$                               | Rms voltage for AC insulation test, 50 Hz, 1 min | 3.5<br>Min | kV |  |
| $d_{Cn}$                                  | Creepage distance                                | >5.5       | mm |  |
| $d_{_{\mathrm{Cp}}} \ d_{_{\mathrm{Cl}}}$ | Clearance                                        | >5.5       | mm |  |
| CTI                                       | Comparative Tracking Index (group I)             | >600       |    |  |

#### **Applications examples**

According to EN 50178 and IEC 61010-1, UL 508 standards and following conditions:

- Over voltage category OV 3
- Pollution degree PD2
- Non-uniform field

|                          | EN 50178                 | IEC 61010-1     |  |
|--------------------------|--------------------------|-----------------|--|
| $d_{\rm Cp}, d_{\rm Cl}$ | Rated insulation voltage | Nominal voltage |  |
| Basic insulation         | 600 V                    | 600 V           |  |
| Reinforced insulation    | 300 V                    | 150 V           |  |

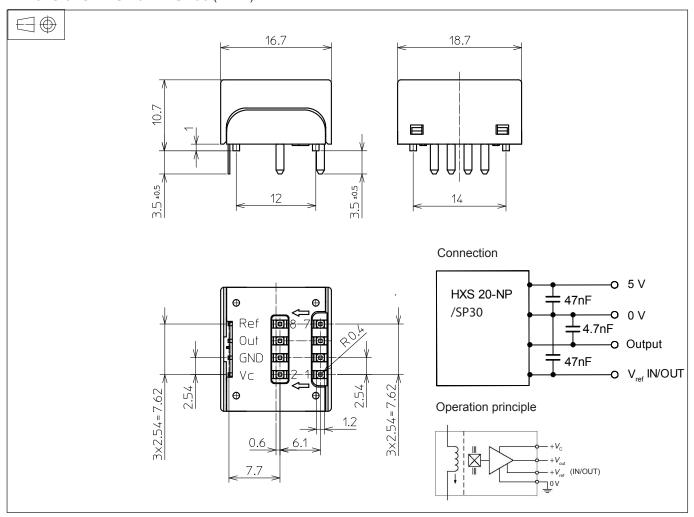
#### **Safety**

This transducer must be used in limited-energy secondary circuits according to IEC 61010-1.

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.



Caution, risk of electrical shock


When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply). Ignoring this warning can lead to injury and/or cause serious damage.

This transducer is a build-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used. Main supply must be able to be disconnected.

Page 2/



#### Dimensions HXS 20-NP/SP30 (in mm)



| Number of     | Primary current                                     |                                   | Primary                               | Primary insertion                 | Recommended PCB                                       |  |  |
|---------------|-----------------------------------------------------|-----------------------------------|---------------------------------------|-----------------------------------|-------------------------------------------------------|--|--|
| primary turns | Nominal $I_{\scriptscriptstyle{\mathrm{PN}}}$ [ A ] | Maximum $I_{_{\mathrm{P}}}$ [ A ] | resistance $R_{\rm P}$ [ m $\Omega$ ] | inductance  L <sub>P</sub> [ µH ] | connections                                           |  |  |
| 1             | 20                                                  | 60                                | 0.05                                  | 0.029                             | IN 1 3 5 7<br>0 0 0 0 0 0<br>0 0 0 0 0<br>2 4 6 8 OUT |  |  |
| 2             | 10                                                  | 30                                | 0.2                                   | 0.12                              | IN 1 3 5 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0        |  |  |
| 4             | 5                                                   | 15                                | 1                                     | 0.46                              | IN 1 3 5 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0        |  |  |

#### **Mechanical characteristics**

• General tolerance ±0.2 mm

Transducer fastening & connection of primary jumper

8 pins 1.2 × 1.2 mm (corner R 0.4 mm)

• Transducer fastening & connection of secondary pin

4 pins 0.5 × 0.25 mm

#### **Recommended PCB hole**

Primary PCB holeSecondary PCB holeØ 1.5 mmØ 0.7 mm

#### **Remarks**

- $V_{\text{out}}$  is positive when  $I_{\text{p}}$  flows from terminals 1, 3, 5, 7 (IN) to terminals 2, 4, 6, 8 (OUT).
- Temperature of the primary conductor should not exceed 100 °C.

Page 3/3

19December2014/version 20 LEM reserves the right to carry out modifications on its transducers, in order to improve them, without prior notice

www.lem.com

# 单击下面可查看定价,库存,交付和生命周期等信息

# >>LEM(莱姆)