DESCRIPTION

The LTC5228 is an advanced CMOS analog switch fabricated in Sub-micron silicon gate CMOS technology. The part also features guaranteed Break Before Make (BBM) switching, assuring the switches never short the driver. The switches can handle negative signal down to - 2V.

FEATURES

- Low Ron: 0.4 Ω @ Vcc = 3 V Typically
- Wide Supply Voltage Range: 1.65 V ~ 5.5 V
- Full -2 V ~ Vcc Signal Handling Capability
- High Off Channel Isolation
- Low Standby Current
- Low Distortion
- Break-Before-Make (BBM) Switching
- High Continuous Current Capability: ±300 mA Through Each Switch
- Applications in
 - Cell Phone Audio Block
 - Speaker and Earphone Switching Ring-Tone Chip
 - Amplifier Switching
 - Modems
- Available Packages: QFN1.8×1.4-10L, MS0P-10L

Order Information

Model	Package	Ordering Number ^{Note1}	Packing Option
LTC5228	QFN1.8×1.4-10L	LTC5228YFS10	Tape and Reel, 3000
	MSOP-10L	LTC5228YV10	Tape and Reel, 4000

LTC5228 0.4 Ω, Negative Signal Handing, Dual SPDT Analog Switch

PIN CONFIGURATION (Top View)

QFN 1.8 X 1.4-10L

PIN DESCRIPTIONS

Pin	Symbol	Description
1	V _{cc}	Power Supply
2	N01	Independent Channels
3	COM1	Common Channels
4	IN1	Controls
5	NC1	Independent Channels
6	GND	Ground
7	NC2	Independent Channels
8	IN2	Controls
9	COM2	Common Channels
10	N02	Independent Channels

V_{cc} 1 ● 10 No2 N01 2 9 COM2 COM1 3 8 IN2 IN1 4 7 NC2 NC1 5 6 GND

MSOP-10L

TRUTH TABLE

IN1, IN2	N01, N02	NC1, NC2	
0	OFF	ON	
1	ON	OFF	

Analog Symbol

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Max	Unit
DC Supply Voltag	V_{cc}	1.65	5.5	V
Digital Select Input Voltage	V _{IN}	GND	5.0	۷
Analog Input Voltage	V _{IS}	-2.0	VCC	V
Operating Temperature Range	T _A	-45	+85	°C
Input Rise or Fall Time , SELECT	t _R t _F	0	20	ns/V

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Value	Unit
Supply Voltage	V _{cc}	-0.5 to +6.0	V
Analog Input Voltage	V _{IS}	-2.5 ~ V _{CC} + 0.3 V _{CC} - V _{IS} < 6.5 V	V
Digital Select Input Voltage	V _{IN}	-0.5 to + 6.0	V
Output Voltage	V _{OUT}	-2.5 ~ V _{CC} + 0.3 V _{CC} - V ₀ < 6.5 V	V
Continuous DC Current from COM to NC/NO	l _{an1}	±300	mA
Peak Current from COM to NC/NO, 10 duty cycle (Note 1)	l _{an1-pk1}	±500	mA
Continuous DC Current into COM/NO/NC with respect to $V_{\mbox{\tiny CC}}$ or GND	I _{dmp}	±100	mA

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 1. Defined as 10% ON, 90% OFF duty cycle.

Functional Description

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. Linearin recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

Linearin reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact Linearin's sales office to get the latest data sheets.

Output Capacitor

Symbol	Parameter	Test Conditions	V _{cc} ± 10%	Ta = 25°C		Unit	
			(V)	Min	Тур	Max	
V _{IH}	High-Level Input Voltage, Select Inputs		1.65 ~ 5.5	0.4V _{cc}			۷
V _{IL}	Low-Level Input Voltage, Select Inputs		1.65 ~ 5.5			0.5	V
I _{IN}	Maximum Input Leakage Current, Select Inputs	V_{IN} = V_{CC} or GND	5			±0.3	μA
I _{off}	Power Off Leakage Current	V _{IN} = 4.3 V	0			±0.5	μA
I _{co}	Maximum Quiescent Supply Current (Note 2)	Select, V _{IS} = V _{CC} or GND	3.6			1.0	μA
I _{CCT}	Increase in I _{cc} per input	IN1 = 2.6 V, IN2 = 0 V or IN2 = 2.6 V, IN1 = 0 V	- 4.3		1.5		μA
		IN1 = 1.8 V, IN2 = 0 V or IN2 = 1.8 V, IN1 = 0 V			4.5		μΑ
	COM ON Leakage Current (Note 3)	_				
I _{COM} (ON)	$I_{COM (ON)} = V_{IL} \text{ or } V_{IH}, V_{NO} = 0.3 \text{ V OR } 4.7 \text{ V}$ $V_{NC} \text{ Floating } V_{NO} = 0.3 \text{ V OR } 4.7 \text{ V}$ $V_{NO} \text{ Floating } V_{COM} = 0.3 \text{ V OR } 4.7 \text{ V}$		5.0	-20		20	nA
Ron	On-Resistance	V _{IS} = 0.7 V, 3.6 V, 4.3 V I _{IN} = 100 mA	4.3		0.3		. 0
	(Note 2) (Note 3)	V _{IS} = 0.7 V, 2.3 V, 3.0 V I _{IN} = 100 mA	3.0		0.4	.4 0.8	
Rflat	On-Resistance Flatness (Note 2) (Note 3) (Note 5)	I _{COM} = 100 mA V _{IS} = GND to Vcc	5.0			0.3	Q
∆Ron	On-Resistance Match Between Channels (Note 2) (Note 3) (Note 4)	I _{COM} = 100 mA, V _{IS} = 1.5 V	5.0		0.25		Q

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserv All other trademarks mentioned are the property of their respe

Electrical Characteristics

Symbol	Parameter	Tost Conditions	\/ + 10% (\/)	T _A = 25C		Unit	
Symbol			VCC - 1070 (V)	Min	Тур	Max	Onit
			2.5 ~ 3.3		35	45	
τ _{οN}	Turn-Un Time (Figure I)	V _{IS} = 1.5 V	3.3 ~ 5.5		25	30	ns
	Turn Off Times (Figure 1)	V - 1 E V	2.5 ~ 3.3		17	20	
LOFF	Turn-Off Time (Figure I)	v _{IS} = 1.5 v	3.6 ~ 5.5		15	20	ns
	Break-Before-MakeTime	C _L = 35 pF	2.5 ~ 3.3	7	9		
τ _{BBM}	(Note6)(Figure 2)	R _{IS} = 50 D V _{IS} = 1.5 V	3.6 ~ 5.5	4	6		ns
BW	On-Channel, -3 dB Bandwi Response (Figure 4)	dth Frequency			55		MHz
	R _{IS} = 50 Ω		-				
	Off-Channel Isolation (Figure 5) $F_{IS} = 100 \text{ kHz}, V_{IN} = \text{GND to } V_{CC}, C_{L} = 5 \text{ pF},$ $R_{L} = 50 \Omega, V_{IS} = IV_{RMS}$						
0 _{ISO}			-		-70		dB
0	Charge Injection Select Input to Common I/O (Figure 3) $V_{IN} = 0 \text{ or } V_{CC}, R_{IS} = 0 \Omega, C_L = 100 \text{ pF}, R_L = 1 \text{ mQ}, Q = C_L \times \Delta V_{OUT}$				25		" C
ū			-	25			μc
	Total Harmonic Distortion THD +Noise						%
THD	F _{IS} = 20 Hz to 20 kHz, R _L = 600Ω, C _L = 50 pF, V _{IS} = 2 V _{RMS}		3.6		0.06		
	Channel-to-Channel Crosstalk (Figure 6)						dB
X _{TALK}	F_{IS} = 100 KHZ, V_{IN} = GND TO V_{CC} , R _L = 50 Q, C _L = 5 PF, V_{IS} = 1 V_{RMS}		3.6 ~ 5.0		-72		
C _{IN}	Control Pin Input Capacitance		3.6		3.5		рF
C _{CN} /C _{NO}	NC/NO Port Capacitance		3.6		50		рF
Ссом	COM Port Capacitance When Switch is Enabled		3.6		120		pF

Note:

2. Guaranteed by design.

3. Guaranteed by design. Resistance measurements do not include test circuit or package resistance.

4. ΔR_{ON} = $R_{\text{ON} (MAX)}$ – $R_{\text{ON} (MIN)}$ between NC1 and NC2 or between NO1 and NO2.

5. Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.

6. Guaranteed by design in -40°C.

LTC5228 0.4 Ω, Negative Signal Handing, Dual SPDT Analog Switch

TEST CIRCUITS

Figure3: Charge Injection

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserv All other trademarks mentioned are the property of their respe Downloaded From Oneyac.com

TEST CIRCUITS (Cont.)

PACKAGE OUTLINE

QFN1.8×1.4-10L

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserv All other trademarks mentioned are the property of their respe

LTC5228 0.4 Ω, Negative Signal Handing, Dual SPDT Analog Switch

PACKAGE OUTLINE

MSOP-10L

Symbol	Dimensions In Millimeters (mm)		Symbol	Dimensions In Millimeters (mm)		
	Min.	Max.	Symbol	Min.	Max.	
А	2.90	3.10	C3	0.152		
A1	0.18	0.25	C4	0.15	0.23	
A2	0.5	i0 TYP	Н	0.00 0.09		
A3	0.4	0 TYP	θ	15°TYP4		
В	2.90	3.10	θ1	12°TYP4		
B1	4.70	5.10	θ2	14°TYP		
B2	0.45	0.75	θ3	0° ~ 6°		
С	0.75	0.95	R	0.15TYP		
C1	-	1.100	R1	0.15TYP		
C2	0.3	28 TYP				

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserv

单击下面可查看定价,库存,交付和生命周期等信息

>>Linearin(先积)