

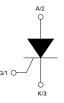
S602ECS

Main Features

Symbol	Value	Unit
I _{T(RMS)}	1.5	А
V _{DRM} /V _{RRM}	600	V
I _{GT}	100	μА

Applications

The S602ECS is specifically designed for Gas Ignition applications that require high pulse surge current capability.


Description

This new .8 A sensitive gate SCR in an TO-92 package with a GAK pin out, offers a high static component series with a high static dv/dt and a low turn off (t_q) time by the use of small die planar construction implementation. All SCR's junctions are glass-passivated to ensure long term reliability and parametric stability.

Features

- Surge capability >15Amps
- High dv/dt noise immunity
- Improved turn-off time (t_q) $\leq 35 \mu s$
- TO-92 G-A-K pinout
- Sensitive gate for direct microprocessor interface
- RoHS compliant and Halogen-Free

Schematic Symbol

Absolute Maximum Ratings

Symbol	Parameter			Value	Unit
I _{T(RMS)}	RMS on-state current (full sine wave)			1.5	А
I _{T(AV)}	Average on-state current	T _c =	65°C	0.95	А
	Non repetitive surge peak on-state current		F = 50 Hz	14.0	
I _{TSM}	(Single cycle, T _J initial = 25°C)		F = 60 Hz	16.8	А
2 _†	12.1/1 1 1		F = 50 Hz	0.78	A ² s
-t	l ² t Value for fusing	$t_p = 8.3 \text{ms}$	F = 60 Hz	0.93	A-5
di/dt	Critical rate of rise of on-state current IG = 10mA		T _J = 125°C	50	A/µs
I _{GM}	Peak gate current $t_p = 10 \mu s$		T _J = 125°C	1.0	А
$P_{G(AV)}$	Average gate power dissipation $T_J = 125$ °C		0.1	W	
T _{stg}	Storage junction temperature range			-40 to 150	°C
T _J	Operating junction temperature range			-40 to 125	°C

Electrical Characteristics (T_J = 25°C, unless otherwise specified)

Complete	Description Test Conditions —	Test Conditions	S602ECS		l lada
Symbol		Min	Max	Unit	
I _{GT}	DC Gate Trigger Current	V _D = 12V	20	100	μА
$V_{\rm GT}$	DC Gate Trigger Voltage	$R_L = 60 \Omega$	_	0.8	V
V _{GRM}	Peak Reverse Gate Voltage	$I_{RG} = 10 \mu A$	5	_	V
I _H	Holding Current	$R_{GK} = 1 k\Omega$	_	3	mA
(dv/dt)s	Critical Rate-of-Rise of Off-State Voltage	$T_{J} = 125^{\circ}\text{C}$ $V_{D} = V_{DRM} / V_{RRM}$ Exponential Waveform $R_{GK} = 1 \text{ k}\Omega$	50	_	V/µs
t _q	Turn-Off Time	$T_J = 125^{\circ}C @ 600 V$ $R_{GK} = 1 k\Omega$	_	35	μs
t _{gt}	Turn-On Time	$I_G = 10\text{mA}$ PW = 15µsec $I_T = 3.0\text{A (pk)}$	_	3	μs

Static Characteristics (T_J = 25°C, unless otherwise specified)

Symbol	Deparintion	Test Conditions —	Value		Unit
Symbol	Description		Min	Max	Offic
V _{TM}	Peak On-State Voltage	I _{TM} = 4A (pk)	_	1.8	V
I _{DRM} Off-State Current, Peak Repetitiv	Off State Current Peak Paratitive	$T_J = 25^{\circ}\text{C} @ V_D = V_{DRM}$ $R_{GK} = 1 \text{ k}\Omega$	_	5	μΑ
	On-State Current, Feak nepetitive	$T_J = 125^{\circ}C @ V_D = V_{DRM}$ $R_{GK} = 1 k\Omega$	_	500	μΑ

Thermal Resistances

Symbol	Parameter		Value	Unit
$R_{\theta(J-C)}$	Junction to case (AC)	I _T = 1.5A _(RMS) , 60Hz AC resistive load condition, 100% conduction.	50	°C/W
R _{θ(J-A)}	Junction to ambient	condition, 100% conduction.	160	°C/W

Figure 1: Normalized DC Gate Trigger Current vs. Junction Temperature

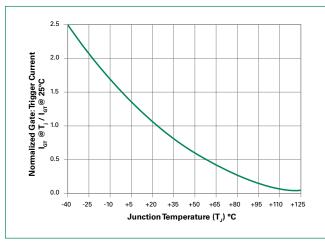
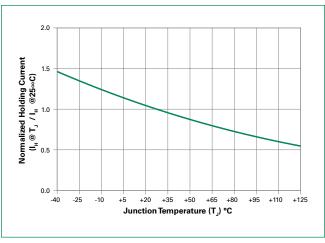



Figure 2: Normalized DC Holding Current vs. Junction Temperature

S602ECS

Figure 3: Normalized DC Gate Trigger Voltage vs. Junction Temperature

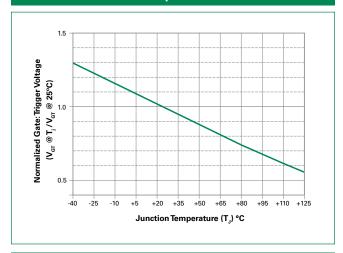


Figure 5: Power Dissipation (Typical) vs. RMS On-State Current

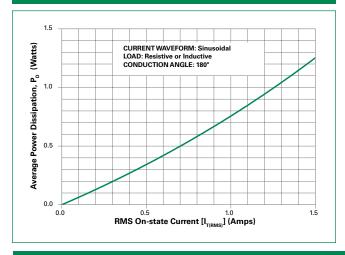


Figure 4: On-State Current vs. On-State Voltage (Typical)

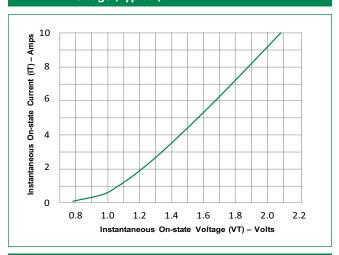


Figure 6: Maximum Allowable Case Temperature vs. On-State Current

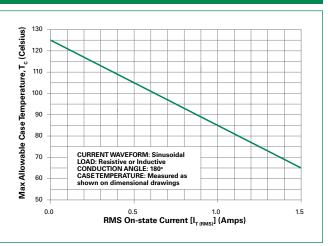
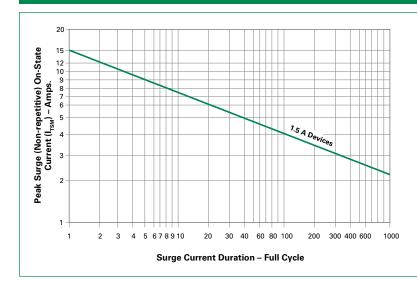



Figure 6: Surge Peak On-State Current vs. Number of Cycles

Supply Frequency: 60Hz Sinusoidal

RMS On-State Current $[I_{T(RMS)}]$: Max Rated Value at Specific Case Temperature

Notes:

Gate control may be lost during and immediately

following surge current interval.

2. Overload may not be repeated until junction temperature has returned to steady-state rated value.

S602ECS

Figure 7: Typical DC Gate Trigger Current with RGK vs. Junction Temperature

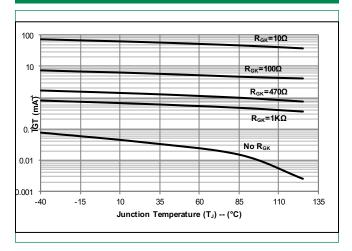


Figure 8: Typical DC Holding Current with RGK vs. Junction Temperature

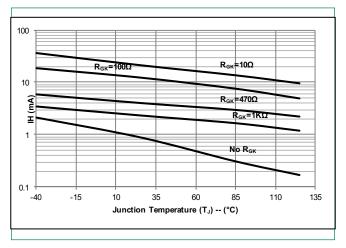
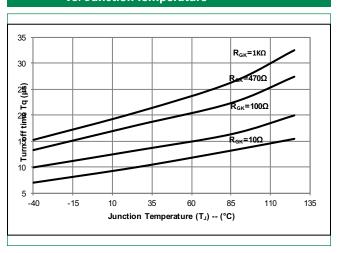
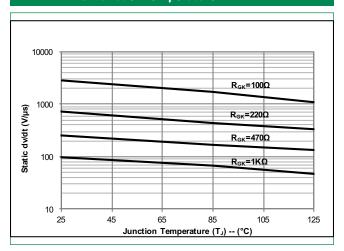
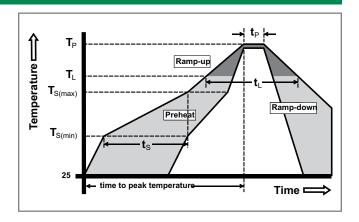


Figure 9: Typical Turn Off Time with RGK vs. Junction Temperature


Figure 10: Typical Static DV/DT with RGK vs. Junction Temperature

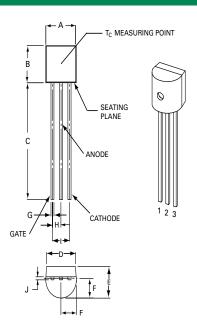
Soldering Parameters

Reflow Condition		Pb – Free assembly		
	-Temperature Min (T _{s(min)})	150°C		
Pre Heat	-Temperature Max (T _{s(max)})	200°C		
	-Time (min to max) (t _s)	60 – 180 secs		
Average ramp up rate (Liquidus Temp) (T _L) to peak		5°C/second max		
T _{S(max)} to T _l	- Ramp-up Rate	5°C/second max		
Reflow	-Temperature (T _L) (Liquidus)	217°C		
nellow	-Time (min to max) (t _s)	60 – 150 seconds		
PeakTemp	perature (T _P)	260+ ^{0/-5} °C		
Time within 5°C of actual peak Temperature (t _o)		20 – 40 seconds		
Ramp-down Rate		5°C/second max		
Time 25°C to peak Temperature (T _P)		8 minutes Max.		
Do not exceed		280°C		

Physical Specifications

Terminal Finish	100% Matte Tin-plated.
Body Material	UL Recognized epoxy meeting flammability rating V-0.
Lead Material	Copper Alloy

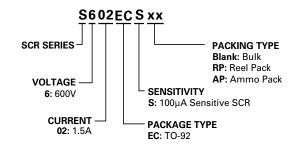
Design Considerations


Careful selection of the correct component for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the component rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

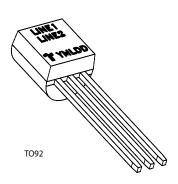
Environmental Specifications

Test	Specifications and Conditions
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 125°C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell-time
Temperature/ Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 320V - DC: 85°C; 85% rel humidity
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C
Low-Temp Storage	1008 hours; -40°C
Resistance to Solder Heat	MIL-STD-750 Method 2031
Solderability	ANSI/J-STD-002, category 3, Test A
Lead Bend	MIL-STD-750, M-2036 Cond E

Dimensions

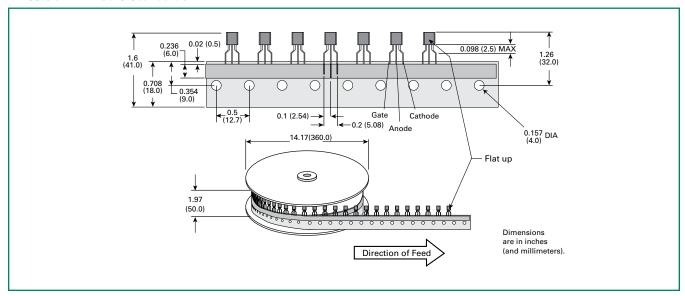


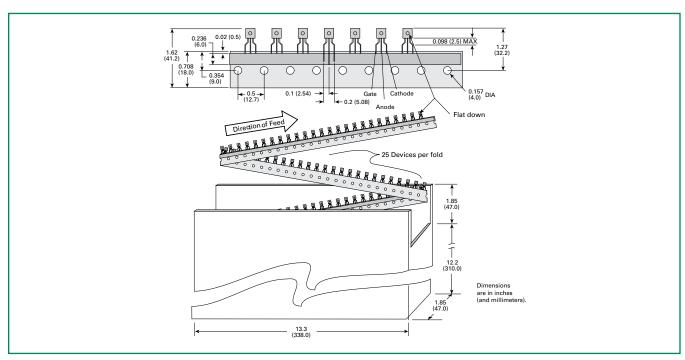
Dimensions	Inches		Millimeters	
Dimensions	Min	Max	Min	Max
А	0.175	0.205	4.450	5.200
В	0.170	0.210	4.320	5.330
С	0.500	_	12.700	_
D	0.135	_	3.430	_
Е	0.125	0.165	3.180	4.190
F	0.080	0.105	2.040	2.660
G	0.016	0.021	0.407	0.533
Н	0.045	0.055	1.150	1.390
I	0.095	0.105	2.420	2.660
J	0.015	0.020	0.380	0.500


Packing Options

Part Number	Marking	Weight	Packing Mode	Base Quantity
S602ECS	S602ECS	0.170 g	Bulk	2500
S602ECSAP	S602ECS	0.170 g	Ammo Pack	2000
S602ECSRP	S602ECS	0.170 g	Tape & Reel	2000

Part Numbering System


Part Marking System


TO-92 (3-lead) Reel Pack (RP) Radial Leaded Specifications

Meets all EIA-468-C Standards

TO-92 (3-lead) Ammo Pack (AP) Radial Leaded Specifications

Meets all EIA-468-C Standards

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

单击下面可查看定价,库存,交付和生命周期等信息

>>Littelfuse(美国力特)