

RoHS LO1 Series

Main Features

Symbol	Value	Unit
I _{T(RMS)}	1	А
V _{DRM} /V _{RRM}	400 to 800	V
I _{GT}	3 to 10	mA

Description

New 1 Amp bi-directional solid state switch series offering direct interface to microprocessor drivers in economical TO-92 and surface mount packages. The die voltage blocking junctions are glass-passivated to ensure long term reliability and parametric stability.

Features

- RoHS compliant
- Blocking voltage (V_{DRM}) capability — up to 800V
- Surge capability > 10Amps
- Static dv/dt > 20 Volts/ usec
- Thru hole and surface mount packages

Applications

The L01 EV Series is especially designed for white goods applications such as valve controls in washing machines as well as replacement of mechanical and hybrid relays where long life is required.

Schematic Symbol

Absolute Maximum Ratings

Symbol	Parameter			Value	Unit
1	RMS on-state current	TO-92	$T_{\rm C} = 50^{\circ}{\rm C}$	1.0A	А
I _{T(RMS)}	(full sine wave)	SOT-223	T _L = 90°C	1.0A	A
	Non repetitive surge peak on-state current	TO-92	F = 50 Hz	10	_
I _{TSM}	(Single cycle, T _J initial = 25°C)	SOT-223	F = 60 Hz	12	A
l ² t	l²t Value for fusing	$t_p = 10 \text{ ms}$	F = 50 Hz	0.50	A²s
1-1	ift value for fusing	$t_p = 8.3 \text{ ms}$	F = 60 Hz	0.59	
di/dt	Critical rate of rise of on-state current $I_{G} = 2 \times I_{GT}$	TO-92 SOT-223	T _J = 125°C	20	A/μs
I _{GTM}	Peak gate current	T _J = 125°C	1	А	
P _{G(AV)}	Average gate power dissipation	0.1	W		
T _{stg}	Storage junction temperature range	-40 to 150	°C		
T _J	Operating junction temperature range			-40 to 125	°C

Downloaded From Oneyac.com

Teccor® brand Thyristors EV Series 1 Amp Sensitive Triacs

Electrical Characteristics (T_J = 25°C, unless otherwise specified)

Symbol	Description	Test	Quadrant Limit			Value		Unit
Syllibol	Description	Conditions	Quadrant	LIIIIII	L0103xy	L0107xy	L0109xy	Offic
I _{GT}	DC Gate Trigger Current	$V_{D} = 12V$ $R_{1} = 60 \Omega$	I – II – III IV	MAX.	3 5	5 7	10 10	mA
$V_{\rm GT}$	DC Gate Trigger Voltage	$R_{L} = 60 \Omega$	ALL	MAX.	_	1.3	_	V
I _H	Holding Current	Gate Open		MAX.	7	10	10	mA
dv/dt	Critical Rate-of-Rise of Off-State Voltage	T _J = 110°C V _D = V _{DRM} Exponential Waveform Gate Open		MIN.	10	20	50	V/µs
(dv/dt)c	Critical Rate-of-Rise of Commutating Voltage	(di/dt)c = 0.54A/ms T _J = 110°C		MIN.	0.5	1.0	2.0	V/µs
T _{gt}	Turn-On Time	PW =	25mA : 15µs 2A (pk)	MAX.	2.0	2.0	2.0	μs

Note: x = voltage, y = package

Static Characteristics (T_J = 25°C, unless otherwise specified)

Symbol	Description	Test Conditions	Limit	Value	Unit
V_{TM}	Peak On-State Voltage	I _{TM} = 1.4A (pk)	MAX	1.60	V
I	Off-State Current, Peak Repetitive	$V_D = V_{DRM} T_J = 25$ °C	NAAV	5	μΑ
		$V_D = V_{DRM} T_J = 125$ °C	MAX	500	μΑ

Thermal Resistances

Symbol	Description	Test Conditions		Value	Unit
D	Junction to case (AC)	1 - 100 1	TO-92	50	°C/W
$R_{th(j-c)}$	Junction to case (AC)	$I_{T} = 1.0A_{(RMS)}^{1}$	SOT-223	23	- C/VV
	lunction to applicant	1 100 1	TO-92	100	9CAA/
$R_{th(j-a)}$	Junction to ambient	$I_T = 1.0A_{(RMS)}^{1}$	SOT-223	55	°C/W

¹ 60Hz AC resistive load condition, 100% conduction.

Figure 1: Definition of Quadrants

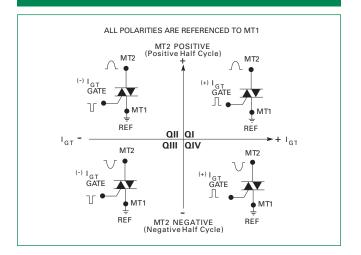


Figure 3: Normalized DC Holding Current vs. Junction Temperature

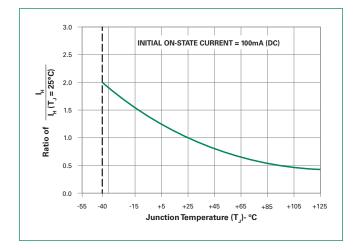


Figure 5: Power Dissipation (Typical) vs. RMS On-State Current

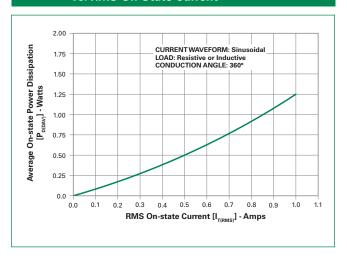


Figure 2: Normalized DC Gate Trigger Current for All Quadrants vs. Junction Temperature

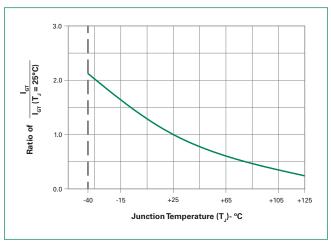


Figure 4: Normalized DC Gate Trigger Voltage for All Quadrants vs. Junction Temperature

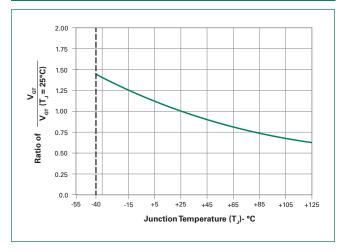
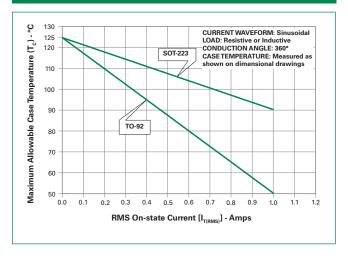
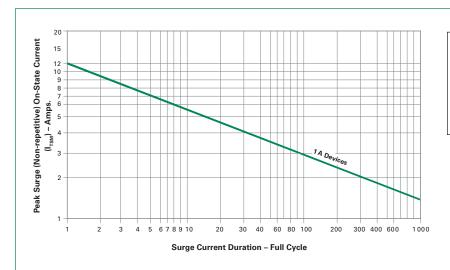
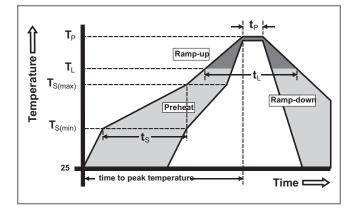




Figure 6: Maximum Allowable Case Temperature vs. On-State Current

Figure 7: Surge Peak On-State Current vs. Number of Cycles

Supply Frequency: 60Hz Sinusoidal

RMS On-State Current $[I_{T(RMS)}]$: Max Rated Value at Specific Case Temperature


Notes:

- 1. Gate control may be lost during and immediately following surge current interval.

Overload may not be repeated until junction temperature has returned to steady-state rated value.

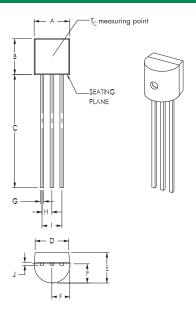
Soldering Parameters

Reflow Co	ndition	Pb – Free assembly	
	-Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 180 secs	
Average ra	amp up rate (LiquidusTemp) k	5°C/second max	
$T_{S(max)}$ to T_{L}	- Ramp-up Rate	5°C/second max	
Reflow	-Temperature (T _L) (Liquidus)	217°C	
nellow	-Time (min to max) (t _s)	60 – 150 seconds	
PeakTemp	erature (T _P)	260 ^{+0/-5} °C	
Time with	in 5°C of actual peak ure (t _p)	20 - 40 seconds	
Ramp-dov	vn Rate	5°C/second max	
Time 25°C	to peakTemperature (T _P)	8 minutes Max.	
Do not exc	ceed	280°C	

Physical Specifications

Terminal Finish	100% Matte Tin-plated.
Body Material	UL recognized epoxy meeting flammability classification 94V-0.
Lead Material	Copper Alloy

Design Considerations

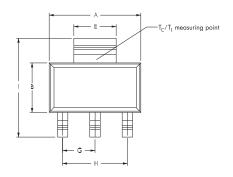

Careful selection of the correct device for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the device rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

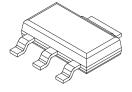
Environmental Specifications

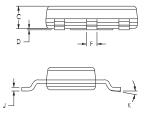
-	0 15 11 10 111
Test	Specifications and Conditions
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 125°C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell-time
Temperature/ Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 320V - DC: 85°C; 85% rel humidity
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C
Low-Temp Storage	1008 hours; -40°C
Thermal Shock	MIL-STD-750, M-1056 10 cycles; 0°C to 100°C; 5-min dwell- time at each temperature; 10 sec (max) transfer time between temperature
Autoclave	EIA / JEDEC, JESD22-A102 168 hours (121°C at 2 ATMs) and 100% R/H
Resistance to Solder Heat	MIL-STD-750 Method 2031
Solderability	ANSI/J-STD-002, category 3, Test A
Lead Bend	MIL-STD-750, M-2036 Cond E

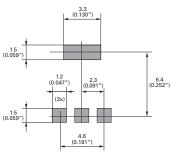
Dimensions — TO-92 (E Package)

Please refer to http://www.littelfuse.com for current information.




Dimonoiono	Inches			Millimeters		
Dimensions	Min	Тур	Max	Min	Тур	Max
А	0.175	_	0.205	4.450	_	5.200
В	0.170	_	0.210	4.320	_	5.330
С	0.500	_	_	12.700	_	_
D	0.135	0.165	_	3.430	4.190	_
Е	0.125	_	0.165	3.180	_	4.190
F	0.080	0.095	0.105	2.040	2.400	2.660
G	0.016	_	0.021	0.407	_	0.533
Н	0.045	0.050	0.055	1.150	1.270	1.390
I	0.095	0.100	0.105	2.420	2.540	2.660
J	0.015	_	0.020	0.380	_	0.500


Teccor® brand Thyristors EV Series 1 Amp Sensitive Triacs


Dimensions – SOT-223

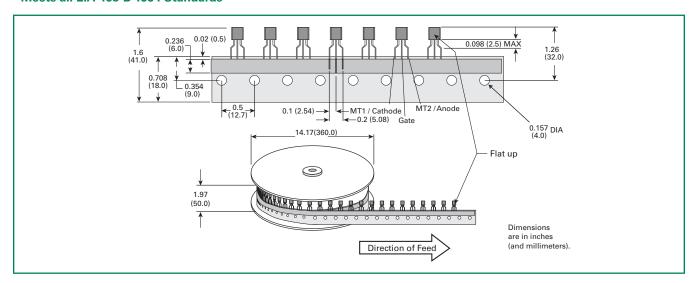
Pad Layout for SOT-223

Dimensions in Millimeters (Inches)

D:		Inches		Millimeters			
Dimensions	Min	Тур	Max	Min	Тур	Max	
А	0.248	0.256	0.264	6.30	6.50	6.70	
В	0.130	0.138	0.146	3.30	3.50	3.70	
С	_	_	0.071	_	_	1.80	
D	0.001	_	0.004	0.02	_	0.10	
Е	0.114	0.118	0.124	2.90	3.00	3.15	
F	0.024	0.027	0.034	0.60	0.70	0.85	
G	_	0.090	_	_	2.30	_	
Н	_	0.181	_	_	4.60	_	
Ī	0.264	0.276	0.287	6.70	7.00	7.30	
J	0.009	0.010	0.014	0.24	0.26	0.35	
K		10° MAX					

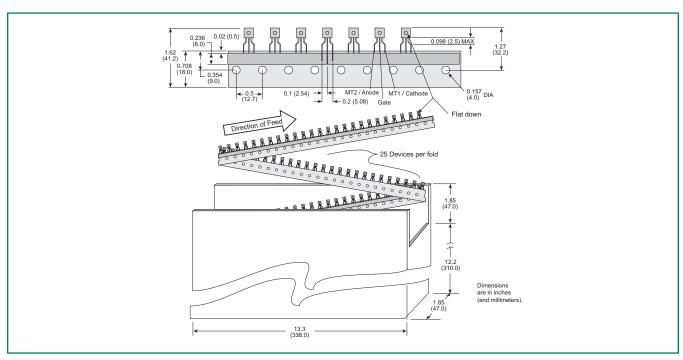
Product Selector

Part Number	Valkana	Gate Sensitiv	Gate Sensitivity Quadrants			
Part Number	Voltage	1	IV	Package		
L0103DE	400 V	3 mA	5 mA	TO-92		
L0103ME	600 V	3 mA	5 mA	TO-92		
L0103NE	800 V	3 mA	5 mA	TO-92		
L0103DT	400 V	3 mA	5 mA	SOT-223		
L0103MT	600 V	3 mA	5 mA	SOT-223		
L0103NT	800 V	3 mA	5 mA	SOT-223		
L0107DE	400 V	5 mA	7 mA	TO-92		
L0107ME	600 V	5 mA	7 mA	TO-92		
L0107NE	800 V	5 mA	7 mA	TO-92		
L0107DT	400 V	5 mA	7 mA	SOT-223		
L0107MT	600 V	5 mA	7 mA	SOT-233		
L0107NT	800 V	5 mA	7 mA	SOT-233		
L0109DE	400 V	10 mA	10 mA	TO-92		
L0109ME	600 V	10 mA	10 mA	TO-92		
L0109NE	800 V	10 mA	10 mA	TO-92		
L0109DT	400 V	10 mA	10 mA	SOT-223		
L0109MT	600 V	10 mA	10 mA	SOT-223		
L0109NT	800 V	10 mA	10 mA	SOT-223		


Packing Options

Part Number	Marking	Weight	Packing Mode	Base Quantity
L01xxyE	L01xxyE	0.170 g	Bulk	2500
L01xxyEAP	L01xxyE	0.170 g	Ammo Pack	2000
L01xxyERP	L01xxyE	0.170 g	Tape & Reel	2000
L01xxyTRP	L01xxyT	0.120 g	Tape & Reel	1000

Note: xx = gate sensitivity, y = voltage

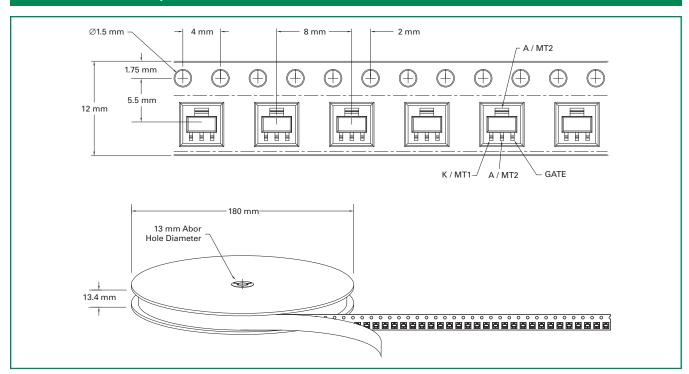

TO-92 (3-lead) Reel Pack (RP) Radial Leaded Specifications

Meets all EIA-468-B 1994 Standards

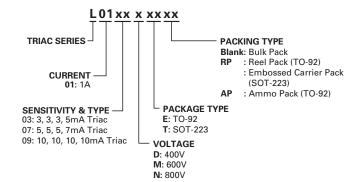
TO-92 (3-lead) Ammo Pack (AP) Radial Leaded Specifications

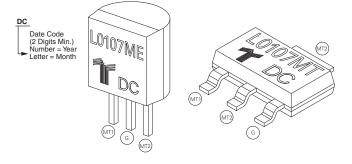
Meets all EIA-468-B 1994 Standards

©2008 Littelfuse, Inc.


Specifications are subject to change without notice.

Please refer to http://www.littelfuse.com for current information.




SOT-223 Reel Pack (RP) Specifications

Part Numbering System

Part Marking System

单击下面可查看定价,库存,交付和生命周期等信息

>>Littelfuse(美国力特)