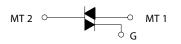
Thyristors Datasheet

Po

MAC210A8, MAC210A10 Triacs – 400V - 800V

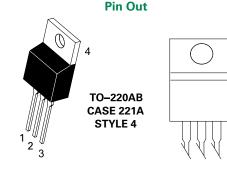
Additional Information



Samples

Resources

Accessories


Functional Diagram

Description

Designed primarily for full-wave AC control applications, such as light dimmers, motor controls, heating controls and power supplies; or wherever full-wave silicon gate controlled solid-state devices are needed. Triac type thyristors switch from a blocking to a conducting state for either polarity of applied main terminal voltage with positive or negative gate triggering.

Features

- Blocking Voltage to 600 Volts
- All Diffused and Glass Passivated Junctions for Greater Parameter Uniformity and Stability
- Small, Rugged, Thermowatt Construction for Low Thermal Resistance, High Heat Dissipation and Durability
- Gate Triggering Guaranteed in Four Modes (Quadrants)
- Pb–Free Packages are Available

Maximum	Ratings	(T) =	25°C unless	otherwise noted)
maximum	nacingo	\ · · =	20 0 0 0 000	

Rating		Symbol	Value	Unit
Peak Repetitive Off–State Voltage (Note 1) (– 40 to 125°C, Sine Wave, 50 to 60 Hz, Gate Open)	V _{drm} , V _{rrm}	600 800	V	
On-State RMS Current (Full Cycle Sine Wave, 50 to 60 Hz, $\rm T_{c}$ =	= 70°C)	I _{T (RMS)}	10	А
Peak Non-Repetitive Surge Current (One Full Cycle Sine Wave +25°C) Preceded and followed by rated current	I _{TSM}	100	А	
Circuit Fusing Consideration (t = 8.3 ms)	l²t	40	A ² sec	
Peak Gate Power ($T_c = +70^{\circ}C$, Pulse Width = 10 μ s)	P _{GM}	20	W	
Average Gate Power (t = 8.3 ms, $T_c = 70^{\circ}C$)	P _{G (AV)}	0.35	W	
Peak Gate Current ($T_c = +70^{\circ}$ C, Pulse Width = 10 s)	I _{GM}	2.0	А	
Operating Junction Temperature Range	T _J	-40 to +125	°C	
Storage Temperature Range		T _{stg}	-40 to +150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are

not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. 1. V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

Thermal Characteristics

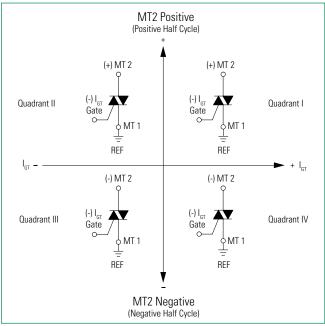
Rating		Symbol	Value	Unit
Thermal Resistance,	Junction-to-Case (AC) Junction-to-Ambient	R _{ejc} R _{eja}	2.0 62.5	°C/W
Maximum Lead Temperature for Soldering Pu 10 seconds	TL	260	°C	

Electrical Characteristics - OFF ($T_{J} = 25^{\circ}C$ unless otherwise noted ; Electricals apply in both directions)

Characteristic			Min	Тур	Мах	Unit
Peak Repetitive Blocking Current T, = 25°C		I _{DRM} ,	-	-	10	μA
$(V_{D} = V_{DRM} = V_{RRM}; \text{ Gate Open})$	T_ = 125°C	I _{RRM}	-	-	2.0	mA

Electrical Characteristics - ON (T₁ = 25°C unless otherwise noted; Electricals apply in both directions)

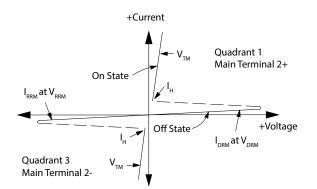
Characteristic			Min	Тур	Max	Unit
Peak On–State Voltage ($I_{TM} = \pm 14 \text{ A Peak}$; Pulse Width =	= 1 to 2 ms, Duty Cycle ≤2%)	V _{TM}	-	1.2	1.65	V
	MT2(+), G(+)		_	12	50	mA
Gate Trigger Current (Continuous dc)	MT2(+), G(-)		_	12	50	
$(V_{\rm p} = 12 V_{\rm dc}, R_{\rm l} = 100 \text{ Ohms})$	MT2(-), G(-)	GT	_	20	50	
	MT2(-), G(+)		_	35	75	
	MT2(+), G(+)		-	0.9	2.0	V
Gate Trigger Voltage (Continuous dc)	MT2(+), G(-)	V _{gt}	-	0.9	2.0	
$(V_{\rm D} = 12 V_{\rm det}, R_{\rm L} = 100 \Omega)$	MT2(-), G(-)		-	1.1	2.0	
	MT2(-), G(+)		-	1.4	2.5	
Holding Current ($V_{D} = 12 V_{dc'}$ Gate Open, Initiating Current = ±200 mA, TC=+25 °C))			-	6.0	50	mA
Turn-On Time (Rated $V_{DRM'}$ I _{TM} = 14 A) (I _{GT} = 120 mA, Rise Time = 0.1 s, Pulse Width = 2 s)		t _{gt}	-	1.5	-	μs
Gate Non-Trigger Voltage (Continuous dc) (Main Terminal Voltage = 12 V, RL = 100 , $T_J = +125^{\circ}C$)	All Four Quadrants	V_{GD}	0.2	-	-	v


Thyristors Datasheet

Dynamic Characteristics

Characteristic	Symbol	Min	Тур	Max	Unit
Critical Rate of Rise of Commutation Voltage ($V_D = Rated V_{DRM'} I_{TM} = 14 A$, Commutating di/dt = 5.0 A/ms, Gate Unenergized, T _c = 70°C)	di/dt(c)	-	5.0	-	V/µs
Critical Rate of Rise of Off-State Voltage (V_p = Rated $V_{DRM'}$ Exponential Waveform, Gate Open, T_c = +70°C)	dv/dt	-	100	-	V/µs

Voltage Current Characteristic of SCR


Symbol	Parameter
V _{drm}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
I _H	Holding Current

Quadrant Definitions for a Triac

All Polarities are referenced to MT1.

With in-phase signals (using standard AC lines) quadrants I and III are used

MAC210A8, MAC210A10 Triacs – 400V - 800V

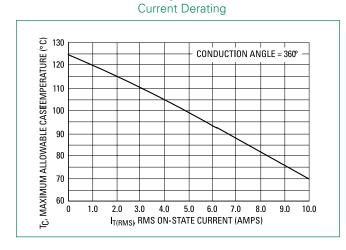
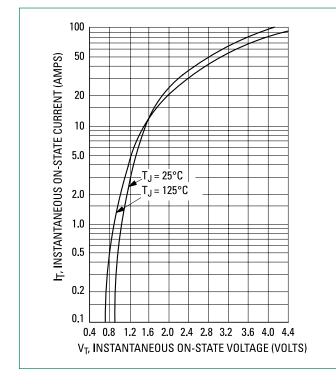
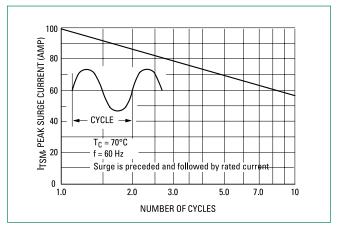
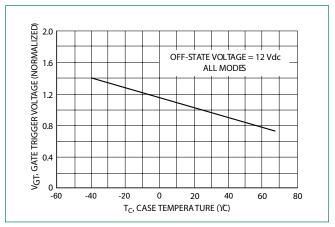



Figure 1.

Figure 3. Maximum On–State Characteristics



14.0 P_(AV), AVERAGE POWER DISSIPATION CONDUCTION ANGLE = 360° 12.0 10.0 8.0 6.0 4.0 2.0 0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 IT(RMS) RMS ON-STATE CURRENT (AMPS)


Figure 2.

Power Dissipation

Figure 4. Maximum Non–Repetitive Surge Current

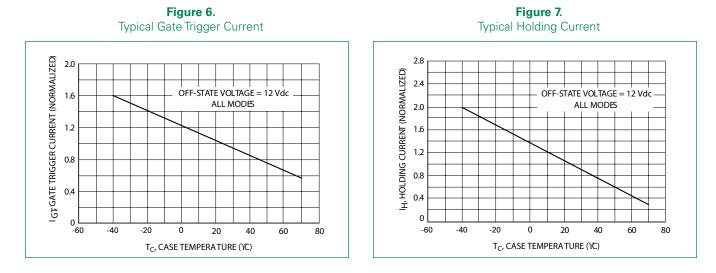
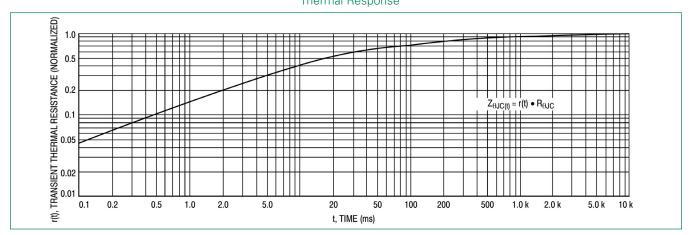
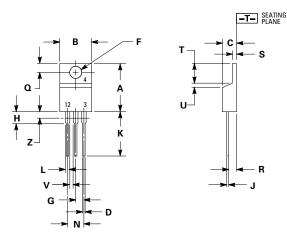
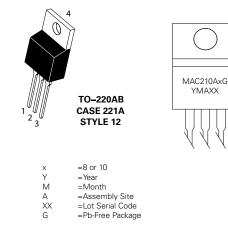


Figure 5. Typical Gate Trigger Voltage



MAC210A8, MAC210A10 Triacs – 400V - 800V


Figure 8. Thermal Response


Thyristors Datasheet

MAC210A8, MAC210A10 Triacs - 400V - 800V

Dimensions

Part Marking System

Dim	Inc	hes	Millin	neters
DIM	Min	Мах	Min	Max
Α	0.590	0.620	14.99	15.75
В	0.380	0.420	9.65	10.67
С	0.178	0.188	4.52	4.78
D	0.025	0.035	0.64	0.89
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.41	2.67
н	0.110	0.130	2.79	3.30
J	0.018	0.024	0.46	0.61
К	0.540	0.575	13.72	14.61
L	0.060	0.075	1.52	1.91
Ν	0.195	0.205	4.95	5.21
٥	0.105	0.115	2.67	2.92
R	0.085	0.095	2.16	2.41
S	0.045	0.060	1.14	1.52
т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045		1.15	
Z		0.080		2.04

Pin Assignment				
1	Main Terminal 1			
2	Main Terminal 2			
3	Gate			
4	Main Terminal 2			

Ordering Information

Device	Package	Shipping
MAC210A8	TO-220AB	
MAC210A8G	TO-220AB (Pb-Free)	1000 Unite/ Day
MAC210A10	TO-220AB	1000 Units/ Box
MAC210A10G	TO-220AB (Pb-Free)	

1. Dimensioning and tolerancing per ansi y14.5m, 1982.

Controlling dimension: inch.
Dimension z defines a zone where all body and lead irregularities are allowed.

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at http://www.littelfuse.com/disclaimer-electronics.

单击下面可查看定价,库存,交付和生命周期等信息

>>Littelfuse(美国力特)