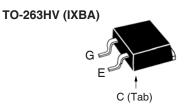


High Voltage, High Gain BIMOSFET™ Monolithic Bipolar MOS Transistor


IXBA16N170AHV IXBT16N170AHV

 $I_{C25} = 16A$

 $V_{CE(sat)} \le 6.0V$

Symbol	Test Conditions	Maximu	m Ratings
V _{CES}	T _c = 25°C to 150°C	1700	V
V _{CGR}	$T_J = 25^{\circ}C$ to 150°C, $R_{GE} = 1M\Omega$	1700	V
V _{GES}	Continuous	± 20	V
V _{GEM}	Transient	± 30	V
I _{C25} I _{C90}	$T_{c} = 25^{\circ}C$ $T_{c} = 90^{\circ}C$ $T_{c} = 25^{\circ}C, 1ms$	16 10 40	A A A
SSOA (RBSOA)	$V_{GE} = 15V$, $T_{VJ} = 125^{\circ}C$, $R_{G} = 33\Omega$ Clamped Inductive Load	I _{CM} = 40 1350	A V
t _{sc} (SCSOA)	$V_{GE} = 15V$, $V_{CE} = 1200V$, $T_{J} = 125$ °C $R_{G} = 33\Omega$, Non Repetitive	10	μs
P _c	T _c = 25°C	150	W
T		-55 +150	°C
T_{JM}		150	°C
T _{stg}		-55 +150	°C
T _L T _{SOLD}	Maximum Lead Temperature for Solderin Plastic Body for 10s	g 300 260	°C °C
F _c	Mounting Force (TO-263)	1065 / 2214.6	N/lb
Weight	TO-263 TO-268	2.5 4.0	g g

TO-268HV (IXBT)
G E C (Tab)

G = Gate C = Collector E = Emitter Tab = Collector

Features

- High Voltage Package
- High Blocking Voltage
- Anti-Parallel Diode
- Low Conduction Losses

Advantages

- Low Gate Drive Requirement
- High Power Density

Applications:

- Switch-Mode and Resonant-Mode Power Supplies
- Uninterruptible Power Supplies (UPS)
- Laser Generators
- Capacitor Discharge Circuits
- AC Switches

Symbol	Test Conditions	Characteristic Values			
$(T_{J} = 25^{\circ})$	Unless Otherwise Specified)	Min.	Тур.	Max.	
BV _{CES}	$I_{C} = 250 \mu A, V_{GE} = 0 V$	1700			V
V _{GE(th)}	$I_{\text{C}} = 250 \mu \text{A}, V_{\text{CE}} = V_{\text{GE}}$	2.5		5.5	V
I _{CES}	$V_{CE} = 0.8 \bullet V_{CES}, V_{GE} = 0V$	T _J = 125°C		50 1.5	μA mA
I _{GES}	$V_{CE} = 0V, V_{GE} = \pm 20V$			±100	nA
V _{CE(sat)}	$I_{\rm C} = 10A, V_{\rm GE} = 15V, \text{ Note 1}$			6.0	V
		$T_J = 125^{\circ}C$	5.0		V

IXBA16N170AHV IXBT16N170AHV

Symbo	ol Tes	et Conditions	Charac	teristic V	alues	
$(T_{J} = 25)$	5°C U	nless Otherwise Specified)	Min.	Тур.	Max.	
g _{fs}		$I_{\rm C}$ = 10A, $V_{\rm CE}$ = 10V, Note 1	8.0	12.5		S
C _{ies})			1400		рF
C	}	$V_{CE} = 25V, V_{GE} = 0V, f = 1MHz$		90		рF
C _{res}	J			31		pF
$\mathbf{Q}_{q(on)}$)			65		nC
\mathbf{Q}_{ae}	}	$I_{\rm C} = 10$ A, $V_{\rm GE} = 15$ V, $V_{\rm CE} = 0.5 \bullet V_{\rm CES}$		13		nC
Q _{gc}	J			22		nC
t _{d(on)})	Inductive load, T ₁ = 25°C		15		ns
t _{ri}		$I_{\rm C} = 10A$, $V_{\rm GE} = 15V$		25		ns
$\mathbf{t}_{d(off)}$	}	$V_{CE} = 0.8 \cdot V_{CES}, R_{G} = 10\Omega$		160	250	ns
t _{fi}		Note 2		50	100	ns
E _{off}	J	Note 2		1.2	2.5	mJ
$\mathbf{t}_{d(on)}$)			15		ns
t _{ri}		Inductive load, T _J = 125°C		28		ns
E_{on}	\	$I_{\rm C} = 10A, \ V_{\rm GE} = 15V$		2.0		mJ
$\mathbf{t}_{d(off)}$		$V_{CE} = 0.8 \bullet V_{CES}, R_{G} = 10\Omega$		220		ns
t _{ri}		Note 2		150		ns
E _{off}				2.6		mJ
\mathbf{R}_{thJC}					0.83	°C/W

TO-263HV Outline
D D D D D D D D D D D D D D D D D D D
PIN: 1 - Gate 2 - Emitter 3 - Collector

SYM	INCH	HES	MILLIN	METER
SIM	MIN	MAX	MIN	MAX
Α	.170	.185	4.30	4.70
A1	.000	.008	0.00	0.20
A2	.091	.098	2.30	2.50
Ь	.028	.035	0.70	0.90
b2	.046	.054	1.18	1.38
С	.018	.024	0.45	0.60
C2	.049	.055	1.25	1.40
D	.354	.370	9.00	9.40
D1	.311	.327	7.90	8.30
E	.386	.402	9.80	10.20
E1	.307	.323	7.80	8.20
e1	.200	BSC	5.08 BSC	
(e2)	.163	.174	4.13	4.43
Н	.591	.614	15.00	15.60
L	.079	.102	2.00	2.60
L1	.039	.055	1.00	1.40
L3	.010	BSC	0.254	BSC
(L4)	.071	.087	1.80	2.20

Reverse Diode

•	ool Test Conditions Chara 25°C Unless Otherwise Specified) Min.	acteristic \ Typ.	Values Max.	
V _F	$I_F = 10A$, $V_{GE} = 0V$		5.0	V
t _{rr}	$I_F = 10A, V_{GE} = 0V, -di_F/dt = 50A/\mu s$	360		ns
I _{RM}	$\int V_{R} = 100V, V_{GE} = 0V$	10		Α

Notes:

- 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.
- 2. Switching times & energy losses may increase for higher V_{CE} (clamp), T_J or R_g .

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

TO-268HV Outline PIN: 1 - Gate 2 - Emitter 3 - Collector Separate District House Day 1 - Collector 1 - Col

SYM	INCH	HES	MILLIMETER	
STIVI	MIN	MAX	MIN	MAX
Α	.193	.201	4.90	5.10
A1	.106	.114	2.70	2.90
A2	.001	.010	0.02	0.25
Ь	.045	.057	1.15	1.45
С	.016	.026	0.40	0.65
C2	.057	.063	1.45	1.60
D	.543	.551	13.80	14.00
D1	.465	.476	11.80	12.10
D2	.295	.307	7.50	7.80
D3	.114	.126	2.90	3.20
E	.624	.632	15.85	16.05
E1	.524	.535	13.30	13.60
е	.215	BSC	5.45 BSC	
Н	.736	.752	18.70	19.10
L	.067	.079	1.70	2.00
L2	.039	.045	1.00	1.15
L3	.010	BSC	0.25 BSC	
L4	.150	.161	3.80	4.10

IXYS Reserves the Right to Change Limits, Test Conditions and Dimensions.

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

单击下面可查看定价,库存,交付和生命周期等信息

>>Littelfuse(美国力特)