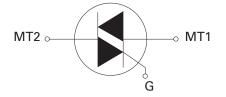

QJxx30LH4 series


Agency Recognitions

A m m m m m m m m m m	Anon ou File Number
Agency	Agency File Number
A1 °	E71639

Main Features

Symbol	Value	Unit
I _{T(RMS)}	30	А
$V_{\rm DRM}/V_{\rm RRM}$	600 or 800	V
Ι _{GT (Q1)}	35	mA

Schematic Symbol

Description

This 30A high temperature Alternistor TRIAC series enables easier thermal management and higher surge handling capability in AC power control applications such as heater control, motor speed control, lighting controls, and static switching relays.

Alternistor TRIAC operates in quadrants I, II, & III and offers high performance in applications requiring high commutation capability.

Features & Benefits

- High T₁ of 150°C
- Voltage capability up to 800V
- Surge capability of 350A at 60Hz half cycle
- Mechanically and thermally robust TO-220 clip-attach assembly
- Electrically isolated for 2500Vrms

RoHS C

- UL Recognized to UL 1557 as an Electrically Isolated Semiconductor Device.
- Halogen-free and RoHS-compliant

Applications

TRIAC is an excellent AC switch in applications such as heating, lighting, and motor speed controls.

Typical applications are

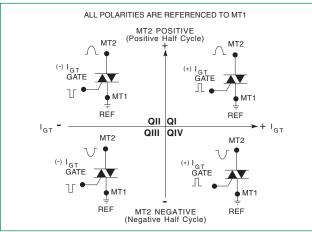
- Heater control such as coffee brewer, tankless water heater and infrared heater
- AC solid-state relays
- Light dimmers including incandescent and LED lighting
- Motor speed control in kitchen appliances, power tools, home/brow/white goods and light industrial applications as compressor motor control

AlternistorTRIAC is used with high inductive loads requiring the high commutation capability. Internally isolated packages offer better heat sinking with higher isolation voltage.

Absolute Maximum Ratings – Alternistor Triac (3 Quadrants)

Symbol	Paramete	Value	Unit		
$V_{\rm DSM}/V_{\rm RSM}$	Peak non-repetitive blocking voltage	pulse width = 100 µs		V _{DRM} +200V	V
I _{T(RMS)}	RMS on-state current (full sine wave)	T _c = 10	T _c = 105 °C		А
	Non repetitive surge peak on-state current	f = 50Hz	t = 20 ms	290	А
TSM	(Single half cycle, T_J initial = 25°C)	f = 60Hz	t = 16.7 ms	350	A
l²t	I ² t Value for fusing		t _p = 8.3 ms	508	A²s
di/dt	Critical rate of rise of on-state current	f = 60Hz	T _J = 150 °C	100	A/µs
I _{gtm}	Peak gate trigger current	t _p ≤ 20µs; I _{GT} ≤ I _{GTM}	T _J = 150°C	4.0	А
P _{G(AV)}	Average gate power dissipation		T _J = 150 °C	1.0	W
T _{stg}	Storage temperature range			-40 to 150	°C
T,	Operating junction temperature range			-40 to 150	°C

y = sensitivity


ectrical Characteristics (T $_{J}$ = 25°C, unless otherwise specified) — Alternistor Triac (3 Quadrants)						
Symbol	Test Conditions	Quad	rant	Value	Unit	
I _{gt}	V 19V D 600	1 – 11 – 111	MAX.	35	mA	
V _{gt}	$V_{\rm D} = 12V R_{\rm L} = 60\Omega$	1 - 11 - 111	MAX.	1.0	V	
V _{gd}	$V_{\rm D} = V_{\rm DRM} R_{\rm L} = 3.3 k\Omega T_{\rm J} = 150^{\circ} {\rm C}$	1 – 11 – 111	MIN.	0.2	V	
I _H	I _T = 100mA		MAX.	60	mA	
dv/dt	$V_{\rm D} = 2/3 V_{\rm DRM}$ Gate Open T _J = 150°C		MIN.	1500	V/µs	
(dv/dt)c	$(di/dt)c = 18.9 \text{ A/ms } T_J = 150^{\circ}\text{C}$		MIN.	20	V/µs	
t _{gt}	$I_{g} = 2 \times I_{gT} PW = 15 \mu s I_{T} = 42.4 A(pk)$		TYP.	3	μs	

Static Characteristics						
Symbol	Test Co	onditions		Value	Unit	
V _{TM}	$I_{T} = 42.4A t_{p} = 380$	μs	MAX	1.5	V	
1 /1		$T_J = 25^{\circ}C$	MAX	5	μA	
I _{drm} / I _{rrm}	$@V_{drm}/V_{rrm}$	T_ = 150°C	IVIAA	3	mA	

Thermal Resistances			
Symbol	Parameter	Value	Unit
R _{e(JC)}	Junction to case (AC)	3.2	°C/W

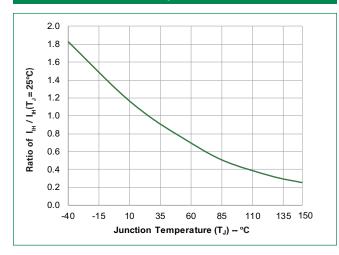
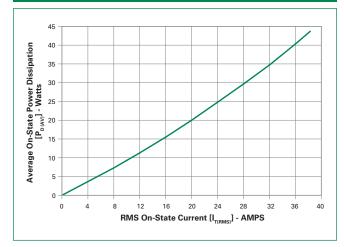

Littelfuse[®] Power

Figure 1: Definition of Quadrants



Note: Alternistors will not operate in QIV

Figure 3: Normalized DC Holding Current vs. Junction Temperature

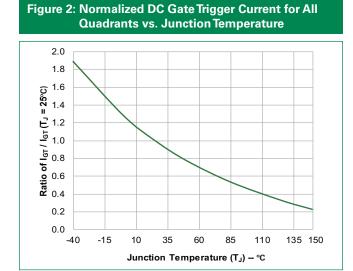


Figure 4: Normalized DC Gate Trigger Voltage for All Quadrants vs. Junction Temperature

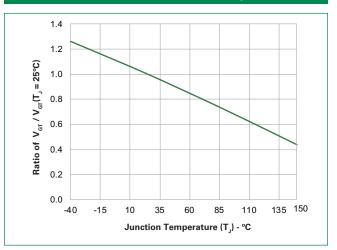
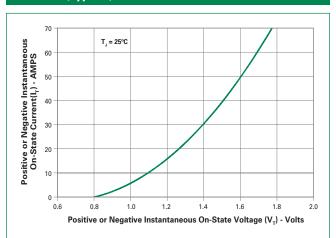
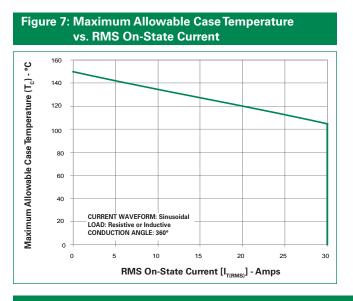
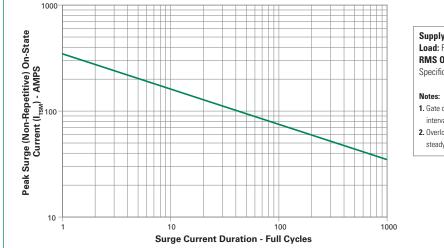
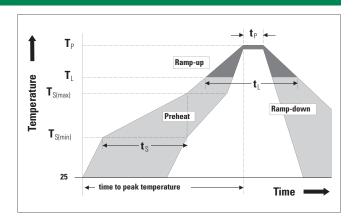





Figure 6: On-State Current vs. On-State Voltage (Typical)

Figure 8: Surge Peak On-State Current vs. Number of Cycles


Supply Frequency: 60Hz Sinusoidal Load: Resistive RMS On-State [I_{TRMS}]: Max Rated Value at Specific Case Temperature

1. Gate control may be lost during and immediately following surge current interval.

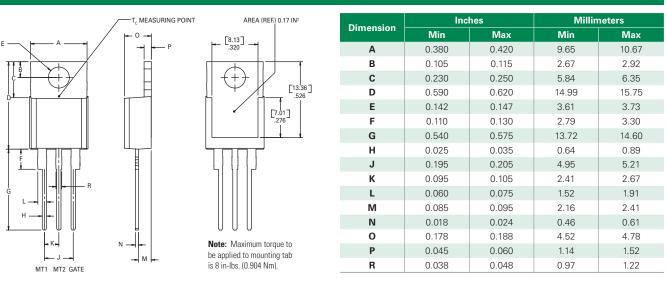
 Overload may not be repeated until junction temperature has returned to steady-state rated value.

Soldering Parameters

Reflow Cond	diations.	Dh. Frae accombly	
Renow Cond		Pb – Free assembly	
	- Temperature Min (T _{s(min)})	150°C	
Pre Heat	- Temperature Max (T _{s(max)})	200°C	
	- Time (min to max) (t _s)	60 – 180 secs	
Average ramp up rate (Liquidus Temp) (T_L) to peak		5°C/second max	
T _{S(max)} to T _L - Ramp-up Rate		5°C/second max	
Reflow	- Temperature (T _L) (Liquidus)	217°C	
Renow	- Time (t _L)	60 – 150 seconds	
Peak Temper	rature (T _P)	260+0/-5 °C	
Time within 5°C of actual peak Temperature (t_o)		20 – 40 seconds	
Ramp-down Rate		5°C/second max	
Time 25°C to	o peak Temperature (T _P)	8 minutes Max.	
Do not exce	ed	280°C	

Physical Specifications

Terminal Finish	100% Matte Tin-plated
Body Material	UL Recognized compound meeting flammability rating V-0
Terminal Material	Copper Alloy

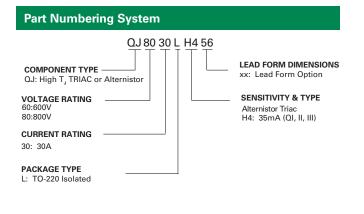

Design Considerations

Careful selection of the correct component for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the component rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

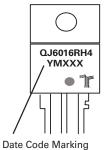
Environmental Specifications

Test	Specifications and Conditions
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 150°C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell time
Temperature/Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 320V - DC: 85°C; 85% rel humidity
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C
Low-Temp Storage	1008 hours; -40°C
Resistance to Solder Heat	MIL-STD-750 Method 2031
Solderability	ANSI/J-STD-002, category 3, Test A
Lead Bend	MIL-STD-750, M-2036 Cond E
Moisture Sensitivity Level	Level 1, JEDEC-J-STD-020

Dimensions – TO-220AB (L-Package) – Isolated Mounting Tab


Product Selector								
Voltage			Gate Sensitivity			Time Desked	Poekogo	
400V	600V	800V	1000V	1-11-111	IV	T(RMS)	туре	Package
-	х	х	-	35mA		30A	Alternostor Triac	TO-220L
	400V	Vol 400V 600V	Voltage 400V 600V 800V	Voltage 400V 600V 800V 1000V	Voltage Gate Se 400V 600V 800V 1000V I-II-III	Voltage Gate Sensitivity 400V 600V 800V 1000V I-II-III IV	Voltage Gate Sensitivity 400V 600V 800V 1000V I-II-III IV	Voltage Gate Sensitivity I 400V 600V 800V 1000V I-II-III IV T(RMS)

Note: xx = Voltage/10


Packing Options

Part Number	Marking	Weight	Packing Mode	Base Quantity
QJxx30LH4	QJxx30LH4	2.2	Tube	1000 (50 per tube)

y = Sensitivity

Part Marking System

Y:Year Code M: Month Code XXX: Lot Trace Code

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at http://www.littelfuse.com/disclaimer-electronics.

单击下面可查看定价,库存,交付和生命周期等信息

>>Littelfuse(美国力特)