
Kxxx0yH Series

Expertise Applied | Answers Delivered

Schematic Symbol

Description

The new Kxxx0yH is a higher energy SIDAC switch for gas ignition applications requiring higher current pulse current especially at low repetition rate. It is offered in a DO-15 and TO-92 leaded packages as well as DO-214 surface mount package. Voltage activation of this solid state switch is accomplished with peak voltage level of 190 to 280Volts. The SIDAC is a silicon bilateral voltage triggered Thyristor switch that switches on through a negative resistance region to a low on-state voltage. Conduction will continue until current is interrupted or lowered below minimum holding current of the device.

Features

- AC Circuit Oriented
- Triggering Voltage of 190 to 280V
- 280A Pulse Current Capability
- RoHS Compliant

Applications

Suitable for high voltage power supplies, natural gas igniters, and Xenon flash ignition.

Electrical Specifications (T, = 25°C, unless otherwise specified)

Symbol	Parameters	Test Conditions		Min	Max	Unit	
		K2	000yH	190	215		
V _{BO}	Drookeyer/Trigger\/eltege	K2200yH		205	230	V	
	Breakover/Trigger Voltage	K2400yH		220	250	V	
		K2500yH		240	280		
		K2000yH		180			
V	Repetitive Peak Off-state Voltage	K2	200yH	180		V	
V_{DRM}	hepetitive reak On-State voltage	K2	400yH	190] v	
			500yH	200		7	
I _{T(RMS)}	On-state RMS Current	50/60Hz	z, T _J < 125°C		1	A	
V_{TM}	Peak On-state Voltage		= 1A		1.5	V	
I _H	Dynamic Holding Current	$R_L = 100\Omega$ 50/60Hz Sine Wave			150	mA	
R_s	Switching Resistance, $R_s = \frac{(V_{BO} - V_s)}{(I_s - I_{BO})}$	50/60Hz Sine Wave			100	Ω	
I _{BO}	Breakover Current	50/60Hz Sine Wave			50	μΑ	
	Peak Repetitive Pulse Current	+ 10	60Hz		120		
TRM	(refer to figure 4)	t _p = 10µs	5Hz		280	Α	
di/dt	Critical Rate of Rise of On-State Current				150	A/µs	
dv/dt	Critical Rate of Rise of Off-State Voltage			1500		V/µs	
T _s	Storage Temperature Range			-40	150	°C	
T	Junction Temperature Range			-40	125	°C	
D	Thermal Resistance, Junction to Lead	DO-15 DO-214			18	°C/W	
R _{eJL}	mermar nesistance, Junction to Lead				30	C/VV	
R _{eJC}	Thermal Resistance, Junction to Case	DO-92			35	°C/W	
R	Thermal Resistance, Junction to Ambient	DO-15			75	°C/W	
R _{eJA}	mermal nesistance, Junction to Ambient	D	O-92		95	C/VV	

Note: xxx - voltage, y = package

Figure 1: V-I Characteristics

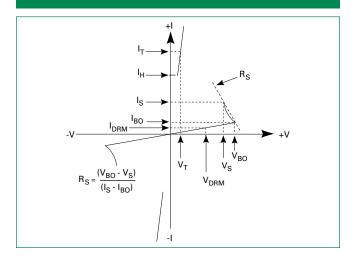


Figure 2: On-state Current vs. On-state Voltage (Typical)

Figure 3: Power Dissipation vs. On-state Current (Typical)

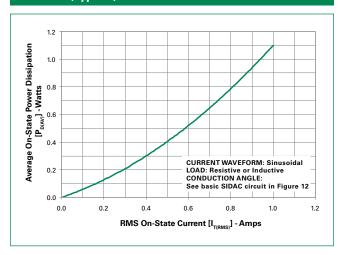


Figure 4: Repetitive Peak On-state Current (I_{TRM}) vs. Pulse Width at Various Frequencies

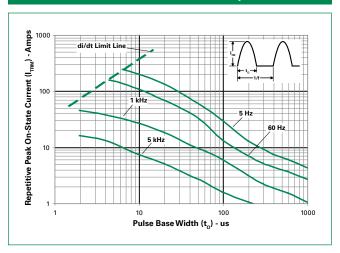


Figure 5: Surge Peak On-state Current vs. Number of Cycles

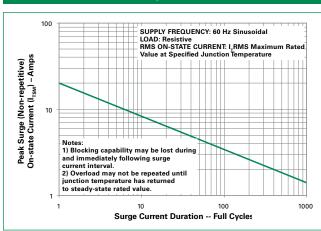


Figure 6: Normalized V_{BO} Change vs. Junction Temperature

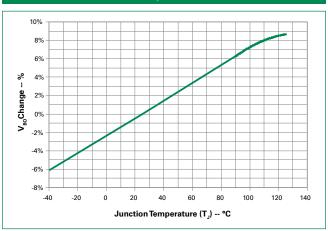


Figure 7: Normalized DC Holding Current vs. Junction Temperature

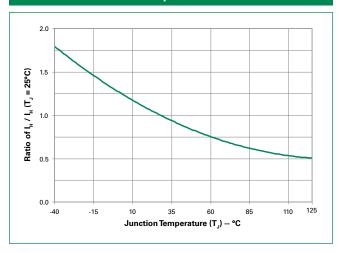


Figure 8: Maximum Allowable Case Temperature vs. RMS On-State Current

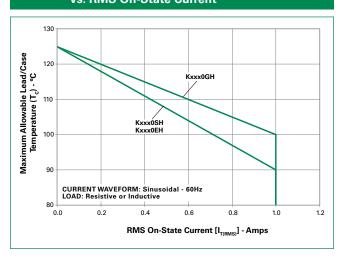


Figure 9: Maximum Allowable Ambient Temperature vs. RMS On-State Current

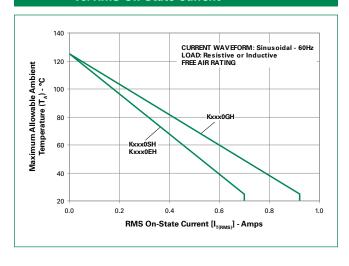


Figure 10: Normalized Repetitive Peak Breakover Current (I_{DO}) vs. Junction Temperature

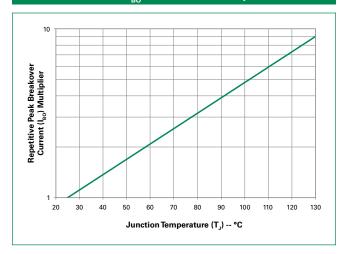


Figure 11: Dynamic Holding Current Test Circuit for SIDACs

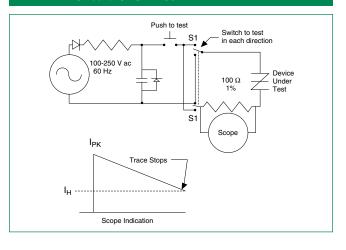


Figure 12: Basic SIDAC Circuit

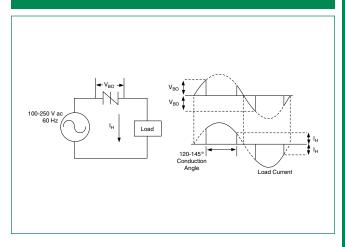
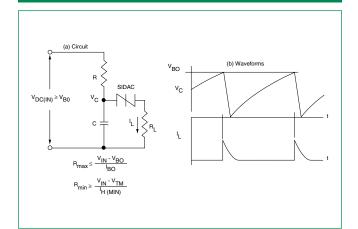
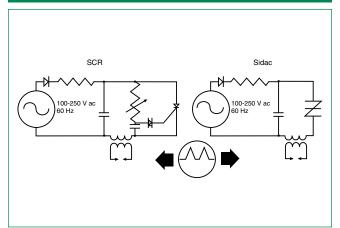
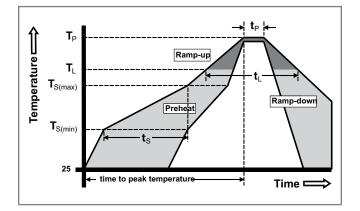


Figure 13: Relaxation Oscillator Using a SIDAC


Figure 14: General Gas Ignitor Circuit

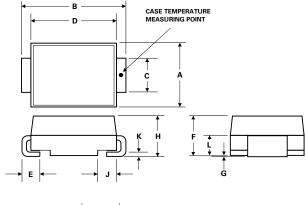
Soldering Parameters

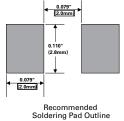
Kxxx0yH Series

Reflow Condition		Pb – Free assembly	
	-Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 180 secs	
Average ramp up rate (Liquidus Temp) (T _L) to peak		5°C/second max	
T _{S(max)} to T _L - Ramp-up Rate		5°C/second max	
Reflow	-Temperature (T _L) (Liquidus)	217°C	
nellow	-Temperature (t _L)	60 – 150 seconds	
PeakTemp	erature (T _P)	260 ^{+0/-5} °C	
Time within 5°C of actual peak Temperature (t _p)		20 – 40 seconds	
Ramp-down Rate		5°C/second max	
Time 25°C	to peakTemperature (T _P)	8 minutes Max.	
Do not exc	ceed	280°C	

Physical Specifications

Terminal Material	Copper Alloy	
Terminal Finish	100% Matte Tin-plated /Pb Free solder dipped.	
Body Material	UL recognized epoxy meeting flammability classification 94V-0.	

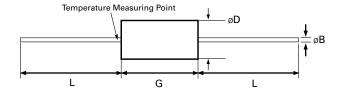

Design Considerations


Careful selection of the correct device for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Overheating and surge currents are the main killers of SIDACs. Correct mounting, soldering, and forming of the leads also help protect against component damage.

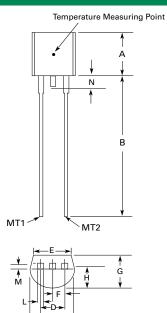
Reliability/Environmental Tests

Test	Specifications and Conditions		
High Temperature Voltage Blocking	MIL-STD-750: Method 1040, Condition A Rated V _{DRM} (VAC-peak), 125°C, 1008 hours		
Temperature Cycling	MIL-STD-750: Method 1051 -40°C to 150°C, 15-minute dwell, 100 cycles		
Biased Temperature & Humidity	EIA/JEDEC: JESD22-A101 (VDC), 85°C, 85%RH, 1008 hours		
High Temp Storage	MIL-STD-750: Method 1031 150°C, 1008 hours		
Low-Temp Storage	-40°C, 1008 hours		
Thermal Shock	MIL-STD-750: Method 1056 0°C to 100°C, 5-minute dwell, 10-second transfer, 10 cycles		
Autoclave (Pressure Cooker Test)	EIA/JEDEC: JESD22-A102 121°C, 100%RH, 2atm, 168 hours		
Resistance to Solder Heat	MIL-STD-750: Method 2031 260°C, 10 seconds		
Solderability	ANSI/J-STD-002: Category 3		
Repetitive Surge Life Testing	MIL-STD-750: Method 2036, Condition E		

Dimensions — DO-214



Dimension	Inc	hes	Millimeters		
Dimension	Max	Max	Min	Max	
А	0.130	0.156	3.30	3.95	
В	0.201	0.220	5.10	5.60	
С	0.077	0.087	1.95	2.20	
D	0.159	0.181	4.05	4.60	
Е	0.030	0.063	0.75	1.60	
F	0.075	0.096	1.90	2.45	
G	0.002	0.008	0.05	0.20	
Н	0.077	0.104	1.95	2.65	
J	0.043	0.053	1.09	1.35	
К	0.006	0.016	0.15	0.41	
L	0.030	0.055	0.76	1.40	



Dimensions — DO-15

Dimension	Inc	hes	Millimeters		
Difficusion	Max	Max	Min	Max	
øB	øB 0.028 0.034		0.711	0.864	
øD	0.120	0.140	3.048	3.556	
G	0.235	0.270	5.969	6.858	
L	1.000		25.400		

Dimensions - TO-92 with Type 70 Lead Form

D: .	Inc	hes	Millimeters		
Dimension	Max	Max	Min	Max	
А	0.176	0.196	4.47	4.98	
В	0.500		12.70		
D	0.095	0.105	2.41	2.67	
Е	0.150		3.81		
F	0.046	0.054	1.16	1.37	
G	0.135	0.145	3.43	3.68	
Н	0.088	0.096	2.23	2.44	
J	0.176	0.186	4.47	4.73	
K	0.088	0.096	2.23	2.44	
L	0.013	0.019	0.33	0.48	
М	0.013	0.017	0.33	0.43	
N		0.060		1.52	

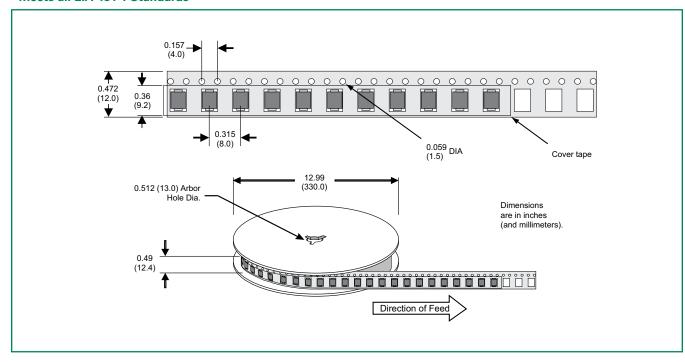
Notes:

- 1. Type 70 lead form as shown is standard for the E package.
- 2. All leads are insulated from case. Case is electrically nonconductive (rated at 16000V ac rms for one minute from leads to case over the operating temperature range.)
- 3. Mold flash shall not exceed 0.13 mm per side.

Product Selector

Part Number	Switching Voltage Range		Blocking Voltage	Packages		
	V _{BO} Minimum	V _{во} Maximum	V_{DRM}	DO-15	DO-214	TO-92
K2000yH	190V	215V	180V	K2000GH	K2000SH	K2000EH70
K2200yH	205V	230V	180V	K2200GH	K2200SH	K2200EH70
K2400yH	220V	250V	190V	K2400GH	K2400SH	K2400EH70
K2500yH	240V	280V	200V	K2500GH	K2500SH	K2500EH70

Note: y = package

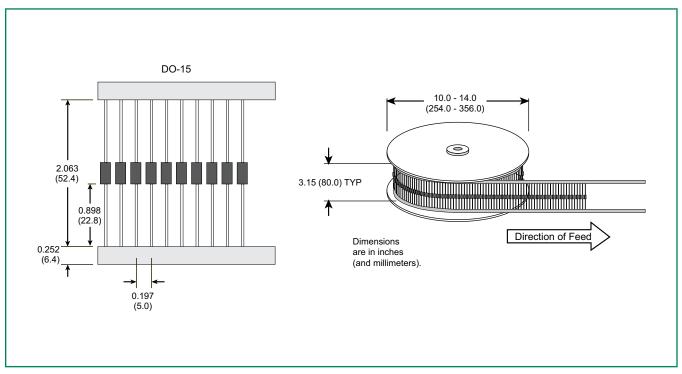

Packing Options

Part Number	Marking	Weight Packaging Mode		Base Quantity
Kxxx0GH	Kxxx0GH	0.38g	Bulk	1000
Kxxx0GHRP	Kxxx0GH	0.38g	Reel Pack	5000
Kxxx0SHRP	KxxSH	0.1g	Reel Pack	2500
Kxxx0EH70	Kxxx0EH	0.17g	Bulk	2000
Kxxx0EH70AP	Kxxx0EH	0.17g	Ammo Pack	2000
Kxxx0EH70RP2	Kxxx0EH	0.17g	Reel Pack	2000
Kxxx0EH70RP3	Kxxx0EH	0.17g	Reel Pack	2000

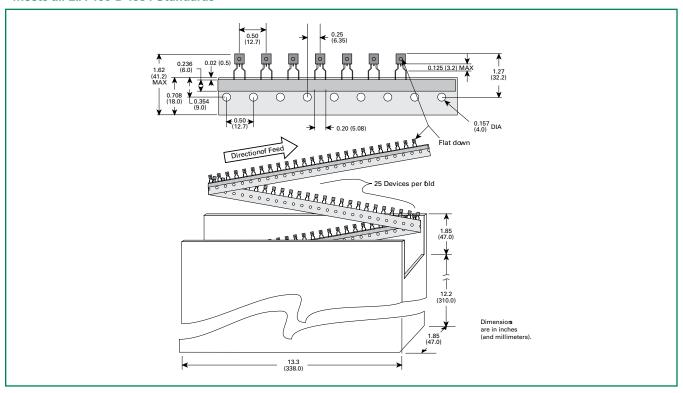
Note: xxx or xx = voltage

DO-214 Embossed Carrier Reel Pack (RP) Specifications

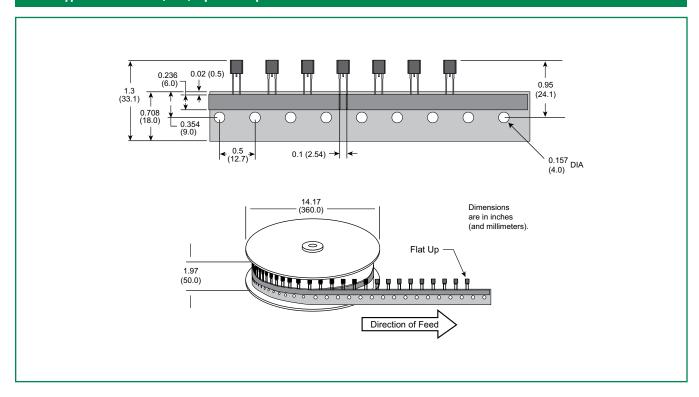
Meets all EIA-481-1 Standards



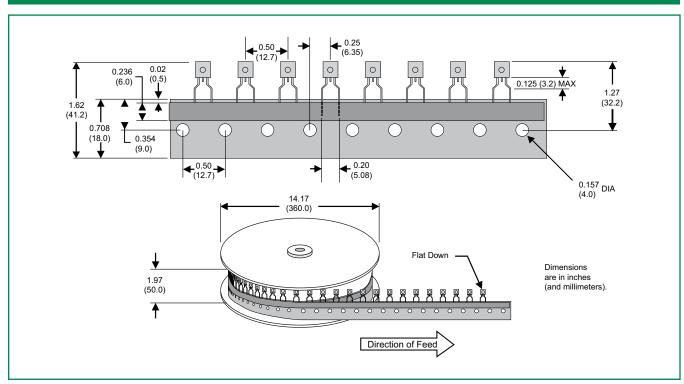
Downloaded From Oneyac.com


DO-15 Reel Pack (RP) Specifications

Meets all EIA RS-296 Standards

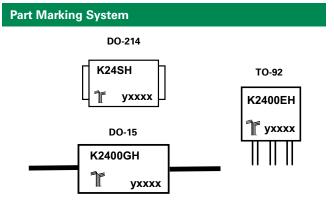

TO-92 Type 70 Ammo Pack (AP) Radial Leaded Specifications

Meets all EIA-468-B 1994 Standards



TO-92 Type 70 Reel Pack (RP3) Optional Specifications

TO-92 Type 70 Reel Pack (RP2) Standard Specifications



Downloaded From Oneyac.com

Teccor® brand Thyristors High Energy Bidirectional SIDACs

Part Numbering System K 240 0 E H 70 RP PACKAGING OPTIONS [Blank]: Bulk AP: Ammo RP: Reel DEVICE TYPE K: Sidac RP2: Reel RP3: Reel **VOLTAGE** 200: 190 to 215V LEAD FORM DIMENSIONS 220: 205 to 230V xx: Lead Form Option 240: 220 to 250V 250: 240 to 280V HIGH-ENERGY SIDAC PACKAGE TYPE **CURRENT FUNCTION** G: DO-15 S: DO-214 E: TO-92

单击下面可查看定价,库存,交付和生命周期等信息

>>Littelfuse(美国力特)