
MAC15 Series TRIAC - 400V - 800V

Additional Information

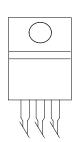
Resources

Accessories

Samples

Functional Diagram

Description


Designed primarily for full-wave ac control applications, such as solid-state relays, motor controls, heating controls and power supplies; or wherever full-wave silicon gate controlled solid-state devices are needed. Triac type thyristors switch from a blocking to a conducting state for either polarity of applied main terminal voltage with positive or negative gate triggering.

Features

- Blocking Voltage to 800 V
- All Diffused and Glass
 Passivated Junctions for
 Greater Parameter Uniformity
 and Stability
- Small, Rugged, Thermowatt Construction for Low Thermal Resistance, High Heat Dissipation and Durability
- Gate Triggering Guaranteed in Three Modes (MAC15 Series) or Four Modes (MAC15A Series)
- These Devices are Pb-Free and are RoHS Compliant

Pin Out

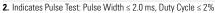
MAC15 Series TRIAC - 400V - 800V

Maximum Ratings (TJ = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
(6.346) ()non Sing $(1/3)/6$ b() to b() Hz /(1)° to 175°()	MAC15A6G 5-8G, MAC15A8G 5-10G, MAC15A10G	400 600 800	V
On-State RMS Current (Full Cycle Sine Wave, 50 to 60 Hz, $T_{\rm C}$ = 80	PC) I _{T (RMS)}	15	А
Peak Non-Repetitive Surge Current (One Full Cycle Sine Wave, 60 Preceded and Followed by Rated Current	$Hz, T_c = 80$ °C)	150	А
Peak Gate Voltage (Pulse Width \leq 1.0 μ sec; $T_c = 90^{\circ}$ C)	V_{GM}	10	V
Circuit Fusing Consideration (t = 8.3 ms)	l²t	93	A²sec
Peak Gate Power ($T_c = 80^{\circ}\text{C}$, Pulse Width = 1.0 μ s)	P_{GM}	20	W
Peak Gate Current (Pulse Width \leq 1.0 μ sec; $T_c = 90^{\circ}$ C)	I_GM	2.0	А
Average Gate Power (t = 8.3 ms, $T_c = 80^{\circ}$ C)	$P_{G(AV)}$	0.5	W
Operating Junction Temperature Range	T _J	-40 to +125	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the

Thermal Characteristics


Rating		Symbol	Value	Unit
Thermal Resistance,	Junction-to-Case (AC) Junction-to-Ambient	R _{ejc} R _{eja}	2.0 62.5	°C/W
Maximum Lead Temperature for Soldering Purpose	s, 1/8" from case for 10 seconds	T_L	260	°C

Electrical Characteristics - OFF (TJ = 25°C unless otherwise noted; Electricals apply in both directions)

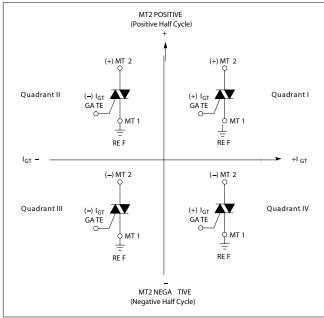
Characteristic		Symbol	Min	Тур	Max	Unit
Peak Repetitive Blocking Current	T ₁ = 25°C	I _{DRM} ,	-	-	0.01	mΛ
$(V_D = V_{DRM} = V_{RRM}; Gate Open)$	T _J = 125°C	I _{RRM}	-	-	2.0	mA

Electrical Characteristics - ON (TJ = 25°C unless otherwise noted; Electricals apply in both directions)

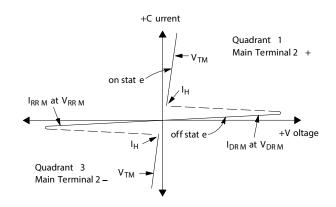
Characteristic			Min	Тур	Max	Unit
Peak On-State Voltage (Note 2) ($I_{TM} = \pm 21 \text{ A Peak}$)		V_{TM}	-	1.3	1.6	V
0 + T' 0 +	MT2(+), G(+)		-	-	50	
Gate Trigger Current (Continuous dc)	MT2(+), G(-)		-	-	50	mA
(Continuous ac) $(V_D = 12 \text{ V}, R_1 = 100 \Omega)$	MT2(-), G(-)	GT	-	-	50	IIIA
$(V_D - 12 V, 11_L - 100 \Omega)$	MT2(-), G(+)		-	-	75	
Gate Trigger Voltage	MT2(+), G(+)		-	0.9	2	
	MT2(+), G(-)	\/	-	0.9	2	V
(Continuous dc) $(V_D = 12 \text{ V, } R_1 = 100 \Omega)$	MT2(-), G(-)	V _{GT}	-	1.1	2	V
$(V_D - 12 V, 11_L - 100 \Omega)$	MT2(-), G(+)		-	1.4	2.5	
O . N . T' . V'	MT2(+), G(+)		0.2	-	-	
Gate Non-Trigger Voltage	MT2(+), G(-)	V	0.2	-	-	\/
$(T_J = 110^{\circ}C)$ $(V_D = 12 \text{ V}, R_1 = 100 \Omega)$	MT2(-), G(-)	$V_{\rm GD}$	0.2	-	-	V
$(V_D - 12 V, 11_L - 100 \Omega)$	MT2(-), G(+)	(+)	0.2	-	-	
Holding Current ($V_D = 12 V_{dc'}$, Gate Open, Initiating Current = ±200 mA))		l _H	-	6.0	40	mA
Turn-On Time (VD = Rated VDRM, ITM = 17 A) (IGT = 120 mA, Rise Time = 0.1 μ s, Pulse Width = 2 μ s)		tgt	-	1.5	-	μs

Recommended Operating Conditions may affect device reliability.

1. V_{DBM} and V_{BBM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.


Dynamic Characteristics

Characteristic	Symbol	Min	Тур	Max	Unit
Critical Rate of Rise of Commutation Voltage ($V_D = Rated V_{DRM'}$, $I_{TM} = 21 A$, Commutating di/dt = 7.6 A/ms, Gate Unenergized, $I_C = 80^{\circ}$ C)	dV/dt	-	5.0	_	V/µs


Voltage Current Characteristic of SCR

Symbol	Parameter
V_{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
$V_{_{\mathrm{RRM}}}$	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V_{TM}	Maximum On State Voltage
I _H	Holding Current

Quadrant Definitions for a Triac

All polarities are referenced to MT1.
With in-phase signals (using standard AC lines) quadrants I and III are used

Figure 1. RMS Current Derating

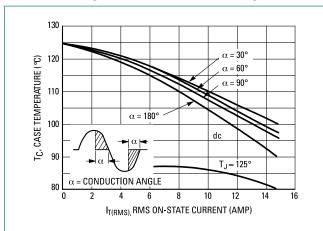


Figure 2. On-State Power Dissipation

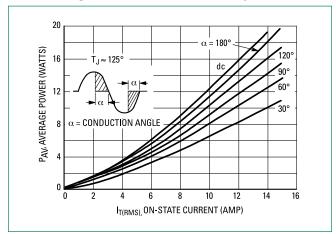
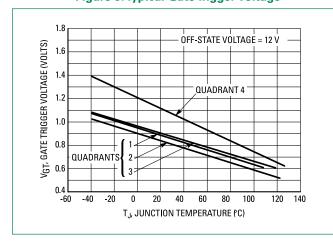



Figure 3. Typical Gate Trigger Voltage

Figure 4. Typical Gate Trigger Current

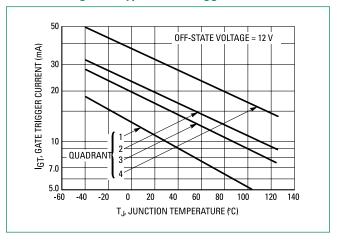
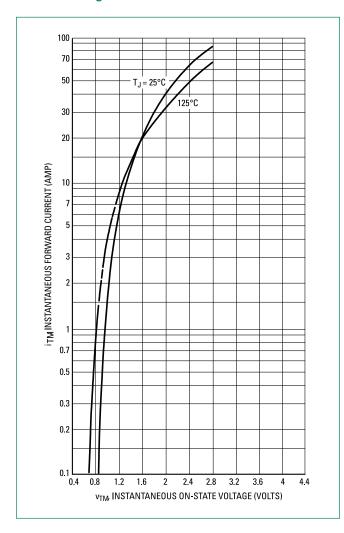



Figure 5. On-State Characteristics

Figure 6. Typical Holding Current

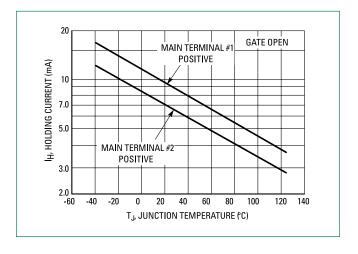
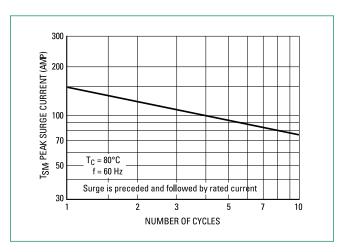
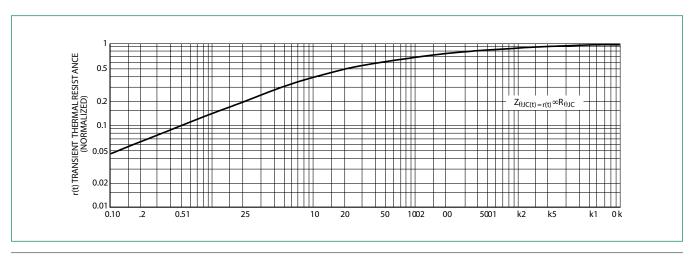
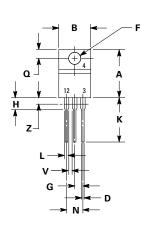
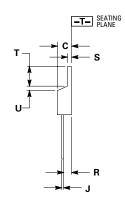
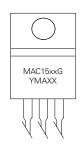




Figure 7. Maximum Non-Repetitive Surge Current


Figure 8. Thermal Response



MAC15 Series TRIAC - 400V - 800V


Dimensions

Part Marking System

xx =See Table on Page 2 Y =Year M =Month A =Assembly Site

XX =Lot Serial Code G =Pb-Free Package

D:	Inches		Millin	neters
Dim	Min	Max	Min	Max
Α	0.590	0.620	14.99	15.75
В	0.380	0.420	9.65	10.67
С	0.178	0.188	4.52	4.78
D	0.025	0.035	0.64	0.89
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.41	2.67
Н	0.110	0.130	2.79	3.30
J	0.018	0.024	0.46	0.61
K	0.540	0.575	13.72	14.61
L	0.060	0.075	1.52	1.91
N	0.195	0.205	4.95	5.21
Q	0.105	0.115	2.67	2.92
R	0.085	0.095	2.16	2.41
S	0.045	0.060	1.14	1.52
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045	-	1.15	-
Z	-	0.080	-	2.04

Pin Assignment			
1	Main Terminal 1		
2	Main Terminal 2		
3	Gate		
4	Main Terminal 2		

Ordering Information

Device	Device Marking	Package	Shipping
MAC15-8G	MAC15-8		
MAC15-10G	MAC1510	TO-220AB (Pb-Free)	
MAC15A6G	MAC15A6		1000 Units/Box
MAC15A8G	MAC15A8		
MAC15A10G	MAC15A10		

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at http://www.littelfuse.com/disclaimer-electronics

^{1.} Dimensioning and tolerancing per ansi y14.5m, 1982.

Controlling dimension: inch.
 Dimension z defines a zone where all body and lead irregularities are allowed.

单击下面可查看定价,库存,交付和生命周期等信息

>>Littelfuse(美国力特)