
BTA30H-600CW3G, BTA30H-800CW3G

Pin Out

Description

Designed for high performance full-wave ac control applications where high noise immunity and high commutating di/dt are required.

Features

- Blocking Voltage to 800 V
- On-State Current Rating of 30 Amperes RMS at 95°C
- Uniform Gate Trigger Currents in Three Quadrants
- High Immunity to dV/dt 500 V/µs minimum at 150°C
- Minimizes Snubber Networks for Protection
- Industry Standard TO-220AB Package
- High Commutating dl/dt 4.0 A/ms minimum at 150°C
- Internally Isolated (2500 V_{BMS})
- These are Pb-Free Devices

Functional Diagram

Additional Information

OBSOLETE DATE: 10/29/2018 PCN/ECN# ESW490-30 REPLACED BY: Q6030LH5TP

$Surface\ Mount-800V\ >\ BTA30-600CW3G,\ BTA30-800CW3G$

Maximum Ratings $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

Thyristors

Rating	Symbol	Value	Unit
Peak Repetitive Off-State Voltage (Note 1) (Gate Open, Sine Wave 50 to 60 Hz, T_J = -40° to 150°C) BTA30-600CW3G BTA30-800CW3G	V _{DRM} , V _{RRM}	600 800	V
On-State RMS Current (Full Cycle Sine Wave, 60 Hz, $T_c = 95$ °C)	I _{T (RMS)}	30	А
Peak Non-Repetitive Surge Current (One Full Cycle Sine Wave, 60 Hz, T _c = 25°C)	I _{TSM}	400	А
Circuit Fusing Consideration (t = 8.3 ms)	l²t	667	A ² sec
Non-Repetitive Surge Peak Off-State Voltage $(T_J = 25^{\circ}\text{C}, t = 8.3 \text{ ms})$	V _{DSM} /V _{RSM}	V _{DSM} /V _{RSM} +100	V
Peak Gate Current ($T_J = 150$ °C, t $\leq 20\mu$ s)	I _{GM}	4.0	W
Average Gate Power (T _J = 150°C)	P _{G(AV)}	0.5	W
Operating Junction Temperature Range	T _J	-40 to +125	°C
Storage Temperature Range	T _{stg}	-40 to +125	°C
RMS Isolation Voltage (t = 300 ms, R.H. \leq 30%, T _A = 25°C)	V _{iso}	2500	V

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Thermal Characteristics

Rating		Symbol	Value	Unit
Thermal Resistance,	Junction-to-Case (AC) Junction-to-Ambient	R _{8JC}	1.8 60	°C/W
Maximum Lead Temperature for Sold 10 seconds	ering Purposes, 1/8" from case for	T _L	260	°C

^{1.} V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

$Surface\ Mount-800V\ >\ BTA30-600CW3G,\ BTA30-800CW3G$

Electrical Characteristics • **OFF** $(T_j = 25^{\circ}\text{C unless otherwise noted})$; Electricals apply in both directions)

Thyristors

Characteristic		Symbol	Min	Тур	Max	Unit
Peak Repetitive Blocking Current	$T_{J} = 25^{\circ}C$	I _{DRM} ,	-	-	0.005	
$(V_D = V_{DRM} = V_{RRM}; Gate Open)$	$T_J = 150^{\circ}C$	I _{RRM}	-	-	15	mA

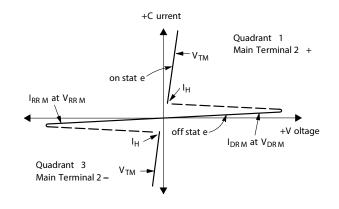
Electrical Characteristics - **ON** $(T_J = 25^{\circ}\text{C unless otherwise noted; Electricals apply in both directions)$

Characteristic		Symbol	Min	Тур	Max	Unit
Forward On-State Voltage (Note 2) ($I_{TM} = \pm 42 \text{ A Peak}$)		V _{TM}	_	_	1.55	V
Threshold Voltage, TJ = 150°C (Note 2)		V _{to}	-	_	.85	V
Dynamic Resistance, TJ = 150°C (Note 2)		R _d	-	-	16	mΩ
Gate Trigger Current (Continuous dc) $(V_D = 12 \text{ V}, R_I = 30 \Omega)$	MT2(+), G(+)		-	-	35	
, and the second	MT2(+), G(-)	I _{GT}	-	-	35	mA
	MT2(-), G(-)		_	_	35	
Holding Current (V _D = 12 V, Gate Open, Initiating Current = ±500 mA)			-	_	50	mA
	MT2(+), G(+)	l _L	_	_	75	mA
Latching Current ($V_D = 12 \text{ V}$, $I_G = 42 \text{ mA}$)	MT2(+), G(-)		_	-	75	
	MT2(-), G(-)		_	_	75	
	MT2(+), G(+)		-	-	1.3	
Gate Trigger Voltage ($V_D = 12 \text{ V}, R_L = 30 \Omega$)	MT2(+), G(-)	V _{GT}	_	_	1.3	V
MT2(-			_	-	1.3	
	MT2(+), G(+)		0.15	-	-	
Gate Non-Trigger Voltage (T _J = 150°C)	MT2(+), G(-)	V_{GD}	0.15	_	-	V
	MT2(-), G(-)		0.15	-	-	

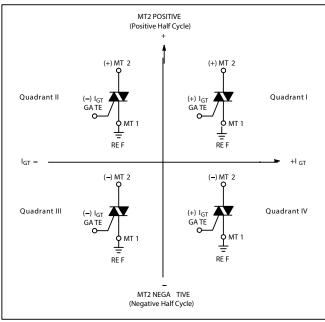
^{2.} Indicates Pulse Test: Pulse Width \leq 2.0 ms, Duty Cycle \leq 2% .

^{3.} For both polarities.

Dynamic Characteristics


Characteristic	Symbol	Min	Тур	Max	Unit
Rate of Change of Commutating Current, See Figure 10. (Gate Open, T _J = 150°C, No Snubber)	(dl/dt)c	4.0	_	_	A/ms
Critical Rate of Rise of On–State Current ($T_J = 150$ °C, $f = 120$ Hz, $I_G = 2 \times I_{GT}$, tr ≤ 100 ns)	dl/dt	-	-	50	Α/μs
Critical Rate of Rise of Off-State Voltage $(V_D = 0.66 \times V_{DRM'})$ Exponential Waveform, Gate Open, $T_J = 150$ °C)	dV/dt	500	-	-	V/µs

^{4.} dv/dt(c) = 35 V/s (exponential to 200 Vpk)


Voltage Current Characteristic of SCR

Symbol	Parameter
$V_{\scriptscriptstyle DRM}$	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
I _H	Holding Current

Thyristors

Quadrant Definitions for a Triac

All polarities are referenced to MT1.
With in–phase signals (using standard AC lines) quadrants I and III are used

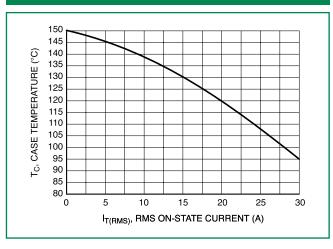


Figure 2. On-State Power Dissipation

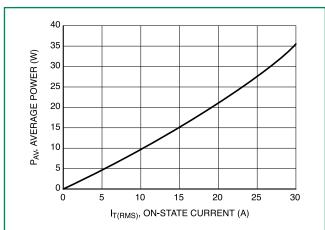


Figure 3. On-State Characteristics

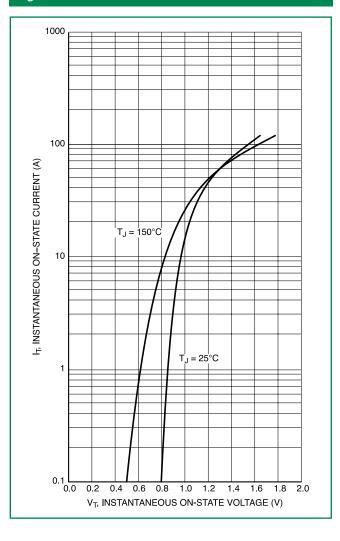


Figure 4. Thermal Response

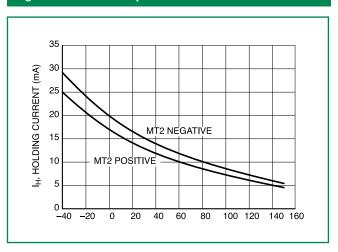
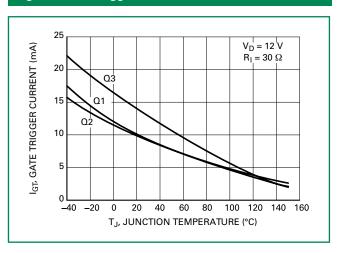
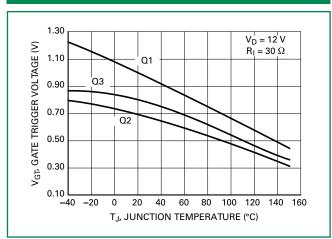
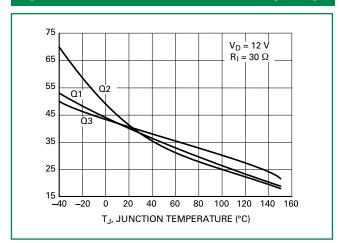
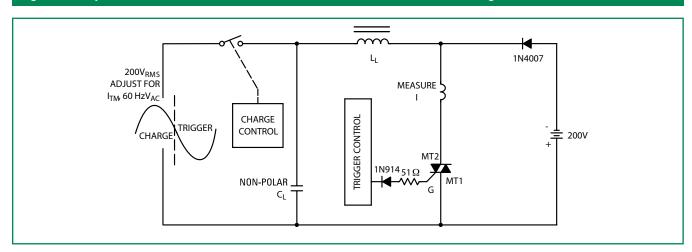
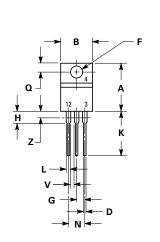




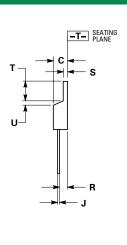
Figure 5. Gate Trigger Current Variation

Thyristors

Figure 7. Critical Rate of Rise of Commutating Voltage

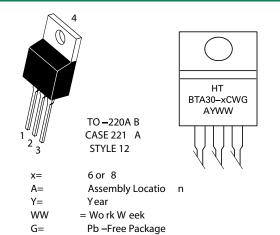




Figure 8. Simplified Test Circuit to Measure the Critical Rate of Rise of Commutating Current (di/dt)



Note: Component values are for verification of rated (di/dt)c. See AN1048 for additional information

Dimensions



	Inches		Millin	neters	
Dim	Min	Max	Min	Max	
А	0.590	0.620	14.99	15.75	
В	0.380	0.420	9.65	10.67	
С	0.178	0.188	4.52	4.78	
D	0.025	0.035	0.64	0.89	
F	0.142	0.147	3.61	3.73	
G	0.095	0.105	2.41	2.67	
Н	0.110	0.130	2.79	3.30	
J	0.018	0.024	0.46	0.61	
K	0.540	0.575	13.72	14.61	
L	0.060	0.075	1.52	1.91	
N	0.195	0.205	4.95	5.21	
Q	0.105	0.115	2.67	2.92	
R	0.085	0.095	2.16	2.41	
S	0.045	0.060	1.14	1.52	
Т	0.235	0.255	5.97	6.47	
U	0.000	0.050	0.00	1.27	
V	0.045		1.15	_	
Z		0.080	_	2.04	

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

Part Marking System

Pin Assignment	
1	Main Terminal 1
2	Main Terminal 2
3	Gate
4	No Connection

Ordering Information

Device	Package	Shipping
BTA30H-600CW3G	TO-220AB (Pb-Free)	500 Units / Rail
BTA30H-800CW3G	TO-220AB (Pb-Free)	500 Units / Rail

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at http://www.littelfuse.com/disclaimer-electronics.

单击下面可查看定价,库存,交付和生命周期等信息

>>Littelfuse(美国力特)