

MCR70xA Series

Pin Out

Description

PNPN Componants designed for high volume, low cost consumer applications such as temperature, light and speed control; process and remote control; and warning systems where reliability of operation is critical.

Features

- Small Size
- Passivated Die Surface for Reliability and Uniformity
- Low Level Triggering and Holding Characteristics
- Recommend Electrical Replacement for C106
- Surface Mount Package Case 369C
- To Obtain "DPAK" in Straight Lead Version (Shipped in Sleeves): Add '1' Suffix to Componant Number, i.e., MCR706A1
- UL Recognized compound meeting flammability rating V-0.

Po

- ESD Ratings: Human Body Model, 3B > 8000 V Machine Model, C > 400 V
- Pb–Free Packages are Available

Additional Information



Samples

Functional Diagram

Thyristors Surface Mount – 100V -600V > MCR70xA Series

Maximum Ratings (T = 25°C unless otherwise noted)

Rating		Symbol	Value	Unit
Peak Repetitive Off-State Voltage (Note 1) (T_c = - 40 to +110°C, Sine Wave, 50 to 60 Hz, R_{_{GK}} = 1 k Ω)	MCR703A MCR706A MCR708A	V _{drm} , V _{rrm}	100 400 600	V
Peak Non-Repetitive Off–State Voltage (180° Conduction Angles; $T_c = 85^{\circ}$ C)	MCR703A MCR706A MCR708A	V _{DSM}	150 450 650	V
On–State RMS Current (180° Conduction Angles; $T_c = 90$ °C)		I _{T(RMS)}	4.0	А
Average On-State Current (180° Conduction Angles)	$T_c = -40 \text{ to } +90^{\circ}\text{C}$ $T_c = +100^{\circ}\text{C}$	I _{T(AV)}	2.6 1.6	А
Non-Repetitive Surge Current (1/2 Cycle, Sine Wave 60 Hz, $T_J = 110^{\circ}$ C) (1/2 Cycle, Sine Wave 1.5 ms, $T_J = 110^{\circ}$ C)		I _{tsm}	25 35	А
Circuit Fusing Consideration (t = 8.3 ms)		l²t	2.6	A ² sec
Forward Peak Gate Power (Pulse Width \leq 1.0 $\mu sec, T_c = 90^{\circ} \text{C})$		P _{GM}	0.5	W
Forward Peak Gate Current (Pulse Width \leq 1.0 $\mu sec, T_c =$ 90°C)		I _{GM}	0.2	А
Forward Average Gate Power (t = $8.3 \text{ ms}, \text{TC} = 90^{\circ}\text{C}$)		P _{G(AV)}	0.1	W
Operating Junction Temperature Range		TJ	-40 to +110	°C
Storage Temperature Range		T _{stg}	-40 to +150	°C

Stresses exceeding Maximum Ratings may damage the Componant. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect Componant reliability.

1. V_{DBM} and V_{BBM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the Componants are exceeded.

Thermal Characteristics*						
Rating	Symbol	Value	Unit			
Thermal Resistance, Junction-to-Case	R _{eJC}	3.0	°C/W			
Thermal Resistance, Junction-to-Ambient (Note 2)	R _{eja}	80	C/VV			
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds	TL	260	°C			

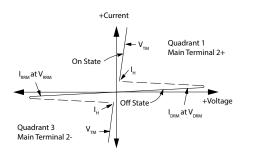
2. Case 369C when surface mounted on minimum pad sizes recommended.

Electrical Characteristics · **OFF** ($T_1 = 25^{\circ}C$ unless otherwise noted)

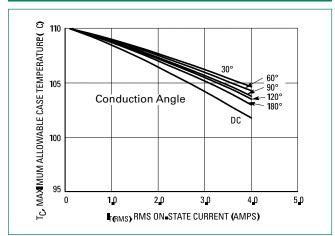
Characteristic		Symbol	Min	Тур	Max	Unit
Peak Repetitive Forward or Reverse Blocking Current (V _{AK} = Rated V _{DRM} or V _{RRM} , R _{GK} = 1 k Ω)	T _J = 25°C T _J = 110°C	DRM RRM	-	-	10 200	μA

Electrical Characteristics - **ON** ($T_1 = 25^{\circ}C$ unless otherwise noted)

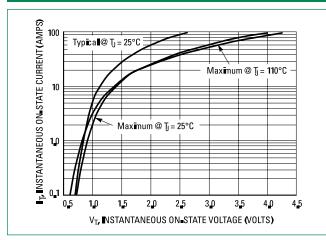
Characteristic		Symbol	Min	Тур	Мах	Unit
Peak Forward "On" Voltage (I _{TM} = 8.2 A Peak, Pulse Width = 1 to 2 ms, 2% Duty Cycle)		V _{TM}	-	-	2.2	V
Gate Trigger Current (Continuous dc) (Note 3) (V $_{\rm AK}$ = 12 V; R $_{\rm L}$ = 24 Ω)	$T_J = 25^{\circ}C$ $T_J = -40^{\circ}C$	I _{GT}		25 _	75 300	μA
Gate Trigger Voltage (Continuous dc) (Note 3) (V _{AK} = 12 V; R _L = 24 Ω)	$T_J = 25^{\circ}C$ $T_J = -40^{\circ}C$	V _{gt}	-		0.8 1.0	V
Gate Non-Trigger Voltage (Note 3) (V_{AK} = 12 Vdc; R_L = 100 Ω , T_C =110°)		V _{gd}	0.2	-	-	V
Holding Current ($V_{AK} = 12$ Vdc, $R_{GK} = 1 \text{ k } \Omega$) $T_{C} = 25^{\circ}$ C (Initiating Current = 20 mA) $T_{C} = -40^{\circ}$ C		I _H	-		5.0 10	mA
Peak Reverse Gate Blocking Voltage (I $_{\rm GR}$ = 10 μ A)		V _{RGM}	10	12.5	18	V
Peak Reverse Gate Blocking Current ($V_{GR} = 10 \text{ V}$)		I _{RGM}	-	_	1.2	μA
Total Turn-On Time (Source Voltage = 12 V, RS = 6 kQ) (I _{TM} = 8.2 A, I _{GT} = 2 mA, Rated V _{DRM}) (Rise Time = 20 ns, Pulse Width = 10 μ s)		t _{gt}	-	2.0	-	μs

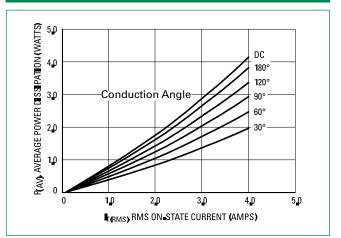


Dynamic Characteristics*						
Characteristic	Symbol	Min	Тур	Мах	Unit	
Critical Rate of Rise of Off–State Voltage ($V_D = Rated V_{DRM}$, $R_{GK} = 1 k \Omega$, Exponential Waveform, Gate Open, $T_c = 110^{\circ}$ C)	dv/dt	-	10	-	V/µs	
Repetitive Critical Rate of Rise of On–State Current (Cf = 60 Hz, I_{PK} = 30 A, PW = 100 µs, diG/dt = 1 A/µs)	di/dt	-	-	100	A/µs	


3. RGK current not included in measurement.

Voltage Current Characteristic of SCR


Symbol	Parameter
V _{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Reverse Off State Voltage
I _{BBM}	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
I _H	Holding Current


Figure 1. RMS Current Derating

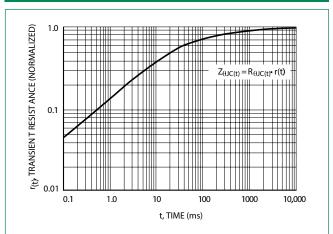


Figure 2. On–State Power Dissipation

Figure 4. Transient Thermal Response

© 2020 Littelfuse, Inc. Specifications are subject to change without notice. Revised: B0.11/17/20

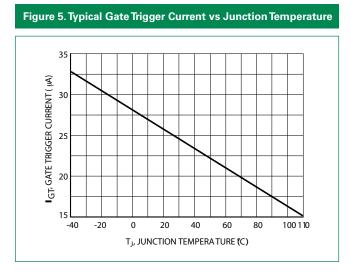


Figure 7. Typical Holding Current vs Junction Temperature

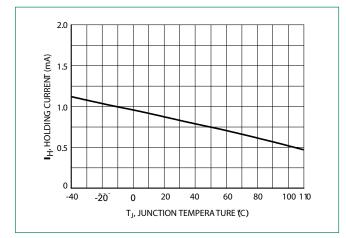


Figure 6. Typical Gate Trigger Voltage vs Junction Temperature

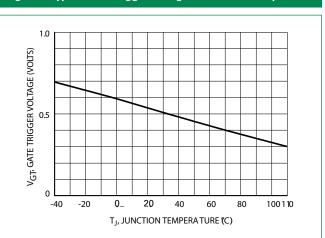
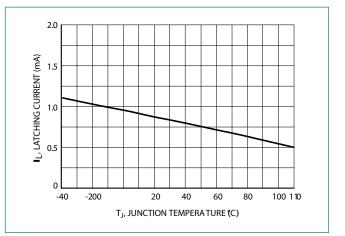
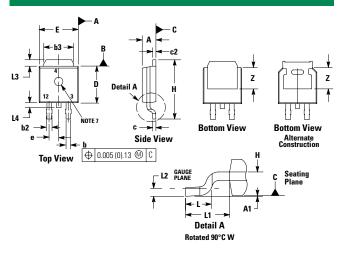
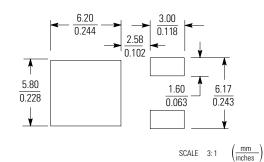




Figure 8. Typical Latching Current vs Junction Temperature



Dimensions

Inches

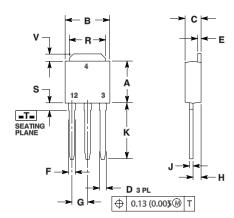
Soldering Footprint

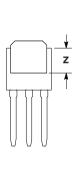
Dim Min Max Min Max 2.20 Α 0.087 0.094 2.40 A1 0.000 0.005 0.00 0.12 0.022 0.030 0.55 b 0.75 b2 0.026 0.033 0.65 0.85 b3 0.209 0.217 5.30 5.50 0.019 0.49 0.59 С 0.023 0.019 0.023 c2 0.49 0.59 0.213 5.40 5.70 D 0.224 Е 0.252 0.260 6.40 6.60 е 0.091 2.30 н 0.374 0.406 9.50 10.30 0.058 0.070 1.47 1.78 L L1 0.114 2.90 L2 0.019 0.023 0.49 0.59 L3 0.053 0.065 1.35 1.65 L4 0.028 0.039 0.70 1.00 Ζ 0.154 -3.90 -

Millimeters

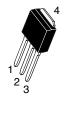
Dimensioning and Tolerancing per ANSI Y14.5M, 1982.
 Controlling Dimension: Inch.

STYLE 6: Pin 1. gate


ANODE
 CATHODE


4. ANODE

Dimensions



Part Marking System

=D, M, or N X Y A XX G =Year =Month =Assembly Site

Style 6

=Lot Serial Code =Pb-Free Package

Inches		hes	Millimeters			
Dim	Min	Мах	Min	Мах		
Α	0.213	0.224	5.40	5.70		
В	0.252	0.260	6.40	6.60		
С	0.087	0.094	2.20	2.40		
D	0.024	0.030	0.60	0.75		
E	0.022	0.026	0.55	0.65		
F	0.031	0.039	0.78	0.98		
G	0.0	91	2.30			
н	0.046	0.050	1.18	1.28		
J	0.019	0.023	0.49	0.59		
К	0.291	0.315	7.40	8.00		
R	0.209	0.217	5.30	5.50		
S	0.063		1.0	60		
v	0.053	0.065	1.35	1.65		
Z	0.1	0.150		80		

1. Dimensioning and Tolerancing per ANSI Y14.5M, 1982.

2. Controlling Dimension: Inch.

STYLE 6:

- PIN 1. GATE
- ANODE
 CATHODE
 ANODE

Pin Assignment				
1	Gate			
2	Anode			
3	Cathode			
4	Anode			

Ordering Information					
Componant	Package		Shipping		
MCR703AT4		369C			
MCR703AT4G		369C (Pb-Free)	2500		
MCR706AT4		369C	Tape & Reel		
MCR706AT4G	DPAK	369C (Pb-Free)			
MCR708A		369C			
MCR708AG		369C (Pb-Free)	4000		
MCR708A1		369D	Units/ Box		
MCR708A1G	DPAK-3	369D (Pb-Free)			
MCR708AT4		369C	2500		
MCR708AT4G	DPAK	369C (Pb-Free)	2500 Tape & Reel		

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at: www.littelfuse.com/disclaimer-electronics

单击下面可查看定价,库存,交付和生命周期等信息

>>Littelfuse(美国力特)