Balanced Three-chip SIDACtor Device

The three-chip modified TO-220 *SIDACtor* balanced solid state device is designed for telecommunication protection systems that reference Tip and Ring to earth ground. Applications include any piece of transmission equipment that requires balanced protection. This device is built using Littelfuse's patented "Y" (US Patent 4,905,119) configuration.

The *SIDACtor* device is used to enable equipment to meet various regulatory requirements including GR 1089, ITU K.20,K.21 and K.45, IEC 60950, UL 60950, and TIA-968-A (formerly known as FCC Part 68).

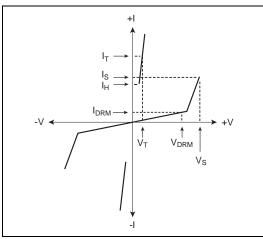
Electrical Parameters

Part	V _{DRM} Volts	V _S Volts	V _{DRM} Volts	V _S Volts	V _T	I _{DRM}	ls	lτ	l _H	Co
Number *	Pins 1-2, 2-3		Pins 1-3		Volts	μAmps	mAmps	Amps	mAmps	pF
P1553A_	130	180	130	180	8	5	800	2.2	150	40
P1803A_	150	210	150	210	8	5	800	2.2	150	40
P2103A_	170	250	170	250	8	5	800	2.2	150	40
P2353A_	200	270	200	270	8	5	800	2.2	150	40
P2703A_	230	300	230	300	8	5	800	2.2	150	30
P3203A_	270	350	270	350	8	5	800	2.2	150	30
P3403A_	300	400	300	400	8	5	800	2.2	150	30
P5103A_	420	600	420	600	8	5	800	2.2	150	30
A2106A_3 **	170	250	50	80	8	5	800	2.2	120	40
A5030A_3 **	400	550	270	340	8	5	800	2.2	150	30

^{*} For individual "AA", "AB", and "AC" surge ratings, see table below.

General Notes:

- All measurements are made at an ambient temperature of 25 °C. IPP applies to -40 °C through +85 °C temperature range.
- IPP is a repetitive surge rating and is guaranteed for the life of the product.
- Listed SIDACtor devices are bi-directional. All electrical parameters and surge ratings apply to forward and reverse polarities.
- V_{DRM} is measured at I_{DRM}.
- V_S is measured at 100 V/μs.
- Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request.
- Off-state capacitance (C₀) is measured between Pins 1-2 and 3-2 at 1 MHz with a 2 V bias and is a typical value for "AA" product.
 "AB" and "AC" capacitance is approximately 2x the listed value.
- · Device is designed to meet balance requirements of GTS 8700 and GR 974.


Surge Ratings

Series	I _{PP} 2x10 μs Amps	I _{PP} 8x20 μs Amps	I _{PP} 10x160 μs Amps	I _{PP} 10x560 μs Amps	I _{PP} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
Α	150	150	90	50	45	20	500
В	250	250	150	100	80	30	500
С	500	400	200	150	100	50	500

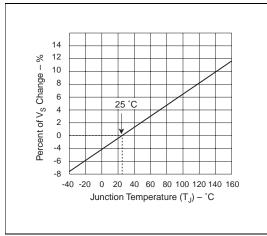
^{**} Asymmetrical

Thermal Considerations

Package	Symbol	Parameter	Value	Unit	
	TJ	Operating Junction Temperature Range	-40 to +150	°C	
Modified TO-220	Ts	Storage Temperature Range	-65 to +150	°C	
PIN 1 PIN 2	R ₀ JA	Thermal Resistance: Junction to Ambient	50	°C/W	

t_r = rise time to peak value

Peak
Value
Waveform = t_r x t_d


Half Value

0

t - Time (μs)

V-I Characteristics

 $t_{r} \times t_{d}$ Pulse Wave-form

Normalized V_S Change versus Junction Temperature

Normalized DC Holding Current versus Case Temperature

2 - 35

单击下面可查看定价,库存,交付和生命周期等信息

>>Littelfuse(美国力特)