

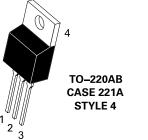
Additional Information

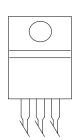
Accessories

Samples

Description

The 2N6344 is designed primarily for full-wave AC control applications, such as light dimmers, motor controls, heating controls and power supplies; or wherever full-wave silicon gate controlled solid-state devices are needed. Triac type thyristors switch from a blocking to a conducting state for either polarity of applied anode voltage with positive or negative gate triggering.


Features


- Blocking Voltage to 800 V
- All Diffused and Glass
 Passivated Junctions for
 Greater Parameter Uniformity
 and Stability
- Small, Rugged, Thermowatt Construction for Low Thermal Resistance, High Heat Dissipation and Durability
- Gate Triggering Guaranteed in all Four Quadrants
- For 400 Hz Operation, Consult Factory
- Pb-Free Package is Available

Functional Diagram

Pin Out

Maximum Ratings and Thermal Characteristics (TJ = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
*Peak Repetitive Off-State Voltage (Note 1) $(T_J = -40 \text{ to } 110^{\circ}\text{C}, \text{ Sine Wave, } 50 \text{ to } 60 \text{ Hz, Gate Open)}$ 2N6344 2N6349	V _{DRM} ,	600 800	V
† On-State RMS Current ($T_c = +80^{\circ}$ C) Full Cycle Sine Wave 50 to 60 Hz ($T_c = +90^{\circ}$ C)	I _{T (RMS)}	8.0 4.0	А
† Peak Non–Repetitive Surge Current (One Full Cycle, Sine Wave 60 Hz, $T_{\rm c}$ = +25°C) Preceded and followed by rated current	I _{TSM}	100	А
Circuit Fusing Considerations (t = 8.3 ms)	l ² _t	40	A²s
†Peak Gate Power ($T_c = +80$ °C, Pulse Width = 2 μ s)	P _{GM}	20	W
†Average Gate Power (T_c = +80°C, t = 8.3 ms)	$P_{G(AV)}$	0.5	W
†Peak Gate Current ($T_c = +80^{\circ}$ C, Pulse Width = 2.0 µs)	I _{GM}	2.0	А
†Peak Gate Voltage ($T_c = +80^{\circ}$ C, Pulse Width = 2.0 µs)	V _{GM}	10	V
†Operating Junction Temperature Range	T _J	-40 to +125	°C
Storage Temperature Range	T_{stg}	-40 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Thermal Characteristics

Rating	Symbol	Value	Unit
† Thermal Resistance, Junction to Case	R _{suc}	2.2	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	T_L	260	°C

[†] Indicates JEDEC Registered Data.

Electrical Characteristics - OFF (TC = 25°C unless otherwise noted; Electricals apply in both directions)

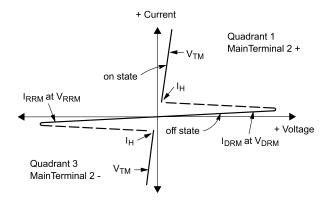
Characteristic		Symbol	Min	Тур	Max	Unit
*Peak Repetitive Blocking Current	T ₁ = 25°C	I _{DRM} ,	-	-	10	μΑ
$(V_D = V_{DRM} = V_{RRM}; Gate Open)$	T _J = 100°C	I _{RRM}	-	-	2.0	mA

[†] Indicates JEDEC Registered Data.

^{1.} V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

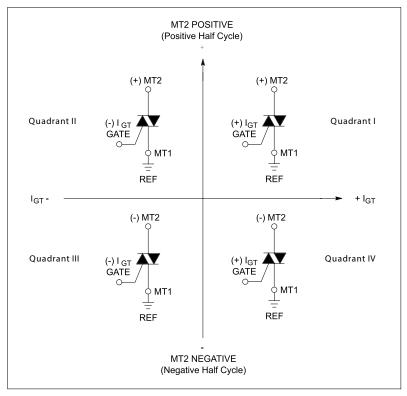
Electrical Characteristics - ON ($TC = 25^{\circ}C$ unless otherwise noted; Electricals apply in both directions)

Characteristic		Symbol	Min	Тур	Max	Unit
†Peak On–State Voltage ($I_{TM} = \pm 11$ A Peak; Pulse Width = 1 to 2 ms, Duty Cycle \leq 2%)		V _{TM}	-	1.3	1.55	V
Gate Trigger Current (Continuous dc) ($V_D = 12 \text{ Vdc}, R_L = 100 \Omega$)						
Quadrant I: MT2(+), G(+)	Both		-	12	50	
Quadrant II: MT2(+), G(-)	2N6349 only		-	12	75	
Quadrant III: MT2(-), G(-)	Both		-	20	50	mA
Quadrant IV: MT2(-), G(+)	2N6349 only	I _{GT}	-	35	75	MA
$^{\dagger}MT2(+), G(+); MT2(-), G(-)T_{c} = -40^{\circ}C$	-		-	-	100	
\dagger MT2(+), G(-); MT2(-), G(+) $T_c = -40$ °C	-		-	-	125	
Gate Trigger Voltage (Continuous dc) ($V_D = 12 \text{ Vdc}, R_L = 100 \Omega$)						
Quadrant I: MT2(+), G(+)	Both		-	0.9	2.0	
Quadrant II: MT2(+), G(-)	2N6349 only		-	0.9	2.5	
Quadrant III: MT2(-), G(-)	Both	\/	-	1.1	2.0	V
Quadrant IV: MT2(-), G(+)	2N6349 only	V _{GT}	-	1.4	2.5	V
†MT2(+), G(+); MT2(-), G(-) $T_c = -40^{\circ}C$	-		_		2.5	
\dagger MT2(+), G(-); MT2(-), G(+)T _C = -40°C	-		-		3.0	
Gate Non–Trigger Voltage (Continuous dc) (V_D = Rated $V_{DRM'}$ R _L = 10 k Ω , T _J = 100°C) †MT2(+), G(+); MT2(-), G(-); MT2(+)), G(–); MT2(–), G(–)	$V_{\rm GD}$	0.2	-	-	V
†Holding Current (VD = 12 Vdc, Gate Open) TC = 25°C	TC = 25°C		-	6.0	40	mA
(Initiating Current = 200 mA) *TC = -40°C	TC = -40°C	I _H	-	-	75	IIIA
†Turn-On Time (V_D = Rated $V_{DRM'}$ I_{TM} = 11 A, IG_T = 120 mA, Rise Time = 0.1 μ s,	Pulse Width = $2 \mu s$)	t _{gt}	-	8	10	μs


[†]Indicates JEDEC Registered Data.

Dynamic Characteristics

Characteristic	Symbol	Min	Тур	Max	Unit
Critical Rate of Rise of Commutation Voltage ($V_D = Rated V_{DRM'} I_{TM} = 11 A$, Commutating di/dt = 4.0 A/ms, Gate Unenergized, $T_C = 80^{\circ}C$)	dv/dt(c)	_	5.0	_	V/µs


Voltage Current Characteristic of Triacs (Bidirectional Device)

Symbol	Parameter
V_{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V_{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V_{TM}	Maximum On State Voltage
I _H	Holding Current

Quadrant Definitions for a Triac

All polarities are referenced to MT1.

With in-phase signals (using standard AC lines) quadrants I and III are used.

Ratings and Characteristic Curves

Figure 1. RMS Current Derating

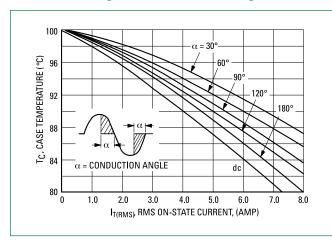


Figure 2. On-State Power Dissipation

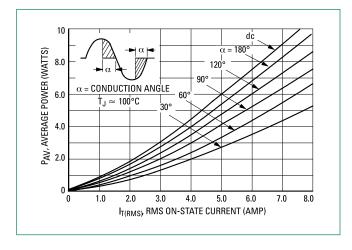


Figure 3. Typical Gate Trigger Voltage

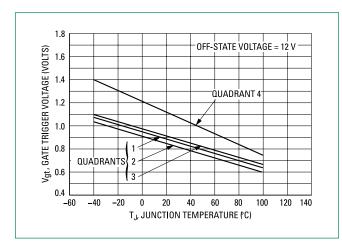
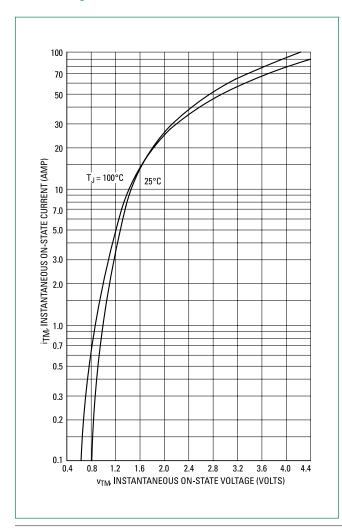
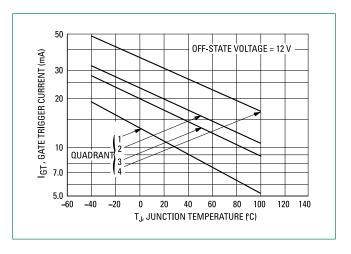




Figure 7. Maximum On-State Characteristics

Figure 4. Typical Gate Trigger Current

Figure 8. Typical Holding Current

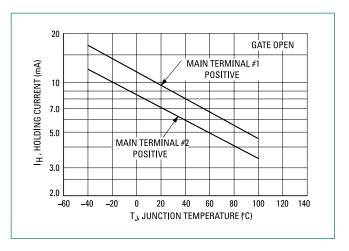
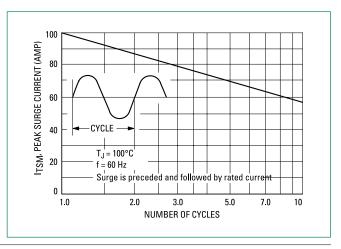
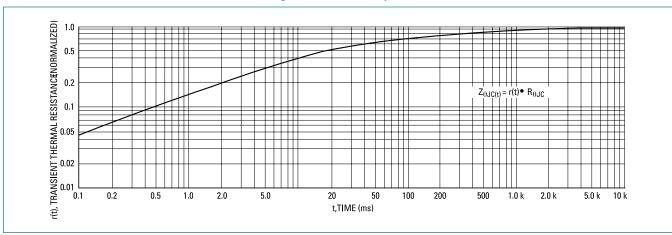
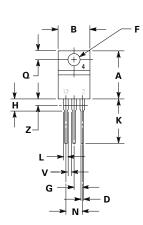




Figure 9. Maximum Allowable Surge Current



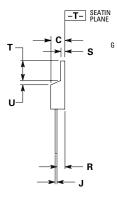
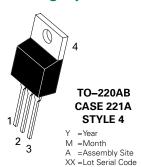
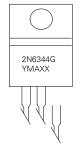


Figure 10. Thermal Response




Dimensions

Part Marking System

|--|

Device	Package	Shipping†		
2N6344	TO-220AB			
2N6344G	TO-220AB (Pb-Free)	1000 Units / Box		

G =Pb-Free Package

Dim	Inches		Millin	neters
DIM	Min	Max	Min	Max
Α	0.590	0.620	14.99	15.75
В	0.380	0.420	9.65	10.67
С	0.178	0.188	4.52	4.78
D	0.025	0.035	0.64	0.89
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.41	2.67
Н	0.110	0.130	2.79	3.30
J	0.018	0.024	0.46	0.61
K	0.540	0.575	13.72	14.61
L	0.060	0.075	1.52	1.91
N	0.195	0.205	4.95	5.21
Q	0.105	0.115	2.67	2.92
R	0.085	0.095	2.16	2.41
S	0.045	0.060	1.14	1.52
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045	-	1.15	-
Z	-	0.080	-	2.04

- 1. Dimensioning And Tolerancing Per Ansi Y14.5m, 1982.
- 2. Controlling Dimension: Inch.
 3. Dimension Z Defines A Zone Where All Body And Lead Irregularities Are Allowed.

Pin Assignment		
1	Main Terminal 1	
2	Main Terminal 2	
3	Gate	
4	Main Terminal 2	

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at: www.littelfuse.com/disclaimer-electronics

单击下面可查看定价,库存,交付和生命周期等信息

>>Littelfuse(美国力特)