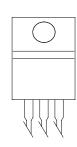

Thyristors **Datasheet**

MAC12HCDG, MAC12HCMG, MAC12HCNG Surface Mount – 400V - 800V

RoHS 🕅

Additional Information


Samples

Resources

Accessories

Pin Out

Description

Designed primarily for full-wave ac control applications, such as motor controls, heating controls or dimmers; or wherever fullwave, silicon gate–controlled devices are needed.

Features

- Uniform Gate Trigger Currents in Three Quadrants, Q1, Q2, and Q3
- High Commutating di/dt and High Immunity to
- dv/dt @ 125°C
- Minimizes Snubber Networks for Protection
- Blocking Voltage to 800 Volts
- On-State Current Rating of 12 Amperes RMS at 80°C

Functional Diagram

- High Surge Current Capability
 100 Amperes
- Industry Standard TO-220AB
 Package for Ease of Design
- Glass Passivated Junctions for Reliability and Uniformity
- These Devices are Pb–Free and are RoHS Compliant

MT 2 0 MT 1

1

Maximum Ratings (TJ = 25°C unless otherwise noted)

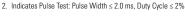
Rating		Symbol	Value	Unit
Peak Repetitive Off-State Voltage (Note 1)MAC12HCDG(Gate Open, Sine Wave 50 to 60 Hz, $T_j = 40^{\circ}$ to 125°C)MAC12HCMGMAC12HCNG		V _{drm} , V _{rrm}	400 600 800	V
On-State RMS Current (Full Cycle Sine Wave, 60 Hz, T _c = 80°C)		I _{T (RMS)}	12	A
Peak Non-Repetitive Surge Current (One Full Cycle Sine Wave, 60 Hz, T _c = 125°C)		I _{TSM}	100	А
Circuit Fusing Consideration (t = 8.3 ms)		l²t	41	A ² sec
Peak Gate Power (Pulse Width \leq 1.0 µs, T _c = 80°C)		P _{GM}	16	W
Average Gate Power (t = 8.3 ms, $T_c = 80^{\circ}C$)		P _{G(AV)}	0.35	W
Operating Junction Temperature Range		TJ	-40 to +125	°C
Storage Temperature Range		T _{stg}	-40 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Vois and V_{pent} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage, however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

Thermal Characteristics

Rating		Symbol	Value	Unit
Thermal Resistance,	Junction-to-Case (AC) Junction-to-Ambient	R _{ejc} R _{eja}	2.2 62.5	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds		TL	260	°C

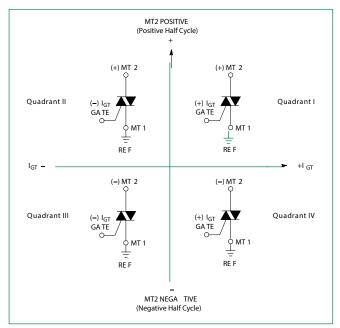

Electrical Characteristics - OFF (TJ = 25°C unless otherwise noted ; Electricals apply in both directions)

Characteristic		Symbol	Min	Тур	Мах	Unit
Peak Repetitive Blocking Current	T ₁ = 25°C	I _{DRM} ,	-	-	0.01	~^
$(V_{D} = V_{DRM} = V_{RRM}; Gate Open)$	T_ = 125°C	I _{RRM}	-	-	2.0	mA

Electrical Characteristics - ON (TJ = 25°C unless otherwise noted; Electricals apply in both directions)

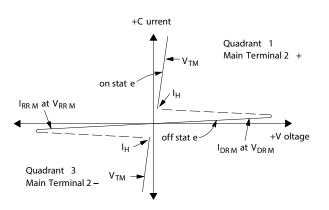
Characteristic		Symbol	Min	Max	Unit
Peak On–State Voltage (Note 2) ($I_{TM} = \pm 17 \text{ A}$)		V _{TM}	-	1.85	V
Gate Trigger Current	MT2(+), G(+)		10	50	mA
(Continuous dc)	MT2(+), G(-)	I _{gt}	10	50	
$(V_{\rm D} = 12 \text{ V}, \text{ R}_{\rm L} = 100 \Omega)$	MT2(-), G(-)		10	50	
Holding Current ($V_p = 12 V$, Gate Open, Initiating Current = ±150 mA))		I _H	-	60	mA
	MT2(+), G(+)	I _L	-	60	mA
Latching Current ($V_p = 12 V$, $I_c = 50 mA$)	MT2(+), G(-)		-	80	
$(v_D - 12, v_1)_G = 00 \text{ mm}$	MT2(-), G(-)		-	60	
MT2(+), G			0.5	1.5	
Gate Trigger Voltage ($V_{p} = 12 V, R_{1} = 100 \Omega$)	MT2(+), G(-)	V _{gt}	0.5	1.5	V
(, _D) (, , , <u>L</u>) (, (, L))	MT2(-), G(-)		0.5	1.5	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


Dynamic Characteristics

Characteristic	Symbol	Min	Тур	Max	Unit
Rate of Change of Commutating Current See Figure 10. ($V_D = 400 \text{ V}, \text{ I}_{TM} = 4.4 \text{ A}, \text{ Commutating dv/dt} = 18 \text{ V/}\mu\text{s},\text{Gate Open}, \text{ T}_J = 125^{\circ}\text{C},$ f = 250 Hz, with Snubber) C _L = 10 $\mu\text{F} \text{ L}_L = 40 \text{ mH}$	(di/dt) _c	15	-	-	A/ms
Critical Rate of Rise of Off-State Voltage ($V_p = Rated V_{DRM}$, Exponential Waveform, $R_{GK} = 510 \Omega$, $T_J = 125^{\circ}C$)	dV/dt	600	-	_	V/µs
Repetitive Critical Rate of Rise of On-State Current IPK = 50 A; PW = 40 μ sec; diG/dt = 200 mA/ μ sec; f = 60 Hz	di/dt	-	-	10	A/µs

Voltage Current Characteristic of SCR


Symbol	Parameter
V _{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
I _H	Holding Current

Quadrant Definitions for a Triac

All polarities are referenced to MT1.

With in-phase signals (using standard AC lines) quadrants I and III are used

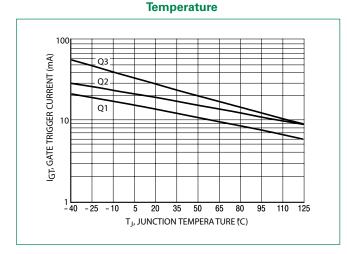


Figure 1. Typical Gate Trigger Current vs Junction

Figure 3. Typical Holding Current vs Junction Temperature

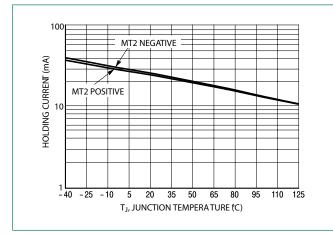


Figure 5. Typical RMS Current Derating

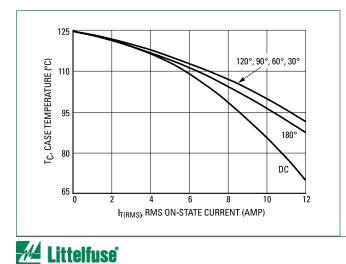


Figure 2. Typical Gate Trigger Voltage vs Junction Temperature

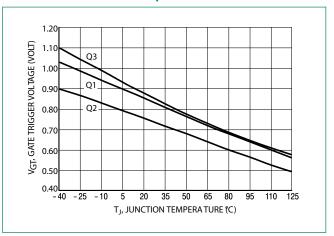
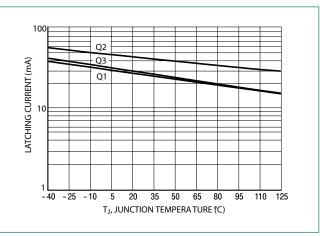
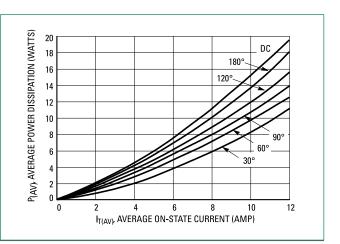
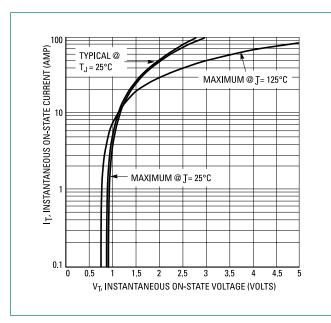


Figure 4. Typical Latching Current vs Junction Temperature

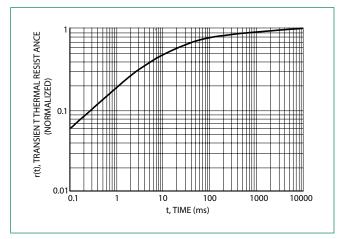
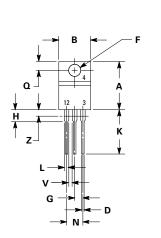
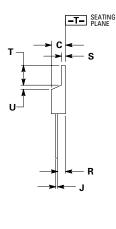

Figure 6. On-State Power Dissipation

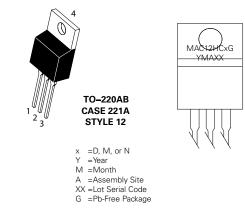
Figure 7. Typical On-State Characteristics

Figure 8. Typical Thermal Response





Thyristors Datasheet


MAC12HCDG, MAC12HCMG, MAC12HCNG Surface Mount – 400V - 800V

Dimensions

Part Marking System

Dim	Inches		Millimeters		
Dim	Min	Min Max		Max	
Α	0.590	0.620	14.99	15.75	
В	0.380	0.420	9.65	10.67	
С	0.178	0.188	4.52	4.78	
D	0.025	0.035	0.64	0.89	
F	0.142	0.147	3.61	3.73	
G	0.095	0.105	2.41	2.67	
н	0.110	0.130	2.79	3.30	
J	0.018	0.024	0.46	0.61	
К	0.540	0.575	13.72	14.61	
L	0.060	0.075	1.52	1.91	
Ν	0.195	0.205	4.95	5.21	
٥	0.105	0.115	2.67	2.92	
R	0.085	0.095	2.16	2.41	
S	0.045	0.060	1.14	1.52	
Т	0.235	0.255	5.97	6.47	
U	0.000	0.050	0.00	1.27	
V	0.045		1.15		
Z		0.080		2.04	

T III Assignment				
1	Main Terminal 1			
2	Main Terminal 2			
3	Gate			
4	No Connection			

Pin Assianment

Ordering Information

Device	Package	Shipping	
MAC12HCDG			
MAC12HCMG	TO-220AB (Pb-Free)	1000 Units / Box	
MAC12HCNG	(

1. Dimensioning and tolerancing per ansi y14.5m, 1982.

Controlling dimension: inch.
 Dimension z defines a zone where all body and lead irregularities are allowed.

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at http://www.littelfuse.com/disclaimer-electronics

单击下面可查看定价,库存,交付和生命周期等信息

>>Littelfuse(美国力特)