

Lonten N-channel 650V, 7A Power MOSFET

Product Summary

Description

The Power MOSFET is fabricated using the advanced planar VDMOS technology. The resulting device has low conduction resistance, superior switching performance and high avalance energy.

Features

- ◆ Low R_{DS(on)}
- Low gate charge (typ. Q_g =20.7nC)
- ◆ 100% UIS tested
- RoHS compliant

Applications

- Power faction correction.
- Switched mode power supplies.
- ◆ LED driver.

N-Channel MOSFET

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	650	V
Continuous drain current (T _C = 25°C)	I _D	7	A
(T _C = 100°C)		4.3	А
Pulsed drain current 1)	I _{DM}	28	A
Gate-Source voltage	V _{GSS}	±30	V
Avalanche energy, single pulse 2)	E _{AS}	352	mJ
Peak diode recovery dv/dt 3)	dv/dt	5	V/ns
Power Dissipation TO-220F (T _C = 25°C)		39	W
Derate above 25°C		0.31	W/°C
Power Dissipation	P _D		
TO-220 (T _C = 25°C)		100	W
Derate above 25°C		0.8	W/°C
Operating juncition and storage temperature range	T _J , T _{STG}	-55 to +150	°C
Continuous diode forward current	Is	7	Α
Diode pulse current	I _{S,pulse}	28	Α

Thermal Characteristics

Dozometez	Cumbal		Unit		
Parameter	Symbol	TO-220F	TO-220	Onit	
Thermal resistance, Junction-to-case	R _{eJC}	3.2	1.25	°C/W	
Thermal resistance, Junction-to-ambient	$R_{\theta JA}$	62.5	110	°C/W	

Version 1.1 2018 1 www.lonten.cc

Package Marking and Ordering Information

Device	Device Package	Marking	Units/Tube	Units/Real
LNC7N65	TO-220	LNC7N65	50	
LND7N65	TO-220F	LND7N65	50	

Electrical Characteristics T_c = 25°C unless otherwise noted

Unit	Max.	Тур.	Min.	Test Condition	Symbol	Parameter
•						Static characteristics
V	-	-	650	V _{GS} =0 V, I _D =250 uA	BV _{DSS}	Drain-source breakdown voltage
V	4	-	2	$V_{DS}=V_{GS}$, $I_{D}=250$ uA	$V_{GS(th)}$	Gate threshold voltage
				V _{DS} =650 V, V _{GS} =0 V,	I _{DSS}	Drain cut-off current
μΑ	1	-	-	$T_j = 25^{\circ}C$		
	100		-	T _j = 125°C		
nA	100	-	-	V _{GS} =30 V, V _{DS} =0 V	I _{GSSF}	Gate leakage current, Forward
nA	-100	-	-	V _{GS} =-30 V, V _{DS} =0 V	I _{GSSR}	Gate leakage current, Reverse
Ω	1.4	1.2	-	V _{GS} =10 V, I _D =3.5 A	R _{DS(on)}	Drain-source on-state resistance
		•	- 1			Dynamic characteristics
	-	1090	-	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$	C _{iss}	Input capacitance
pF	-	111	-	f = 1 MHz	Coss	Output capacitance
	-	6.1	-		C _{rss}	Reverse transfer capacitance
	-	12.2	-	$V_{DD} = 325 \text{ V}, I_D = 7 \text{ A}$	t _{d(on)}	Turn-on delay time
ns	-	33.4	-	$R_G = 10 \Omega, V_{GS} = 15 V$	t _r	Rise time
	-	53.6	-	1	t _{d(off)}	Turn-off delay time
	-	15	-	1	t _f	Fall time
		ı	l.			Gate charge characteristics
	-	5.7	-	V _{DD} =520 V, I _D =7 A,	Q _{gs}	Gate to source charge
nC	-	7.2	-	V _{GS} =0 to 10 V	Q_{gd}	Gate to drain charge
	-	20.7	-		Qg	Gate charge total
V	-	5	-		V _{plateau}	Gate plateau voltage
						Reverse diode characteristics
V	1.5	0.85	-	V _{GS} =0 V, I _F =7 A	V _{SD}	Diode forward voltage
ns	-	373.2	-	V _R =325 V, I _F =7 A,	t _{rr}	Reverse recovery time
μC	-	2.1	-	dI _F /dt=100 A/μs	Q _{rr}	Reverse recovery charge
А	-	15.7	-	1	I _{rrm}	Peak reverse recovery current
_				dl _F /dt=100 A/μs		

Notes:

- 1. Pulse width limited by maximum junction temperature.
- 2. L=10mH, I_{AS} = 8.4A, Starting $T_{j}\text{=}$ 25°C.
- 3. I_{SD} = 7A, di/dt \leq 100A/us, $V_{DD}\leq$ B V_{DS} , Starting T_{j} = 25°C.

Electrical Characteristics Diagrams

Figure 1. Typical Output Characteristics

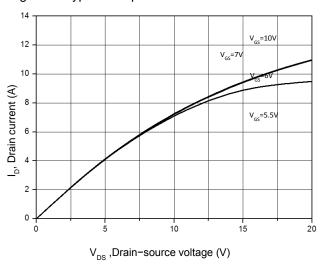


Figure 3. On-Resistance Variation vs. Drain Current

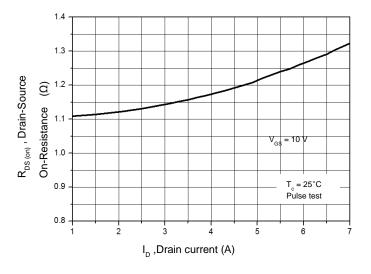


Figure 5. Breakdown Voltage vs. Temperature

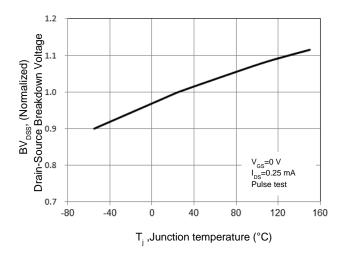


Figure 2. Transfer Characteristics

Figure 4. Threshold Voltage vs. Temperature

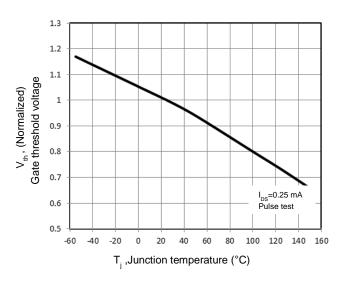
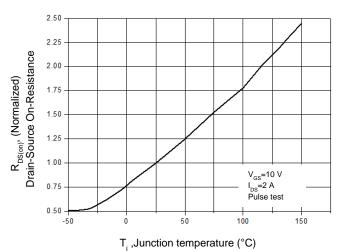



Figure 6. On-Resistance vs. Temperature

Version 1.1 2018 3 www.lonten.cc

Figure 7. Capacitance Characteristics

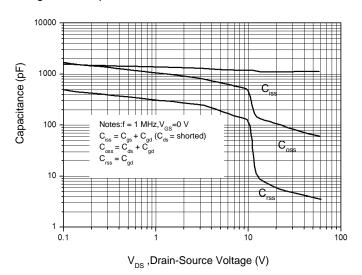
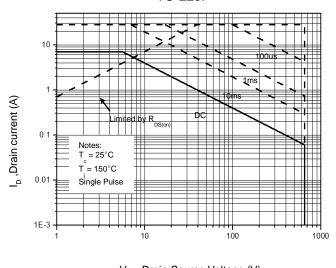



Figure 9. Maximum Safe Operating Area
TO-220F

 V_{DS} ,Drain-Source Voltage (V)

Figure 11. Power Dissipation vs. Temperature TO-220F

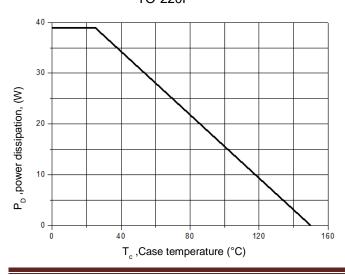


Figure 8. Gate Charge Characterist

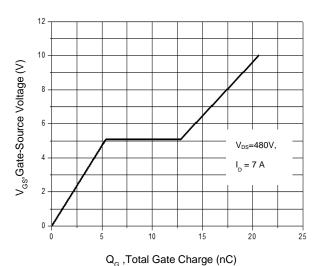
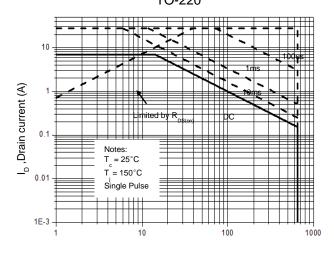
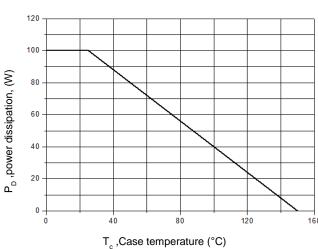




Figure 10. Maximum Safe Operating Area TO-220

V_{DS} ,Drain-Source Voltage (V)

Figure 12. Power Dissipation vs. Temperature TO-220

Version 1.1 2018 4 www.lonten.cc

2 Normalized Transient 9JC Thermal Resistance

Figure 13. Continuous Drain Current vs. Temperature

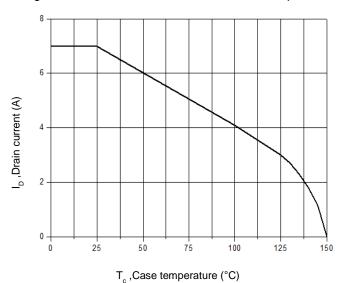


Figure 14. Body Diode Transfer Characteristics

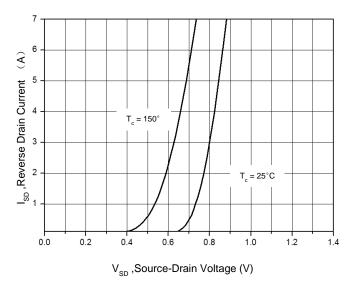
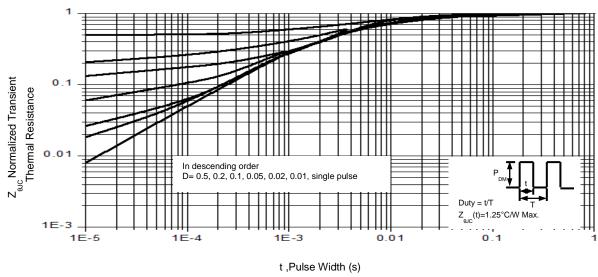
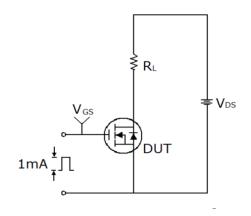
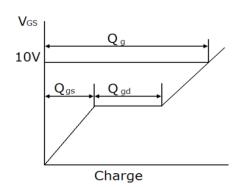
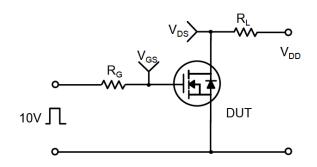
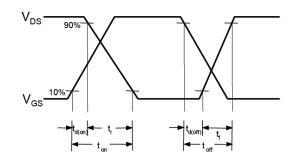



Figure 16. Transient Thermal Impendance, Junction to Case, TO-220

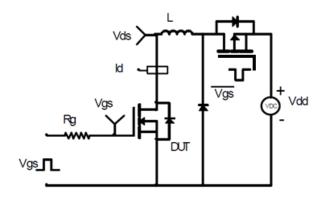

t ,Pulse Width (s)

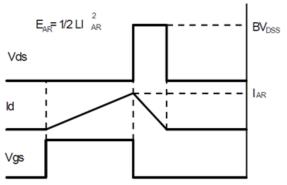


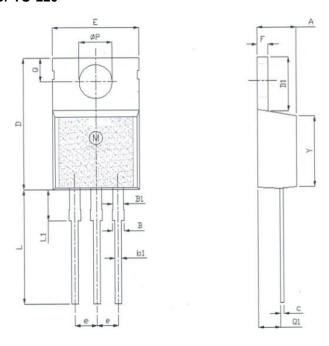

Version 1.1 2018 5 www.lonten.cc

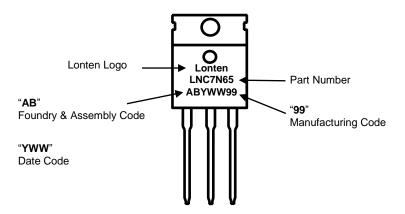


Gate Charge Test Circuit & Waveform

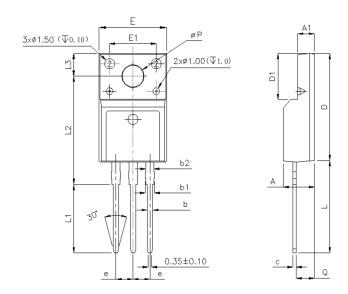




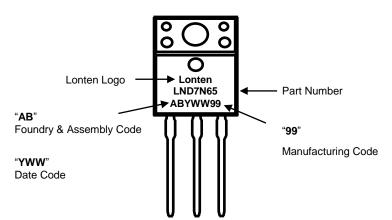

Unclamped Inductive Switching Test Circuit & Waveforms


Mechanical Dimensions for TO-220

UNIT: mm


SYMBOL	MIN	NOM	MAX	SYMBOL	MIN	NOM	MAX
A	4		4. 8	е	2. 44	2. 54	2. 64
В	1. 2		1.4	F	1.1		1. 4
B1	1		1.4	L	12.5		14. 5
b1	0. 75		0. 95	L1	3	3. 5	4
С	0. 4		0. 55	ФР	3. 7	3. 8	3. 9
D	15		16. 5	Q	2. 5		3
D1	5. 9		6. 9	Q1	2		2. 9
E	9. 9		10. 7	Y	8. 02	8. 12	8. 22

TO-220 Part Marking Information


Mechanical Dimensions for TO-220F

UNIT: mm

SYMBOL	MIN	NOM	MAX	SYMBOL	MIN	NOM	MAX
A	4. 5		4. 9	E1	6. 5	7	7. 5
A 1	2. 3		2. 9	е	2. 44	2. 54	2. 64
b	0. 65		0.9	L	12. 5		14. 3
b1	1.1		1.7	L1	9. 45		10. 05
b2	1. 2		1.4	L2	15		16
С	0. 35		0. 65	L3	3. 2		4. 4
D	14. 5		16. 5	ФР	3		3. 3
D1	6. 1		6. 9	Q	2. 5		2. 9
E	9. 6		10. 3				

TO-220F Part Marking Information

Disclaimer

The content specified herein is for the purpose of introducing LONTEN's products (hereinafter "Products"). The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

LONTEN does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of the Products or technical information described in this document.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). LONTEN shall bear no responsibility in any way for use of any of the Products for the above special purposes.

Although LONTEN endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a LONTEN product.

The content specified herein is subject to change for improvement without notice. When using a LONTEN product, be sure to obtain the latest specifications.

Dec. 2018 Revision 1.1

单击下面可查看定价,库存,交付和生命周期等信息

>>LONTEN(龙腾)