

USB DCP Control IC

General Description

The LP102 is a USB Dedicated Charging Port controller. The feature monitors USB D+/D- data line's signal, and automatically adjusts output voltage of power source output to optimize charge time.

The LP102 was supported USB Battery Charging Specification Revision 1.2(BC1.2), DCP apply the 2.7V operation function for Divider 3 mode.

Other features include under-voltage lockout (UVLO). The LP102 is available in a space saving SOT23-6 package.

Order Information

LP102 F: Green
Package Type
B6: SOT-23-6

Features

- ◆ Power consumption below 1mW@5 V
- ◆ Support USB BC1.2
- ◆ Support Short Mode per Chinese Telecommunication Industry Standard YD/T 1591-2009
- ◆ Divide3 DCP, apply D+/D- is 2.7V/2.7V
- ◆ Support USB DCP 1.2V on Data Line
- ◆ Under-Voltage Protection
- ◆ Available in SOT23-6
- ◆ RoHS Compliant and Halogen Free

Applications

- ◆ Battery Charge Port
- ◆ USB Dedicated Charging Port
- ♦ Wall-Adapter

Marking Information

	Device	Marking	Package	Shipping	
ì	LP102	LP102	SOT23-6	3K/REEL	
	INGI OGIIII	YWX			
3	Y: Y is year code. W: W is week code. X: X is series number.				

LP102-00 Version 0.0 NOV.-2017 Email: marketing@lowpowersemi.com www.lowpowersemi.com Page 1 of 7

Typical Application Circuit

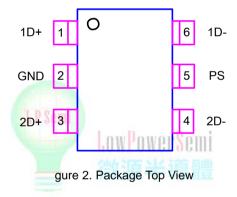



Figure 1. Typical Application Circuit of LP102 with SOT23-6 Package Type.

Pin Configuration

LP102-00 Version 0.0 NOV.-2017 Email: marketing@lowpowersemi.com www.lowpowersemi.com Page 2 of 7

Function Block Diagram

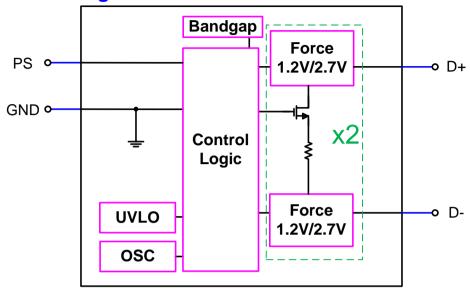


Figure 3. Function Block Diagram

Functional Pin Description

Pin NO.	SOT23-6	Description			
1D+	1	USB D+ data line port 1.			
GND	2	Ground.			
2D+	3	USB D+ data line port 2.			
2D-	4	USB D- data line port 2.			
PS	5	Power Source. Connection point for an external bypass capacitor for the internally general supply voltage.			
1D-	6	USB D- data line port 1.			

LP102-00 Version 0.0 NOV.-2017 Email: marketing@lowpowersemi.com www.lowpowersemi.com Page 3 of 7

Absolute Maximum Ratings Note2

\diamond	PS to GND	-0.3V to +6.5V
\$	1D+, 1D-, 2D+, 2D- to GND	-0.3V to +6.5V
	Operating Junction Temperature Range (T _J)	-40°C to 150°C
	Operation Ambient Temperature Range	-40°C to +105°C
\$	Storage Temperature Range	-65°C to +150°C
\$	Maximum Soldering Temperature (at leads, 10sec)	+260°C

Note2. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Thermal Information

♦ Thermal Resistance

LP102-00 Version 0.0 NOV.-2017 Email: marketing@lowpowersemi.com www.lowpowersemi.com Page 4 of 7

Electrical Characteristics

 $(V_{BUS} = 5V, T_A = 25^{\circ}C \text{ (Unless Otherwise Specified))}$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Supply and Reference Function						
Power Source UVLO Threshold	V _{UVLO}		3.9	4.1	4.3	V
UVLO Threshold Hysteresis	V _{UVLO _Hys}			0.1		V
Power Source Current	I _{PS}			150	200	μΑ
Battery Charging Specification Revision 1.2 (BC 1.2)						
D+ and D- Shorting Resistance	R _{BC_SHORTx}	V _{D+} =0.8V		150	200	Ω
Resistance between D+/D- and GND	R _{BC_DISx}		350	656	1150	kΩ
D+ Low Voltage Detach	V _{D+L_DETx}		310	330	350	mV
D+ Low Voltage Detach Hysteresis	V _{D+_DETx_Hys}			50		mV
Dedicated Charging Port Divide Mode(DCP Divide 3 mode)						
DCP2.7V Data Line Output Voltage	V _{DCP2.7V}		2.57	2.7	2.84	V
DCP2.7V Data Line Output Resistance	R _{DCP2.7V}		24	30	36	kΩ
Dedicated Charging Port 1.2V Mode(DCP 1.2V mode)						
DCP1.2V Data Line Output Voltage	V _{DCP1.2V}		1.12	1.2	1.28	V
DCP1.2V Data Line Output Resistance	R _{DCP1.2V}	LowPowerSemi	80	100	120	kΩ

微源半導體

LP102-00 Version 0.0 NOV.-2017 Email: marketing@lowpowersemi.com www.lowpowersemi.com Page 5 of 7

Application Information

The LP102 is a USB Dedicated Charging Port controller. It monitors USB D+/D- data line's signal, and automatically adjusts output voltage of power source output to optimize charge time.

Under Voltage Lockout (UVLO)

The LP102 had an UVLO internal circuit that enable the device once the voltage on the V_{PS} voltage exceeds the UVLO threshold voltage.

DCP Mode

A dedicated charging port (DCP) is a downstream port on a device that outputs power through a USB connector, which generally allows portable devices to fast charge at their maximum rated current. A USB charger is a device with a DCP, such as a power bank or car charger. A DCP is identified by the electrical characteristics of its data lines. The following DCP identification circuits are usually used to meet the handshaking detections of different portable devices.

Data	Line	LP102	
D+	D-	DCP Mode	
2.7V	2.7V	Divider 3	
1.2V	1.2V	DCP 1.2V Mode	
Short		BC1.2 and YD/T1591-2009	

The LP102 integrate an auto-detect feature to support divider mode, short mode and 1.2V modes. The device operated D+/D- driver 2.7V output normally. If a BC1.2 compliant device is attached, the LP102 will switches into short mode automatically. If a device compliant with the 1.2V charging scheme is attached, 1.2V is applied on both the D+ pin and the D- pin. DCP auto-detect feature is cost effective, it doesn't need external element.

Battery Charging Specification Revision 1.2(BC1.2)

The BC1.2 Specification defines the protocol necessary to allow portable equipment to determine what type of port it is connected to so that it can allot its maximum allowable current drawn.

Simply put, the portable device outputs a nominal 0.6V output to one data line, and detected the other one data line.

DCP 1.2V Mode

The LP102 have the auto-detect feature that monitors the D+ and D- line voltages of the USB connector, providing the correct voltage data on the D+ and D-pins for support portable devices to fast charge.

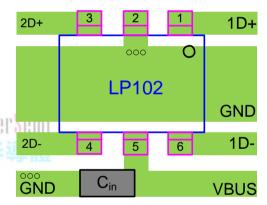
Divider Mode

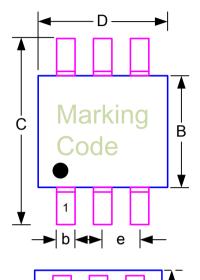
There are three charging schemes for divider DCP. They are named after Divider1, Divider2, and Divider3. The Divider 3 charging scheme is used for 12-W adapters, and applies 2.7 V on D+ and D- lines.

Layout Consideration

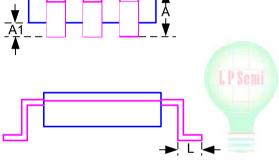
The proper PCB layout and component placement are critical for all circuit. Here are some suggestions to the layout of LP102 design.

- 1. Connected all ground together with one uninterrupted ground plane, which include power ground and analog ground.
- 2. The input capacitor should be located as closed as possible to the VPS and ground plane.




Figure 4. Recommended PCB Layout Diagram

LP102-00 Version 0.0 NOV.-2017 Email: marketing@lowpowersemi.com www.lowpowersemi.com Page 6 of 7



Outline Information

SYMBOLS	DIMENSION IN MILLIMETER			
UNIT	MIN	MAX		
А	0.700	1.000		
A1	0.000	0.100		
В	1.397	1.803		
b	0.300	0.559		
С	2.591	3.000		
D	2.692	3.099		
е	0.838	1.041		
Н	0.080	0.254		
L	0.300	0.610		

LP102-00 Version 0.0 NOV.-2017 Email: marketing@lowpowersemi.com www.lowpowersemi.com Page 7 of 7

单击下面可查看定价,库存,交付和生命周期等信息

>>LOW POWER(微源半导体)