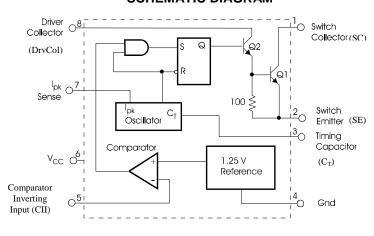


DC-to-DC Converter Control Circuits

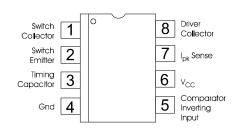
LR34063

DESCRIPTION


The LR34063 series is a monolithic control circuit containing primary functions required for DC-to-DC converters.

These devices consist of an internal temperature-compensated reference, comparator, controlled duty cycle oscillator with an active current limit circuit, driver and high current output switch. This series was specifically designed to be incorporated in step-down and step-up and voltage-inverting applications with a minimum number of external components.

FEATURES


- · Operation from 3.0V to 40V input
- · Low standby current
- Current limiting
- Output switch current up to 1.5A
- Adjustable output voltage
- Operation at frequencies up to 100kHz
- Precision reference (2%)

SCHEMATIC DIAGRAM

(Bottom view)

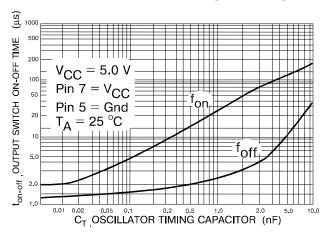
PIN CONNECTIONS

(Top view)

ABSOLUTE MAXIMUM RATINGS

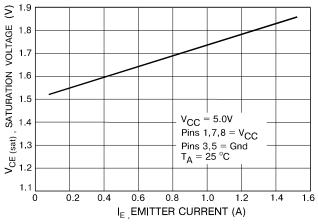
Rating	Symbol	Value	Unit
Power supply voltage	V _{cc}	40	V
Comparator input voltage range	V _{IR}	-0.3 to +40	V
Switch collector voltage	V _{C(Switch)}	40	V
Switch emitter voltage (V _{Pin1} =40V)	V _{E(Switch)}	40	V
Switch collector-to-emitter voltage	V _{CE(Switch)}	40	V
Driver collector voltage	V _{C(Driver)}	40	V
Driver collector current (Note 1)	I _{C(Driver)}	100	mA
Switch current	I _{Sw}	1.5	Α
Operating junction temperature	TJ	+150	°C
Operating ambient temperature range	T _A	-40 to +85	°C
Storage temperature range	T _{STG}	-65 to + 150	°C
ESD (HBM)		2500	V

ELECTRICAL CHARACTERISTICS (V_{CC}=5.0V, T_A=T_{Low} to T_{High}, unless otherwise specified.)


Characteristics	Symbol	Min	Тур	Max	Unit
OSCILLATOR					
Frequency	f _{osc}	24	33	42	kHz
$(V_{Pin5}=0V, C_{T}=1.0nF, T_{A}=25^{\circ}C)$					
Charge current	I _{chg}	24	35	42	μA
$(V_{CC}=5.0V \text{ to } 40V, T_A=25^{\circ}C)$					
Discharge current	I _{dischg}	140	220	260	μA
$(V_{CC}=5.0V \text{ to } 40V, T_A=25^{\circ}C)$					
Discharge-to-charge current ratio	I _{dischg} /I _{chg}	5.2	6.5	7.5	-
(Pin7 to V_{CC} , $T_A=25^{\circ}C$)					
Current limit sense voltage	$V_{lpk(sense)}$	250	300	350	mV
(I _{chg} =I _{dischg} , T _A =25°C)					
OUTPUT SWITCH (Note 2)	, ,			_	I
Saturation voltage, Darlington connection	$V_{CE(sat)}$	-	1.0	1.3	V
I _{Sw} =1.0A, Pins1, 8 connected					
Saturation voltage, Darlington connection	$V_{CE(sat)}$	-	0.45	0.7	V
(I _{Sw} =1.0A, R _{Pin8} =82Ω to V _{CC} , forced β =20)					
DC current gain	h _{FE}	50	75	-	-
(I _{Sw} =1.0A, V _{CE} =5.0, T _A =25°C)			4.0	400	
Collector off-state current (V _{CE} =40V)	C(off)	-	1.0	100	μΑ
COMPARATOR					
Threshold voltage	V_{th}				V
		1.225	1.25	1.275	
		1.21	-	1.29	
Threshold voltage line regulation	Reg _{line}	-	1.4	5.0	mV
(V _{CC} =3.0V to 40V)					
Input bias current	I _{IB}	-	-20	-400	nA
(V _{in} =0V) TOTAL DEVICE					
Supply current	1 1 1		1	4.0	mA
Supply current $(V_{CC}=5.0V \text{ to } 40V, C_{T}=1.0nF, Pin7=V_{CC})$	I _{CC}	-	_	4.0	IIIA
V _{Pin5} >V _{th} , Pin2 =Gnd, remaining pins - open					
Venior Vai, 1 in 2 - Ona, remaining pino open					

Notes:

- Maximum package power dissipation limits must be observed.
 Low duty cycle pulse techniques are used during the test to maintain the junction temperature as close to the ambient temperature as possible.


TYPICAL PERFORMANCE CHARACTERISTICS

OSO V Pins 1,5,8 = Open C_T = 1.0 nF T_A = 25 °C 10 μs/DIV

Fig.1. Output Switch on-off time versus Oscillator timing capacitor

Fig.2. Timing capacitor waveform

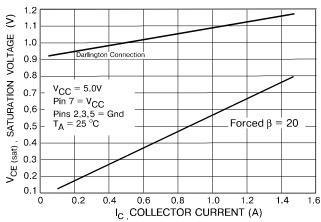
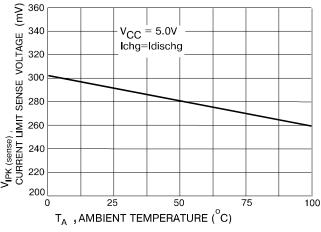



Fig.3. Emitter follower configuration output saturation voltage versus Emitter current

Fig.4. Common emitter configuration output saturation voltage versus Collector current

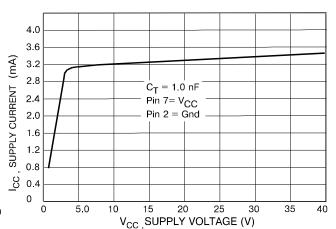


Fig.5. Current limit sense voltage versus Temperature

Fig.6. Standby supply current versus Supply voltage

APPLICATION INFORMATION

Fig.1. Step-up converter

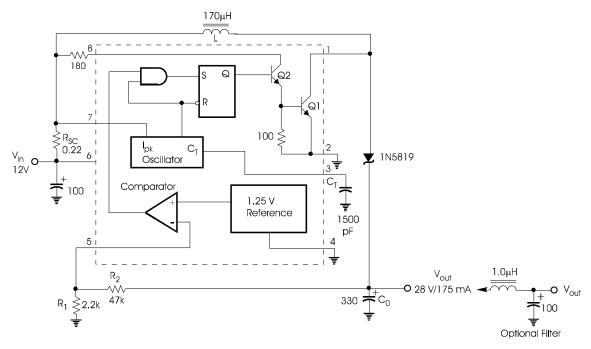


Fig.2. External current boost connections for $I_{\text{C Peak}}$ greater than 1.5A

2a. External NPN switch

2b. External NPN saturated switch

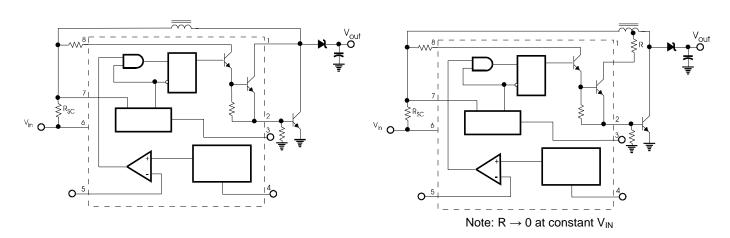


Fig.3. Step-down Converter

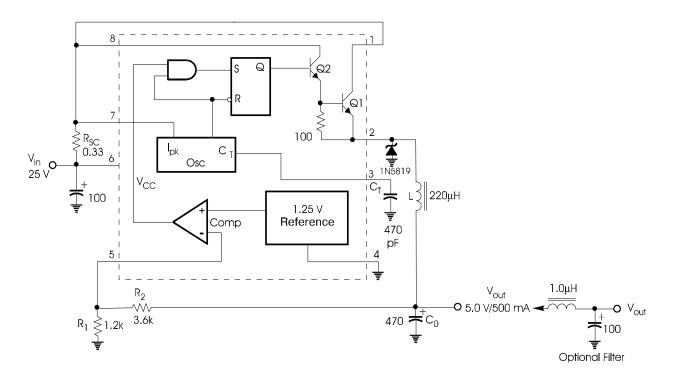


Fig.4. External current boost connections for I_{C Peak} greater than 1.5A
4a. External NPN switch
4b. External PNP saturated switch

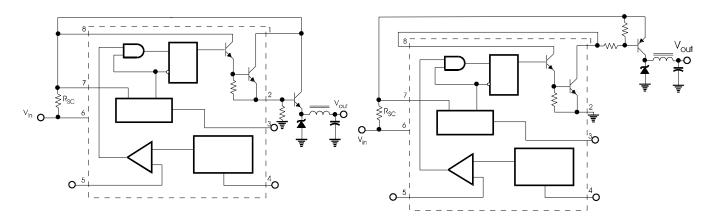


Fig.5. Voltage inverting converter

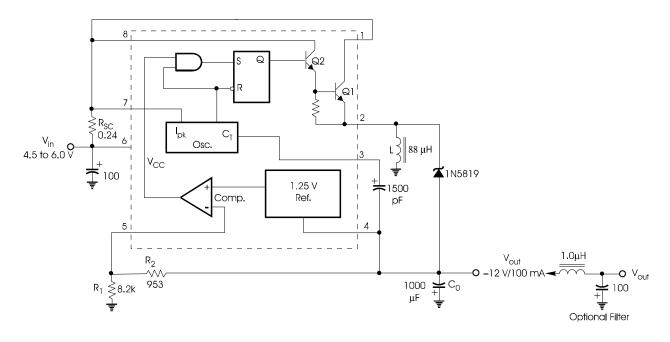
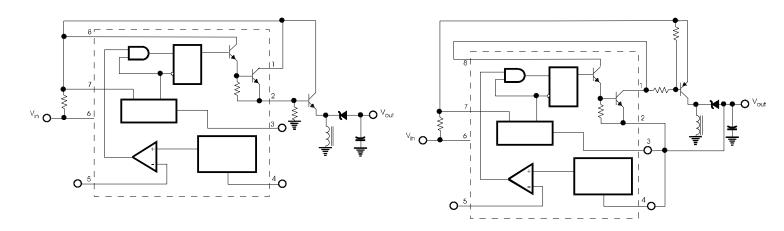



Fig.6. External current boost connections for $I_{\text{C Peak}}$ greater than 1.5A

6a. External NPN switch

6b. External PNP saturated switch

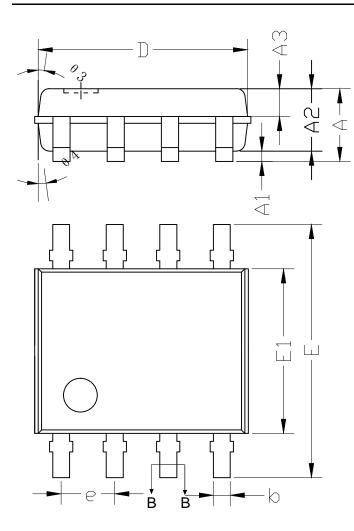
DESIGN FORMULA

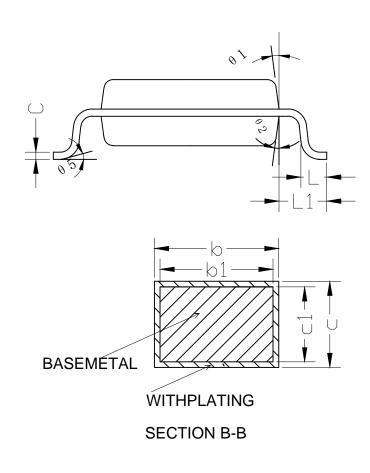
Calculation	Step-up	Step-down	Voltage-inverting
t _{on}	$\frac{V_{out} + V_F - V_{in(\min)}}{V_{in(\min)} - V_{sat}}$	$\frac{V_{out} + V_F}{V_{in(\min)} - V_{sat} - V_{out}}$	$\frac{\left V_{out}\right + V_F}{V_{in} + V_{sat}}$
(t _{on} + t _{off})max	$\frac{1}{f_{min}}$	$\frac{1}{f_{min}}$	$\frac{1}{f_{min}}$
Ст	4.0 x 10 ⁻⁵ t _{on}	$4.0 \times 10^{-5} t_{on}$	4.0 x 10 ⁻⁵ t _{on}
I _{pk(switch)}	$2I_{out(\max)} \left(\frac{t_{on}}{t_{off}} + 1 \right)$	$2I_{out(\max)}$	$2I_{out(max)} \left(\frac{t_{on}}{t_{off}} + 1 \right)$
R _{sc}	0.3/I _{pk(Switch)}	0.3/I _{pk(Switch)}	0.3/I _{pk(Switch)}
L _(min)	$\left(\frac{V_{in(\min)} - V_{sat}}{I_{pk(switch)}}\right) \times t_{on(\max)}$	$\left(\frac{V_{in(\min)} - V_{sat} - V_{out}}{I_{pk(switch)}}\right) \times t_{on(\max)}$	$\left(\frac{V_{in(\min)} - V_{sat}}{I_{pk(switch)}}\right) \times t_{on(\max)}$
Co	$9 rac{I_{out}t_{on}}{V_{ripple(pp)}}$	$\frac{I_{pk(switch)}(t_{on} + t_{off})}{8V_{ripple(pp)}}$	$9rac{I_{out}t_{on}}{V_{ripple(pp)}}$

TERMS AND DEFINITIONS

 V_{sat} – Saturation voltage of the output switch.

 V_{F} Forward voltage drop of the output rectifier.


The following power supply characteristics must be chosen:


 V_{in} – Nominal input voltage.

 V_{out} – Desired output voltage, $|V_{out}| = 1.25 \left(1 + \frac{R_2}{R_1}\right)$

 f_{min} – Minimum desired output switching frequency at the selected values of V_{in} and I_{out} . $V_{ripple(p-p)}$ – Desired peak-to-peak output ripple voltage. In practice, the calculated capacitor value will need to be increased due to its equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly affect the line and load regulation.

SYMBOL	MILLIMETER			
	MIN	NDM	MAX	
Α	1	1	1.65	
A1	0.10	-	0.25	
A2	1.40	1.42	1.50	
A3	0.60	0.65	0.70	
b	0.33	1	0.47	
b1	0.32	0.41	0.44	
C	0.20		0.24	
c 1	0.19	0.20	0.21	
D	4.80	4.90	5.00	
E	5.90	6.00	6.20	
E1	3.85	3.90	4.00	
e	1.27(BSC)			
L	0.50	0.60	0.70	
L1	1.05(BSC)			
θ 1	6 °	~	12°	
θ 2	6°	~	12°	
θ 3	5 °	~	10°	
θ 4	5°	2	10°	
θ 5	0*	~	6°	

单击下面可查看定价,库存,交付和生命周期等信息

>>LRC(乐山无线电)