

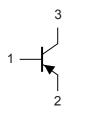
Features

- Halogen Free. "Green" Device (Note 1)
- AEC-Q101 Qualified
- Moisture Sensitivity Level 1
- Epoxy Meets UL 94 V-0 Flammability Rating
- Lead Free Finish/RoHS Compliant ("P" Suffix Designates RoHS Compliant. See Ordering Information)

Maximum Ratings @ 25°C Unless Otherwise Specified

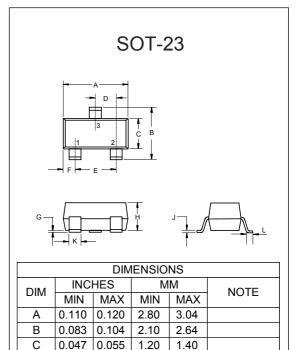
- Operating Junction Temperature Range: -55°C to +150°C
- Storage Temperature Range: -55°C to +150°C
- Thermal Resistance: 357°C/W Junction to Ambient (Note 2)

Parameter	Symbol	Rating	Unit
Collector-Base Voltage	V _{CBO}	-40	V
Collector-Emitter Voltage	V _{CEO}	-40	V
Emitter-Base Voltage	V _{EBO}	-5	V
Continuous Collector Current	Ι _C	-600	mA
Power Dissipation	PD	350	mW


Note: 1. Halogen free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

2.For the Device Mounted on 15mm x 15mm x 1.6mm FR4 PCB with

High Coverage of Single Sided 1oz Copper, in Still Air Conditions.


Marking: 2T

Internal Structure

1.BASE
2.EMITTER
3.COLLECTOR

PNP General Purpose Amplifier

0.85

1.70

0.45

0.01

0.90

0.08

0.30

0.20

Suggested Solder Pad Layout

0.037

1.05

2.10

0.60

0.15

1.10

0.18

0.51

0.50

2.000

inches mm

D

Е

F

G

Н

J

Κ

L

0.034 0.041

0.067 0.083

0.018 0.024

0.0004 0.006

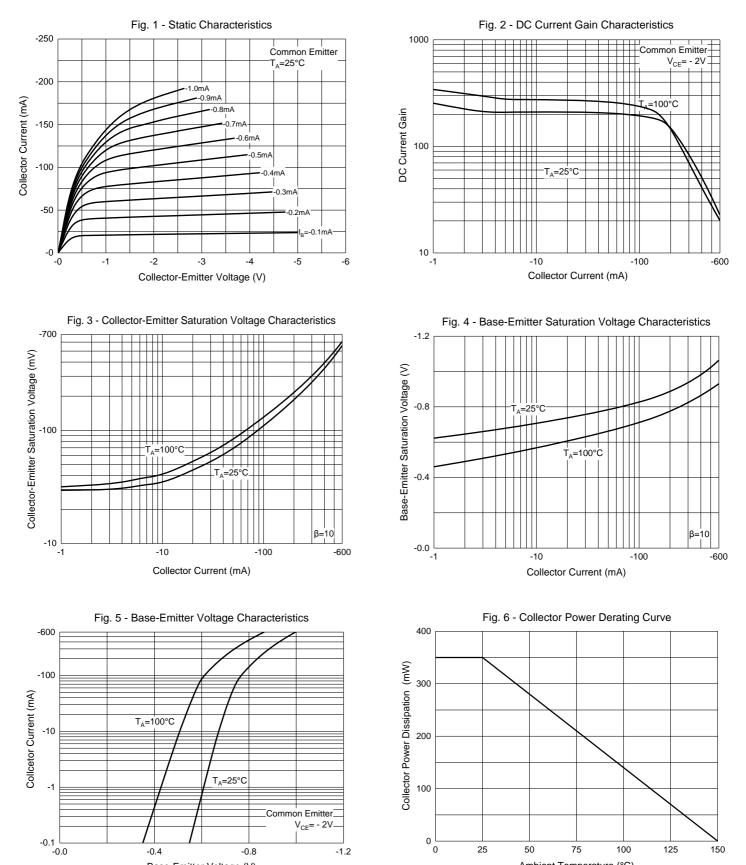
0.035 0.043

0.003 0.007

0.012 0.020

0.007 0.020

<u>0.037</u> 0.950


Electrical Characteristics @ $T_A\!\!=\!\!25^\circ\!C$ Unless Otherwise Specified

Parameter	Symbol	Min	Тур	Мах	Units	Conditions	
Collector-Base Breakdown Voltage	V _{(BR)CBO}	-40			V	I _C =-100μA, I _E =0	
Collector-Emitter Breakdown Voltage ⁽³⁾	V _{(BR)CEO}	-40			V	I _C =-1mA, I _B =0	
Emitter-Base Breakdown Voltage	V _{(BR)EBO}	-5			V	Ι _E =-100μΑ, Ι _C =0	
Base Cutoff Current	I _{BL}			-0.1	μA	V _{CE} =-30V, V _{BE} =-3V	
Collector Cutoff Current	I _{CEX}			-0.1	μA	V_{CE} =-30V, V_{BE} =-3V	
DC Current Gain ⁽³⁾	h _{FE(1)}	30				V _{CE} =-1V, I _C =-0.1mA	
	h _{FE(2)}	60				V _{CE} =-1V, I _C =-1mA	
	h _{FE(3)}	100				V _{CE} =-1V, I _C =-10mA	
	h _{FE(4)}	100		300		V _{CE} =-2V, I _C =-150mA	
	h _{FE(5)}	20				V _{CE} =-2V, I _C =-500mA	
Collector-Emitter Saturation Voltage	V _{CE(sat)}			-0.4	V	I _C =-150mA, I _B =-15mA	
				-0.75	V	I _C =-500mA, I _B =-50mA	
Base-Emitter Saturation Voltage	V _{BE(sat)} -		-0.75	-0.95	V	I _C =-150mA, I _B =-15mA	
				-1.3	V	I _C =-500mA, I _B =-50mA	
Transition Frequency	f _T	200			MHz	V _{CE} =-10V, I _C =-20mA, f=100MHz	
Delay Time	t _d			15	ns	V _{CC} =-30V, V _{BE} =-0.5V, I _C =-150mA, I _{B1} =-15mA	
Rise Time	t _r			20	ns		
Storage Time	t _s			225	ns	V _{CC} =-30V, I _C =-150mA, I _{B1} =I _{B2} =-15mA	
Fall Time	t _f			30	ns		
Collector-Base Capacitance	C _{cb}			8.5	pF	V _{CB} =-10V, I _E =0,f=1MHz	
Emitter-Base Capacitance	C _{eb}			30	pF	V _{EB} =-0.5V, I _C =0, f=1MHz	

Note:3. Pulse test: Pulse Width \leq 300µs,Duty Cycle \leq 2.0%.

Curve Characteristics

Base-Emitter Voltage (V)

Ordering Information

Device	Packing		
Part Number-TP	Tape&Reel: 3Kpcs/Reel		

IMPORTANT NOTICE

Micro Commercial Components Corp. reserves the right to make changes without further notice to any product herein to make corrections, modifications, enhancements, improvements, or other changes. *Micro Commercial Components Corp*. does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold *Micro Commercial Components Corp*. and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

MCC's products are not authorized for use as critical components in life support devices or systems without the express written approval of Micro Commercial Components Corporation.

CUSTOMER AWARENESS

Counterfeiting of semiconductor parts is a growing problem in the industry. Micro Commercial Components (MCC) is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. MCC strongly encourages customers to purchase MCC parts either directly from MCC or from Authorized MCC Distributors who are listed by country on our web page cited below. Products customers buy either from MCC directly or from Authorized MCC Distributors are genuine parts, have full traceability, meet MCC's quality standards for handling and storage. **MCC will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources**. MCC is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

单击下面可查看定价,库存,交付和生命周期等信息

>>MCC(美微科)