

16-Bit, 5V Digital Signal Controllers with PWM, SENT, Op Amps and Advanced Analog Features

Operating Conditions

- 4.5V to 5.5V, 0°C to +85°C, DC to 70 MIPS
- 4.5V to 5.5V, -40°C to +125°C, DC to 60 MIPS
- 4.5V to 5.5V, -40°C to +150°C, DC to 40 MIPS

Core: 16-Bit dsPIC33E CPU

- Code-Efficient (C and Assembly) Architecture
- 16-Bit Wide Data Path
- Two 40-Bit Wide Accumulators
- Single-Cycle (MAC/MPY) with Dual Data Fetch
- Single-Cycle, Mixed-Sign MUL plus Hardware
 Divide
- 32-Bit Multiply Support
- · Intermediate Security for Memory:
 - Provides a Boot Flash Segment in addition to the existing General Flash Segment
- Error Code Correction (ECC) for Flash
- Added Two Alternate Register Sets for Fast Context Switching

Clock Management

- Internal, 15% Low-Power RC (LPRC) 32 kHz
- Internal, 1% Fast RC (FRC) 7.37 MHz
- Internal, 10% Backup FRC (BFRC) 7.37 MHz
- Programmable PLLs and Oscillator Clock Sources
- Fail-Safe Clock Monitor (FSCM)
- Additional FSCM Source (BFRC), Intended to Provide a Clock Fail Switch Source for the System Clock
- Independent Watchdog Timer (WDT)
- System Windowed Watchdog Timer (DMT)
- Fast Wake-up and Start-up

Power Management

- Low-Power Management modes (Sleep, Idle and Doze)
- Power Consumption Minimized Executing NOP String
- Integrated Power-on Reset (POR) and Brown-out Reset (BOR)
- 0.5 mA/MHz Dynamic Current (typical)
- 50 µA at +25°C IPD Current (typical)

PWM

- Up to Six Pulse-Width Modulation (PWM) Outputs (three generators)
- Primary Master Time Base Inputs allow Time Base Synchronization from Internal/External Sources
- Dead Time for Rising and Falling Edges
- 7.14 ns PWM Resolution
- PWM Support for:
 - DC/DC, AC/DC, inverters, Power Factor Correction (PFC) and lighting
 - Brushless Direct Current (BLDC), Permanent Magnet Synchronous Motor (PMSM), AC Induction Motor (ACIM), Switched Reluctance Motor (SRM)
 - Programmable Fault inputs
 - Flexible trigger configurations for Analog-to-Digital conversion
 - Supports PWM lock, PWM output chopping and dynamic phase shifting

Advanced Analog Features

- · ADC module:
 - Configurable as 10-bit, 1.1 Msps with four S&H or 12-bit, 500 ksps with one S&H
 Up to 36 analog inputs
- Flexible and Independent ADC Trigger Sources
- Up to Four Op Amp/Comparators with Direct Connection to the ADC module:
 - Additional dedicated comparator and 7-bit Digital-to-Analog Converter (DAC)
 - Two comparator voltage reference outputs
 - Programmable references with 128 voltage points
 - Programmable blanking and filtering
- Charge Time Measurement Unit (CTMU):
 - Supports mTouch[®] capacitive touch sensing
 - Provides high-resolution time measurement (1 ns)
 - On-chip temperature measurement
 - Temperature sensor diode
 - Nine sources of edge input triggers (CTED1, CTED2, OCPWM, TMR1, SYSCLK, OSCLK, FRC, BFRC and LPRC)

Timers/Output Compare/Input Capture

- Nine General Purpose Timers:
 - Five 16-bit and up to two 32-bit timers/ counters; Timer3 can provide ADC trigger
- Four Output Compare modules Configurable as Timers/Counters
- · Four Input Capture modules

Communication Interfaces

- Two Enhanced Addressable Universal Asynchronous Receiver/Transmitter (UART) modules (6.25 Mbps):
 - With support for LIN/J2602 bus and IrDA®
 - High and low speed (SCI)
- Two SPI modules (15 MHz):
 - 25 MHz data rate without using PPS
- One I²C module (up to 1 Mbaud) with SMBus Support
- Two SENT J2716 (Single-Edge Nibble Transmission-Transmit/Receive) module for Automotive Applications
- · One CAN module:
 - 32 buffers, 16 filters and 3 masks

Direct Memory Access (DMA)

- Four-Channel DMA with User-Selectable Priority Arbitration
- UART, Serial Peripheral Interface (SPI), ADC, Input Capture, Output Compare and Controller Area Network (CAN)

Input/Output

- GPIO Registers to Support Selectable Slew Rate I/Os
- Peripheral Pin Select (PPS) to allow Function Remap
- Sink/Source: 8 mA or 12 mA, Pin-Specific for Standard VOH/VOL
- · Selectable Open-Drain, Pull-ups and Pull-Downs
- Change Notice Interrupts on All I/O Pins

Qualification and Class B Support

- AEC-Q100 REVG (Grade 1: -40°C to +125°C) Compliant
- AEC-Q100 REVG (Grade 0: -40°C to +150°C) Compliant
- Class B Safety Library, IEC 60730

Class B Fault Handling Support

- Backup FRC
- · Windowed WDT uses LPRC
- Windowed Deadman Timer (DMT) uses System Clock (System Windowed Watchdog Timer)
- H/W Clock Monitor Circuit
- Oscillator Frequency Monitoring through CTMU (OSCI, SYSCLK, FRC, BFRC, LPRC)
- Dedicated PWM Fault Pin
- Lockable Clock Configuration

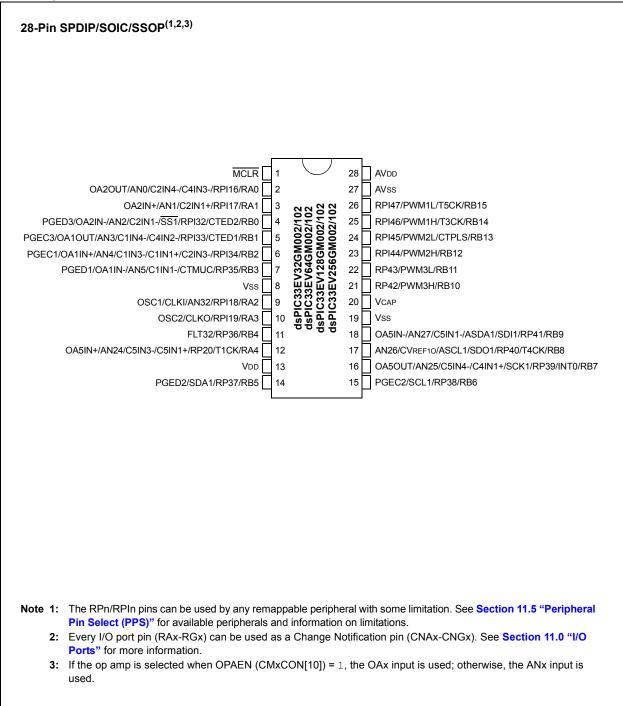
Debugger Development Support

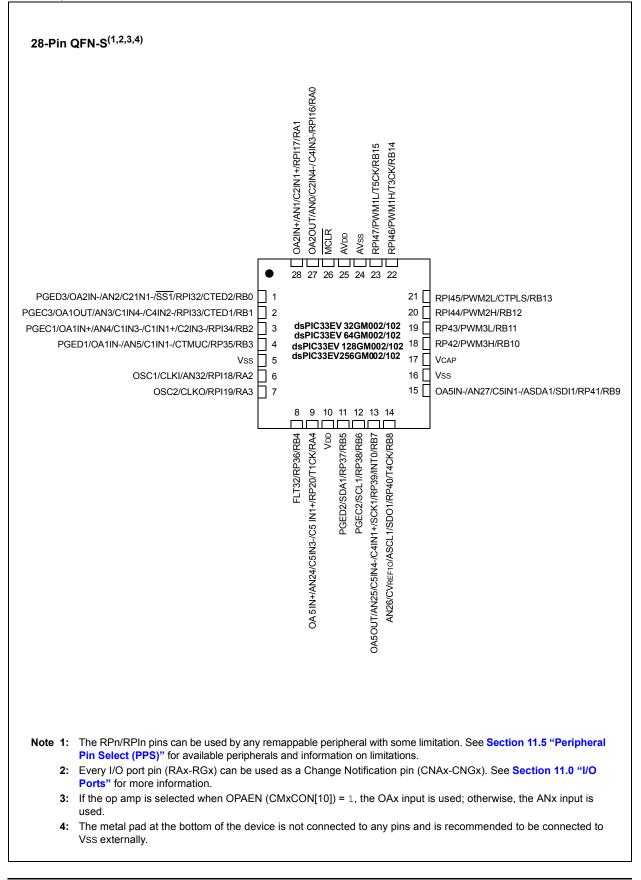
- In-Circuit and In-Application Programming
- · Three Complex and Five Simple Breakpoints
- Trace and Run-Time Watch

dsPIC33EVXXXGM00X/10X FAMILY

dsPIC33EVXXXGM00X/10X PRODUCT FAMILIES

The device names, pin counts, memory sizes and peripheral availability of each device are listed in Table 1. The following pages show the devices' pinout diagrams.


TABLE 1: dsPIC33EVXXXGM00X/10X FAMILY DEVICES


Device	Program Memory Bytes	SRAM Bytes	CAN	DMA Channels	16-Bit Timers (T1)	32-Bit Timers	Input Capture	Output Compare	PWM	UART	SPI	I ² C	SENT	10/12-Bit ADC	ADC Inputs	Op Amp/Comparators	CTMU	Security	Peripheral Pin Select (PPS)	General Purpose I/O (GPIO)	External Interrupts	Pins								
	ā																		Per	Ger										
dsPIC33EV32GM002	32K	4K	0																											
dsPIC33EV32GM102	0211		1																											
dsPIC33EV64GM002	64K	64K 8K -	0																											
dsPIC33EV64GM102				1	4	5	2	4	4	3x2	2	2	1	2	1	11	3/4	1	Intermediate	Y	21	3	28							
dsPIC33EV128GM002	128K	128K	128K	128K	128K	128K	128K 8K	8K	128K 8K	8K 0	0		U	-	-	-	572	-	2		2			0/4		internediate				
dsPIC33EV128GM102	1201	on	1																											
dsPIC33EV256GM002	256K	16K	0																											
dsPIC33EV256GM102	2001	TOR	1																											
dsPIC33EV32GM003	32K	4K	0						242																					
dsPIC33EV32GM103	521	41	1							2	2	1	2	1	13	3/4	1				2									
dsPIC33EV64GM003	64K	8K	0	1		2												Intermediate				36								
dsPIC33EV64GM103	041	on	1		5														Y	25										
dsPIC33EV128GM003	128K	40016 016	0	4	5	2	4	4	3x2	2	2	1	2	· ·	15	3/4	1	Intermediate	T	25	3	30								
dsPIC33EV128GM103	IZON	8K	1												ļ															
dsPIC33EV256GM003	2561	101	0																											
dsPIC33EV256GM103	256K	16K	1																											
dsPIC33EV32GM004	2014	412	0																											
dsPIC33EV32GM104	32K	4K	1]																										
dsPIC33EV64GM004	CAK	01/	0]																										
dsPIC33EV64GM104	64K	8K	1	1,	_	2			222	2	2	4	2	4	24	A 15	4	late me diet -	v	25	2	44 40								
dsPIC33EV128GM004	40016	4	0 4	4	5	2	4	4	3x2	2	2	1	2	1	24	4/5	1	Intermediate	Y	35	3	44, 48								
dsPIC33EV128GM104	128K	8K	1																											
dsPIC33EV256GM004	05014	4016	0	1																										
dsPIC33EV256GM104	256K	16K	1	1																										

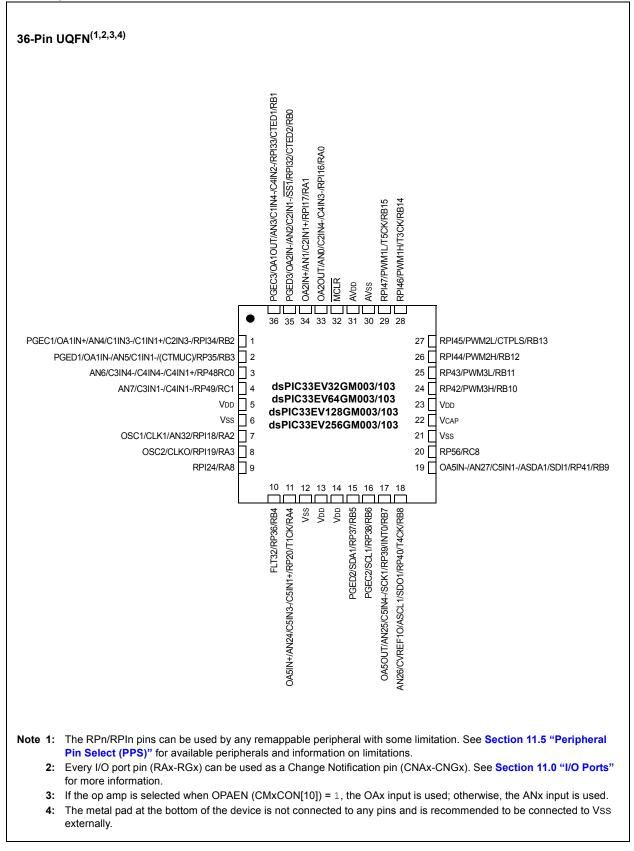
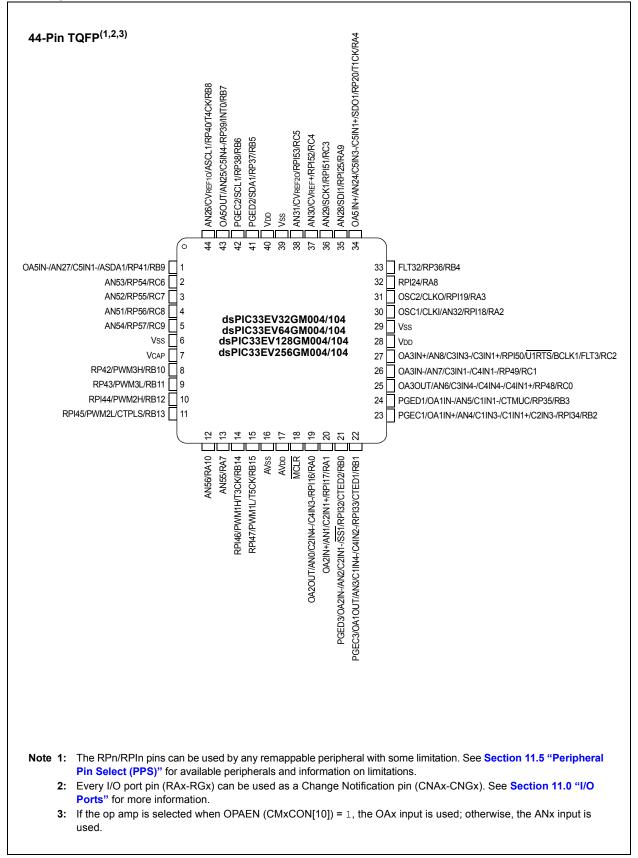
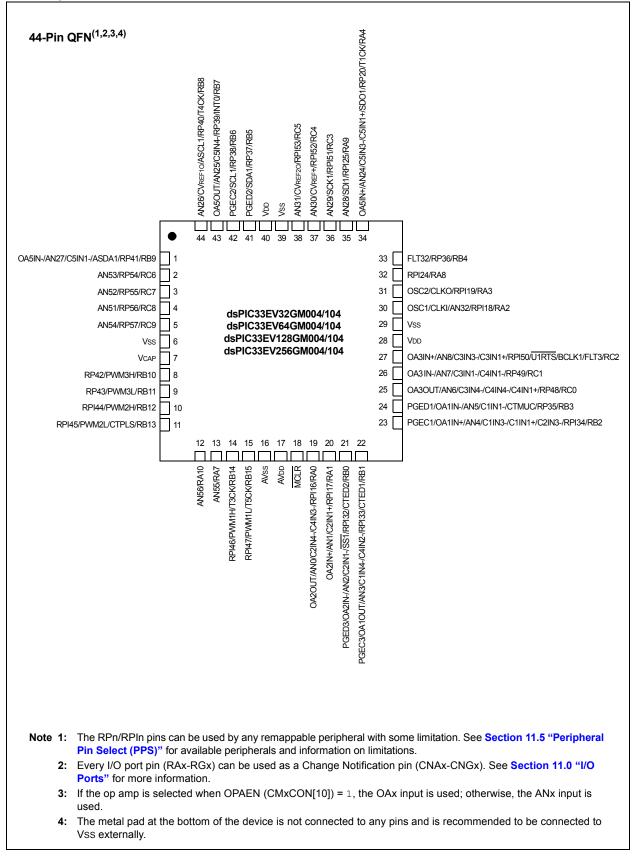
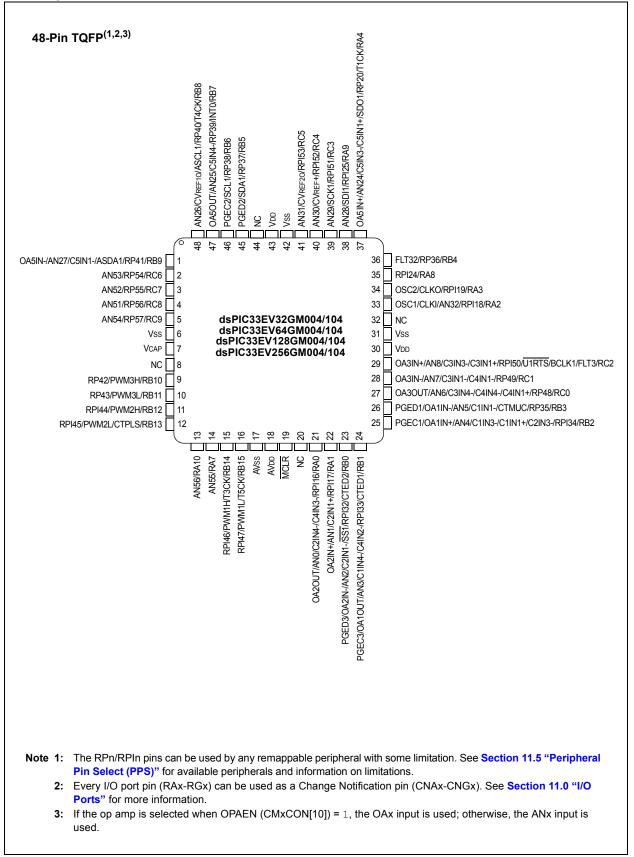
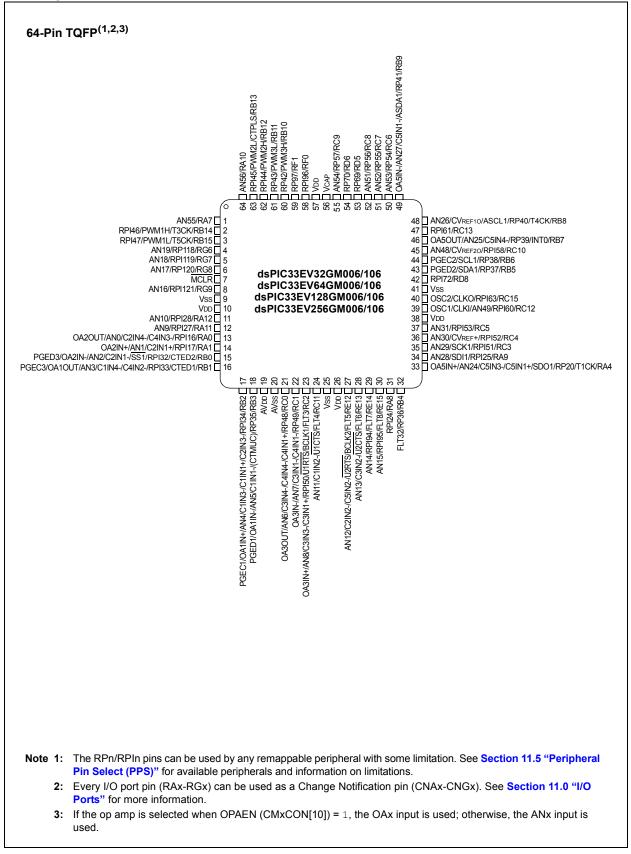

dsPIC33EVXXXGM00X/10X FAMILY

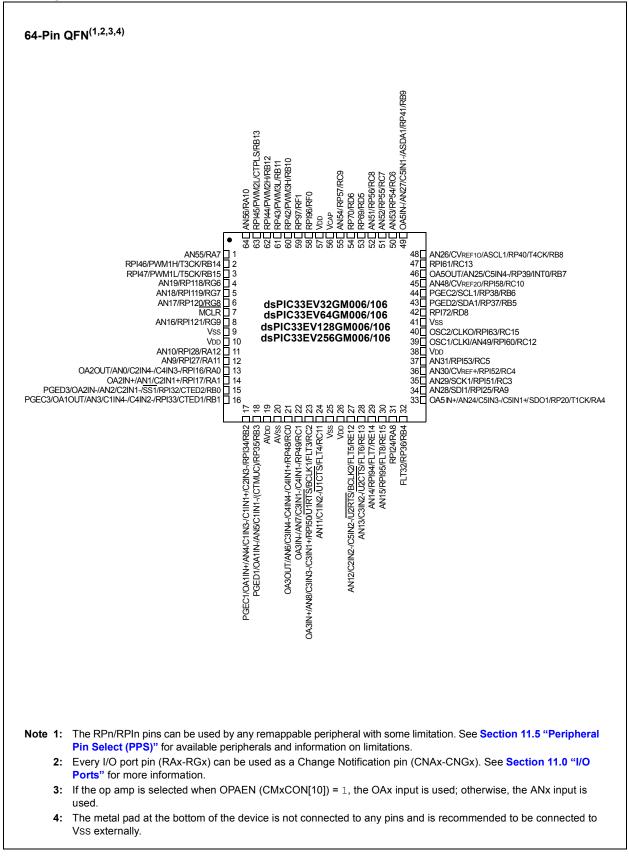
TABLE 1: dsPl	C33E	VXXX	(GM0	0X/10)X FA	MILY	' DEV	ICES	(COI	אדואנ	JED)											
Device	Program Memory Bytes	SRAM Bytes	CAN	DMA Channels	16-Bit Timers (T1)	32-Bit Timers	Input Capture	Output Compare	MWG	UART	IdS	I ² C	SENT	10/12-Bit ADC	ADC Inputs	Op Amp/Comparators	стми	Security	Peripheral Pin Select (PPS)	General Purpose I/O (GPIO)	External Interrupts	Pins
dsPIC33EV32GM006	32K	4K	0					4	3x2	2	2	1						Intermediate				
dsPIC33EV32GM106	32N	4 r	1												20	36 4/5	1				3	64
dsPIC33EV64GM006	64K	8K	0																			
dsPIC33EV64GM106	04K	on	1	4	5	2	4												Y	53		
dsPIC33EV128GM006	128K	8K	0	4	5	2	4						2	1	30				I			
dsPIC33EV128GM106	1201	UN	1																			
dsPIC33EV256GM006	256K	16K	0																			
dsPIC33EV256GM106	2001	101	1																			


Pin Diagrams






dsPIC33EVXXXGM00X/10X FAMILY



dsPIC33EVXXXGM00X/10X FAMILY

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-Bit Digital Signal Controllers	
3.0	CPU	
4.0	Memory Organization	
5.0	Flash Program Memory	
6.0	Resets	
7.0	Interrupt Controller	
8.0	Direct Memory Access (DMA)	113
9.0	Oscillator Configuration	127
10.0	Power-Saving Features	137
11.0	I/O Ports	147
12.0	Timer1	177
13.0	Timer2/3 and Timer4/5	179
14.0	Deadman Timer (DMT)	185
15.0	Input Capture	193
16.0	Output Compare	197
17.0	High-Speed PWM Module	203
18.0		
19.0	Inter-Integrated Circuit (I ² C)	233
20.0		
21.0	Universal Asynchronous Receiver Transmitter (UART)	
22.0	Controller Area Network (CAN) Module (dsPIC33EVXXXGM10X Devices Only)	
23.0	Charge Time Measurement Unit (CTMU)	
24.0	10-Bit/12-Bit Analog-to-Digital Converter (ADC)	
25.0	Op Amp/Comparator Module	
26.0	Comparator Voltage Reference	
27.0	Special Features	
28.0	Instruction Set Summary	
29.0	Development Support	
30.0		
31.0	High-Temperature Electrical Characteristics	405
	Characteristics for Industrial/Extended Temperature Devices (-40°C to +125°C)	
	Characteristics for High-Temperature Devices (+150°C)	
	Packaging Information	
	andix A: Revision History	
Index	Χ	495
	Microchip Website	
	omer Change Notification Service	
Custo	omer Support	501
Prod	uct Identification System	503

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS3000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

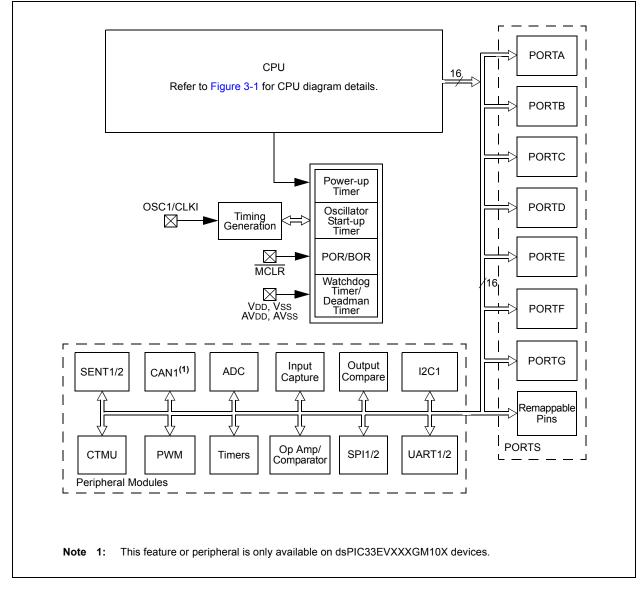
Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPIC33/PIC24 Family Reference Manual"*, which are available from the Microchip website (www.microchip.com). The following documents should be considered as the general reference for the operation of a particular module or device feature:

- "Introduction" (www.microchip.com/DS70573)
- "CPU" (www.microchip.com/DS70359)
- "Data Memory" (www.microchip.com/DS70595)
- "dsPIC33/PIC24 Program Memory" (www.microchip.com/DS70000613)
- "Flash Programming" (www.microchip.com/DS70000609)
- "Interrupts" (www.microchip.com/DS70000600)
- "Oscillator" (www.microchip.com/DS70580)
- "Reset" (www.microchip.com/DS70602)
- "Watchdog Timer and Power-Saving Modes" (www.microchip.com/DS70615)
- "I/O Ports" (www.microchip.com/DS70000598)
- "Timers" (www.microchip.com/DS70362)
- "CodeGuard™ Intermediate Security" (www.microchip.com/DS70005182)
- "Deadman Timer" (www.microchip.com/DS70005155)
- "Input Capture with Dedicated Timer" (www.microchip.com/DS70000352)
- "Output Compare with Dedicated Timer" (www.microchip.com/DS70005159)
- "High-Speed PWM" (www.microchip.com/DS70645)
- "Analog-to-Digital Converter (ADC)" (www.microchip.com/DS70621)
- "Universal Asynchronous Receiver Transmitter (UART)" (www.microchip.com/DS70000582)
- "Serial Peripheral Interface (SPI)" (www.microchip.com/DS70005185)
- "Inter-Integrated Circuit (I²C)" (www.microchip.com/DS70000195)
- "Enhanced Controller Area Network (ECAN™)" (www.microchip.com/DS70353)
- "Direct Memory Access (DMA)" (www.microchip.com/DS70348)
- "Programming and Diagnostics" (www.microchip.com/DS70608)
- "Op Amp/Comparator" (www.microchip.com/DS70000357)
- "Device Configuration" (www.microchip.com/DS70000618)
- "Charge Time Measurement Unit (CTMU) and CTMU Operation with Threshold Detect" (www.microchip.com/DS30009743)
- "Single-Edge Nibble Transmission (SENT) Module" (www.microchip.com/DS70005145)

NOTES:

1.0 DEVICE OVERVIEW


- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the dsPIC33EVXXXGM00X/10X family Digital Signal Controller (DSC) devices.

dsPIC33EVXXXGM00X/10X family devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit MCU architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: dsPIC33EVXXXGM00X/10X FAMILY BLOCK DIAGRAM

^{© 2013-2019} Microchip Technology Inc.

TABLE 1-1: PINOUT I/O DESCRIPTIONS

Pin Name	Pin Type	Buffer Type	PPS	Description
AN0-AN19	1	Analog	No	Analog input channels.
AN24-AN32				
AN48, AN49				
AN51-AN56				
CLKI	I	ST/ CMOS	No	External clock source input. Always associated with OSC1 pin function.
CLKO	0	—	No	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
OSC1	Ι	ST/ CMOS	No	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.
OSC2	I/O	_	No	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
REFCLKO	0		Yes	Reference clock output.
IC1-IC4	1	ST	Yes	Capture Inputs 1 to 4.
OCFA	1	ST	Yes	Compare Fault A input (for compare channels).
OC1-OC4	Ó	_	Yes	Compare Outputs 1 to 4.
INT0		ST	No	External Interrupt 0.
INT1	i	ST	Yes	External Interrupt 1.
INT2	I	ST	Yes	External Interrupt 2.
RA0-RA4, RA7-RA12	I/O	ST	Yes	PORTA is a bidirectional I/O port.
RB0-RB15	I/O	ST	Yes	PORTB is a bidirectional I/O port.
RC0-RC13, RC15	I/O	ST	Yes	PORTC is a bidirectional I/O port.
RD5-RD6, RD8	I/O	ST	Yes	PORTD is a bidirectional I/O port.
RE12-RE15	I/O	ST	Yes	PORTE is a bidirectional I/O port.
RF0-RF1	I/O	ST	No	PORTF is a bidirectional I/O port.
RG6-RG9	I/O	ST	Yes	PORTG is a bidirectional I/O port.
T1CK	1	ST	No	Timer1 external clock input.
T2CK	I	ST	Yes	Timer2 external clock input.
ТЗСК	I	ST	No	Timer3 external clock input.
T4CK	I	ST	No	Timer4 external clock input.
T5CK	1	ST	No	Timer5 external clock input.
CTPLS	0	ST	No	CTMU pulse output.
CTED1 CTED2		ST ST	No No	CTMU External Edge Input 1. CTMU External Edge Input 2.
UICTS		ST	Yes	UART1 Clear-to-Send.
U1RTS	0		Yes	UART1 Ready-to-Send.
U1RX	-	ST	Yes	UART1 receive.
U1TX	0		Yes	UART1 transmit.
U2CTS	Ι	ST	Yes	UART2 Clear-to-Send.
U2RTS	0		Yes	UART2 Ready-to-Send.
U2RX		ST	Yes	UART2 receive.
U2TX	0	-	Yes	UART2 transmit.
SCK1	1/0	ST	No	Synchronous serial clock input/output for SPI1.
SDI1 SDO1	0	ST	No No	SPI1 data in. SPI1 data out.
<u>SS1</u>	1/0	ST	No	SPI1 slave synchronization or frame pulse I/O.
Legend: CMOS = C				
ST = Schm				
PPS = Peri		•		TTL = TTL input buffer

Din Nome	Pin	Buffer	PPS	Description
Pin Name	Туре	Туре	PP5	Description
SCK2	I/O	ST	Yes	Synchronous serial clock input/output for SPI2.
SDI2	I.	ST	Yes	SPI2 data in.
SDO2	0	—	Yes	SPI2 data out.
SS2	I/O	ST	Yes	SPI2 slave synchronization or frame pulse I/O.
SCL1	I/O	ST	No	Synchronous serial clock input/output for I2C1.
SDA1	I/O	ST	No	Synchronous serial data input/output for I2C1.
ASCL1	I/O	ST	No	Alternate synchronous serial clock input/output for I2C1.
ASDA1	I/O	ST	No	Alternate synchronous serial data input/output for I2C1.
C1RX	I	ST	Yes	CAN1 bus receive pin.
C1TX	0	—	Yes	CAN1 bus transmit pin.
SENT1TX	0	—	Yes	SENT1 transmit pin.
SENT1RX	I	—	Yes	SENT1 receive pin.
SENT2TX	0	—	Yes	SENT2 transmit pin.
SENT2RX	Ι	—	Yes	SENT2 receive pin.
CVREF	0	Analog	No	Comparator Voltage Reference output.
C1IN1+, C1IN2-, C1IN1-, C1IN3-	Ι	Analog	No	Comparator 1 inputs.
C1OUT	0	_	Yes	Comparator 1 output.
C2IN1+, C2IN2-, C2IN1-, C2IN3-	I	Analog	No	Comparator 2 inputs.
C2OUT	0	_	Yes	Comparator 2 output.
C3IN1+, C3IN2-,	I	Analog	No	Comparator 3 inputs.
C2IN1-, C3IN3-				
C3OUT	0	—	Yes	Comparator 3 output.
C4IN1+, C4IN2-,	I	Analog	No	Comparator 4 inputs.
C4IN1-, C4IN3-			Vaa	Composition 4 output
C4OUT	0		Yes	Comparator 4 output.
C5IN1+, C5IN2-,		Analog	No	Comparator 5 inputs.
C5IN1-, C5IN3- C5OUT	0		Yes	Comparator 5 output.
FLT1-FLT2	1	ST	Yes	PWM Fault Inputs 1 and 2.
FLT3-FLT8		ST	NO	PWM Fault Inputs 3 to 8.
FLT32		ST	NO	PWM Fault Input 32.
DTCMP1-DTCMP3		ST		PWM Dead-Time Compensation Inputs 1 to 3.
PWM1L-PWM3L	0	51	No	PWM Low Outputs 1 to 3.
PWM1H-PWM3H	0		No	PWM High Outputs 1 to 3.
SYNCI1	Ĭ	ST	Yes	PWM Synchronization Input 1.
SYNCO1	Ö		Yes	PWM Synchronization Output 1.
PGED1	1/0	ST	No	Data I/O pin for Programming/Debugging Communication Channel 1.
PGEC1	10	ST	No	Clock input pin for Programming/Debugging Communication Channel
PGED2	1/0	ST	No	Data I/O pin for Programming/Debugging Communication Channel 2.
PGEC2	"0	ST	No	Clock input pin for Programming/Debugging Communication Channel 2
PGED3	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 3.
PGEC3	1	ST	No	Clock input pin for Programming/Debugging Communication Channel 3.
MCLR	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.
Legend: CMOS = C		mnatible	innut c	
Legend: CMOS = C ST = Schm				
DDS - Dori				TTL = TTL input buffer

PPS = Peripheral Pin Select

O = Output TTL = TTL input buffer

© 2013-2019 Microchip Technology Inc.

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Type	Buffer Type	PPS	Description					
AVDD	Р	Р	No	Positive supply for analog modules. This pin must be connected at all times.					
AVss	Р	Р	No	Ground reference for analog modules.					
Vdd	Р	—	No	Positive supply for peripheral logic and I/O pins.					
VCAP	Р	_	No	CPU logic filter capacitor connection.					
Vss	Р	_	No	Ground reference for logic and I/O pins.					
Legend: CMOS = CM ST = Schmit		•							

PPS = Peripheral Pin Select

TTL = TTL input buffer

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

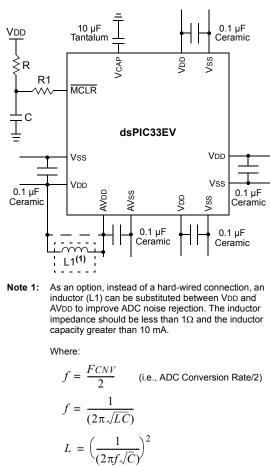
- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33EVXXXGM00X/10X family of 16-bit microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVss pins (regardless if ADC module is not used)
- (see Section 2.2 "Decoupling Capacitors")
 VCAP
- (see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming™ (ICSP™) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used (see Section 2.6 "External Oscillator Pins")

Note: The AVDD and AVSS pins must be connected, regardless of the ADC voltage reference source.


2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS, is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A value of 0.1 μF (100 nF), 10V-20V is recommended. This capacitor should be a Low Equivalent Series Resistance (low-ESR), and have resonance frequency in the range of 20 MHz and higher. It is recommended to use ceramic capacitors.
- Placement on the Printed Circuit Board (PCB): The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, above tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of $0.01 \ \mu\text{F}$ to $0.001 \ \mu\text{F}$. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, $0.1 \ \mu\text{F}$ in parallel with $0.001 \ \mu\text{F}$.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing the PCB track inductance.

2.2.1 TANK CAPACITORS

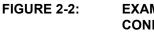
On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.3 CPU Logic Filter Capacitor Connection (VCAP)

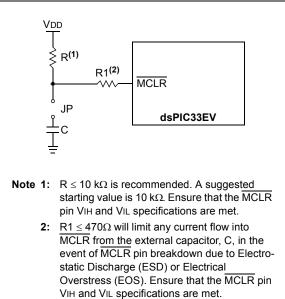
A low-ESR (<1 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the internal voltage regulator output. The VCAP pin must not be connected to VDD, and must have a capacitor greater than 4.7 μ F (10 μ F is recommended), with at least a 16V rating connected to the ground. The type can be ceramic or tantalum. See **Section 30.0 "Electrical Characteristics**" for additional information.

The placement of this capacitor should be close to the VCAP pin. It is recommended that the trace length should not exceed one-quarter inch (6 mm).

2.4 Master Clear (MCLR) Pin


The MCLR pin provides two specific device functions:

- Device Reset
- Device Programming and Debugging


During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-1, it is recommended that the capacitor, C, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations.

Place the components as shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

EXAMPLE OF MCLR PIN CONNECTIONS

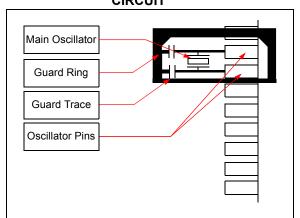
2.5 ICSP Pins

The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not exceeding 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] PICkit[™] 3, MPLAB ICD 3 or MPLAB REAL ICE[™].

For more information on MPLAB ICD 2, ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip website (www.microchip.com).


- *"Using MPLAB[®] ICD 3"* (poster) (DS51765)
- *"MPLAB[®] ICD 3 Design Advisory"* (DS51764)
- "MPLAB[®] REAL ICE™ In-Circuit Emulator User's Guide" (DS51616)
- "Using MPLAB[®] REAL ICE™ In-Circuit Emulator" (poster) (DS51749)

2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator. For more information, see **Section 9.0 "Oscillator Configuration"**.

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed as shown in Figure 2-3.

FIGURE 2-3: SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 5 MHz < FIN < 13.6 MHz to comply with device PLL start-up conditions. This intends that, if the external oscillator frequency is outside this range, the application must start up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLFBD, to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source.

Note: Clock switching must be enabled in the device Configuration Word.

2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state.

Alternatively, connect a 1k to 10k resistor between Vss and unused pins, and drive the output to logic low.

 $[\]ensuremath{\textcircled{}^\circ}$ 2013-2019 Microchip Technology Inc.

NOTES:

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "CPU" (www.microchip.com/DS70359) in the "dsPIC33/PIC24 Family Reference Manual".
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for digital signal processing. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space.

An instruction prefetch mechanism helps maintain throughput and provides predictable execution. Most instructions execute in a single-cycle effective execution rate, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction, PSV accesses and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

3.1 Registers

The dsPIC33EVXXXGM00X/10X family devices have sixteen, 16-bit Working registers in the programmer's model. Each of the Working registers can act as a Data, Address or Address Offset register. The sixteenth Working register (W15) operates as a Software Stack Pointer for interrupts and calls.

In addition, the dsPIC33EVXXXGM00X/10X devices include two alternate Working register sets, which consist of W0 through W14. The alternate registers can be made persistent to help reduce the saving and restoring of register content during Interrupt Service Routines (ISRs). The alternate Working registers can be assigned to a specific Interrupt Priority Level (IPL1 through IPL6) by configuring the CTXTx[2:0] bits in the FALTREG Configuration register.

The alternate Working registers can also be accessed manually by using the CTXTSWP instruction.

The CCTXI[2:0] and MCTXI[2:0] bits in the CTXTSTAT register can be used to identify the current, and most recent, manually selected Working register sets.

3.2 Instruction Set

The device instruction set has two classes of instructions: the MCU class of instructions and the DSP class of instructions. These two instruction classes are seamlessly integrated into the architecture and execute from a single execution unit. The instruction set includes many addressing modes and was designed for optimum C compiler efficiency.

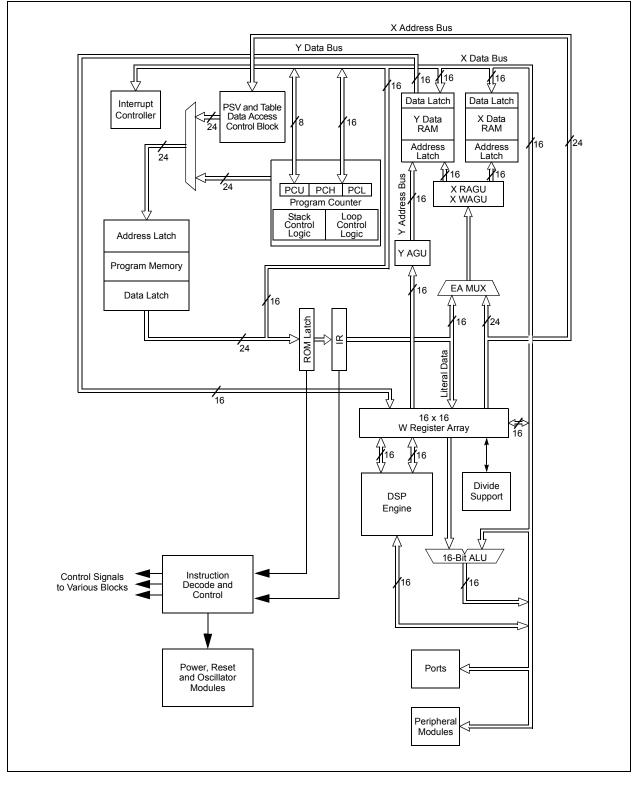
3.3 Data Space Addressing

The Base Data Space can be addressed as 4K words or 8 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear Data Space. On dsPIC33EV devices, certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y Data Space boundary is device-specific.

The upper 32 Kbytes of the Data Space (DS) memory map can optionally be mapped into Program Space (PS) at any 16K program word boundary. The Program-to-Data Space mapping feature, known as Program Space Visibility (PSV), lets any instruction access Program Space as if it were Data Space. Moreover, the Base Data Space address is used in conjunction with a Data Space Read or Write Page register (DSRPAG or DSWPAG) to form an Extended Data Space (EDS) address. The EDS can be addressed as 8M words or 16 Mbytes. For more information on EDS, PSV and table accesses, refer to **"Data Memory"** (www.microchip.com/ DS70595) and **"dsPIC33/PIC24 Program Memory"** (www.microchip.com/DS70000613) in the *"dsPIC33/ PIC24 Family Reference Manual"*.

On dsPIC33EV devices, overhead-free circular buffers (Modulo Addressing) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. The X AGU Circular Addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms. Figure 3-1 illustrates the block diagram of the dsPIC33EVXXXGM00X/10X family devices.

3.4 Addressing Modes


The CPU supports these addressing modes:

- Inherent (no operand)
- Relative
- Literal
- Memory Direct
- · Register Direct
- Register Indirect

Each instruction is associated with a predefined addressing mode group, depending upon its functional requirements. As many as six addressing modes are supported for each instruction.

dsPIC33EVXXXGM00X/10X FAMILY

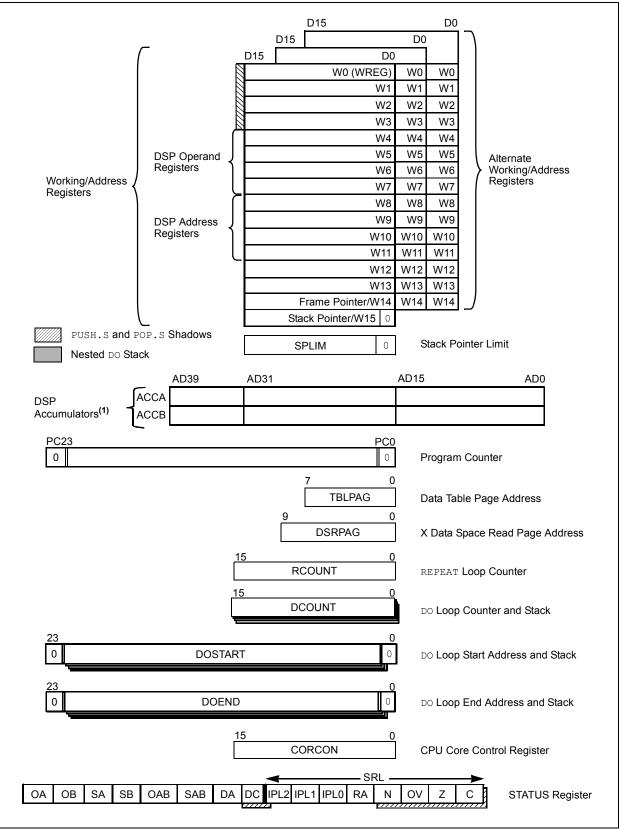
FIGURE 3-1: dsPIC33EVXXXGM00X/10X FAMILY CPU BLOCK DIAGRAM

3.5 **Programmer's Model**

The programmer's model for the dsPIC33EVXXXGM00X/ 10X family is shown in Figure 3-2. All registers in the programmer's model are memory-mapped and can be manipulated directly by instructions. Table 3-1 lists a description of each register. In addition to the registers contained in the programmer's model, the dsPIC33EVXXXGM00X/10X family devices contain control registers for Modulo Addressing and Bit-Reversed Addressing, and interrupts. These registers are described in subsequent sections of this document.

All registers associated with the programmer's model are memory-mapped, as shown in Table 4-1.

TABLE 3-1:	PROGRAMMER'S MODEL REGISTER DESCRIPTIONS
IABLE 3-1:	PROGRAMMER'S MODEL REGISTER DESCRIPTION


Register(s) Name	Description
W0 through W15 ⁽¹⁾	Working Register Array
W0 through W14 ⁽¹⁾	Alternate Working Register Array 1
W0 through W14 ⁽¹⁾	Alternate Working Register Array 2
ACCA, ACCB	40-Bit DSP Accumulators
PC	23-Bit Program Counter
SR	ALU and DSP Engine STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
DSRPAG	Extended Data Space (EDS) Read Page Register
RCOUNT	REPEAT Loop Counter Register
DCOUNT	DO Loop Count Register
DOSTARTH ⁽²⁾ , DOSTARTL ⁽²⁾	DO Loop Start Address Register (High and Low)
DOENDH, DOENDL	DO Loop End Address Register (High and Low)
CORCON	Contains DSP Engine, DO Loop Control and Trap Status bits

Note 1: Memory-mapped W0 through W14 represent the value of the register in the currently active CPU context.

2: The DOSTARTH and DOSTARTL registers are read-only.

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 3-2: PROGRAMMER'S MODEL

3.6 CPU Control Registers

REGISTER 3-1: SR: CPU STATUS REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0
OA	OB	SA ⁽³⁾	SB ⁽³⁾	OAB	SAB	DA	DC
bit 15		-					bit 8
R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ^(1,2)	IPL1 ^(1,2)	IPL0 ^(1,2)	RA	N	OV	Z	С
bit 7	•						bit 0
Legend:		C = Clearable	bit				

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	OA: Accumulator A Overflow Status bit
	1 = Accumulator A has overflowed
	0 = Accumulator A has not overflowed
bit 14	OB: Accumulator B Overflow Status bit
	1 = Accumulator B has overflowed
h# 40	0 = Accumulator B has not overflowed
bit 13	SA: Accumulator A Saturation 'Sticky' Status bit ⁽³⁾
	 1 = Accumulator A is saturated or has been saturated at some time 0 = Accumulator A is not saturated
bit 12	SB: Accumulator B Saturation 'Sticky' Status bit ⁽³⁾
	1 = Accumulator B is saturated or has been saturated at some time
	0 = Accumulator B is not saturated
bit 11	OAB: OA OB Combined Accumulator Overflow Status bit
	1 = Accumulator A or B has overflowed
	0 = Accumulator A and B have not overflowed
bit 10	SAB: SA SB Combined Accumulator 'Sticky' Status bit
	1 = Accumulator A or B is saturated or has been saturated at some time
	0 = Accumulator A and B have not been saturated
bit 9	DA: DO Loop Active bit
	1 = DO loop is in progress 0 = DO loop is not in progress
h:1 0	
bit 8	DC: MCU ALU Half Carry/Borrow bit
	1 = A carry-out from the 4 th low-order bit (for byte-sized data) or 8 th low-order bit (for word-sized data) of the result occurred
	0 = No carry-out from the 4 th low-order bit (for byte-sized data) or 8 th low-order bit (for word-sized
	data) of the result occurred
Note 1:	The IPL[2:0] bits are concatenated with the IPL3 bit (CORCON[3]) to form the CPU Interrupt Priority Level.
	The value in parentheses indicates the IPL if IPL3 = 1. User interrupts are disabled when IPL3 = 1.
2:	The IPL[2:0] Status bits are read-only when the NSTDIS bit (INTCON1[15]) = 1.
3:	A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by

3: A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using the bit operations.

 $[\]ensuremath{\textcircled{}^{\odot}}$ 2013-2019 Microchip Technology Inc.

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5	IPL[2:0]: CPU Interrupt Priority Level Status bits ^(1,2)
	<pre>111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)</pre>
bit 4	RA: REPEAT Loop Active bit
	1 = REPEAT loop is in progress 0 = REPEAT loop is not in progress
bit 3	N: MCU ALU Negative bit
	1 = Result was negative0 = Result was non-negative (zero or positive)
bit 2	OV: MCU ALU Overflow bit
	This bit is used for signed arithmetic (two's complement). It indicates an overflow of the magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = Overflow has not occurred for signed arithmetic
bit 1	Z: MCU ALU Zero bit
	 1 = An operation that affects the Z bit has set it at some time in the past 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit
	 1 = A carry-out from the Most Significant bit (MSb) of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred
Note 1:	The IPL[2:0] bits are concatenated with the IPL3 bit (CORCON[3]) to form the CPU Interrupt Priority Level.

- The value in parentheses indicates the IPL if IPL3 = 1. User interrupts are disabled when IPL3 = 1.
- 2: The IPL[2:0] Status bits are read-only when the NSTDIS bit (INTCON1[15]) = 1.
- **3:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using the bit operations.

	3-2: CORC			EGISTER				
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0	
VAR	—	US1	US0	EDT ⁽¹⁾	DL2	DL1	DL0	
bit 15							bit 8	
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0	
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF	
bit 7	SAID	SAIDW	ACCOAL	11 23.7	JIA	IND	bit (
							Ditt	
Legend:		C = Clearable	e bit					
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, rea	id as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown	
bit 15		- Evention Dr		nov Control hit				
DIL 15		e Exception Procession	•	ncy Control bit				
		eption process	• •					
bit 14	Unimplemen	ted: Read as '	0'					
bit 13-12	US[1:0]: DSF	P Multiply Unsig	gned/Signed C	Control bits				
	11 = Reserved							
	10 = DSP engine multiplies are mixed-sign							
	01 = DSP engine multiplies are unsigned 00 = DSP engine multiplies are signed							
bit 11	EDT: Early Do Loop Termination Control bit ⁽¹⁾							
	 1 = Terminates executing the DO loop at the end of the current loop iteration 0 = No effect 							
bit 10-8	DL[2:0]: DO L	oop Nesting L	evel Status bit	S				
	111 = Seven	DO loops are a	active					
	•							
	•							
		loop is active						
	000 = Zero D	o loops are ac	tive					
bit 7	SATA: ACCA Saturation Enable bit							
	 1 = Accumulator A saturation is enabled 0 = Accumulator A saturation is disabled 							
bit 6	SATB: ACCB Saturation Enable bit							
	1 = Accumulator B saturation is enabled							
	0 = Accumulator B saturation is disabled							
bit 5	SATDW: Data Space Write from DSP Engine Saturation Enable bit							
	 1 = Data Space write saturation is enabled 0 = Data Space write saturation is disabled 							
bit 4	•							
	ACCSAT: Accumulator Saturation Mode Select bit 1 = 9.31 saturation (super saturation)							
	1 = 9.31 satu	ration (super s	aturation)					

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

- 2: The IPL3 bit is concatenated with the IPL[2:0] bits (SR[7:5]) to form the CPU Interrupt Priority Level.

REGISTER 3-2: CORCON: CORE CONTROL REGISTER (CONTINUED)

bit 3	IPL3: CPU Interrupt Priority Level Status bit 3 ⁽²⁾
	1 = CPU Interrupt Priority Level is greater than 7
	0 = CPU Interrupt Priority Level is 7 or less
bit 2	SFA: Stack Frame Active Status bit
	1 = Stack frame is active; W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG and DSWPAG values
	0 = Stack frame is not active; W14 and W15 address of EDS or Base Data Space
bit 1	RND: Rounding Mode Select bit
	1 = Biased (conventional) rounding is enabled
	0 = Unbiased (convergent) rounding is enabled
bit 0	IF: Integer or Fractional Multiplier Mode Select bit
	1 = Integer mode is enabled for DSP multiply
	0 = Fractional mode is enabled for DSP multiply

Note 1: This bit is always read as '0'.

2: The IPL3 bit is concatenated with the IPL[2:0] bits (SR[7:5]) to form the CPU Interrupt Priority Level.

REGISTER 3-3: CTXTSTAT: CPU W REGISTER CONTEXT STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
_			_	_		CCTXI[2:0]	
bit 15			•				bit 8
U-0	U-0	U-0	U-0	U-0	R-0	R/W-0	R/W-0
_	—	—		—		MCTXI[2:0]	
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is clear	ed	x = Bit is unkn	own
	001 = Alterna	ate Working Re ate Working Re	gister Set 1 is	currently in use			
bit 7-3	000 = Default register set is currently in use						
<pre>it 7-3 Unimplemented: Read as '0' it 2-0 MCTXI[2:0]: Manual (W Register) Context Identifier bits 111 = Reserved</pre>							

^{© 2013-2019} Microchip Technology Inc.

3.7 Arithmetic Logic Unit (ALU)

The dsPIC33EVXXXGM00X/10X family ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. The data for the ALU operation can come from the W register array or from the data memory, depending on the addressing mode of the instruction. Similarly, the output data from the ALU can be written to the W register array or a data memory location.

For information on the SR bits affected by each instruction, refer to the *"16-Bit MCU and DSC Programmer's Reference Manual"* (DS70000157).

The core CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.7.1 MULTIPLIER

Using the high-speed, 17-bit x 17-bit multiplier, the ALU supports unsigned, signed or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit signed x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.7.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. The 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes the single-cycle per bit of the divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.8 DSP Engine

The DSP engine consists of a high-speed, 17-bit x 17-bit multiplier, a 40-bit barrel shifter and a 40-bit adder/ subtracter (with two target accumulators, round and saturation logic).

The DSP engine can also perform inherent accumulatorto-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON) as follows:

- Fractional or Integer DSP Multiply (IF)
- Signed, Unsigned or Mixed-Sign DSP Multiply (US)
- · Conventional or Convergent Rounding (RND)
- · Automatic Saturation On/Off for ACCA (SATA)
- Automatic Saturation On/Off for ACCB (SATB)
- Automatic Saturation On/Off for Writes to Data Memory (SATDW)
- Accumulator Saturation mode Selection (ACCSAT)

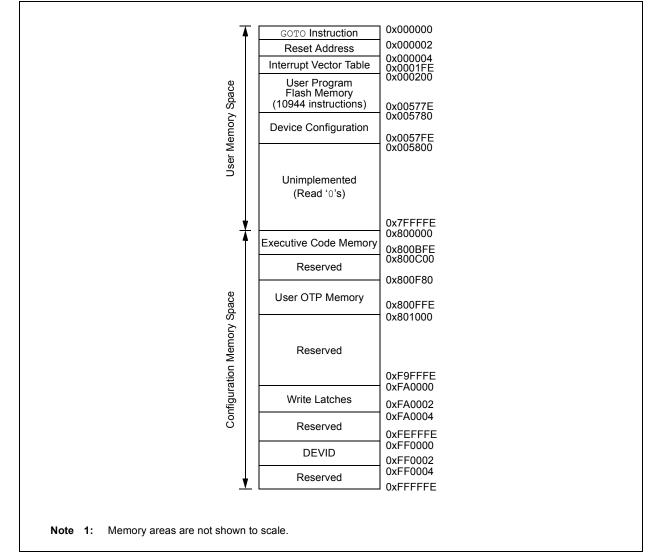
TABLE 3-2:DSP INSTRUCTIONSSUMMARY

Instruction	Algebraic Operation	ACC Write-Back
CLR	A = 0	Yes
ED	$A = (x - y)^2$	No
EDAC	$A = A + (x - y)^2$	No
MAC	$A = A + (x \bullet y)$	Yes
MAC	$A = A + x^2$	No
MOVSAC	No change in A	Yes
MPY	$A = x \bullet y$	No
MPY	$A = x^2$	No
MPY.N	$A = -x \bullet y$	No
MSC	$A = A - x \bullet y$	Yes

4.0 MEMORY ORGANIZATION

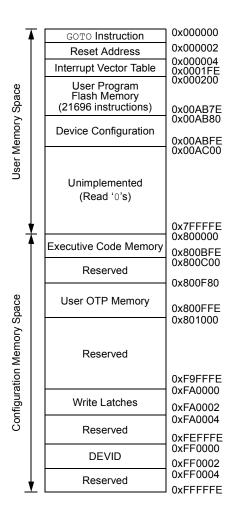
Note: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "dsPIC33/PIC24 Program Memory" (www.microchip.com/DS70000613) in the "dsPIC33/PIC24 Family Reference Manual".

The dsPIC33EVXXXGM00X/10X family architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the Data Space (DS) during code execution.

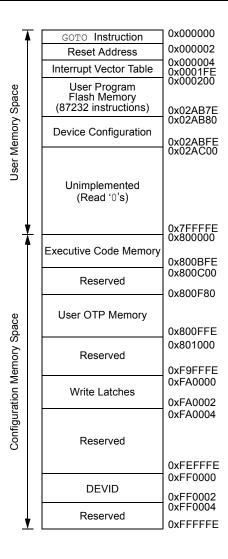

4.1 Program Address Space

The program address memory space of the dsPIC33EVXXXGM00X/10X family devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit PC, during program execution or from table operation, or from DS remapping, as described in Section 4.7 "Interfacing Program and Data Memory Spaces".

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x02ABFF). The exception is the use of the TBLRD operations, which use TBLPAG[7] to read Device ID sections of the configuration memory space and the TBLWT operations, which are used to set up the write latches located in configuration memory space.


The program memory maps, which are presented by the device family and memory size, are shown in Figure 4-1 through Figure 4-4.

© 2013-2019 Microchip Technology Inc.



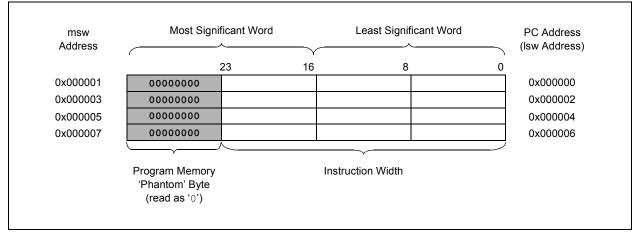
Note 1: Memory areas are not shown to scale.

	<u> </u>		0.000000
	•	GOTO Instruction	0x000000
		Reset Address	0x000002
		Interrupt Vector Table	0x000004 0x0001FE
	User Memory Space	User Program Flash Memory (44736 instructions)	0x00200 0x01577E 0x015780
	Vemory	Device Configuration	0x0157FE 0x015800
:	User	Unimplemented (Read ʻ0's)	
	Ţ		0x7FFFFE 0x800000
	Î	Executive Code Memory	0x800BFE
		Reserved	0x800C00 0x800F80
	се	User OTP Memory	0x800FFE
(ory Spa	Reserved	0x801000 0xF9FFFE
:	n Mem	Write Latches	0xFA0000
:	Configuration Memory Space	Reserved	0xFA0002 0xFA0004
		DEVID	0xFEFFFE 0xFF0000
		DEVID	0xFF0002
	ł	Reserved	0xFF0004 0xFFFFE

FIGURE 4-3: PROGRAM MEMORY MAP FOR dsPIC33EV128GM00X/10X DEVICES⁽¹⁾

Note 1: Memory areas are not shown to scale.

4.1.1 PROGRAM MEMORY ORGANIZATION


The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (see Figure 4-5).

Program memory addresses are always word-aligned on the lower word and addresses are incremented or decremented by two during the code execution. This arrangement provides compatibility with the Data Memory Space Addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33EVXXXGM00X/10X family devices reserve the addresses between 0x000000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at address, 0x000000 of Flash memory, with the actual address for the start of code at address, 0x000002 of Flash memory.

For more information on the Interrupt Vector Tables, see Section 7.1 "Interrupt Vector Table".

FIGURE 4-5: PROGRAM MEMORY ORGANIZATION

© 2013-2019 Microchip Technology Inc.

4.2 Data Address Space

The dsPIC33EVXXXGM00X/10X family CPU has a separate, 16-bit wide data memory space. The Data Space (DS) is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps, which are presented by device family and memory size, are shown in Figure 4-6 and Figure 4-8.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the DS. This arrangement gives a Base Data Space address range of 64 Kbytes or 32K words.

The Base Data Space address is used in conjunction with a Data Space Read or Write Page register (DSRPAG or DSWPAG) to form an Extended Data Space (EDS), which has a total address range of 16 Mbytes.

dsPIC33EVXXXGM00X/10X family devices implement up to 20 Kbytes of data memory (4 Kbytes of data memory for Special Function Registers and up to 16 Kbytes of data memory for RAM). If an EA points to a location outside of this area, an all zero word or byte is returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byteaddressable, 16-bit wide blocks. Data are aligned in data memory and registers as 16-bit words, but all DS EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] MCU devices and improve Data Space memory usage efficiency, the dsPIC33EVXXXGM00X/10X family instruction set supports both word and byte operations. As a consequence of byte accessibility, all the Effective Address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

A data byte read, reads the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode, but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, therefore, care must be taken when mixing byte and word operations or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB; the MSB is not modified.

A Sign-Extend (SE) instruction is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE

The first four Kbytes of the Near Data Space, from 0x0000 to 0x0FFF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33EVXXXGM00X/10X family core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note: The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and pinout diagrams for device-specific information.

4.2.4 NEAR DATA SPACE

The 8-Kbyte area, between 0x0000 and 0x1FFF, is referred to as the Near Data Space. Locations in this space are directly addressable through a 13-bit absolute address field within all memory direct instructions. Additionally, the whole DS is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a Working register as an Address Pointer.

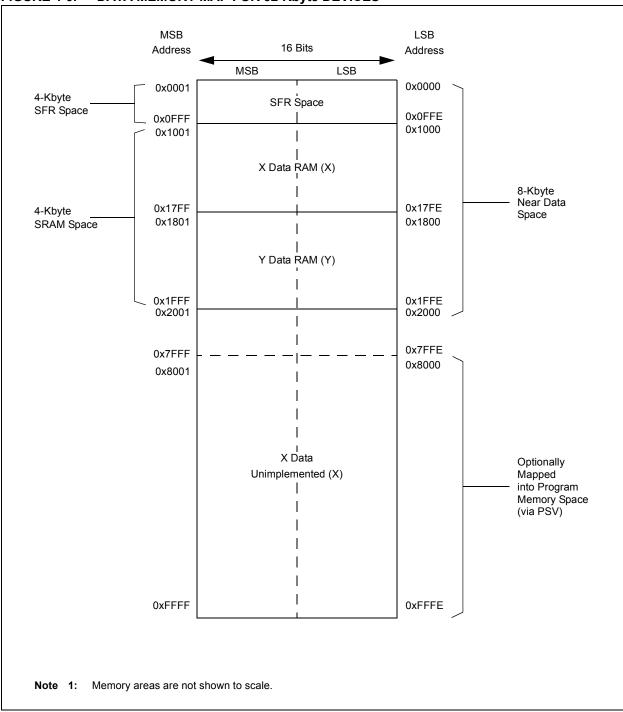
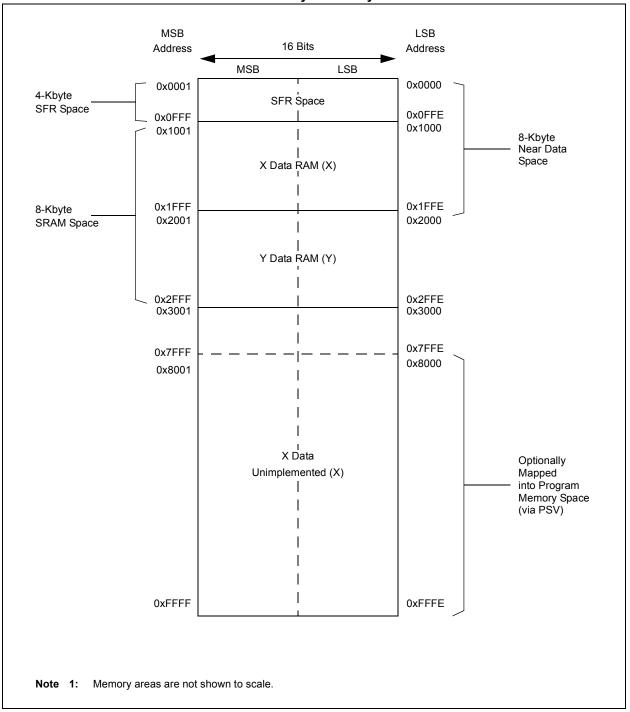
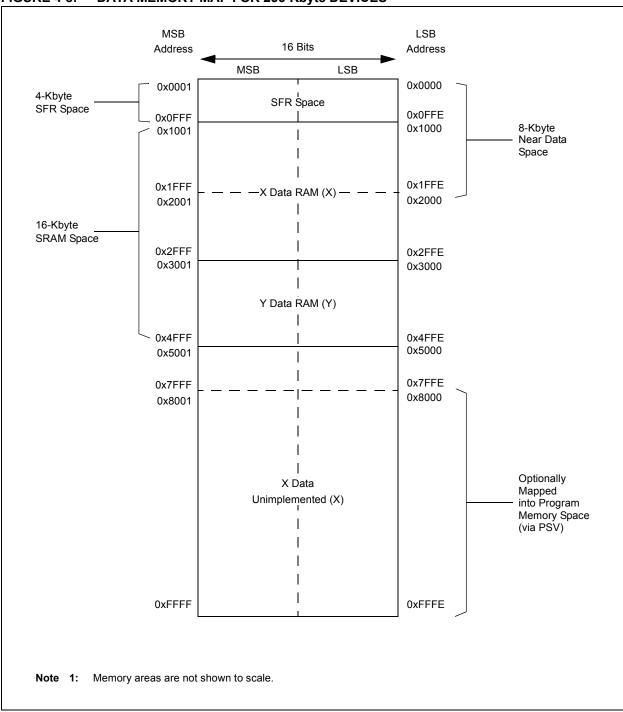




FIGURE 4-6: DATA MEMORY MAP FOR 32-Kbyte DEVICES⁽¹⁾

FIGURE 4-7: DATA MEMORY MAP FOR 64-Kbyte/128-Kbyte DEVICES⁽¹⁾

FIGURE 4-8: DATA MEMORY MAP FOR 256-Kbyte DEVICES⁽¹⁾

© 2013-2019 Microchip Technology Inc.

4.2.5 X AND Y DATA SPACES

The dsPIC33EVXXXGM00X/10X family core has two Data Spaces: X and Y. These Data Spaces can be considered either separate (for some DSP instructions) or as one unified, linear address range (for MCU instructions). The Data Spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms, such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X DS is used by all instructions and supports all addressing modes. The X DS has separate read and write data buses. The X read data bus is the read data path for all instructions that view the DS as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class). The Y DS is used in concert with the X DS by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y Data Spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to the X Data Space.

All data memory writes, including in DSP instructions, view Data Space as combined X and Y address space. The boundary between the X and Y Data Spaces is device-dependent and is not user-programmable.

4.3 Special Function Register Maps

TABLE 4-1: CPU CORE REGISTER MAP

SFR Name Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 B W0 0000	it 3 Bit 2	Bit 1	Bit 0	All Resets 0000 0000 0000
W1 0002 W1 W2 0004 W2 W3 0006 W3 W4 0008 W4 W5 000A W5 W6 000C W6				0000
W2 004 W2 W3 006 W3 W4 008 W4 W5 000A W5 W6 000C W6				
W3 0006 W3 W4 0008 W4 W5 000A W5 W6 000C W6				0000
W4 0008 W4 W5 000A W5 W6 000C W6				
W5 000A W5 W6 000C W6				0000
W6 000C W6				0000
				0000
W7 000E W7				0000
				0000
W8 0010 W8				0000
W9 0012 W9				0000
W10 0014 W10				0000
W11 0016 W11				0000
W12 0018 W12				0000
W13 001A W13				0000
W14 001C W14				0000
W15 001E W15				0800
SPLIM 0020 SPLIM				XXXX
ACCAL 0022 ACCAL				XXXX
ACCAH 0024 ACCAH				XXXX
ACCAU 0026 Sign Extension of ACCA[39] ACCAU				XXXX
ACCBL 0028 ACCBL				XXXX
ACCBH 002A ACCBH				XXXX
ACCBU 002C Sign Extension of ACCB[39] ACCBU				XXXX
PCL 002E Program Counter Low Word Register			—	0000
PCH 0030 — — — — — — Program Counter H	ligh Word Regist	ter		0000
DSRPAG 0032 — — — — — Data Space Read Page Register				0001
DSWPAG 0034 — — — — — — — — Data Space Write Page Reg	gister			0001
RCOUNT 0036 REPEAT Loop Counter Register			0	XXXX
DCOUNT 0038 DCOUNT[15:1]			0	XXXX
DOSTARTL 003A DOSTARTL[15:1]			0	XXXX
DOSTARTH 003C DC	OSTARTH[5:0]			00xx
DOENDL 003E DOENDL[15:1]			_	XXXX

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-1: CPU CORE REGISTER MAP (CONTINUED)

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DOENDH	0040		_	_	_	_	_	_	-		_			DOEND	H[5:0]			00xx
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	Ν	OV	Z	С	0000
CORCON	0044	VAR	_	US1	US0	EDT	DL2	DL1	DL0	SATA	SATB	SATDW	ACCSAT	IPL3	SFA	RND	IF	0020
MODCON	0046	XMODEN	YMODEN	_	—	BWM3	BWM2	BWM1	BWM0	YWM3	YWM2	YWM1	YWM0	XWM3	XWM2	XWM1	XWM0	0000
XMODSRT	0048		XMODSRT[15:1]												0	XXXX		
XMODEND	004A															XXXX		
YMODSRT	004C							YMO	DDSRT[15:	1]							0	XXXX
YMODEND	004E							YMC	DDEND[15:	1]							1	XXXX
XBREV	0050	BREN							XI	BREV[14:0]								0xxx
DISICNT	0052	_	_							DISICN	Г[13:0]							XXXX
TBLPAG	0054	_	_	_	_	_	_	_	_				TBLPA	.G[7:0]				0000
MSTRPR	0058								MSTRPF	R[15:0]								0000
CTXTSTAT	005A	-	_	_	_	_		CCTXI[2:0]		_	_	_	_	-		MCTXI[2:0]]	0000

dsPIC33EVXXXGM00X/10X FAMILY

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

			• • • • • •															
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Tim	ner1 Registe	r							0000
PR1	0102								Peri	od Register	1							FFFF
T1CON	0104	TON	_	TSIDL	_	—	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS	_	0000
TMR2	0106								Tim	ner2 Registe	r							0000
TMR3HLD	0108						Time	er3 Holdin	ng Register	· (For 32-bit	timer operat	tions only)						0000
TMR3	010A								Tim	ner3 Registe	r							0000
PR2	010C								Peri	od Register	2							FFFF
PR3	010E								Peri	od Register	3							FFFF
T2CON	0110	TON	_	TSIDL		_	_	_	—	_	TGATE	TCKPS1	TCKPS0	T32	—	TCS	_	0000
T3CON	0112	TON	_	TSIDL	_		_	_	_	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	_	0000
TMR4	0114								Tim	ner4 Registe	r	•					•	0000
TMR5HLD	0116						Т	imer5 Hol	ding Regis	ster (For 32-	bit operatior	ns only)						0000
TMR5	0118								Tim	ner5 Registe	r							0000
PR4	011A								Peri	od Register	4							FFFF
PR5	011C								Peri	od Register	5							FFFF
T4CON	011E	TON	_	TSIDL	_	—	—	—	—	—	TGATE	TCKPS1	TCKPS0	T32	—	TCS	—	0000
T5CON	0120	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	_	0000
Lanandi		nlomontod																

IABLE	4-3:	INP		PIUR		ROUGF		CAP	IURE 4	REGIS								
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1CON1	0140	_	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	_	-	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC1CON2	0142	_			—	_	—	_	IC32	ICTRIG	TRIGSTAT	-	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC1BUF	0144								Inp	ut Capture	1 Buffer Regi	ster						XXXX
IC1TMR	0146								Inp	ut Capture	1 Timer Regi	ster						0000
IC2CON1	0148	_	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	-	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC2CON2	014A	_	_	_	_	_	_	_	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC2BUF	014C																XXXX	
IC2TMR	014E								Inp	ut Capture	2 Timer Regi	ster						0000
IC3CON1	0150	—		ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	—	_		ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC3CON2	0152	_	_	_	_	_	_	_	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC3BUF	0154								Inp	ut Capture	3 Buffer Regi	ster						XXXX
IC3TMR	0156								Inp	ut Capture	3 Timer Regi	ster						0000
IC4CON1	0158	_	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	-	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC4CON2	015A	_	_	_	_	_	_	_	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC4BUF	015C								Inp	ut Capture	4 Buffer Regi	ster						XXXX
IC4TMR	015E								Inp	ut Capture	4 Timer Regi	ster						0000

dsPIC33EVXXXGM00X/10X FAMILY

TABLE 4-3: INPUT CAPTURE 1 THROUGH INPUT CAPTURE 4 REGISTER MAP

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-4: I2C1 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1CON1	0200	I2CEN	—	I2CSIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1CON2	0202	_	_	_	_	_	_	_	_	_	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	1000
I2C1STAT	0204	ACKSTAT	TRSTAT	ACKTIM	_	_	BCL										0000	
I2C1ADD	0206	_			_	_						I2C1 Addr	ess Register					0000
I2C1MSK	0208	_			_	_					12	2C1 Address	Mask Regis	ster				0000
I2C1BRG	020A							E	Baud Rate	Generator F	Register							0000
I2C1TRN	020C	_			_	_		—	_				I2C1 Transr	nit Register				OOFF
I2C1RCV	020E	_	_	_	_	_	_	—	_				I2C1 Recei	ve Register				0000

TABLE 4-5: **UART1 AND UART2 REGISTER MAP**

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	_	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	_	_	_	_	_				UART1	Transmit Re	egister				XXXX
U1RXREG	0226	_	_	_	_	_	_	_										
U1BRG	0228						U	ART1 Bau	id Rate G	enerator Pres	scaler Registe	r						0000
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	_	_	_	_	_				UART2	Transmit Re	egister				XXXX
U2RXREG	0236	_	_	_	_	_	—	—	– UART2 Receive Register									
U2BRG	0238						U	ART2 Bau	id Rate G	enerator Pres	scaler Registe	r						0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-6: SPI1 AND SPI2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	_	SPISIDL		_	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI1CON1	0242	—	—	—	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	—	_	—	_	_	—	—	_	_	_	FRMDLY	SPIBEN	0000
SPI1BUF	0248							SPI1 Tra	ansmit and R	eceive Buf	fer Registe	r						0000
SPI2STAT	0260	SPIEN	—	SPISIDL	_	_	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI2CON1	0262	—	—	—	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI2CON2	0264	FRMEN	SPIFSD	FRMPOL	_	—	—	—	_	_	—	—	_	_	_	FRMDLY	SPIBEN	0000
SPI2BUF	0268							SPI2 Tra	ansmit and R	eceive Buf	fer Registe	r						0000

dsPIC33EVXXXGM00X/10X FAMILY

IADLL -					· · · · · ·													
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC1 Da	ta Buffer	0							XXXX
ADC1BUF1	0302								ADC1 Da	ta Buffer	1							XXXX
ADC1BUF2	0304								ADC1 Da	ta Buffer	2							XXXX
ADC1BUF3	0306								ADC1 Da	ta Buffer	3							XXXX
ADC1BUF4	0308								ADC1 Da	ta Buffer	4							XXXX
ADC1BUF5	030A								ADC1 Da	ta Buffer	5							XXXX
ADC1BUF6	030C								ADC1 Da	ta Buffer	6							XXXX
ADC1BUF7	030E								ADC1 Da	ta Buffer	7							XXXX
ADC1BUF8	0310								ADC1 Da	ta Buffer	8							XXXX
ADC1BUF9	0312								ADC1 Da	ta Buffer	9							XXXX
ADC1BUFA	0314								ADC1 Dat	a Buffer 1	10							XXXX
ADC1BUFB	0316								ADC1 Dat	a Buffer 1	11							XXXX
ADC1BUFC	0318								ADC1 Dat	a Buffer 1	2							XXXX
ADC1BUFD	031A								ADC1 Dat	a Buffer 1	3							xxxx
ADC1BUFE	031C								ADC1 Dat	a Buffer 1	4							xxxx
ADC1BUFF	031E								ADC1 Dat	a Buffer 1	15							xxxx
AD1CON1	0320	ADON	—	ADSIDL	ADDMABM	—	AD12B	FORM1	FORM0	SSRC2	SSRC1	SSRC0	SSRCG	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	VCFG2	VCFG1	VCFG0	—	—	CSCNA	CHPS1	CHPS0	BUFS	SMPI4	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS	0000
AD1CON3	0324	ADRC	—	—	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
AD1CHS123	0326	—	—	_	CH123SB2	CH123SB1	CH123NB1	CH123NB0	CH123SB0	-			CH123SA2	CH123SA1	CH123NA1	CH123NA0	CH123SA0	0000
AD1CHS0	0328	CHONB	_	CH0SB5	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CH0NA	-	CH0SA5	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0	0000
AD1CSSH	032E					CSS[31:24]				_	_	—	_		CSS	[19:16]		0000
AD1CSSL	0330								CSS	[15:0]								0000
AD1CON4	0332	—	—	—		_	-	_	ADDMAEN	_	_	—	—	-	DMABL2	DMABL1	DMABL0	0000

dsPIC33EVXXXGM00X/10X FAMILY

TABLE 4-7: ADC1 REGISTER MAP

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-8: CTMU REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CTMUCON1	033A	CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG		_	_	—		—	_	_	0000
CTMUCON2	033C	EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT	EDG2MOD	EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0	—	_	0000
CTMUICON	033E			ITRI	M[5:0]			IRNO	6[1:0]		—	—	—	-	_			0000

TABLE 4	-9:	CAN	1 REGIS	TER M	AP WHE	N WIN (C1CTR	L[0]) = (OR 1	FOR dsF	PIC33EV	XXXGM	10X DE\	/ICES				
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1CTRL1	0400		—	CSIDL	ABAT	CANCKS	REQOP2	REQOP1	REQOP0	OPMODE2	OPMODE1	OPMODE0	—	CANCAP	_	_	WIN	0480
C1CTRL2	0402	-	—	—	—	—	—	_	_	—	—	_			DNCNT[4:0]			0000
C1VEC	0404	_	_	_			FILHIT[4:0]			_				ICODE[6:0]				0000
C1FCTRL	0406		DMABS[2:0]		_	_	_	_	_	—	_			FSA[5:0]			0000
C1FIFO	0408		_	FBP[5:0] — — FNRB[5:0]											0000			
C1INTF	040A		_	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF	0000
C1INTE	040C		_	_	—	_	_	_	_	IVRIE	WAKIE	ERRIE	_	FIFOIE	RBOVIE	RBIE	TBIE	0000
C1EC	040E				TERRO	NT[7:0]							RERRCI	NT[7:0]				0000
C1CFG1	0410		_	_	_	_	_	_	_	SJW1	SJW0	BRP5	BRP4	BRP3	BRP2	BRP1	BRP0	0000
C1CFG2	0412		WAKFIL	_	_	_	SEG2PH2	SEG2PH1	SEG2PH0	SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0	0000
C1FEN1	0414								FLTE	EN[15:0]		·		·				FFFF
C1FMSKSEL1	0418	F7MSK1	F7MSK0	F6MSK1	F6MSK0	F5MSK1	F5MSK0	F4MSK1	F4MSK0	F3MSK1	F3MSK0	F2MSK1	F2MSK0	F1MSK1	F1MSK0	F0MSK1	F0MSK0	0000
C1FMSKSEL2	041A	F15MSK1	F15MSK0	F14MSK1	F14MSK0	F13MSK1	F13MSK0	F12MSK1	F12MSK0	F11MSK1	F11MSK0	F10MSK1	F10MSK0	F9MSK1	F9MSK0	F8MSK1	F8MSK0	0000

- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

TABLE 4-10: CAN1 REGISTER MAP WHEN WIN (C1CTRL[0]) = 0 FOR dsPIC33EVXXXGM10X DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E							Se	e definition	when WIN	= X							
C1RXFUL1	0420								RXFUI	_[15:0]								0000
C1RXFUL2	0422								RXFUL	[31:16]								0000
C1RXOVF1	0428								RXOVI	F[15:0]								0000
C1RXOVF2	042A								RXOVF	[31:16]								0000
C1TR01CON	0430	TXEN1	TXABT1	TXLARB1	TXERR1	TXREQ1	RTREN1	TX1PRI1	TX1PRI0	TXEN0	TXABAT0	TXLARB0	TXERR0	TXREQ0	RTREN0	TX0PRI1	TX0PRI0	0000
C1TR23CON	0432	TXEN3	TXABT3	TXLARB3	TXERR3	TXREQ3	RTREN3	TX3PRI1	TX3PRI0	TXEN2	TXABAT2	TXLARB2	TXERR2	TXREQ2	RTREN2	TX2PRI1	TX2PRI0	0000
C1TR45CON	0434	TXEN5	TXABT5	TXLARB5	TXERR5	TXREQ5	RTREN5	TX5PRI1	TX5PRI0	TXEN4	TXABAT4	TXLARB4	TXERR4	TXREQ4	RTREN4	TX4PRI1	TX4PRI0	0000
C1TR67CON	0436	TXEN7	TXABT7	TXLARB7	TXERR7	TXREQ7	RTREN7	TX7PRI1	TX7PRI0	TXEN6	TXABAT6	TXLARB6	TXERR6	TXREQ6	RTREN6	TX6PRI1	TX6PRI0	XXXX
C1RXD	0440							CAN1	Receive Da	ata Word R	egister							XXXX
C1TXD	0442							CAN1	Transmit Da	ata Word R	egister							XXXX

dsPIC33EVXXXGM00X/10X FAMILY

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-11: CAN1 REGISTER MAP WHEN WIN (C1CTRL[0]) = 1 FOR dsPIC33EVXXXGM10X DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E								See defin	ition when W	/IN = x							
C1BUFPNT1	0420	F3BP3	F3BP2	F3BP1	F3BP0	F2BP3	F2BP2	F2BP1	F2BP0	F1BP3	F1BP2	F1BP1	F1BP0	F0BP3	F0BP2	F0BP1	F0BP0	0000
C1BUFPNT2	0422	F7BP3	F7BP2	F7BP1	F7BP0	F6BP3	F6BP2	F6BP1	F6BP0	F5BP3	F5BP2	F5BP1	F5BP0	F4BP3	F4BP2	F4BP1	F4BP0	0000
C1BUFPNT3	0424	F11BP3	F11BP2	F11BP1	F11BP0	F10BP3	F10BP2	F10BP1	F10BP0	F9BP3	F9BP2	F9BP1	F9BP0	F8BP3	F8BP2	F8BP1	F8BP0	0000
C1BUFPNT4	0426	F15BP3	F15BP2	F15BP1	F15BP0	F14BP3	F14BP2	F14BP1	F14BP0	F13BP3	F13BP2	F13BP1	F13BP0	F12BP3	F12BP2	F12BP1	F12BP0	0000
C1RXM0SID	0430						SID[10):0]					_	MIDE	—	EID17	EID16	XXXX
C1RXM0EID	0432									EID[15:0]								XXXX
C1RXM1SID	0434						SID[10):0]					_	MIDE	—	EID17	EID16	XXXX
C1RXM1EID	0436									EID[15:0]								XXXX
C1RXM2SID	0438						SID[10):0]					_	MIDE	—	EID17	EID16	XXXX
C1RXM2EID	043A																	XXXX
C1RXF0SID	0440		SID[10:0] — EXIDE — EID17 EID1 EID[15:0]														EID16	XXXX
C1RXF0EID	0442		SID[10:0] — EXIDE — EID17 EID1															XXXX
C1RXF1SID	0444		SID[10:0] — EXIDE — EID17 EID1 EID[15:0]														EID16	XXXX
C1RXF1EID	0446									EID[15:0]								XXXX
C1RXF2SID	0448						SID[10):0]						EXIDE	—	EID17	EID16	XXXX
C1RXF2EID	044A									EID[15:0]								XXXX
C1RXF3SID	044C						SID[10	0:0]						EXIDE	—	EID17	EID16	XXXX
C1RXF3EID	044E									EID[15:0]								xxxx
C1RXF4SID	0450						SID[10):0]					_	EXIDE	—	EID17	EID16	xxxx
C1RXF4EID	0452									EID[15:0]								xxxx
C1RXF5SID	0454						SID[10):0]						EXIDE	—	EID17	EID16	xxxx
C1RXF5EID	0456									EID[15:0]						-		xxxx
C1RXF6SID	0458						SID[10):0]						EXIDE	—	EID17	EID16	xxxx
C1RXF6EID	045A									EID[15:0]								XXXX
C1RXF7SID	045C						SID[10):0]					—	EXIDE	—	EID17	EID16	xxxx
C1RXF7EID	045E									EID[15:0]								XXXX
C1RXF8SID	0460						SID[10):0]					_	EXIDE	—	EID17	EID16	XXXX
C1RXF8EID	0462									EID[15:0]								XXXX
C1RXF9SID	0464						SID[10	0:0]					_	EXIDE	—	EID17	EID16	xxxx
C1RXF9EID	0466									EID[15:0]							1	xxxx
C1RXF10SID	0468						SID[10	0:0]					_	EXIDE	—	EID17	EID16	xxxx
C1RXF10EID	046A									EID[15:0]								xxxx

dsPIC33EVXXXGM00X/10X FAMILY

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4	-11: 0	CAN1 R	REGIST	ER MA	P WHE	N WIN	(C1CTF	RL[0]) =	1 FOR (dsPIC33	EVXXX	GM10X C	DEVICES	6 (CONT	INUED)	
SFR	Addr	Bit 15	Bit 14	Bit 12	Bit 12	Bit 11	Rit 10	Bit 0	Bit 9	Bit 7	Rit 6	Rit 5	Bit 4	Bit 2	Bit 2	Bit 1

C1RXF11EID 046E EID(15:0] EID(15:0] EXIDE EID(17) EID(18) XXXX C1RXF12SID 0470 CM SID[10:0] — EID(15:0] XXXX C1RXF12EID 0472 EID(17) EID(15:0] XXXX XXXX C1RXF13SID 0474 SID[10:0] — EID(15:0] XXXX C1RXF13EID 0476 EID(17) EID(15:0] XXXX XXXX C1RXF13EID 0478 SID[10:0] — EID(15:0] XXXX C1RXF14SID 0478 GIRXF14SID 0478 EID(17) EID(16) XXXX C1RXF14SID 0476 GIRXF14SID 047A EID(17) EID(16) XXXX C1RXF14SID 047A SID[10:0] EID[15:0] — EID(17) EID(16) XXXX C1RXF14SID 047C SID[10:0] SID[10:0] — EID(17) EID(16) XXXX C1RXF15SID 047C SID[10:0] SID[10:0] — EID(17) EID16	SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF12SID0470EXIDEEID17EID16xxxxC1RXF12EID0472EID17EID16EID17EID16xxxxC1RXF13SID0474SID[10:0]-EID[15:0]-EID17EID16xxxxC1RXF13EID0476EID17EID16EID16EID17EID16xxxxC1RXF14SID0478SID[10:0]-EID[15:0]-EID17EID16xxxxC1RXF14SID0478G1RXF14SID0478EID[15:0]-EID17EID16xxxxC1RXF14EID0470G470SID[10:0]-EID[15:0]-EID17EID16xxxxC1RXF15SID0470G470SID[10:0]-EID[15:0]-EID17EID16xxxx	C1RXF11SID	046C						SID[10):0]					—	EXIDE	—	EID17	EID16	XXXX
C1RXF12EID 0472 EID(15:0] xxxx C1RXF13SID 0474 SID[10:0] - EID(15:0] - EID17 EID16 xxxx C1RXF13EID 0476 EID(15:0] - EID(15:0] xxxx C1RXF14SID 0478 SID[10:0] - EID(15:0] xxxx C1RXF14SID 0478 SID[10:0] - EID[15:0] xxxx C1RXF14SID 047A SID[10:0] - EID[15:0] xxxx	C1RXF11EID	046E									EID[15:0]								XXXX
C1RXF13SID0474EXIDE-EID17EID16xxxxC1RXF13EID0476EID17EID16EID17EID16xxxxC1RXF14SID0478O478EID17EID16xxxxC1RXF14EID047AEID17EID16EID17EID16xxxxC1RXF14SID047AO47AEID17EID16xxxxC1RXF14SID047AEID17EID16xxxxC1RXF14SID047AEID17EID16xxxx	C1RXF12SID	0470						SID[10):0]					_	EXIDE	_	EID17	EID16	XXXX
C1RXF13EID 0476 EID[15:0] xxxx C1RXF14SID 0478 C1RXF100 - EXIDE - EID17 EID16 xxxx C1RXF14EID 047A C1RXF100 - EID17 EID16 xxxx C1RXF14EID 047A SID[10:0] - EID17 EID16 xxxx C1RXF15SID 047C SID[10:0] - EID17 EID16 xxxx	C1RXF12EID	0472									EID[15:0]								XXXX
C1RXF14SID 0478 EXIDE — EID17 EID16 xxxx C1RXF14EID 047A 047A EID17 EID16 xxxx C1RXF15SID 047C SID[10:0] — EID[15:0] xxxx	C1RXF13SID	0474						SID[10):0]						EXIDE	—	EID17	EID16	XXXX
C1RXF14EID 047A EID[15:0] xxxx C1RXF15SID 047C EID[10:0] - EID[10:0] xxxx	C1RXF13EID	0476									EID[15:0]								XXXX
C1RXF15SID 047C SID[10:0] - EXIDE - EID17 EID16 xxxx	C1RXF14SID	0478						SID[10):0]						EXIDE	—	EID17	EID16	XXXX
	C1RXF14EID	047A									EID[15:0]								XXXX
C1RXF15EID 047E EID[15:0] xxxx	C1RXF15SID	047C						SID[10):0]					-	EXIDE	—	EID17	EID16	XXXX
	C1RXF15EID	047E									EID[15:0]								XXXX

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: SENT1 RECEIVER REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SENT1CON1	0500	SNTEN	—	SNTSIDL		RCVEN	TXM	TXPOL	CRCEN	PPP	SPCEN	—	PS	—	NIBCNT2	NIBCNT1	NIBCNT0	0000
SENT1CON2	0504					TIC	KTIME[15:0)] (Transm	it modes)	or SYNCM	AX[15:0] (F	Receive m	ode)					FFFF
SENT1CON3	0508					FRA	METIME[15	5:0] (Trans	mit modes) or SYNC	MIN[15:0] ((Receive r	node)					FFFF
SENT1STAT	050C	—	—	—		_		—	—	PAUSE	NIB2	NIB1	NIB0	CRCERR	FRMERR	RXIDLE	SYNCTXEN	0000
SENT1SYNC	0510						Synchr	onization -	Time Perio	d Register	· (Transmit	mode)						0000
SENT1DATL	0514		DATA	4[3:0]			DATA5	[3:0]			DATA	6[3:0]			CR	C[3:0]		0000
SENT1DATH	0516		STAT	Г[3:0]			DATA1	[3:0]			DATA	2[3:0]			DAT	A3[3:0]		0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-13: SENT2 RECEIVER REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SENT2CON1	0520	SNTEN	—	SNTSIDL	_	RCVEN	TXM	TXPOL	CRCEN	PPP	SPCEN	_	PS	—	NIBCNT2	NIBCNT1	NIBCNT0	0000
SENT2CON2	0524					TIC	KTIME[15:0)] (Transm	it modes)	or SYNCM	1AX[15:0] (F	Receive m	ode)					FFFF
SENT2CON3	0528					FRA	METIME[15	5:0] (Trans	mit modes) or SYNC	MIN[15:0]	(Receive n	node)					FFFF
SENT2STAT	052C	_	_	_	_	_	_	_	_	PAUSE	NIB2	NIB1	NIB0	CRCERR	FRMERR	RXIDLE	SYNCTXEN	0000
SENT2SYNC	0530						Synchi	onization	Time Perio	d Registe	r (Transmit	mode)						0000
SENT2DATL	0534		DATA	4[3:0]			DATA5	[3:0]			DATA	6[3:0]			CR	C[3:0]		0000
SENT2DATH	0536		STA	T[3:0]			DATA1	[3:0]			DATA	2[3:0]			DAT	A3[3:0]		0000

TABLE 4-14: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EVXXXGM002/102 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0670	—	_	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0	_	_	RP20R5	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0	0000
RPOR1	0672	_		RP37R5	RP37R4	RP37R3	RP37R2	RP37R1	RP37R0		_	RP36R5	RP36R4	RP36R3	RP36R2	RP36R1	RP36R0	0000
RPOR2	0674	_		RP39R5	RP39R4	RP39R3	RP39R2	RP39R1	RP39R0		_	RP38R5	RP38R4	RP38R3	RP38R2	RP38R1	RP38R0	0000
RPOR3	0676	_		RP41R5	RP41R4	RP41R3	RP41R2	RP41R1	RP41R0		_	RP40R5	RP40R4	RP40R3	RP40R2	RP40R1	RP40R0	0000
RPOR4	0678	_		RP43R5	RP43R4	RP43R3	RP43R2	RP43R1	RP43R0		_	RP42R5	RP42R4	RP42R3	RP42R2	RP42R1	RP42R0	0000
RPOR10	0684	_				RP176	6R[5:0]				_	_	-	_	_	_	_	0000
RPOR11	0686	_		RP178R5	RP178R4	RP178R3	RP178R2	RP178R1	RP178R0		_	RP177R5	RP177R4	RP177R3	RP177R2	RP177R1	RP177R0	0000
RPOR12	0688	_		RP180R5	RP180R4	RP180R3	RP180R2	RP180R1	RP180R0		_	RP179R5	RP179R4	RP179R3	RP179R2	RP179R1	RP179R0	0000
RPOR13	068A	_	_	_	_	_	_	_	_	_	_			RP181	R[5:0]			0000

dsPIC33EVXXXGM00X/10X FAMILY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-15: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EVXXXGM004/104 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0670	_	_	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0	_	_	RP20R5	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0	0000
RPOR1	0672	_	_	RP37R5	RP37R4	RP37R3	RP37R2	RP37R1	RP37R0	-	_	RP36R5	RP36R4	RP36R3	RP36R2	RP36R1	RP36R0	0000
RPOR2	0674	_	_	RP39R5	RP39R4	RP39R3	RP39R2	RP39R1	RP39R0	-	_	RP38R5	RP38R4	RP38R3	RP38R2	RP38R1	RP38R0	0000
RPOR3	0676	_	_	RP41R5	RP41R4	RP41R3	RP41R2	RP41R1	RP41R0	-	_	RP40R5	RP40R4	RP40R3	RP40R2	RP40R1	RP40R0	0000
RPOR4	0678	_	_	RP43R5	RP43R4	RP43R3	RP43R2	RP43R1	RP43R0	-	_	RP42R5	RP42R4	RP42R3	RP42R2	RP42R1	RP42R0	0000
RPOR5	067A	_	—	RP49R5	RP49R4	RP49R3	RP49R2	RP49R1	RP49R0	-	_	RP48R5	RP48R4	RP48R3	RP48R2	RP48R1	RP48R0	0000
RPOR6	067C	—	_	RP55R5	RP55R4	RP55R3	RP55R2	RP55R1	RP55R0	_	_	RP54R5	RP54R4	RP54R3	RP54R2	RP54R1	RP54R0	0000
RPOR7	067E	—	_	RP57R5	RP57R4	RP57R3	RP57R2	RP57R1	RP57R0	_	_	RP56R5	RP56R4	RP56R3	RP56R2	RP56R1	RP56R0	0000
RPOR10	0684	—	_			RP176	6R[5:0]			_	_	_	_	_	_	_	_	0000
RPOR11	0686	_	_	RP178R5	RP178R4	RP178R3	RP178R2	RP178R1	RP178R0	_	_	RP177R5	RP177R4	RP177R3	RP177R2	RP177R1	RP177R0	0000
RPOR12	0688	_	_	RP180R5	RP180R4	RP180R3	RP180R2	RP180R1	RP180R0	_	_	RP179R5	RP179R4	RP179R3	RP179R2	RP179R1	RP179R0	0000
RPOR13	068A	_	_	_	_	_	_	_	—	_	_		-	RP18	1R[5:0]	•	-	0000

IABLE	4-16:	PER	IPHERA	AL PIN 5	ELECI	OUIPU	I REGIS		AP FUR	aspic	33EV/	(XXGIVIU	06/106 L	DEVICES	>			
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0670	_	—	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0	_	_	RP20R5	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0	0000
RPOR1	0672	_	_	RP37R5	RP37R4	RP37R3	RP37R2	RP37R1	RP37R0	_	_	RP36R5	RP36R4	RP36R3	RP36R2	RP36R1	RP36R0	0000
RPOR2	0674	_	_	RP39R5	RP39R4	RP39R3	RP39R2	RP39R1	RP39R0	_	_	RP38R5	RP38R4	RP38R3	RP38R2	RP38R1	RP38R0	0000
RPOR3	0676	_	_	RP41R5	RP41R4	RP41R3	RP41R2	RP41R1	RP41R0	_	_	RP40R5	RP40R4	RP40R3	RP40R2	RP40R1	RP40R0	0000
RPOR4	0678	_	_	RP43R5	RP43R4	RP43R3	RP43R2	RP43R1	RP43R0	_	_	RP42R5	RP42R4	RP42R3	RP42R2	RP42R1	RP42R0	0000
RPOR5	067A	_	_	RP49R5	RP49R4	RP49R3	RP49R2	RP49R1	RP49R0	_	_	RP48R5	RP48R4	RP48R3	RP48R2	RP48R1	RP48R0	0000
RPOR6	067C	_	_	RP55R5	RP55R4	RP55R3	RP55R2	RP55R1	RP55R0	_	_	RP54R5	RP54R4	RP54R3	RP54R2	RP54R1	RP54R0	0000
RPOR7	067E	_	_	RP57R5	RP57R4	RP57R3	RP57R2	RP57R1	RP57R0	_	_	RP56R5	RP56R4	RP56R3	RP56R2	RP56R1	RP56R0	0000
RPOR8	0680	_	_	RP70R5	RP70R4	RP70R3	RP70R2	RP70R1	RP70R0	_	_	RP69R5	RP69R4	RP69R3	RP69R2	RP69R1	RP69R0	0000
RPOR9	0682	_	_	RP118R5	RP118R4	RP118R3	RP118R2	RP118R1	RP118R0	_	_	RP97R5	RP97R4	RP97R3	RP97R2	RP97R1	RP97R0	0000
RPOR10	0684	_	_	RP176R5	RP176R4	RP176R3	RP176R2	RP176R1	RP176R0	_	_	RP120R5	RP120R4	RP120R3	RP120R2	RP120R1	RP120R0	0000
RPOR11	0686	_	_	RP178R5	RP178R4	RP178R3	RP178R2	RP178R1	RP178R0	_	_	RP177R5	RP177R4	RP177R3	RP177R2	RP177R1	RP177R0	0000
RPOR12	0688	_	-	RP180R5	RP180R4	RP180R3	RP180R2	RP180R1	RP180R0	_	_	RP179R5	RP179R4	RP179R3	RP179R2	RP179R1	RP179R0	0000
RPOR13	068A	_	—	—	_	_	_	_	—	—				RP18	1R[5:0]	•	•	0000

TABLE 4-16: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EVXXXGM006/106 DEVICES

												1						T
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0				INT1	R[7:0]				—	—	-	_	_	—	_	-	0000
RPINR1	06A2	_	_	—	_	—	—	—	—				INT2F	R[7:0]				0000
RPINR3	06A6	_	_	_	_	_	_	_	_				T2CK	R[7:0]				0000
RPINR7	06AE	IC2R7	IC2R6	IC2R5	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0	IC1R7	IC1R6	IC1R5	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0	0000
RPINR8	06B0	IC4R7	IC4R6	IC4R5	IC4R4	IC4R3	IC4R2	IC4R1	IC4R0	IC3R7	IC3R6	IC3R5	IC3R4	IC3R3	IC3R2	IC3R1	IC3R0	0000
RPINR11	06B6	_	_	_	_	_	_	_	_		Intraction Intractin Intractin Intractin			0000				
RPINR12	06B8	FLT2R7	FLT2R6	FLT2R5	FLT2R4	FLT2R3	FLT2R2	FLT2R1	FLT2R0	2R0 FLT1R7 FLT1R6 FLT1R5 FLT1R4 FLT1R3 FLT1R2 FLT1R1 FLT1R0								0000
RPINR18	06C4	_	_	_	_	_	_	_	_				U1RX	R[7:0]				0000
RPINR19	06C6	_	_	_	_	_	_	_	_				U2RX	R[7:0]				0000
RPINR22	06CC	SCK2R7	SCK2R6	SCK2R5	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0	SDI2R7	T2CKR[7:0] 7 IC1R6 IC1R5 IC1R4 IC1R3 IC1R2 IC1R1 IC1R0 7 IC3R6 IC3R5 IC3R4 IC3R3 IC3R2 IC3R1 IC3R0 7 IC3R6 IC3R5 IC3R4 IC3R3 IC3R2 IC3R1 IC3R0 OCFAR[7:0] U1RXR[7:0] U2RXR[7:0] SDI2R6 SDI2R5 SDI2R4 SDI2R3 SDI2R2 SDI2R1 SDI2R0 SS2R[7:0] C1RXR[7:0] ⁽¹⁾ C1RXR[7:0] ⁽¹⁾ — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —						0000	
RPINR23	06CE	_	_	_	_	_	_	_	_				SS2F	R[7:0]				0000
RPINR26	06D4	_	_	_	_	_	_	_	_				C1RXR	[7:0] ⁽¹⁾				0000
RPINR37	06EA				SYNCI	1R[7:0]				_	_	_	_	_	_	_	_	0000
RPINR38	06EC				DTCMF	21R[7:0]				_	R7 IC1R6 IC1R5 IC1R4 IC1R3 IC1R2 IC1R1 IC1R0 R7 IC3R6 IC3R5 IC3R4 IC3R3 IC3R2 IC3R1 IC3R0 OCFAR[7:0] IR7 FLT1R6 FLT1R5 FLT1R4 FLT1R3 FLT1R2 FLT1R1 FLT1R0 U1RXR[7:0] U2RXR[7:0] C1RXR[7:0] C1RXR[7:0] ⁽¹⁾ C1RXR[7:0] ⁽¹⁾ C1RXR[7:0] ⁽¹⁾ C1RXR[7:0] ⁽¹⁾ — — — — — — — —						0000	
RPINR39	06EE	DTCMP3R7	DTCMP3R6	DTCMP3R5	DTCMP3R4	DTCMP3R3	DTCMP3R2	DTCMP3R1	DTCMP3R0	DTCMP2R7	DTCMP2R6	DTCMP2R5	DTCMP2R4	DTCMP2R3	DTCMP2R2	DTCMP2R1	DTCMP2R0	0000
RPINR44	06F8				SENT	1R[7:0]				—	Interview Interview <t< td=""><td>0000</td></t<>		0000					
RPINR45	06FA		_	_	_	_	_	_	_			•	SENT2	2R[7:0]		•		0000

dsPIC33EVXXXGM00X/10X FAMILY

TABLE 4-17: PERIPHERAL PIN SELECT INPUT REGISTER MAP

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This feature is available only on dsPIC33EVXXXGM10X devices.

TABLE 4-18: DMT REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMTCON	0700	ON	_	_	-	-		_	_	_	_	_	_	-	_	-	_	0000
DMTPRECLR	0704		STEP1[7:0]													0000		
DMTCLR	0708		<u> </u>														0000	
DMTSTAT	070C																0000	
DMTCNTL	0710								COUNTER	R[15:0]								0000
DMTCNTH	0712								COUNTER	[31:16]								0000
DMTHOLDREG	0714								UPRCNT	[15:0]								0000
DMTPSCNTL	0718								PSCNT[15:0]								0000
DMTPSCNTH	071A								PSCNT[3	31:16]								0000
DMTPSINTVL	071C								PSINTV	15:0]								0000
DMTPSINTVH	071E								PSINTV[31:16]								0000

TABLE 4-19: NVM REGISTER MAP

												-						
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0728	WR	WREN	WRERR	NVMSIDL		_	RPDF	URERR			—	—	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000
NVMADR	072A									NVMADR[15:0]							0000
NVMADRU	072C	_	_	_	_	_	_	_	_				NVMAE)RU[23:16]				0000
NVMKEY	072E	_	_	_	_	_	_	_	_				NVM	KEY[7:0]				0000
NVMSRCADRL	0730								NVMS	RCADR[15:]						0	0000
NVMSRCADRH	0732		_	—	_		_	_	_				NVMSRC	CADR[23:16]				0000
Logondy	nimanlam	antad ra	ad aa 'o'	Deastwalu	ioo oro obow	n in hove	decimal											

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-20: SYSTEM CONTROL REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	_	_	VREGSF	_	СМ	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	Note 1
OSCCON	0742	—	COSC2	COSC1	COSC0	—	NOSC2	NOSC1	NOSC0	CLKLOCK	IOLOCK	LOCK	_	CF	_	_	OSWEN	Note 2
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	FRCDIV2	FRCDIV1	FRCDIV0	PLLPOST1	PLLPOST0	_	PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0	0000
PLLFBD	0746	_	—	—	—	_	_	_				PL	LDIV[8:0]					0000
OSCTUN	0748	_	_	_	_	_	_	_	_	_	_			TUN	I[5:0]			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on the Configuration fuses.

TABLE 4-21: REFERENCE CLOCK REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
REFOCO	V 074E	ROON		ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0		_			—	_		_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70005144H-page 57

TABLE 4-22: PMD REGISTER MAP FOR dsPIC33EVXXXGM00X/10X FAMILY DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	_	PWMMD	_	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	C1MD ⁽¹⁾	AD1MD	0000
PMD2	0762	—	—	—	_	IC4MD	IC3MD	IC2MD	IC1MD	_				OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	—	—	—	—	—	CMPMD	—						—	—			0000
PMD4	0766	—	—	—	—	—	—	—						REFOMD	CTMUMD			0000
PMD6	076A	—	—	—	—	—	PWM3MD	PWM2MD	PWM1MD					—	—			0000
PMD7	076C	—	—	—	_	—	—	—	-	-	-	-	DMA0MD	—	—	—	-	0000
													DMA1MD					
													DMA2MD					
													DMA3MD					
PMD8	076E	—	_	_	SENT2MD	SENT1MD	_	_	DMTMD	_	_	_	_	_	_	_	_	0000

dsPIC33EVXXXGM00X/10X FAMILY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This feature is available only on dsPIC33EVXXXGM10X devices.

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	NVMIF	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	—	—	—	INT1IF	CNIF	CMPIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	—	-	_	—	_	_	_		—	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF ⁽¹⁾	SPI2IF	SPI2EIF	0000
IFS3	0806	—	-	_	—	_	_	PSEMIF		—	—	—	—	—	_	_	_	0000
IFS4	0808	_	_	CTMUIF	—	_		_		_	C1TXIF ⁽¹⁾	_	—	—	U2EIF	U1EIF	—	0000
IFS5	080A	PWM2IF	PWM1IF	—	—	—	-	—	-	—	—	—	—	—	—	—	—	0000
IFS6	080C	—	_	_	—	_	_	_	_	—	—	—	—	_	_	—	PWM3IF	0000
IFS8	0810	—	ICDIF	_	—	_	_	_	_	—	—	—	—	_	_	—	—	0000
IFS10	0814	—	_	I2C1BCIF	—		_	_	_	—	—	—	—	_	_	—	—	0000
IFS11	0816	—	_	_	—	_	ECCSBEIF	SENT2IF	SENT2EIF	SENT1IF	SENT1EIF	—	—	_	_	—	_	0000
IEC0	0820	NVMIE	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	_	—	_	INT1IE	CNIE	CMPIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	—	-	—	—	_	_	_	_	_	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE ⁽¹⁾	SPI2IE	SPI2EIE	0000
IEC3	0826	—	—	—	—	—	_	PSEMIE	_		_	_	_	_		_		0000
IEC4	0828	—	—	CTMUIE	—	—	_	_	_		C1TXIE ⁽¹⁾	_	_	_	U2EIE	U1EIE		0000
IEC5	082A	PWM2IE	PWM1IE	—	—	—	—	—	—	—	—	—	—	—	-	—	—	0000
IEC6	082C	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	PWM3IE	0000
IEC8	0830	—	ICDIE	—	—	—	—	—	—	—	—	—	—	—	_	—	-	0000
IEC10	0834	—	—	I2C1BCIE	—	—	—	—	—	—	—	—	—	—	_	—	-	0000
IEC11	0836	—	-	—	—	_	ECCSBEIE	SENT2IE	SENT2EIE	SENT1IE	SENT1EIE	—	—	_	—	-	-	0000
IPC0	0840	—	T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0	—	IC1IP2	IC1IP1	IC1IP0	_	INT0IP2	INT0IP1	INT0IP0	4444
IPC1	0842	—	T2IP2	T2IP1	T2IP0	_	OC2IP2	OC2IP1	OC2IP0	—	IC2IP2	IC2IP1	IC2IP0	_	DMA0IP2	DMA0IP1	DMA0IP0	4444
IPC2	0844	—	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0	—	SPI1EIP2	SPI1EIP1	SPI1EIP0	_	T3IP2	T3IP1	T3IP0	4444
IPC3	0846	—	NVMIP2	NVMIP1	NVMIP0	_	DMA1IP2	DMA1IP1	DMA1IP0	—	AD1IP2	AD1IP1	AD1IP0	_	U1TXIP2	U1TXIP1	U1TXIP0	4444
IPC4	0848	—	CNIP2	CNIP1	CNIP0	—	CMPIP2	CMPIP1	CMPIP0	—	MI2C1IP2	MI2C1IP1	MI2C1IP0	_	SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	084A	—	_	—	—	—	—	—	—	—	—	—	_	_		INT1IP[2:0]	1	0004
IPC6	084C	—	T4IP2	T4IP1	T4IP0	—	OC4IP2	OC4IP1	OC4IP0	—	OC3IP2	OC3IP1	OC3IP0	_	DMA2IP2	DMA2IP1	DMA2IP0	4444
IPC7	084E	—	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0	—	INT2IP2	INT2IP1	INT2IP0	_	T5IP2	T5IP1	T5IP0	4444
IPC8	0850	—	C1IP2	C1IP1	C1IP0	—	C1RXIP2 ⁽¹⁾	C1RXIP1 ⁽¹⁾	C1RXIP0 ⁽¹⁾	—	SPI2IP2	SPI2IP1	SPI2IP0	_	SPI2EIP2	SPI2EIP1	SPI2EIP0	4444
IPC9	0852	_	—	—	—	—	IC4IP2	IC4IP1	IC4IP0	—	IC3IP2	IC3IP1	IC3IP0	_	DMA3IP2	DMA3IP1	DMA3IP0	0444
IPC14	085C	—	—	—	—	—	_	—	—	—		PSEMIP[2:0]		_		-	—	0040
IPC16	0860	—	—	—	—	—	U2EIP2	U2EIP1	U2EIP0	—	U1EIP2	U1EIP1	U1EIP0	_		—	—	0440
IPC17	0862	_	_	—	_	_		C1TXIP[2:0](1)		—	_	-	—	_	_	-	- 1	0400

dsPIC33EVXXXGM00X/10X FAMILY

TABLE 4-23: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EVXXXGM00X/10X FAMILY DEVICES

Legend: — = unimplemented, read as '0' Reset values are shown in hexadecimal.

Note 1: This feature is available only on dsPIC33EVXXXGM10X devices.

TABLE	4-2:	3: IN	ITERRU	ЈРТ СО	NTROL	LER RE	GISTER	MAP FO	R dsPIC	33EVXX	XGM00)	K/10X FA	MILY D	EVICES	6 (CONTI	NUED)		
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC19	0866	_		—	—	_	_	—	_	_		CTMUIP[2:0]		_	_	_	_	0040
IPC23	086E	_	PWM2IP2	PWM2IP1	PWM2IP0	_	PWM1IP2	PWM1IP1	PWM1IP0	_	_	_	_	_	_	_	_	4400
IPC24	0870	_	_	—	—	_		—	_	_		_	_			PWM3IP[2:0]		0004
IPC35	0886	_		—	—			ICDIP[2:0]		—		_					—	0400
IPC43	0896	_		—	—			—	—	—		I2C1BCIP[2:0]					—	0040
IPC45	089A	_	SENT1IP2	SENT1IP1	SENT1IP0		SENT1EIP2	SENT1EIP1	SENT1EIP0	—		_					—	4400
IPC46	089C	_		—	—		ECCSBEIP2	ECCSBEIP1	ECCSBEIP0	—	SENT2IP2	SENT2IP1	SENT2IP0		SENT2EIP2	SENT2EIP1	SENT2EIP0	0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	08C2	GIE	DISI	SWTRAP	—			—	AIVTEN	—		_			INT2EP	INT1EP	INT0EP	0000
INTCON3	08C4	DMT	_	_	_	_	_	_	_	_		DAE	DOOVR	_	_	_	_	0000
INTCON4	08C6	_	_	_	_	_	_	_	_	_	_	_	_	_	_	ECCDBE	SGHT	0000
INTTREG	08C8	_	_	_	_	_		ILR[3:1]					VECN	UM[7:0]				0000

Legend: — = unimplemented, read as '0' Reset values are shown in hexadecimal. Note 1: This feature is available only on dsPIC33EVXXXGM10X devices.

TABLE 4-24: OUTPUT COMPARE REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1CON1	0900	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	_	ENFLTA	_	—	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC1CON2	0902	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	-	-	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC1RS	0904							Ou	tput Cor	npare 1 Se	condary Re	gister						XXXX
OC1R	0906								Outpu	ut Compare	e 1 Register							XXXX
OC1TMR	0908							Out	put Corr	pare 1 Tin	ner Value Re	gister						XXXX
OC2CON1	090A	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	-		ENFLTA	_	_	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC2CON2	090C	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC2RS	090E							Ou	tput Cor	npare 2 Se	condary Re	gister						xxxx
OC2R	0910																xxxx	
OC2TMR	0912							Out	put Corr	pare 2 Tin	ner Value Re	gister						XXXX
OC3CON1	0914	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	-		ENFLTA	_	_	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC3CON2	0916	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	-	-	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC3RS	0918							Ou	tput Cor	npare 3 Se	condary Re	gister						XXXX
OC3R	091A								Outpu	ut Compare	e 3 Register							XXXX
OC3TMR	091C							Out	put Corr	pare 3 Tin	ner Value Re	gister						XXXX
OC4CON1	091E	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	-		ENFLTA	_	_	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC4CON2	0920	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	-	-	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC4RS	0922							Ou	tput Cor	npare 4 Se	condary Re	gister						xxxx
OC4R	0924								Outpu	ut Compare	e 4 Register							xxxx
OC4TMR	0926							Out	put Corr	pare 4 Tin	ner Value Re	gister						xxxx
Logond		Output Compare 4 Timer Value Register x												-				

dsPIC33EVXXXGM00X/10X FAMILY

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-25: OP AMP/COMPARATOR REGISTER MAP

	-	-	-	-		-												
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMSTAT	0A80	PSIDL	—	_	C5EVT	C4EVT	C3EVT	C2EVT	C1EVT	—	-	—	C5OUT	C4OUT	C3OUT	C2OUT	C10UT	0000
CVR1CON	0A82	CVREN	CVROE ⁽¹⁾		_	CVRSS	VREFSEL	_	_	_	CVR6	CVR5	CVR4	CVR3	CVR2	CVR1	CVR0	0000
CM1CON	0A84	CON	COE	CPOL	_	—	OPAEN	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	—	—	CCH1	CCH0	0000
CM1MSKSRC	0A86	_	_		_	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	0000
CM1MSKCON	0A88	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM1FLTR	0A8A	_	_		_	_	_	_	_	_	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	0000
CM2CON	0A8C	CON	COE	CPOL	_	_	OPAEN	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM2MSKSRC	0A8E	_	_		_	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	0000
CM2MSKCON	0A90	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM2FLTR	0A92	_	_		_	_	_	_	_	_	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	0000
CM3CON	0A94	CON	COE	CPOL	_	_	OPAEN	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM3MSKSRC	0A96	_	_		_	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	0000
CM3MSKCON	0A98	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM3FLTR	0A9A	_	_		_	_	_	_	_	_	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	0000
CM4CON	0A9C	CON	COE	CPOL	_	_	_	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM4MSKSRC	0A9E	_	_		_	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	0000
CM4MSKCON	0AA0	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM4FLTR	0AA2	_	_		_	_	_	_	_	_	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	0000
CM5CON	0AA4	CON	COE	CPOL	_	_	OPAEN	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM5MSKSRC	0AA6	_	_		_	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	0000
CM5MSKCON	0AA8	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM5FLTR	0AAA	_	_	—	—	—	-	_	_	-	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	0000
CVR2CON	0AB4	CVREN	CVROE ⁽¹⁾	_	_	CVRSS	VREFSEL	_	_	-	CVR6	CVR5	CVR4	CVR3	CVR2	CVR1	CVR0	0000

dsPIC33EVXXXGM00X/10X FAMILY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: CVROE (CVR2CON[14]) is not available on 28-pin and 36-pin devices.

TABLE 4-26: DMAC REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
DMA0CON	0B00	CHEN	SIZE	DIR	HALF	NULLW		-		_	_	AMODE1	AMODE0	_	_	MODE1	MODE0	0000	
DMA0REQ	0B02	FORCE	—	_	_			—		IRQSEL7	IRQSEL6	IRQSEL5	IRQSEL4	IRQSEL3	IRQSEL2	IRQSEL1	IRQSEL0	OOFF	
DMA0STAL	0B04									STA[15:0]							0000	
DMA0STAH	0B06	_	_	_	_	—	_		_				STA[2	23:16]				0000	
DMA0STBL	0B08									STB	[15:0]							0000	
DMA0STBH	0B0A		_	—	_	_		_					STB[23:16]				0000	
DMA0PAD	0B0C									PAD	[15:0]							0000	
DMA0CNT	0B0E	—	—								CNT[13:	0]						0000	
DMA1CON	0B10	CHEN	SIZE	DIR	HALF	NULLW	-	—	_	_	_	AMODE1	AMODE0	-	_	MODE1	MODE0	0000	
DMA1REQ	0B12	FORCE	—		—	_	—	—	—	IRQSEL7	IRQSEL6	IRQSEL5	IRQSEL4	IRQSEL3	IRQSEL2	IRQSEL1	IRQSEL0	OOFF	
DMA1STAL	0B14				-					STA[15:0]							0000	
DMA1STAH	0B16	—	—	_	—	—	—	_	—				STA[2	23:16]				0000	
DMA1STBL	0B18				-					STB	[15:0]							0000	
DMA1STBH	0B1A	—	—		—	_	—	—	—				STB[23:16]				0000	
DMA1PAD	0B1C									PAD[15:0]									
DMA1CNT	0B1E	_	—							-	CNT[13:	0]			-			0000	
DMA2CON	0B20	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	—	—	AMODE1	AMODE0	_	_	MODE1	MODE0	0000	
DMA2REQ	0B22	FORCE	—	_	—	—	—	_	—	IRQSEL7	IRQSEL6	IRQSEL5	IRQSEL4	IRQSEL3	IRQSEL2	IRQSEL1	IRQSEL0	OOFF	
DMA2STAL	0B24									STA[15:0]							0000	
DMA2STAH	0B26	—	—	_	—	—	_	—	—				STA[2	23:16]				0000	
DMA2STBL	0B28									STB	[15:0]							0000	
DMA2STBH	0B2A	—	—	_	—	—	_	—	—				STB[23:16]				0000	
DMA2PAD	0B2C									PAD	[15:0]							0000	
DMA2CNT	0B2E	—	—								CNT[13:	0]	r				r	0000	
DMA3CON	0B30	CHEN	SIZE	DIR	HALF	NULLW	_	—	—	—	—	AMODE1	AMODE0	—	—	MODE1	MODE0	0000	
DMA3REQ	0B32	FORCE	—	_	—	—	_	—	—	IRQSEL7	IRQSEL6	IRQSEL5	IRQSEL4	IRQSEL3	IRQSEL2	IRQSEL1	IRQSEL0	OOFF	
DMA3STAL	0B34									STA[[15:0]							0000	
DMA3STAH	0B36	—	—		—		—	—	—				STA[23:16]				0000	
DMA3STBL	0B38									STB[15:0]									
DMA3STBH	0B3A	—	—	—	—	_	—	—	—	— STB[23:16]									
DMA3PAD	0B3C									PAD[15:0]									
DMA3CNT	0B3E	—	—								CNT[13:	0]		1				0000	
DMAPWC	0BF0	—	—	_	_	_		—	_	_	_	—	_		PWC	OL[3:0]		0000	
DMARQC	0BF2	—	—	_	_	_		—	_	_	_	—	_		RQC	DL[3:0]		0000	
DMAPPS	0BF4	_	—	_	—	—	_	—	_	—	—	_	—		PPS	T[3:0]		0000	

dsPIC33EVXXXGM00X/10X FAMILY

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMALCA	0BF6	—	_	_	_	—	_	_	_	—	—	_	_		LSTC	H[3:0]		000F
DSADRL	0BF8									DSAD	R[15:0]				0000			
DSADRH	0BFA	_	_	_	_	_	_						DSADF	R[23:16]	0000			

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-27: PWM REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PTCON	0C00	PTEN	_	PTSIDL	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SYNCSRC2	SYNCSRC1	SYNCSRC0	SEVTPS3	SEVTPS2	SEVTPS1	SEVTPS0	0000
PTCON2	0C02	_	_	_	_	_	_	_	—	_	_	_	_	_	I	PCLKDIV[2:0]		0000
PTPER	0C04									PTPER	[15:0]							FFF8
SEVTCMP	0C06									SEVTCM	P[15:0]							0000
MDC	0C0A									MDC[15:0]							0000
CHOP	0C1A	CHPCLKEN	_	_	_	_	_					CHOPO	CLK[9:0]					0000
PWMKEY	0C1E		PWMKEY[15:0]													0000		

dsPIC33EVXXXGM00X/10X FAMILY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-28: PWM GENERATOR 1 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON1	0C20	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP	_	-	CAM	XPRES	IUE	0000
IOCON1	0C22	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	0000
FCLCON1	0C24	_	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
PDC1	0C26								PDC	21[15:0]								0000
PHASE1	0C28								PHAS	E1[15:0]								0000
DTR1	0C2A	_	_							DTR	1[13:0]							0000
ALTDTR1	0C2C	_	_							ALTDT	R1[13:0]							0000
TRIG1	0C32								TRGC	MP[15:0]								0000
TRGCON1	0C34		TRGD	IV[3:0]		_	—	_	_	_	_			TRGST	RT[5:0]			0000
PWMCAP1	0C38								PWMC	AP1[15:0]								0000
LEBCON1	0C3A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY1	0C3C	-	_	_	_		-	•	•	•	LEB[11:0]			•	•	•	0000
AUXCON1	0C3E	_	_	_	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	—	_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

TABLE 4-29: PWM GENERATOR 2 REGISTER MAP

	Bit 12 Bit 11	Bit 10	Bit 9	Bit 8	Bit 7								
AT TRGSTAT FI					Dit /	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	LTIEN CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP	_	_	CAM	XPRES	IUE	0000
L POLH F	POLL PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	0000
C4 CLSRC3 CL	LSRC2 CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
				PDC	2[15:0]								0000
		PHASE2[15:0] 00											
					DTR2	[13:0]							0000
					ALTDTF	R2[13:0]							0000
				TRGCI	MP[15:0]								0000
RGDIV[3:0]	—	_	—			_			TRGST	TRT[5:0]			0000
				PWMC	AP2[15:0]								0000
PLR	PLF FLTLEBEN	LEBEN CLLEBEN BCH BCL BPHH BPHL BPLH BPLL 000											
—	—	LEB[11:0] 000											0000
—	- BLANKSEL3	BLANKSEL3 BLANKSEL1 BLANKSEL0 - CHOPSEL3 CHOPSEL2 CHOPSEL1 CHOPSEL0 CHOPHEN CHOPLEN 000										0000	
	C4 CLSRC3 C RGDIV[3:0] = PLR — 4	C4 CLSRC3 CLSRC2 CLSRC1 RGDIV[3:0] — PLR PLF FLTLEBEN	C4 CLSRC3 CLSRC2 CLSRC1 CLSRC0 RGDIV[3:0] — — PLR PLF FLTLEBEN CLLEBEN — —	C4 CLSRC3 CLSRC2 CLSRC1 CLSRC0 CLPOL	C4 CLSRC3 CLSRC2 CLSRC1 CLSRC0 CLPOL CLMOD PDC: PHASI TRGCI RGDIV[3:0] — — — — — PWMC/ PLR PLF FLTLEBEN CLLEBEN — — —	C4 CLSRC3 CLSRC2 CLSRC1 CLSRC0 CLPOL CLMOD FLTSRC4 PDC2[15:0] PHASE2[15:0] DTR2 TRGCMP[15:0] RGDIV[3:0] — — PULF FLTLEBEN CLLEBEN — — PLF FLTLEBEN CLLEBEN D. MIRGE Colspan="4">MIRGE Colspan="4">MIRGE Colspan="4">MIRGE Colspan="4">MIRGE Colspan="4">MIRGE Colspan="4">MIRGE Colspan="4"	C4 CLSRC3 CLSRC2 CLSRC1 CLSRC0 CLPOL CLMOD FLTSRC4 FLTSRC3 PDC2[15:0] PHASE2[15:0] PHASE2[15:0] DTR2[13:0] TRGCMP[15:0] RGDV[3:0] — PWMCAP2[15:0] PWMCAP2[15:0] PLR PLF FLTLEBEN CLLEBEN	C4 CLSRC3 CLSRC2 CLSRC1 CLSRC0 CLPOL CLMOD FLTSRC4 FLTSRC3 FLTSRC3 FLTSRC4 PDC2[15:0] PHASE2[15:0] DTR2[13:0] TRGCMP[15:0] RGDV[3:0] — — PWMCAP2[15:0] FLTLEBEN CLLEBEN — PLR PLF FLTLEBEN CLLEBEN — — LEB[11:0]	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C4 CLSRC3 CLSRC1 CLSRC0 CLPOL CLMOD FLTSRC4 FLTSRC3 FLTSRC2 FLTSRC1 FLTSRC0 PDC2[15:0] PHASE2[15:0] DTR2[13:0] TRGCMP[15:0] RGDV[3:0] — — TRGST PUR PLF FLTLEBEN CLLEBEN — — PLR PLF FLTLEBEN CLLEBEN — — LEB[11:0]	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C4 CLSRC3 CLSRC1 CLSRC0 CLPOL CLMOD FLTSRC4 FLTSRC3 FLTSRC2 FLTSRC1 FLTSRC0 FLTPOL FLTMOD1 PDC2[15:0] PHASE2[15:0] PHASE2[15:0] PHASE2[13:0] TRGCMP[15:0] PWMCAP2[15:0] RGJV[3:0] — — — — — — — TRGSTRT[5:0] PWMCAP2[15:0] PUR PLF FLTLEBEN CLLEBEN — — — BCH BPHH BPLH BPLH LEB[11:0] — — — — — — — — — — — — — — — — — — —	C4 CLSRC3 CLSRC1 CLSRC0 CLPOL CLMOD FLTSRC4 FLTSRC3 FLTSRC1 FLTSRC0 FLTPOL FLTMOD1 FLTM

- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

TABLE 4-30: PWM GENERATOR 3 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON3	0C60	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP	—	-	CAM	XPRES	IUE	0000
IOCON3	0C62	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	0000
FCLCON3	0C64	_	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
PDC3	0C66								PDC	3[15:0]								0000
PHASE3	0C68								PHAS	E3[15:0]								0000
DTR3	0C6A	_	_							DTR	8[13:0]							0000
ALTDTR3	0C6C	_	_							ALTDT	R3[13:0]							0000
TRIG3	0C72								TRGC	MP[15:0]								0000
TRGCON3	0C74		TRGD	IV[3:0]		_	_	-	_	_	_			TRGST	RT[5:0]			0000
PWMCAP3	0C78								PWMC	AP3[15:0]								0000
LEBCON3	0C7A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY3	0C7C	—	—	_	_						LEB[11:0]						0000
AUXCON3	0C7E	—	—	_	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	_	—	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

dsPIC33EVXXXGM00X/10X FAMILY

TABLE 4-31: PORTA REGISTER MAP FOR dsPIC33EVXXXGMX06 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	_	_	_			TRISA[12:7]				—	TRISA4	—	-	TRIS	A[1:0]	1F93
PORTA	0E02	_	—	—			RA[12	::7]			_	_	RA4	—	_	RA[1:0]	0000
LATA	0E04	—	—				LATA[1	2:7]				—	LATA4	—		LATA	[1:0]	0000
ODCA	0E06		_				ODCA[12:7]				—	ODCA4	—		ODC	0000	
CNENA	0E08		_				CNIEA[12:7]				—	CNIEA4	—		CNIE	A[1:0]	0000
CNPUA	0E0A		_				CNPUA	[12:7]				—	CNPUA4	—		CNPU	A[1:0]	0000
CNPDA	0E0C		_				CNPDA	[12:7]				—	CNPDA4	—		CNPD	A[1:0]	0000
ANSELA	0E0E		_			ANSA	[12:9]		_	ANSA7		—	ANSA4	—		ANSA	\ [1:0]	1E93
SR1A	0E10	—	_		_	_	_	SR1A9				_	SR1A4	_		_		0000
SR0A	0E12	—	_	-	—	_	—	SR0A9	_	-		—	SR0A4	—	—	_		0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-32: PORTA REGISTER MAP FOR dsPIC33EVXXXGMX04 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	_	—	—	—	—		TRISA	[10:7]		—	—			TRISA[4:0]			DF9F
PORTA	0E02	_	—	_	_	_		RA[1	0:7]		_	—			RA[4:0]			0000
LATA	0E04	_	_	_	_	_	- LATA[10:7]					_			LATA[4:0]			0000
ODCA	0E06	_	_	_	_	_	- ODCA[10:7]					_			ODCA[4:0]			0000
CNENA	0E08	_	_	_	_	_	ODCA[10:7] CNIEA[10:7]				_	_			CNIEA[4:0]			0000
CNPUA	0E0A	_	_					CNPUA	A[10:7]			—		(CNPUA[4:0]		0000
CNPDA	0E0C	_	_					CNPDA	A[10:7]			—		(CNPDA[4:0]		0000
ANSELA	0E0E	_	_							ANSA7		—	ANSA4			ANSA[2:0]		1813
SR1A	0E10	_	_					SR1A9	_	_		—	SR1A4		—	_		0000
SR0A	0E12	_	_	_	_						0000							

	4 -00.		AILON			431 1000				20							
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	
TRISA	0E00		—	—	—	_	_	_	_	_	—	—			TRISA[4:0]		
PORTA	0E02	_	_	_	_	_	_	_	_	_	_	_			RA[4:0]		
LATA	0E04	_	_	_	_	_	_	_	_	_	_	_			LATA[4:0]		
ODCA	0E06	_	_	_	_	_	_	_	_	_	_	_			ODCA[4:0]		
CNENA	0E08	_	_	_	_	_	_	_	_	_	_	_			CNIEA[4:0]		
CNPUA	0E0A	_	_	_	_	_	_	_	_	_	_	_		(CNPUA[4:0]	
CNPDA	0E0C	_	_	_	_	_	_	_	_	_	_	_		(CNPDA[4:0]	
ANSELA	0E0E	_	_	_	_	_	_	_	_	_	_	_	ANSA4	_		ANSA[2:0]	
SR1A	0E10	—	_	_	_	_	_	—	_	—	_	—	SR1A4	_	—	—	

All

0000

dsPIC33EVXXXGM00X/10X FAMILY

Bit 0

—

_

SR0A4

_

_

TABI F 4-33 PORTA REGISTER MAP FOR dsPIC33EVXXXGMX02 DEVICES

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-34: PORTB REGISTER MAP FOR dsPIC33EVXXXGMX06 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E14								TRISB[15	:0]								FFFF
PORTB	0E16								RB[15:0]								XXXX
LATB	0E18								LATB[15:	0]								XXXX
ODCB	0E1A								ODCB[15	:0]								0000
CNENB	0E1C								CNIEB[15	:0]								0000
CNPUB	0E1E								CNPUB[15	5:0]								0000
CNPDB	0E20								CNPDB[15	5:0]								0000
ANSELB	0E22	—	—	_			—		ANSB[9:7]			—	—		ANSI	B[3:0]		038F
SR1B	0E24	—	_	—		_	—		SR1B[9:7]			—	SR1B4	—	_	—	_	0000
SR0B	0E26	_	_	_	_	_	_		SR0B[9:7]		_	_	SR0B4	_	_	_	_	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

SR0A

0E12

Downloaded From Oneyac.com

TABLE 4-35: PORTB REGISTER MAP FOR dsPIC33EVXXXGMX04 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E14								TRISB[15	:0]								DF9F
PORTB	0E16								RB[15:0]								XXXX
LATB	0E18								LATB[15:	0]								XXXX
ODCB	0E1A								ODCB[15	:0]								0000
CNENB	0E1C								CNIEB[15	:0]								0000
CNPUB	0E1E								CNPUB[15	5:0]								0000
CNPDB	0E20								CNPDB[15	5:0]								0000
ANSELB	0E22	_	_	_	_	_	_		ANSB[9:7]		_	_	—		ANS	3[3:0]		010F
SR1B	0E24	_	_	_	_	_	_		SR1B[9:7]		—	_	SR1B4	_	—	—	_	0000
SR0B	0E26	_	—	_	—	—	_		SR0B[9:7]		_	_	SR0B4	_	_	_	—	0000

dsPIC33EVXXXGM00X/10X FAMILY

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-36: PORTB REGISTER MAP FOR dsPIC33EVXXXGMX02 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E14								TRISB[15	:0]								DF9F
PORTB	0E16								RB[15:0]								XXXX
LATB	0E18								LATB[15:	0]								XXXX
ODCB	0E1A								ODCB[15	:0]								0000
CNENB	0E1C								CNIEB[15	:0]								0000
CNPUB	0E1E								CNPUB[15	5:0]								0000
CNPDB	0E20								CNPDB[15	5:0]								0000
ANSELB	0E22	—	—	—	_				ANSB[9:7]			—	—		ANSE	3[3:0]		010F
SR1B	0E24	—	—	_	_				SR1B[9:7]			_	SR1B4	_	_		_	0000
SR0B	0E26	_	-	_	_	_	_		SR0B[9:7]		_	_	SR0B4	—	_	_	_	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-37: PORTC REGISTER MAP FOR dsPIC33EVXXXGMX06 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	0E28	TRISC15	_							TRISC[1	3:0]							BFFF
PORTC	0E2A	RC15	_							RC[13:	0]							XXXX
LATC	0E2C	LATC15	_														XXXX	
ODCC	0E2E	ODCC15	_							ODCC[1	3:0]							0000
CNENC	0E30	CNIEC15	_							CNIEC[1	3:0]							0000
CNPUC	0E32	CNPUC15	_							CNPUC[1	3:0]							0000
CNPDC	0E34	CNPDC15	_							CNPDC[1	3:0]							0000
ANSELC	0E36	—	_	_						AN	ISC[12:0]							1FFF
SR1C	0E38	_	_	_	_	_	_		SR10	2[9:6]		_	_	SR1C3	—	_	—	0000
SR0C	0E3A	—	_	_	_	_	_		SR00	2[9:6]		_	_	SR0C3	_	—	_	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-38: PORTC REGISTER MAP FOR dsPIC33EVXXXGMX04 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	0E28	—	_	—	—	—	_					TRIS	C[9:0]					BFFF
PORTC	0E2A	_	_	_	—	_	_					RC	[9:0]					XXXX
LATC	0E2C	_	_	_	—	_	_	- LATC[9:0] x									XXXX	
ODCC	0E2E	_	_	_	_	_	_					ODC	C[9:0]					0000
CNENC	0E30	_	_	_	_	_	_					CNIE	C[9:0]					0000
CNPUC	0E32	_	_	_	_	_	_					CNPL	JC[9:0]					0000
CNPDC	0E34	_	_	_	_	_	_					CNPE	DC[9:0]					0000
ANSELC	0E36	_	_	_	_	_	_					ANS	C[9:0]					0807
SR1C	0E38	_	_	—	—	_	_		SR10	C[9:6]		—	—	SR1C3	_	—	—	0000
SR0C	0E3A	_	_	_	_	_	_		SR00	C[9:6]		_	_	SR0C3	_	_	_	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70005144H-page 69

TABLE 4-39: PORTD REGISTER MAP FOR dsPIC33EVXXXGMX06 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISD	0E3C	—	—	_	—	—	_	_	TRISD8	—	TRISI	D[6:5]	_	_	_	_	—	0160
PORTD	0E3E	_	_	_	_	_	_	_	RD8	_	RD[6:5]	_	_	_	_	_	XXXX
LATD	0E40	—	_		—		_		LATD8	_	LATE	D[6:5]	_	_	_	_	—	XXXX
ODCD	0E42	—	_		—		_		ODCD8	_	ODCI	D[6:5]	_	_	_	_	—	0000
CNEND	0E44	_	_	_	_	_	_	_	CNIED8	_	CNIE	D[6:5]	_	_	_	_	_	0000
CNPUD	0E46	_	_		—		_		CNPUD8	_	CNPU	ID[6:5]	_	_	_	_	—	0000
CNPDD	0E48	_	_		—		_		CNPDD8	_	CNPD	D[6:5]	_	_	_	_	—	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-40: PORTE REGISTER MAP FOR dsPIC33EVXXXGMX06 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISE	0E50		TRISE	[15:12]		—	—	_	—	_	_	—	—	—	_	—	—	F000
PORTE	0E52		RE[1	5:12]		_	_	_	_	_	_	_	_	_	_	_	_	XXXX
LATE	0E54		LATE	[15:12]		—	_	-	_	_	—				—	_	_	XXXX
ODCE	0E56		ODCE	[15:12]		_	_	_	_	_	_	_	_	_	_	_	_	0000
CNENE	0E58		CNIEE	[15:12]		—	_	_	_		_	_	_	_	_	_	_	0000
CNPUE	0E5A		CNPUE	E[15:12]		—	_	_	_		_	_	_	_	_	_	_	0000
CNPDE	0E5C		CNPD		—	_	_	_	_	—				—	_	_	0000	
ANSELE	0E5E		ANSE	[15:12]		—	_		_		_	_	_	_	_		_	F000

dsPIC33EVXXXGM00X/10X FAMILY

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-41: PORTF REGISTER MAP FOR dsPIC33EVXXXGMX06 DEVICES

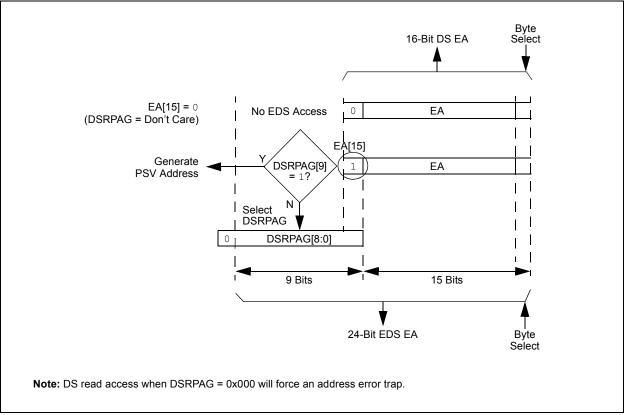
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1 Bit) All Resets
TRISF	0E64	_	_	—	—	—	—	—	—	—	—	—	—	—	—	TRISF[1:0]	0003
PORTF	0E66	_	_	_	_	_	_	_	_	_	_	_	_	—	—	RF[1:0]	XXXX
LATF	0E68	_	_	_	_	_	_	_	_	_	_	_	_	—	—	LATF[1:0]	XXXX
ODCF	0E6A	_	_	_	_	_	_	_	_	_	_	_	_	—	—	ODCF[1:0]	0000
CNENF	0E6C	_	_	_	_	_	_	_	_	_	_	_	_	_	_	CNIEF[1:0]	0000
CNPUF	0E6E	_	_	_	_	—	_	_	_	—	_	—	_	_	_	CNPUF[1:0]	0000
CNPDF	0E70	_	_	_	_	_	_	_	_	_	_	_	_	_	_	CNPDF[1:0]	0000
Lawards			n Deest			. tol D t											

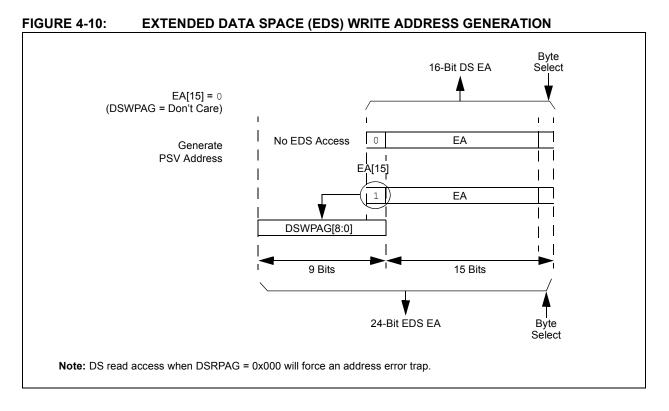
Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-42: PORTG REGISTER MAP FOR dsPIC33EVXXXGMX06 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISG	0E78	_	—		—	—	—	TRISG[9:6]				—			—	—	—	03C0
PORTG	0E7A	_	_	_	_	_	_	RG[9:6]			_	_	_	_	_	_	XXXX	
LATG	0E7C	_	_	_	_	_	_	LATG[9:6]			_	_	_	_	_	_	XXXX	
ODCG	0E7E	_	_	_	_	_	_	ODCG[9:6]			_	_	_	_	_	_	0000	
CNENG	0E80	_	_	_	_	_	_	CNIEG[9:6]				_	_	_	_	_	_	0000
CNPUG	0E82	_	_	_	_	_	_	CNPUG[9:6]			_	_	_	_	_	_	0000	
CNPDG	0E84	_	_	_	_	_	_	CNPDG[9:6]			_	_	_	_	_	_	0000	
ANSELG	0E86	—	-		-	-	—	ANSG[9:6]			—		_	_	_		0000	

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

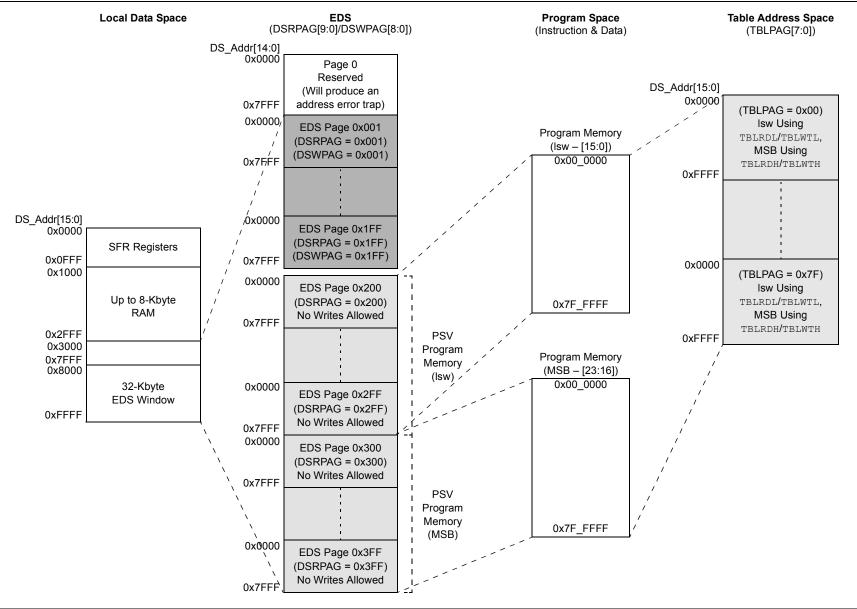

dsPIC33EVXXXGM00X/10X FAMILY


4.3.1 PAGED MEMORY SCHEME

The dsPIC33EVXXXGM00X/10X family architecture extends the available DS through a paging scheme, which allows the available DS to be accessed using MOV instructions in a linear fashion for pre- and post-modified Effective Addresses (EAs). The upper half of the Base Data Space address is used in conjunction with the Data Space Page registers, the 10-bit Data Space Read Page register (DSRPAG) or the 9-bit Data Space Write Page register (DSWPAG), to form an EDS

address, or Program Space Visibility (PSV) address. The Data Space Page registers are located in the SFR space. Construction of the EDS address is shown in Figure 4-9 and Figure 4-10. When DSRPAG[9] = 0 and the base address bit, EA[15] = 1, the DSRPAG[8:0] bits are concatenated onto EA[14:0] to form the 24-bit EDS read address. Similarly, when the base address bit, EA[15] = 1, the DSWPAG[8:0] bits are concatenated onto EA[14:0] to form the 24-bit EDS write address.

FIGURE 4-9: EXTENDED DATA SPACE (EDS) READ ADDRESS GENERATION



The paged memory scheme provides access to multiple 32-Kbyte windows in the EDS and PSV memory. The Data Space Page registers, DSxPAG, in combination with the upper half of the Data Space address, can provide up to 16 Mbytes of additional address space in the EDS and 8 Mbytes (DSRPAG only) of PSV address space. The paged data memory space is shown in Figure 4-11.

The Program Space (PS) can be accessed with a DSRPAG of 0x200 or greater. Only reads from PS are supported using the DSRPAG. Writes to PS are not supported, therefore, the DSWPAG is dedicated to DS, including EDS. The Data Space and EDS can be read from and written to using DSRPAG and DSWPAG, respectively.

FIGURE 4-11: PAGED DATA MEMORY SPACE

Allocating different Page registers for read and write access allows the architecture to support data movement between different pages in the data memory. This is accomplished by setting the DSRPAG register value to the page from which you want to read, and configure the DSWPAG register to the page to which it needs to be written. Data can also be moved from different PSV to EDS pages by configuring the DSRPAG and DSWPAG registers to address PSV and EDS space, respectively. The data can be moved between pages by a single instruction.

When an EDS or PSV page overflow or underflow occurs, EA[15] is cleared as a result of the register indirect EA calculation. An overflow or underflow of the EA in the EDS or PSV pages can occur at the page boundaries when:

- The initial address, prior to modification, addresses an EDS or a PSV page.
- The EA calculation uses Pre- or Post-Modified Register Indirect Addressing. However, this does not include Register Offset Addressing.

In general, when an overflow is detected, the DSxPAG register is incremented and the EA[15] bit is set to keep the base address within the EDS or PSV window. When an underflow is detected, the DSxPAG register is decremented and the EA[15] bit is set to keep the base address within the EDS or PSV window. This creates a linear EDS and PSV address space, but only when using the Register Indirect Addressing modes.

Exceptions to the operation described above arise when entering and exiting the boundaries of Page 0, EDS and PSV spaces. Table 4-43 lists the effects of overflow and underflow scenarios at different boundaries.

In the following cases, when an overflow or underflow occurs, the EA[15] bit is set and the DSxPAG is not modified; therefore, the EA will wrap to the beginning of the current page:

- Register Indirect with Register Offset Addressing
- Modulo Addressing
- · Bit-Reversed Addressing

TABLE 4-43:OVERFLOW AND UNDERFLOW SCENARIOS AT PAGE 0, EDS AND
PSV SPACE BOUNDARIES^(2,3,4)

O/U,			Before		After			
0/0, R/W	Operation	DSxPAG	DS EA[15]	Page Description	DSxPAG	DS EA[15]	Page Description	
O, Read		DSRPAG = 0x1FF	1	EDS: Last Page	DSRPAG = 0x1FF	0	See Note 1	
O, Read	[++Wn] or	DSRPAG = 0x2FF	1	PSV: Last Isw Page	DSRPAG = 0x300	1	PSV: First MSB Page	
O, Read	[Wn++]	DSRPAG = 0x3FF	1	PSV: Last MSB Page	DSRPAG = 0x3FF	0	See Note 1	
O, Write		DSWPAG = 0x1FF	1	EDS: Last Page	DSWPAG = 0x1FF	0	See Note 1	
U, Read		DSRPAG = 0x001	1	PSV Page	DSRPAG = 0x001	0	See Note 1	
U, Read	[Wn] Or [Wn]	DSRPAG = 0x200	1	PSV: First Isw Page	DSRPAG = 0x200	0	See Note 1	
U, Read	[111]	DSRPAG = 0x300	1	PSV: First MSB Page	DSRPAG = 0x2FF	1	PSV: Last lsw Page	

Legend: O = Overflow, U = Underflow, R = Read, W = Write

Note 1: The Register Indirect Addressing now addresses a location in the Base Data Space (0x0000-0x8000).

2: An EDS access with DSxPAG = 0x000 will generate an address error trap.

- **3:** Only reads from PS are supported using DSRPAG. An attempt to write to PS using DSWPAG will generate an address error trap.
- 4: Pseudolinear Addressing is not supported for large offsets.

4.3.2 EXTENDED X DATA SPACE

The lower portion of the base address space range, between 0x0000 and 0x2FFF, is always accessible regardless of the contents of the Data Space Page registers; it is indirectly addressable through the register indirect instructions. It can be regarded as being located in the default EDS Page 0 (i.e., EDS address range of 0x000000 to 0x002FFF with the base address bit, EA[15] = 0, for this address range). However, Page 0 cannot be accessed through the upper 32 Kbytes, 0x8000 to 0xFFFF, of Base Data Space, in combination with DSRPAG = 0x000 or DSWPAG = 0x000. Consequently, the DSRPAG and DSWPAG registers are initialized to 0x001 at Reset.

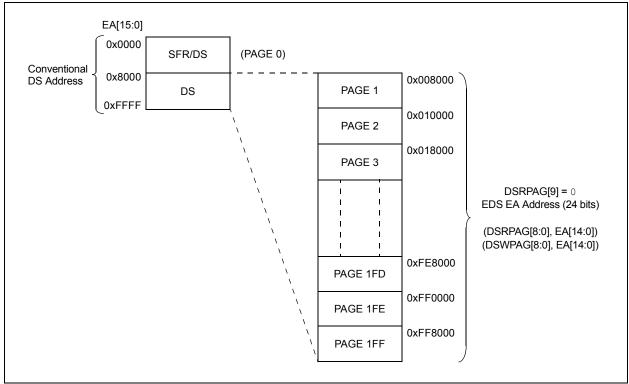

- Note 1: DSxPAG should not be used to access Page 0. An EDS access with DSxPAG set to 0x000 will generate an address error trap.
 - 2: Clearing the DSxPAG in software has no effect.

FIGURE 4-12: EDS MEMORY MAP

The remaining pages, including both EDS and PSV pages, are only accessible using the DSRPAG or DSWPAG registers in combination with the upper 32 Kbytes, 0x8000 to 0xFFFF, of the base address, where the base address bit, EA[15] = 1.

For example, when DSRPAG = 0x001 or DSWPAG = 0x001, accesses to the upper 32 Kbytes, 0x8000 to 0xFFFF of the Data Space, will map to the EDS address range of 0x008000 to 0x00FFFF. When DSRPAG = 0x002 or DSWPAG = 0x002, accesses to the upper 32 Kbytes of the Data Space will map to the EDS address range of 0x010000 to 0x017FFF and so on, as shown in the EDS memory map in Figure 4-12.

For more information on the PSV page access using Data Space Page registers, refer to **Section 5.0 "Program Space Visibility from Data Space"** in **"dsPIC33/PIC24 Program Memory"** (www.microchip.com/DS70000613) of the *"dsPIC33/PIC24 Family Reference Manual"*.

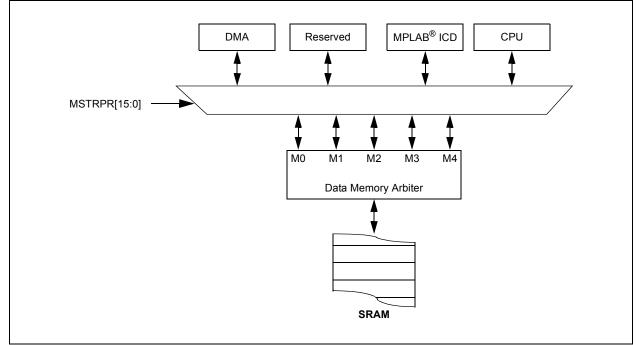
4.3.3 DATA MEMORY ARBITRATION AND BUS MASTER PRIORITY

EDS accesses from bus masters in the system are arbitrated.

The arbiter for data memory (including EDS) arbitrates between the CPU, the DMA and the MPLAB[®] ICD module. In the event of coincidental access to a bus by the bus masters, the arbiter determines which bus master access has the highest priority. The other bus masters are suspended and processed after the access of the bus by the bus master with the highest priority.

By default, the CPU is Bus Master 0 (M0) with the highest priority and the MPLAB ICD is Bus Master 4 (M4) with the lowest priority. The remaining bus master (DMA Controller) is allocated to M3 (M1 and M2 are reserved and cannot be used). The user application may raise or lower the priority of the DMA Controller to be above that of the CPU by setting the appropriate bits in the EDS Bus Master Priority Control (MSTRPR) register. All bus masters with raised priorities will maintain the same priority relationship relative to each other (i.e., M1 being highest and M3 being lowest, with M2 in between). Also, all the bus masters with priorities

below that of the CPU maintain the same priority relationship relative to each other. The priority schemes for bus masters with different MSTRPR values are listed in Table 4-44.


Figure 4-13 shows the arbiter architecture.

The bus master priority control allows the user application to manipulate the real-time response of the system, either statically during initialization or dynamically in response to real-time events.

TABLE 4-44:DATA MEMORY BUS
ARBITER PRIORITY

Drievity	MSTRPR[15:0	MSTRPR[15:0] Bit Setting ⁽¹⁾					
Priority	0x0000	0x0020					
M0 (highest)	CPU	DMA					
M1	Reserved	CPU					
M2	Reserved	Reserved					
M3	DMA	Reserved					
M4 (lowest)	MPLAB [®] ICD	MPLAB ICD					

Note 1: All other values of MSTRPR[15:0] are reserved.

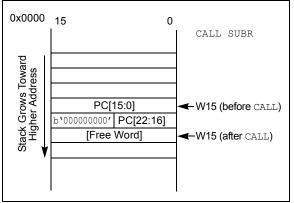
^{© 2013-2019} Microchip Technology Inc.

4.3.4 SOFTWARE STACK

The W15 register serves as a dedicated Software Stack Pointer (SSP) and is automatically modified by exception processing, subroutine calls and returns; however, W15 can be referenced by any instruction in the same manner as all other W registers. This simplifies reading, writing and manipulating the SSP (for example, creating stack frames).

Note:	To protect		against		misaligned			stack	
	accesses, W		V15[0]	is	fixed	to	'0'	by	the
	hardw	/are.							

W15 is initialized to 0x1000 during all Resets. This address ensures that the SSP points to valid RAM in all dsPIC33EVXXXGM00X/10X family devices and permits stack availability for non-maskable trap exceptions. These can occur before the SSP is initialized by the user software. You can reprogram the SSP during initialization to any location within the Data Space.


The SSP always points to the first available free word and fills the software stack, working from lower toward higher addresses. Figure 4-14 illustrates how it predecrements for a stack pop (read) and post-increments for a stack push (writes).

When the PC is pushed onto the stack, PC[15:0] are pushed onto the first available stack word, then PC[22:16] are pushed into the second available stack location. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, as shown in Figure 4-14. During exception processing, the MSB of the PC is concatenated with the lower eight bits of the CPU STATUS Register (SR). This allows the contents of SRL to be preserved automatically during interrupt processing.

- Note 1: To maintain system SSP (W15) coherency, W15 is never subject to (EDS) paging, and is therefore, restricted to an address range of 0x0000 to 0xFFFF. The same applies to the W14 when used as a Stack Frame Pointer (SFA = 1).
 - 2: As the stack can be placed in, and can access X and Y spaces, care must be taken regarding its use, particularly with regard to local automatic variables in a 'C' development environment.

FIGURE 4-14:

CALL STACK FRAME

4.4 Instruction Addressing Modes

The addressing modes shown in Table 4-45 form the basis of the addressing modes optimized to support the specific features of the individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.4.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a Working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire Data Space.

4.4.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2

where, Operand 1 is always a Working register (that is, the addressing mode can only be Register Direct), which is referred to as Wb. Operand 2 can be a W register fetched from data memory or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal
- Note: Not all instructions support all of the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn form the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn form the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

TABLE 4-45: FUNDAMENTAL ADDRESSING MODES SUPPORTED

4.4.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions and the DSP accumulator class of instructions provide a greater addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note:	For the MOV instructions, the addressing
	mode specified in the instruction can differ
	for the source and destination EA. How-
	ever, the 4-bit Wb (Register Offset) field is
	shared by both source and destination
	(but typically only used by one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-Modified
- Register Indirect Pre-Modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-Bit Literal
- 16-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.4.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the Data Pointers through register indirect tables.

The Two-Source Operand Prefetch registers must be members of the set, {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The Effective Addresses generated (before and after modification) must, therefore, be valid addresses within X Data Space for W8 and W9, and Y Data Space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X Data Space) and W11 (in Y Data Space).

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- Register Indirect
- Register Indirect Post-Modified by 2
- Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.4.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (Branch) instructions use 16-bit signed literals to specify the Branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ULNK, the source of an operand or result is implied by the opcode itself. Certain operations, such as a NOP, do not have any operands.

4.5 Modulo Addressing

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either Data or Program Space (since the Data Pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into Program Space) and Y Data Spaces. Modulo Addressing can operate on any W Register Pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing, since these two registers are used as the SFP and SSP, respectively.

In general, any particular circular buffer can be configured to operate in only one direction, as there are certain restrictions on the buffer start address (for incrementing buffers) or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a Bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

4.5.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note: Y Data Space Modulo Addressing EA calculations assume word-sized data (LSb of every EA is always clear).

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.5.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON[15:0], contains enable flags, as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that operate with Modulo Addressing:

- If XWM = 1111, X RAGU and X WAGU Modulo Addressing is disabled
- If YWM = 1111, Y AGU Modulo Addressing is disabled

The X Address Space Pointer W register (XWM) to which Modulo Addressing is to be applied is stored in MODCON[3:0] (see Table 4-1). Modulo Addressing is enabled for X Data Space when XWM is set to any value other than '1111' and the XMODEN bit (MODCON[15]) is set

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON[7:4]. Modulo Addressing is enabled for Y Data Space when YWM is set to any value other than '1111' and the YMODEN bit (MODCON[14]) is set.

Figure 4-15 shows an example of Modulo Addressing operation.

Bvte Address MOV #0x1100, W0 W0, XMODSRT 0x1100 MOV ;set modulo start address #0x1163, W0 MOV MOV W0, MODEND ;set modulo end address MOV #0x8001, W0 MOV W0, MODCON ;enable W1, X AGU for modulo MOV #0x0000, W0 ;W0 holds buffer fill value 0x1163 MOV #0x1110, W1 ;point W1 to buffer DO AGAIN, #0x31 :fill the 50 buffer locations WO, [W1++] ;fill the next location MOV Start Addr = 0x1100 AGAIN: INC WO, WO ; increment the fill value End Addr = 0x1163Length = 32 Words

FIGURE 4-15: MODULO ADDRESSING OPERATION EXAMPLE

4.5.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

The address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected Effective Address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the Effective Address. When an address offset, such as [W7 + W2] is used, Modulo Addressing correction is performed, but the contents of the register remain unchanged.

4.6 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.6.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

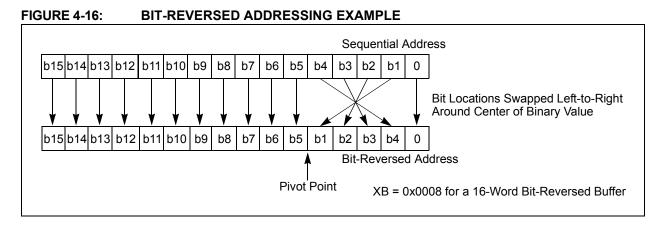
Bit-Reversed Addressing mode is enabled when all of these conditions are met:

- BWM[3:0] bits (W register selection) in the MODCON register are any value other than '1111' (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XB[14:0] is the Bit-Reversed Addressing modifier, or 'pivot point', which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:	All bit-reversed EA calculations assume
	word-sized data (LSb of every EA is
	always clear). The XB value is scaled
	accordingly to generate compatible (byte)
	addresses.


When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It does not function for any other addressing mode or for byte-sized data and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data are a requirement, the LSb of the EA is ignored (and always clear).

Note: Modulo Addressing and Bit-Reversed Addressing can be enabled simultaneously using the same W register, but Bit-Reversed Addressing operation will always take precedence for data writes when enabled.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV[15]) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer.

The operation of Bit-Reversed Addressing is shown in Figure 4-16 and Table 4-46.

dsPIC33EVXXXGM00X/10X FAMILY

TABLE 4-46: BIT-REVERSED ADDRESSING SEQUENCE (16-ENTRY)

Normal Address							Bit-Rev	ersed Ac	ldress
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	8
0	0	1	0	2	0	1	0	0	4
0	0	1	1	3	1	1	0	0	12
0	1	0	0	4	0	0	1	0	2
0	1	0	1	5	1	0	1	0	10
0	1	1	0	6	0	1	1	0	6
0	1	1	1	7	1	1	1	0	14
1	0	0	0	8	0	0	0	1	1
1	0	0	1	9	1	0	0	1	9
1	0	1	0	10	0	1	0	1	5
1	0	1	1	11	1	1	0	1	13
1	1	0	0	12	0	0	1	1	3
1	1	0	1	13	1	0	1	1	11
1	1	1	0	14	0	1	1	1	7
1	1	1	1	15	1	1	1	1	15

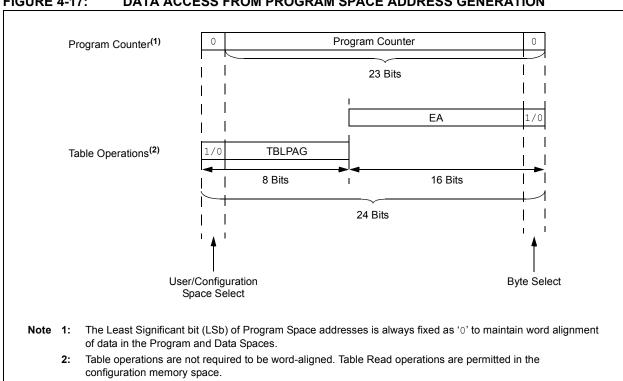
4.7 Interfacing Program and Data Memory Spaces

The dsPIC33EVXXXGM00X/10X family architecture uses a 24-bit wide Program Space and a 16-bit wide Data Space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the Program Space. To use these data successfully, they must be accessed in a way that preserves the alignment of information in both the spaces.

Aside from normal execution, the architecture of the dsPIC33EVXXXGM00X/10X family devices provides two methods by which Program Space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the Program Space
- Remapping a portion of the Program Space into the Data Space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.


Table 4-47 shows the construction of the ProgramSpace address.

How the data are accessed from Program Space is shown in Figure 4-17.

A	Access	Program Space Address						
Access Type	Space	[23]	[22:16]	[15]	[14:1]	[0]		
Instruction Access	User	0		PC[22:1]		0		
(Code Execution)		0xx xxxx xxxx xxxx xxxx xxx0						
TBLRD/TBLWT	User	TE	TBLPAG[7:0] Data EA[15:0]					
(Byte/Word Read/Write)		0	XXX XXXX	XXX		XXX		
	Configuration	TE	TBLPAG[7:0]		Data EA[15:0]			
		1		XXX		XXX		

TABLE 4-47: PROGRAM SPACE ADDRESS CONSTRUCTION

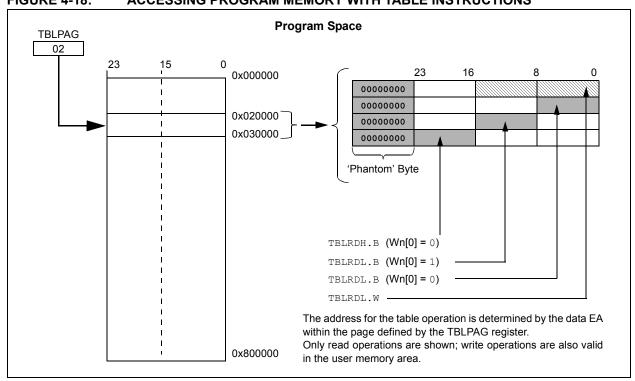
dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 4-17: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

4.7.1 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the Program Space without going through the Data Space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper eight bits of a Program Space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to Data Space addresses. Program memory can thus be regarded as two 16-bit wide word address spaces, residing side by side, each with the same address range. The TBLRDL and TBLWTL instructions access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.


Two table instructions are provided to move byte or word-sized (16-bit) data to and from Program Space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the Program Space location (P[15:0]) to a data address (D[15:0]).
 - In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.

- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P[23:16]) to a data address. The 'phantom' byte (D[15:8]) is always '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D[7:0] of the data address, as in the TBLRDL instruction. The data are always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

Similarly, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a Program Space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user application and configuration spaces. When TBLPAG[7] = 0, the table page is located in the user memory space. When TBLPAG[7] = 1, the page is located in configuration space. Accessing the program memory with table instructions is shown in Figure 4-18.

FIGURE 4-18: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

© 2013-2019 Microchip Technology Inc.

NOTES:

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Flash Programming" (www.microchip.com/DS70000609) in the "dsPIC33/PIC24 Family Reference Manual".
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EVXXXGM00X/10X family devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

The Flash memory can be programmed in the following three ways:

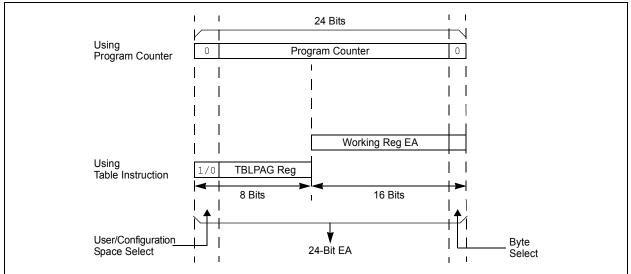
- In-Circuit Serial Programming[™] (ICSP[™])
- Run-Time Self-Programming (RTSP)
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)

ICSP allows for a dsPIC33EVXXXGM00X/10X family device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (PGECx/PGEDx) lines, and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed

devices and then program the device just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

Enhanced ICSP uses an on-board bootloader, known as the Program Executive (PE), to manage the programming process. Using an SPI data frame format, the Program Executive can erase, program and verify program memory. For more information on Enhanced ICSP, refer to the specific device programming specification.

RTSP is accomplished using the TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user application can write program memory data as a double program memory word, a row of 64 instructions (192 bytes) and erase program memory in blocks of 512 instruction words (1536 bytes) at a time.


5.1 Table Instructions and Flash Programming

The Flash memory read and the double-word programming operations make use of the TBLRD and TBLWT instructions, respectively. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits[7:0] of the TBLPAG register and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits[15:0] of the program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits[23:16] of the program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

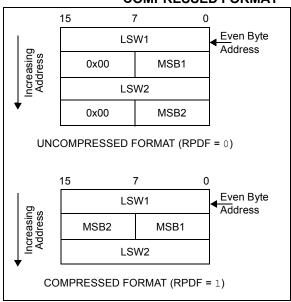
FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

© 2013-2019 Microchip Technology Inc.

5.2 RTSP Operation

RTSP allows the user application to erase a single page of memory, program a row and to program two instruction words at a time. See Table 1 in the "dsPIC33EVXXXGM00X/10X Product Families" section for the page sizes of each device.memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to era

The Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a page of program memory, which consists of eight rows (512 instructions) at a time, and to program one row or two adjacent words at a time. The 8-row erase pages and single row write rows are edge-aligned, from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively. Table 30-13 in Section 30.0 "Electrical Characteristics" lists the typical erase and programming times.


The basic sequence for RTSP word programming is to use the <code>TBLWTL</code> and <code>TBLWTH</code> instructions to load two of the 24-bit instructions into the write latches found in configuration memory space. See Figure 4-1 to Figure 4-5 for write latch addresses. Programming is performed by unlocking and setting the control bits in the NVMCON register.

Row programming is performed by loading 192 bytes into data memory and then loading the address of the first byte in that row into the NVMSRCADR register. Once the write has been initiated, the device will automatically load the write latches and increment the NVMSRCADR and the NVMADR(U) registers until all bytes have been programmed. The RPDF bit (NVMCON[9]) selects the format of the stored data in RAM to be either compressed or uncompressed. See Figure 5-2 for data formatting. Compressed data help to reduce the amount of required RAM by using the upper byte of the second word for the MSB of the second instruction.

For more information on erasing and programming the Flash memory, refer to "Flash Programming" (www.microchip.com/DS70000609) in the "dsPIC33/ PIC24 Family Reference Manual".

- Note 1: Before reprogramming either of the two words in a double-word pair, the user must erase the Flash memory page in which it is located.
 - 2: Before reprogramming any word in a row, the user must erase the Flash memory page in which it is located.

FIGURE 5-2: UNCOMPRESSED/ COMPRESSED FORMAT

5.3 **Programming Operations**

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished. Setting the WR bit (NVMCON[15]) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.3.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program two adjacent words (24 bits x 2) of program Flash memory at a time on every other word address boundary (0x000002, 0x000006, 0x00000A, etc.). To do this, erase the page that contains the desired address of the location the user wants to change. For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS.

Refer to "Flash Programming" (www.microchip.com/ DS70000609) in the "*dsPIC33/PIC24 Family Reference Manual*" for details and code examples on programming using RTSP.

5.4 Error Correcting Code (ECC)

In order to improve program memory performance and durability, these devices include Error Correcting Code functionality (ECC) as an integral part of the Flash memory controller. ECC can determine the presence of single bit errors in program data, including which bit is in error, and correct the data automatically without user intervention. ECC cannot be disabled.

When data are written to program memory, ECC generates a 7-bit Hamming code parity value for every two (24-bit) instruction words. The data are stored in blocks of 48 data bits and seven parity bits; parity data are not memory-mapped and are inaccessible. When the data are read back, the ECC calculates the parity on them and compares it to the previously stored parity value. If a parity mismatch occurs, there are two possible outcomes:

- Single bit errors are automatically identified and corrected on read-back. An optional device-level interrupt (ECCSBEIF) is also generated.
- Double-bit errors will generate a generic hard trap and the read data are not changed. If special exception handling for the trap is not implemented, a device Reset will also occur.

To use the single bit error interrupt, set the ECC Single Bit Error Interrupt Enable bit (ECCSBEIE) and configure the ECCSBEIP bits to set the appropriate interrupt priority.

Except for the single bit error interrupt, error events are not captured or counted by hardware. This functionality can be implemented in the software application, but it is the user's responsibility to do so.

5.5 Flash Memory Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page contains the latest updates and additional information.

5.5.1 KEY RESOURCES

- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

5.6 Control Registers

The following five SFRs are used to read and write the program Flash memory: NVMCON, NVMKEY, NVMADR, NVMADRU and NVMSRCADR.

The NVMCON register (Register 5-1) selects the operation to be performed (page erase, word/row program, inactive panel erase) and initiates the program/erase cycle.

NVMKEY (Register 5-4) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register.

There are two NVM Address registers: NVMADRU and NVMADR. These two registers, when concatenated, form the 24-bit Effective Address (EA) of the selected word/row for programming operations or the selected page for erase operations. The NVMADRU register is used to hold the upper eight bits of the EA, while the NVMADR register is used to hold the lower 16 bits of the EA. For row programming operation, data to be written to program Flash memory are written into data memory space (RAM) at an address defined by the NVMSRCADR register (location of the first element in row programming data).

R/SO-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
WR ⁽¹⁾	WREN ⁽¹⁾	WRERR ⁽¹⁾	NVMSIDL ⁽²⁾	—	—	RPDF	URERR
bit 15					•		bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—	—	NVMOP3 ^(1,3,4)	NVMOP2 ^(1,3,4)	NVMOP1 ^(1,3,4)	NVMOP0 ^(1,3,4)
bit 7							bit C
Legend:		SO = Settabl	o Oply hit				
R = Readab	lo hit	W = Writable	-		ented bit, read a	ас 'O'	
-n = Value a		'1' = Bit is se		'0' = Bit is clea		x = Bit is unkn	0.4/2
-n = value a	IPUK	I = Bit is se			lea		OWI
bit 15	WR: Write C	ontrol hit(1)					
			orv program	or erase operat	tion; the operat	ion is self-time	d and the bit is
	cleared	by hardware o	nce the opera	tion is complete	;		
	-		ration is comp	lete and inactive	e		
bit 14		e Enable bit ⁽¹⁾					
		ogram or erase					
hi+ 10	•	ogram or erase ite Sequence	•				
bit 13		•	•		termination has	occurred (bit is a	
		set attempt of the		nce allempt, or	termination has		
	•		,	npleted normally	/		
bit 12	NVMSIDL: N	IVM Stop in Id	le Control bit ⁽²	2)			
	•	•			ce enters Idle m		
	•	•		hen the device	enters Idle mod	e.	
bit 11-10	-	nted: Read as		.			
bit 9		Programming			e ,		
				a compressed an uncompress			
bit 8	URERR: Roy	w Programmin	g Data Under	run Error Flag b	it		
		gramming ope underrun has o		en terminated du	ue to a data unc	lerrun error	
bit 7-4	Unimpleme	nted: Read as	' 0 '				
Note 1: ⊤	hese bits can o	only be reset o	n a POR.				
		•		avings (lidle), a	and upon exiting	ldle mode, the	ere is a delav
(7						-	,

REGISTER 5-1: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER

- (TVREG) before Flash memory becomes operational.3: All other combinations of NVMOP[3:0] are unimplemented.
 - 4: Execution of the PWRSAV instruction is ignored while any of the NVM operations are in progress.
- 5: Two adjacent words on a 4-word boundary are programmed during execution of this operation.

REGISTER 5-1: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER (CONTINUED)

- bit 3-0 **NVMOP[3:0]:** NVM Operation Select bits^(1,3,4)
 - 1111 = Reserved
 - 1110 = User memory and executive memory bulk erase operation
 - 1101 = Reserved
 - 1100 = Reserved
 - 1011 = Reserved
 - 1010 = Reserved
 - 1001 = Reserved
 - 1000 = Reserved
 - 0111 = Reserved
 - 0101 = Reserved
 - 0100 = Reserved
 - 0011 = Memory page erase operation
 - 0010 = Memory row program operation
 - 0001 = Memory double word⁽⁵⁾
 - 0000 = Reserved
- **Note 1:** These bits can only be reset on a POR.
 - 2: If this bit is set, there will be minimal power savings (IIDLE), and upon exiting Idle mode, there is a delay (TVREG) before Flash memory becomes operational.
 - 3: All other combinations of NVMOP[3:0] are unimplemented.
 - 4: Execution of the PWRSAV instruction is ignored while any of the NVM operations are in progress.
 - 5: Two adjacent words on a 4-word boundary are programmed during execution of this operation.

REGISTER 5-2: NVMADRU: NONVOLATILE MEMORY UPPER ADDRESS REGISTER

—	_	—	—	_	—	_	—
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMADR	RU[23:16]			
bit 7							bit 0

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMADRU[23:16]:** NVM Memory Upper Write Address bits Selects the upper eight bits of the location to program or erase in program Flash memory. This register may be read or written to by the user application.

REGISTER 5-3: NVMADR: NONVOLATILE MEMORY LOWER ADDRESS REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMAD	DR[15:8]			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMA	DR[7:0]			
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 NVMADR[15:0]: NVM Memory Lower Write Address bits

Selects the lower 16 bits of the location to program or erase in program Flash memory. This register may be read or written to by the user application.

REGISTER 5-4: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVMK	EY[7:0]			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at POR (1' = Bit is set 0' = Bit is cleared x = Bit is unknown							nown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMKEY[7:0]:** NVM Key Register bits (write-only)

^{© 2013-2019} Microchip Technology Inc.

dsPIC33EVXXXGM00X/10X FAMILY

REGISTER 5-5: NVMSRCADRH: NVM DATA MEMORY UPPER ADDRESS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15	·						bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMSRCA	DR[23:16]			
bit 7							bit 0
Legend:							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 NVMSRCADRH[23:16]: Data Memory Upper Address bits

REGISTER 5-6: NVMSRCADRL: NVM DATA MEMORY LOWER ADDRESS REGISTER

D 44/						
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
		NVMSR	CADR[15:8]			
						bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	r-0
	NV	MSRCADR[7:1]			—
						bit (
	n. December d	L :4				
	r = Reserved I	DIT				
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit			'0' = Bit is cleared		x = Bit is unknown	
	· · · · · · · · · · · · · · · · · · ·	r = Reserved W = Writable	R/W-x R/W-x R/W-x NVMSRCADR[r = Reserved bit W = Writable bit	NVMSRCADR[7:1] r = Reserved bit W = Writable bit U = Unimplen	R/W-x R/W-x R/W-x NVMSRCADR[7:1] r = Reserved bit W = Writable bit U = Unimplemented bit, real	R/W-x R/W-x R/W-x R/W-x NVMSRCADR[7:1] r = Reserved bit W = Writable bit U = Unimplemented bit, read as '0'

bit 15-1 NVMSRCADRL[15:1]: Data Memory Lower Address bits

bit 0 Reserved: Maintain as '0'

6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Reset" (www.microchip.com/ DS70602) in the "dsPIC33/PIC24 Family Reference Manual".
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- · BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Time-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset
 - Illegal Address Mode Reset

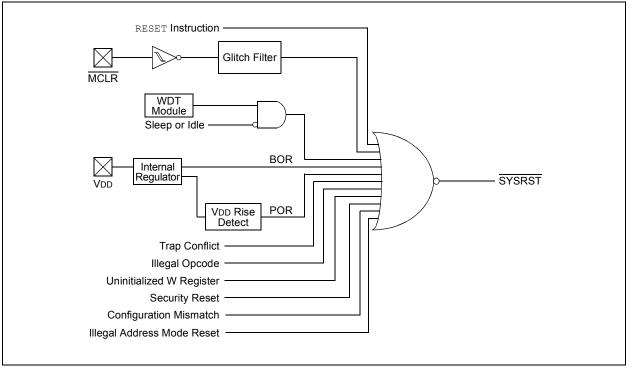
A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.

Note: Refer to the specific peripheral section or Section 4.0 "Memory Organization" of this device data sheet for register Reset states.

All types of device Reset set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the POR and BOR bits (RCON[1:0]) that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.


The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in the other sections of this device data sheet.

Note: The status bits in the RCON register should be cleared after they are read. Therefore, the next RCON register value after a device Reset is meaningful.

Note: In all types of Resets, to select the device clock source, the contents of OSCCON are initialized from the FNOSCx Configuration bits in the FOSCSEL Configuration register.

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
TRAPR	IOPUWR		—	VREGSF		СМ	VREGS
bit 15					•		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit
Legend:							
R = Reada	ble bit	W = Writable I	oit	U = Unimpler	mented bit, read	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unk	nown
bit 15 bit 14	1 = A Trap Co 0 = A Trap Co	Reset Flag bit onflict Reset ha onflict Reset ha gal Opcode or	s occurred s not occurre		cess Reset Flag	a bit	
	1 = An Illega Address	I Opcode detect Pointer caused	tion or an Ille a Reset	egal Address n	node, or Uniniti	alized W regist	ter used as a
bit 13-12	Unimplemen	ted: Read as ')'				
bit 11	1 = Flash vol	ash Voltage Reg Itage regulator i Itage regulator g	s active durir	ng Sleep mode	-	9	
bit 10	Unimplemen	ted: Read as ')'				
bit 9	•	ation Mismatch	•				
		uration Mismato uration Mismato					
bit 8	VREGS: Volta	age Regulator S	Standby Durii	ng Sleep bit			
	•	egulator is active egulator goes in	•	•	еер		
bit 7	EXTR: Extern	nal Reset (MCL	R) Pin bit				
		Clear (pin) Res Clear (pin) Res					
bit 6	SWR: Softwa	re reset (Instr	uction) Flag	bit			
		instruction has instruction has					
bit 5	SWDTEN: So	oftware Enable/	Disable of W	DT bit ⁽²⁾			
	1 = WDT is e 0 = WDT is d						
bit 4	WDTO: Watc	hdog Timer Tim	e-out Flag b	it			
	1 = WDT time	e-out has occur e-out has not oc	red				
	All of the Reset sta cause a device Re		set or cleare	d in software. S	Setting one of th	ese bits in soft	ware does no
	If the FWDTEN[1:0		bits are '11'	(unprogramme	ed), the WDT is	always enable	d, regardless

RCON: RESET CONTROL REGISTER⁽¹⁾ REGISTER 6-1:

of the SWDTEN bit setting.

© 2013-2019 Microchip Technology Inc.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 3	SLEEP: Wake-up from Sleep Flag bit
	1 = Device has been in Sleep mode
	0 = Device has not been in Sleep mode
bit 2	IDLE: Wake-up from Idle Flag bit
	1 = Device was in Idle mode
	0 = Device was not in Idle mode
bit 1	BOR: Brown-out Reset Flag bit
	1 = A Brown-out Reset has occurred
	0 = A Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit
	1 = A Power-on Reset has occurred
	0 = A Power-on Reset has not occurred

- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN[1:0] Configuration bits are '11' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

7.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Interrupts" (www.microchip.com/DS70000600) in the "dsPIC33/PIC24 Family Reference Manual".
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EVXXXGM00X/10X family interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33EVXXXGM00X/10X CPU. The Interrupt Vector Table (IVT) provides 246 interrupt sources (unused sources are reserved for future use) that can be programmed with different priority levels.

The interrupt controller has the following features:

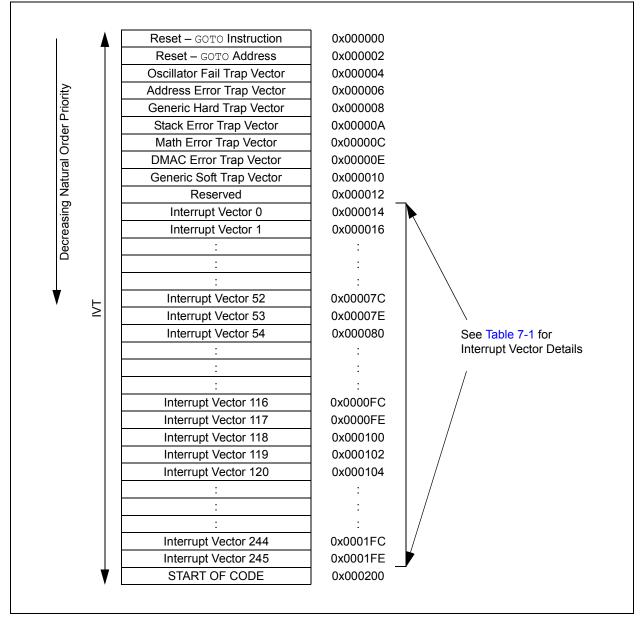
- Interrupt Vector Table with up to 246 Vectors
- Alternate Interrupt Vector Table (AIVT)
- Up to Eight Processor Exceptions and Software Traps
- Seven User-Selectable Priority Levels
- Interrupt Vector Table (IVT) with a Unique Vector for Each Interrupt or Exception Source
- Fixed Priority within a Specified User Priority Level
- Fixed Interrupt Entry and Return Latencies
- Software can Generate any Peripheral Interrupt
- Alternate Interrupt Vector Table (AIVT) is available if Boot Security is Enabled and AIVTEN = 1

7.1 Interrupt Vector Table

The dsPIC33EVXXXGM00X/10X family IVT, shown in Figure 7-2, resides in program memory, starting at location, 00004h. The IVT contains seven nonmaskable trap vectors and up to 187 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with Vector 0 takes priority over interrupts at any other vector address.

7.2 Alternate Interrupt Vector Table


The Alternate Interrupt Vector Table (AIVT), shown in Figure 7-1, is available if the Boot Segment (BS) is defined, the AIVTEN bit is set in the INTCON2 register and if the AIVTDIS Configuration bit is set to '1'. The AIVT begins at the start of the last page of the Boot Segment.

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 7-1: dsPIC33EVXXXGM00X/10X FAMILY ALTERNATE INTERRUPT VECTOR TABLE

IVT	ReservedReservedOscillator Fail Trap VectorAddress Error Trap VectorGeneric Hard Trap VectorStack Error Trap VectorMath Error Trap VectorDMAC Error Trap VectorGeneric Soft Trap VectorGeneric Soft Trap VectorReservedInterrupt Vector 0Interrupt Vector 1::Interrupt Vector 52Interrupt Vector 53Interrupt Vector 54	$\begin{array}{l} \text{BSLIM}[12:0]^{(1)} + 0x00000\\ \text{BSLIM}[12:0]^{(1)} + 0x00002\\ \text{BSLIM}[12:0]^{(1)} + 0x00004\\ \text{BSLIM}[12:0]^{(1)} + 0x00006\\ \text{BSLIM}[12:0]^{(1)} + 0x000008\\ \text{BSLIM}[12:0]^{(1)} + 0x00000C\\ \text{BSLIM}[12:0]^{(1)} + 0x00000C\\ \text{BSLIM}[12:0]^{(1)} + 0x000010\\ \text{BSLIM}[12:0]^{(1)} + 0x000012\\ \text{BSLIM}[12:0]^{(1)} + 0x000012\\ \text{BSLIM}[12:0]^{(1)} + 0x000014\\ \text{BSLIM}[12:0]^{(1)} + 0x000016\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	See Table 7-1 for
	Interrupt Vector 116 Interrupt Vector 117 Interrupt Vector 118	BSLIM[12:0] ⁽¹⁾ + 0x0000FC BSLIM[12:0] ⁽¹⁾ + 0x00007E BSLIM[12:0] ⁽¹⁾ + 0x000100	
	Interrupt Vector 119	BSLIM[12:0] ⁽¹⁾ + 0x000100 BSLIM[12:0] ⁽¹⁾ + 0x000102	
	Interrupt Vector 120	BSLIM[12:0] ⁽¹⁾ + 0x000104	
	:	:	
	:	:	
		:	
	Interrupt Vector 244	BSLIM[12:0] ⁽¹⁾ + 0x0001FC	
1	Interrupt Vector 245	BSLIM[12:0] ⁽¹⁾ + 0x0001FE	

TABLE 7-1: INTERRUPT VECTOR DETAILS

Informunt Source	Vector	IRQ	IVT Address	Interrupt Bit Location			
Interrupt Source	No.	No.	IVI Address	Flag	Enable	Priority	
		Highest	Natural Order Priority				
External Interrupt 0 (INT0)	8	0	0x000014	IFS0[0]	IEC0[0]	IPC0[2:0]	
Input Capture 1 (IC1)	9	1	0x000016	IFS0[1]	IEC0[1]	IPC0[6:4]	
Output Compare 1 (OC1)	10	2	0x000018	IFS0[2]	IEC0[2]	IPC0[10:8]	
Timer1 (T1)	11	3	0x00001A	IFS0[3]	IEC0[3]	IPC0[14:12]	
DMA Channel 0 (DMA0)	12	4	0x00001C	IFS0[4]	IEC0[4]	IPC1[2:0]	
Input Capture 2 (IC2)	13	5	0x00001E	IFS0[5]	IEC0[5]	IPC1[6:4]	
Output Compare 2 (OC2)	14	6	0x000020	IFS0[6]	IEC0[6]	IPC1[10:8]	
Timer2 (T2)	15	7	0x000022	IFS0[7]	IEC0[7]	IPC1[14:12]	
Timer3 (T3)	16	8	0x000024	IFS0[8]	IEC0[8]	IPC2[2:0]	
SPI1 Error (SPI1E)	17	9	0x000026	IFS0[9]	IEC0[9]	IPC2[6:4]	
SPI1 Transfer Done (SPI1)	18	10	0x000028	IFS0[10]	IEC0[10]	IPC2[10:8]	
UART1 Receiver (U1RX)	19	11	0x00002A	IFS0[11]	IEC0[11]	IPC2[14:12]	
UART1 Transmitter (U1TX)	20	12	0x00002C	IFS0[12]	IEC0[12]	IPC3[2:0]	
ADC1 Convert Done (AD1)	21	13	0x00002E	IFS0[13]	IEC0[13]	IPC3[6:4]	
DMA Channel 1 (DMA1)	22	14	0x000030	IFS0[14]	IEC0[14]	IPC3[10:8]	
NVM Write Complete (NVM)	23	15	0x000032	IFS0[15]	IEC0[15]	IPC3[14:12]	
2C1 Slave Event (SI2C1)	24	16	0x000034	IFS1[0]	IEC1[0]	IPC4[2:0]	
I2C1 Master Event (MI2C1)	25	17	0x000036	IFS1[1]	IEC1[1]	IPC4[6:4]	
Comparator Combined Event (CMP1)	26	18	0x000038	IFS1[2]	IEC1[2]	IPC4[10:8]	
Input Change Interrupt (CN)	27	19	0x00003A	IFS1[3]	IEC1[3]	IPC4[14:12]	
External Interrupt 1 (INT1)	28	20	0x00003C	IFS1[4]	IEC1[4]	IPC5[2:0]	
DMA Channel 2 (DMA2)	32	24	0x000044	IFS1[8]	IEC1[8]	IPC6[2:0]	
Output Compare 3 (OC3)	33	25	0x000046	IFS1[9]	IEC1[9]	IPC6[6:4]	
Output Compare 4 (OC4)	34	26	0x000048	IFS1[10]	IEC1[10]	IPC6[10:8]	
Timer4 (T4)	35	27	0x00004A	IFS1[11]	IEC1[11]	IPC6[14:12]	
Timer5 (T5)	36	28	0x00004C	IFS1[12]	IEC1[12]	IPC7[2:0]	
External Interrupt 2 (INT2)	37	29	0x00004E	IFS1[13]	IEC1[13]	IPC7[6:4]	
UART2 Receiver (U2RX)	38	30	0x000050	IFS1[14]	IEC1[14]	IPC7[10:8]	
UART2 Transmitter (U2TX)	39	31	0x000052	IFS1[15]	IEC1[15]	IPC7[14:12]	
SPI2 Error (SPI2E)	40	32	0x000054	IFS2[0]	IEC2[0]	IPC8[2:0]	
SPI2 Transfer Done (SPI2)	41	33	0x000056	IFS2[1]	IEC2[1]	IPC8[6:4]	
CAN1 RX Data Ready (C1RX) ⁽¹⁾	42	34	0x000058	IFS2[2]	IEC2[2]	IPC8[10:8]	
CAN1 Event (C1) ⁽¹⁾	43	35	0x00005A	IFS2[3]	IEC2[3]	IPC8[14:12]	
DMA Channel 3 (DMA3)	44	36	0x00005C	IFS2[4]	IEC2[4]	IPC9[2:0]	
Input Capture 3 (IC3)	45	37	0x00005E	IFS2[5]	IEC2[5]	IPC9[6:4]	
Input Capture 4 (IC4)	46	38	0x000060	IFS2[6]	IEC2[6]	IPC9[10:8]	
Reserved	54	46	0x000070	—	—	—	
PWM Special Event Match Interrupt (PSEM)	65	57	0x000086	IFS3[9]	IEC3[9]	IPC14[6:4]	
Reserved	69	61	0x00008E	_	—	_	
Reserved	71-72	63-64	0x000092-0x000094	—			

Note 1: This interrupt source is available on dsPIC33EVXXXGM10X devices only.

	Vector	IRQ		In	terrupt Bit Lo	ocation
Interrupt Source	No.	No.	IVT Address	Flag	Enable	Priority
UART1 Error Interrupt (U1E)	73	65	0x000096	IFS4[1]	IEC4[1]	IPC16[6:4]
UART2 Error Interrupt (U2E)	74	66	0x000098	IFS4[2]	IEC4[2]	IPC16[10:8]
Reserved	76-77	68–69	0x00009C-0x00009E	_		_
CAN1 TX Data Request (C1TX) ⁽¹⁾	78	70	0x0000A0	IFS4[6]	IEC4[6]	IPC17[10:8]
Reserved	80	72	0x0000A4	_		_
Reserved	82	74	0x0000A8	_	_	_
Reserved	84	76	0x0000AC	_		_
CTMU Interrupt (CTMU)	85	77	0x0000AE	IFS4[13]	IEC4[13]	IPC19[6:4]
Reserved	86-88	78-80	0x0000B0-0x0000B4	_		_
Reserved	92-94	84-86	0x0000BC-0x0000C0	_	_	_
Reserved	100-101	92-93	0x0000CC-0x0000CE	_		_
PWM Generator 1 (PWM1)	102	94	0x0000D0	IFS5[14]	IEC5[14]	IPC23[10:8]
PWM Generator 2 (PWM2)	103	95	0x0000D2	IFS5[15]	IEC5[15]	IPC23[14:12]
PWM Generator 3 (PWM3)	104	96	0x0000D4	IFS6[0]	IEC6[0]	IPC24[2:0]
Reserved	108-149	100-141	0x0000DC-0x00012E	_	_	_
ICD Application (ICD)	150	142	0x000142	IFS8[14]	IEC8[14]	IPC35[10:8]
Reserved	152	144	0x000134	_	_	_
Bus Collision (I2C1)	_	173	0x00016E	IFS10[13]	IEC10[13]	IPC43[4:6]
SENT1 Error (SENT1ERR)		182	0x000180	IFS11[6]	IEC11[6]	IPC45[10:8]
SENT1 TX/RX (SENT1)	_	183	0x000182	IFS11[7]	IEC11[7]	IPC45[14:12]
SENT2 Error (SENT2ERR)	—	184	0x000184	IFS11[8]	IEC11[8]	IPC46[2:0]
SENT2 TX/RX (SENT2)	_	185	0x000186	IFS11[9]	IEC11[9]	IPC46[6:4]
ECC Single Bit Error (ECCSBE)	—	186	0x000188	IFS11[10]	IEC11[10]	IPC45[10:8]
Reserved	159-245	187-245	0x000142-0x0001FE	_	_	—
		Lowest	Natural Order Priority			

TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

Note 1: This interrupt source is available on dsPIC33EVXXXGM10X devices only.

7.3 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33EVXXXGM00X/10X family devices clear their registers in response to a Reset, which forces the PC to zero. The device then begins program execution at location, 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

7.4 Interrupt Control and Status Registers

dsPIC33EVXXXGM00X/10X family devices implement the following registers for the interrupt controller:

- INTCON1
- INTCON2
- INTCON3
- INTCON4
- IFSx
- IECx
- IPCx
- INTTREG

7.4.1 INTCON1 THROUGH INTCON4

Global interrupt control functions are controlled from the INTCON1, INTCON2, INTCON3 and INTCON4 registers.

INTCON1 contains the Interrupt Nesting Disable bit (NSTDIS), as well as the control and status flags for the processor trap sources.

The INTCON2 register controls external interrupt request signal behavior and also contains the Global Interrupt Enable bit (GIE).

INTCON3 contains the status flags for the DMT (Deadman Timer), DMA and ${\tt DO}$ stack overflow status trap sources.

The INTCON4 register contains the ECC Double-Bit Error (ECCDBE) and Software-Generated Hard Trap (SGHT) status bit.

7.4.2 IFSx

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared through software.

7.4.3 IECx

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.4.4 IPCx

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

7.4.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into Vector Number (VECNUM[7:0]) and Interrupt Priority Level bit (ILR[3:0]) fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence as they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having Vector Number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0[0], the INT0IE bit in IEC0[0] and the INT0IP bits in the first position of IPC0 (IPC0[2:0]).

7.4.6 STATUS/CONTROL REGISTERS

Although these registers are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. For more information on these registers, refer to "**CPU**" (www.microchip.com/DS70359) in the "*dsPIC33/PIC24 Family Reference Manual*".

- The CPU STATUS Register, SR, contains the IPL[2:0] bits (SR[7:5]). These bits indicate the current CPU Interrupt Priority Level. The user software can change the current CPU Interrupt Priority Level by writing to the IPLx bits.
- The CORCON register contains the IPL3 bit which, together with IPL[2:0], also indicates the current CPU Interrupt Priority Level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-3 to Register 7-7.

x = Bit is unknown

Legend:C = Clearable bitR = Readable bitW = Writable bit							
bit 7							bit 0
IPL2 ^(2,3)	IPL1 ^(2,3)	IPL0 ^(2,3)	RA	N	OV	Z	С
R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15				•			bit 8
OA	OB	SA	SB	OAB	SAB	DA	DC
R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0

'0' = Bit is cleared

REGISTER 7-1: SR: CPU STATUS REGISTER⁽¹⁾

bit 7-5 IPL[2:0]: CPU Interrupt Priority Level Status bits^(2,3)

-n = Value at POR

111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled

110 = CPU Interrupt Priority Level is 6 (14)

'1' = Bit is set

- 101 = CPU Interrupt Priority Level is 5 (13)
- 100 = CPU Interrupt Priority Level is 4 (12)
- 011 = CPU Interrupt Priority Level is 3 (11)
- 010 = CPU Interrupt Priority Level is 2 (10)
- 001 = CPU Interrupt Priority Level is 1 (9)
- 000 = CPU Interrupt Priority Level is 0 (8)

Note 1: For complete register details, see Register 3-1.

- **2:** The IPL[2:0] bits are concatenated with the IPL3 bit (CORCON[3]) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL3 = 1. User interrupts are disabled when IPL3 = 1.
- 3: The IPL[2:0] Status bits are read-only when the NSTDIS bit (INTCON1[15]) = 1.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR	_	US1	US0	EDT	DL2	DL1	DL0
bit 15	·	_			·		bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7	•						bit 0
Legend:		C = Clearable	e bit				
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 VAR: Variable Exception Processing Latency Control bit 1 = Variable exception processing latency is enabled

0 = Fixed exception processing latency is enabled

bit 3 IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾

1 = CPU Interrupt Priority Level is greater than 7

0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL[2:0] bits (SR[7:5]) to form the CPU Interrupt Priority Level.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE			
bit 15							bit 8			
R/W-0	HC/R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0			
SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—			
bit 7							bit 0			
Legend:		HC = Hardwa	re Clearable bi	t						
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'						
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown			
bit 15	NSTDIS: Inte	errupt Nesting	Disable bit							
	 1 = Interrupt nesting is disabled 0 = Interrupt nesting is enabled 									
bit 14	OVAERR: Accumulator A Overflow Trap Flag bit									
	1 = Trap was caused by overflow of Accumulator A									
h:: 40	0 = Trap was not caused by overflow of Accumulator A									
bit 13	OVBERR: Accumulator B Overflow Trap Flag bit 1 = Trap was caused by overflow of Accumulator B									
	0 = Trap was not caused by overflow of Accumulator B									
bit 12	COVAERR: Accumulator A Catastrophic Overflow Trap Flag bit									
	 1 = Trap was caused by catastrophic overflow of Accumulator A 0 = Trap was not caused by catastrophic overflow of Accumulator A 									
bit 11	-	OVBERR: Accumulator B Catastrophic Overflow Trap Flag bit								
	 1 = Trap was caused by catastrophic overflow of Accumulator B 0 = Trap was not caused by catastrophic overflow of Accumulator B 									
bit 10	OVATE: Accumulator A Overflow Trap Enable bit									
	1 = Trap overflow of Accumulator A 0 = Trap is disabled									
bit 9	•	OVBTE: Accumulator B Overflow Trap Enable bit								
	1 = Trap overflow of Accumulator B 0 = Trap is disabled									
bit 8	COVTE: Cat	tastrophic Over	flow Trap Enat	ole bit						
	 1 = Trap on catastrophic overflow of Accumulator A or B is enabled 0 = Trap is disabled 									
bit 7	SFTACERR: Shift Accumulator Error Status bit									
	 1 = Math error trap was caused by an invalid accumulator shift 0 = Math error trap was caused by an invalid accumulator shift 									
bit 6			Error Status bit							
	 1 = Math error trap was caused by a divide-by-zero 0 = Math error trap was not caused by a divide-by-zero 									
bit 5		DMAC Trap F	-	2						
	1 = DMAC trap has occurred									
		ap has not occ								
bit 4		Math Error Sta								
		or trap has occ or trap has not								

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

© 2013-2019 Microchip Technology Inc.

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 3	ADDRERR: Address Error Trap Status bit
	1 = Address error trap has occurred
	0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit
	1 = Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred
	0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0		
GIE	DISI	SWTRAP	_	—	_	_	AIVTEN		
bit 15							bit 8		
					D 44/0	D 444.0	DAA/ O		
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
	_		—		INT2EP	INT1EP	INT0EP		
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable I	bit	U = Unimpler	mented bit, read	as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle					
bit 15		Interrupt Enable							
		s and associate							
L:1 4 4	•	s are disabled, b		still enabled					
bit 14		nstruction Status struction is active							
		struction is not a							
bit 13	SWTRAP: S	oftware Trap Sta	atus bit						
		trap is enabled							
	0 = Software	trap is disabled	ł						
bit 12-9	Unimplemer	nted: Read as '	0'						
bit 8		ernate Interrupt	Vector Table	is Enabled bit					
	1 = AIVT is e 0 = AIVT is d								
bit 7-3		nted: Read as '	∩ '						
bit 2	-	ernal Interrupt 2		t Polarity Selec	t bit				
		on negative edg	•						
		on positive edg	5						
bit 1	INT1EP: Exte	ernal Interrupt 1	Edge Detec	t Polarity Selec	t bit				
		on negative edg							
		on positive edg							
bit 0		ernal Interrupt 0	•	t Polarity Selec	t bit				
		on negative edg							
		en poolare eug	~						

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
DMT	—	—	—	—	—	—	_
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	<u> </u>	DAE	DOOVR	_		<u> </u>	_
bit 7	bit 7						bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15		an Timer (Soft	/ 1	bit			
		Timer trap ha					
		Timer trap ha		I			
bit 14-6	-	ted: Read as					
bit 5	DAE: DMA A	ddress Error S	oft Trap Status	s bit			
1 = DMA address error soft trap has occurred							
	0 = DMA add	ress error soft	trap has not o	ccurred			
bit 4	DOOVR: DO	Stack Overflow	/ Soft Trap Sta	tus bit			
		overflow soft tr	•				
		overflow soft tr	-	curred			
bit 3-0	Unimplemented: Read as '0'						

REGISTER 7-5: INTCON3: INTERRUPT CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	SC/HS/R-0	SC/HS/R-0
—	—	—	_	—	—	ECCDBE ⁽¹⁾	SGHT
bit 7							bit 0
Legend:		HS = Hardwar	e Settable bit	SC = Software Clearable bit			
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at Po	OR	'1' = Bit is set	set '0' = Bit is cleared x = Bit is unknown			nown	

REGISTER 7-6: INTCON4: INTERRUPT CONTROL REGISTER 4

bit 15-2	Unimplemented: Read as '0'
bit 1	ECCDBE: ECC Double-Bit Error Trap bit ⁽¹⁾
	1 = ECC double-bit error trap has occurred0 = ECC double-bit error trap has not occurred
bit 0	SGHT: Software-Generated Hard Trap Status bit
	1 = Software-generated hard trap has occurred0 = Software-generated hard trap has not occurred

Note 1: ECC double-bit error causes a generic hard trap.

^{© 2013-2019} Microchip Technology Inc.

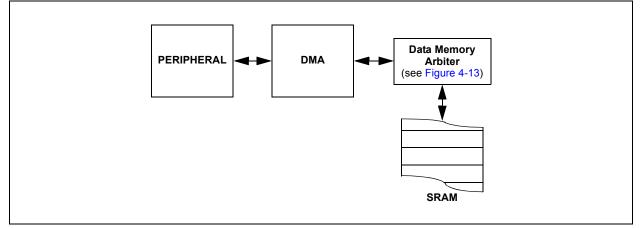
U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0			
	_	_	_	—		ILR[3:0]				
bit 15							bi			
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
			VECI	NUM[7:0]						
bit 7							bi			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, re	ad as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own			
bit 15-11	-	ented: Read as '								
bit 10-8		ew CPU Interrup	•							
	1111 = CPU Interrupt Priority Level is 15									
	•									
	•									
		U Interrupt Priorit U Interrupt Priorit								
bit 7-0	VECNUM[7:0]: Vector Number of Pending Interrupt bits									
	11111111 = 255, Reserved; do not use									
	•									
	•									
	•		a 1 (IC1)							
	00001001	00001001 = 9, Input Capture 1 (IC1) 00001000 = 8, External Interrupt 0 (INT0)								
))						
	00001000	= 8, External Inte	errupt 0 (INT	0)						
	00001000 00000111		errupt 0 (INT o not use))						
	00001000 00000111 00000110 00000101	 8, External Inte 7, Reserved; d 6, Generic soft 5, DMAC error 	errupt 0 (INT o not use error trap trap))						
	00001000 00000111 00000110 00000101 00000100	 8, External Inte 7, Reserved; d 6, Generic soft 5, DMAC error 4, Math error tr 	errupt 0 (INT o not use error trap trap ap	0)						
	00001000 00000111 00000110 00000101 00000100 000000	 8, External Inte 7, Reserved; d 6, Generic soft 5, DMAC error 4, Math error tr 3, Stack error t 	errupt 0 (INT o not use error trap trap ap rap	0)						
	00001000 00000111 00000101 00000100 00000100 000000	 8, External Inte 7, Reserved; d 6, Generic soft 5, DMAC error 4, Math error tr 	errupt 0 (INT o not use error trap trap ap rap d trap	0)						

REGISTER 7-7: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

8.0 DIRECT MEMORY ACCESS (DMA)

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Direct Memory Access (DMA)" (www.microchip.com/DS70348) in the "dsPIC33/PIC24 Family Reference Manual".
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The DMA Controller transfers data between Peripheral Data registers and Data Space SRAM. For the simplified DMA block diagram, refer to Figure 8-1.


In addition, DMA can access the entire data memory space. The data memory bus arbiter is utilized when either the CPU or DMA attempts to access SRAM, resulting in potential DMA or CPU Stalls.

The DMA Controller supports four independent channels. Each channel can be configured for transfers to or from selected peripherals. The peripherals supported by the DMA Controller include:

- CAN
- Analog-to-Digital Converter (ADC)
- Serial Peripheral Interface (SPI)
- UART
- Input Capture
- Output Compare

Refer to Table 8-1 for a complete list of supported peripherals.

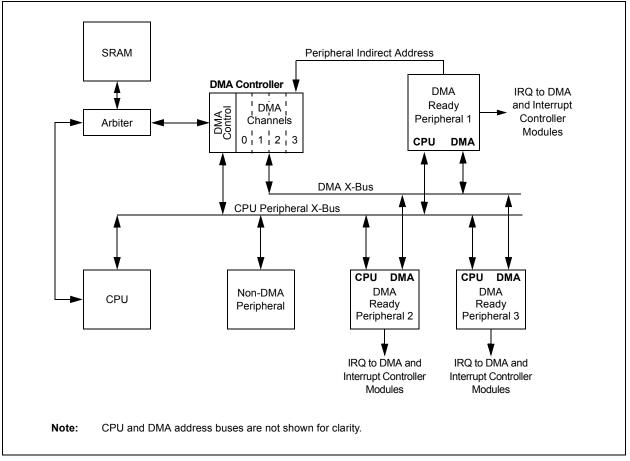
FIGURE 8-1: PERIPHERAL TO DMA CONTROLLER

In addition, DMA transfers can be triggered by timers as well as external interrupts. Each DMA channel is unidirectional. Two DMA channels must be allocated to read and write to a peripheral. If more than one channel receives a request to transfer data, a simple fixed priority scheme, based on channel number, dictates which channel completes the transfer and which channel or channels are left pending. Each DMA channel moves a block of data, after which, it generates an interrupt to the CPU to indicate that the block is available for processing.

The DMA Controller provides these functional capabilities:

- Four DMA Channels
- Register Indirect with Post-Increment Addressing mode
- Register Indirect without Post-Increment Addressing mode

- Peripheral Indirect Addressing mode (peripheral generates destination address)
- CPU Interrupt after Half or Full Block Transfer Complete
- Byte or Word Transfers
- Fixed Priority Channel Arbitration
- Manual (software) or Automatic (peripheral DMA requests) Transfer Initiation
- One-Shot or Auto-Repeat Block Transfer modes
- Ping-Pong mode (automatic switch between two SRAM start addresses after each block transfer complete)
- DMA Request for Each Channel can be Selected from any Supported Interrupt Source
- Debug Support Features


The peripherals that can utilize DMA are listed in Table 8-1.

Peripheral to DMA Association	DMAxREQ Register IRQSEL[7:0] Bits	DMAxPAD Register (Values to Read from Peripheral)	DMAxPAD Register (Values to Write to Peripheral)
External Interrupt 0 (INT0)	00000000	_	_
Input Capture 1 (IC1)	0000001	0x0144 (IC1BUF)	—
Input Capture 2 (IC2)	00000101	0x014C (IC2BUF)	—
Input Capture 3 (IC3)	00100101	0x0154 (IC3BUF)	—
Input Capture 4 (IC4)	00100110	0x015C (IC4BUF)	—
Output Compare 1 (OC1)	0000010	_	0x0906 (OC1R) 0x0904 (OC1RS)
Output Compare 2 (OC2)	00000110	_	0x0910 (OC2R) 0x090E (OC2RS)
Output Compare 3 (OC3)	00011001	_	0x091A (OC3R) 0x0918 (OC3RS)
Output Compare 4 (OC4)	00011010	_	0x0924 (OC4R) 0x0922 (OC4RS)
Timer2 (TMR2)	00000111	_	_
Timer3 (TMR3)	00001000	—	—
Timer4 (TMR4)	00011011	—	—
Timer5 (TMR5)	00011100	_	_
SPI1 Transfer Done	00001010	0x0248 (SPI1BUF)	0x0248 (SPI1BUF)
SPI2 Transfer Done	00100001	0x0268 (SPI2BUF)	0x0268 (SPI2BUF)
UART1 Receiver (UART1RX)	00001011	0x0226 (U1RXREG)	_
UART1 Transmitter (UART1TX)	00001100	—	0x0224 (U1TXREG)
UART2 Receiver (UART2RX)	00011110	0x0236 (U2RXREG)	_
UART2 Transmitter (UART2TX)	00011111	—	0x0234 (U2TXREG)
RX Data Ready (CAN1)	00100010	0x0440 (C1RXD)	_
TX Data Request (CAN1)	01000110	—	0x0442 (C1TXD)
ADC1 Convert Done (ADC1)	00001101	0x0300 (ADC1BUF0)	_

TABLE 8-1: DMA CHANNEL TO PERIPHERAL ASSOCIATIONS

Figure 8-2 illustrates the DMA Controller block diagram.

8.1 DMAC Controller Registers

Each DMAC Channel x (where x = 0 to 3) contains the following registers:

- 16-Bit DMA Channel x Control Register (DMAxCON)
- 16-Bit DMA Channel x IRQ Select Register (DMAxREQ)
- 32-Bit DMA Channel x Start Address Register A High/Low (DMAxSTAH/L)
- 32-Bit DMA Channel x Start Address Register B High/Low (DMAxSTBH/L)
- 16-Bit DMA Channel x Peripheral Address Register (DMAxPAD)
- 14-Bit DMA Channel x Transfer Count Register (DMAxCNT)

Additional status registers (DMAPWC, DMARQC, DMAPPS, DMALCA and DSADRH/L) are common to all DMAC channels. These status registers provide information on write and request collisions, as well as on last address and channel access information.

The DMA Interrupt Flags (DMAxIF) are located in an IFSx register in the interrupt controller. The corresponding DMA Interrupt Enable bits (DMAxIE) are located in an IECx register in the interrupt controller and the corresponding DMA Interrupt Priority bits (DMAxIP) are located in an IPCx register in the interrupt controller.

REGISTER	8-1: DMAx	CON: DMA C	HANNEL X	CONTROL R	EGISTER					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0			
CHEN	SIZE	DIR	HALF	NULLW	—	—				
bit 15							bit 8			
U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0			
_		AMODE1	AMODE0		_	MODE1	MODE0			
bit 7		, anode i	74110020			model	bit 0			
Legend:			L 14							
R = Readabl		W = Writable		U = Unimplen						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown			
bit 15	CHEN: DMA	Channel Enabl	e bit							
	1 = Channel	is enabled								
	0 = Channel	is disabled								
bit 14	SIZE: DMA Data Transfer Size bit									
	1 = Byte 0 = Word									
bit 13	DIR: DMA Tra	ansfer Direction	n bit (source/d	estination bus	select)					
				eripheral address to RAM address						
bit 12	HALF: DMA I	Block Transfer	Interrupt Sele	ct bit						
				a have been mo have been mo						
bit 11		Data Peripher								
		write to periph		n to RAM write	(DIR bit must	also be clear)				
bit 10-6	Unimplemen	ted: Read as '	0'							
bit 5-4	AMODE[1:0]	: DMA Channe	I Addressing I	Node Select bit	S					
	11 = Reserve	d	C C							
		ral Indirect mod								
	-	01 = Register Indirect without Post-Increment mode 00 = Register Indirect with Post-Increment mode								
bit 3-2	-	ted: Read as '								
bit 1-0	-	DMA Channel		te Select bits						
					transfer from	/to each DMA bi	uffer)			
		ous Ping-Pong								
		ot Ping-Pong n								
	00 = Continue	ous Ping-Pong	modes are dis	sabled						

REGISTER 8-1: DMAxCON: DMA CHANNEL x CONTROL REGISTER

REGISTER	\mathbf{D} -2. DIVIAX	REQ: DIVIA C		INQ SELECT	REGISTER				
R/S-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
FORCE ⁽¹⁾	—	—	—		_	—	—		
bit 15							bit		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			IRQS	EL[7:0]					
bit 7							bit		
Legend:		S = Settable b	;+						
R = Readable	hit	W = Writable t		LI – Unimplor	monted bit read				
			JIL		mented bit, read				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown		
bit 15	FORCE: Ford	e DMA Transfe	r hit(1)						
bit 15		single DMA tra		al mode)					
		•	•	,					
bit 14-8	 0 = Automatic DMA transfer initiation by DMA request Unimplemented: Read as '0' 								
bit 7-0	•	: DMA Peripher		er Select bits					
	01000110 = TX data request (CAN1) ⁽²⁾								
		Input Capture 4							
		Input Capture 3							
		RX data ready							
		SPI2 transfer d		-					
		UART2 Transm							
		UART2 Receive Timer5 (TMR5)		N)					
	00011011 = Timer4 (TMR4) 00011010 = Output Compare 4 (OC4)								
	00011001 = Output Compare 3 (OC3)								
	00001101 = ADC1 convert done (ADC1)								
	00001100 = UART1 Transmitter (UART1TX)								
	00001011 = UART1 Receiver (UART1RX) 00001010 = SPI1 transfer done (SPI1)								
		Timer3 (TMR3)	· · ·						
		Timer2 (TMR2)							
		Output Compar							
		Input Capture 2							
		Output Compar							
		Input Capture 1							
	0000000 -	External Interru	$nt \cap (INITO)$						

REGISTER 8-2: DMAxREQ: DMA CHANNEL x IRQ SELECT REGISTER

- **Note 1:** The FORCE bit cannot be cleared by user software. The FORCE bit is cleared by hardware when the forced DMA transfer is complete or the channel is disabled (CHEN = 0).
 - 2: This select bit is only available on dsPIC33EVXXXGM10X devices.

REGISTER 8-3: DMAxSTAH: DMA CHANNEL x START ADDRESS REGISTER A (HIGH)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15		•					bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	23:16]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **STA[23:16]:** DMA Primary Start Address bits (source or destination)

REGISTER 8-4: DMAxSTAL: DMA CHANNEL x START ADDRESS REGISTER A (LOW)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	4[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ST	A[7:0]			
bit 7							bit C
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplen	nented bit, rea	ad as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknow			nown	

bit 15-0 STA[15:0]: DMA Primary Start Address bits (source or destination)

REGISTER 8-5: DMAxSTBH: DMA CHANNEL x START ADDRESS REGISTER B (HIGH)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	_	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STB[2	23:16]			
bit 7							bit 0
Legend:							

Ecgenia.					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-8 Unimplemented: Read as '0'

bit 7-0 STB[23:16]: DMA Secondary Start Address bits (source or destination)

REGISTER 8-6: DMAxSTBL: DMA CHANNEL x START ADDRESS REGISTER B (LOW)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STE	8[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STI	3[7:0]			
bit 7							bit 0
Legend:							
R = Readable	R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unknown		

bit 15-0 STB[15:0]: DMA Secondary Start Address bits (source or destination)

© 2013-2019 Microchip Technology Inc.

REGISTER 8-7: DMAxPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD	D[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PA	D[7:0]			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkr				nown			

bit 15-0 **PAD[15:0]:** DMA Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-8: DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			CNT[13:8] ⁽²⁾		
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CNT[7:0] ⁽²⁾								
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-0 CNT[13:0]: DMA Transfer Count Register bits⁽²⁾

- **Note 1:** If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.
 - **2:** The number of DMA transfers = CNT[13:0] + 1.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSAD	R[23:16]			
bit 7							bit 0
Legend:							
R = Readable bit	t	W = Writable bit		U = Unimpler	mented bit. read	l as '0'	

REGISTER 8-9: DSADRH: DMA MOST RECENT RAM HIGH ADDRESS REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 DSADR[23:16]: Most Recent DMA Address Accessed by DMA bits

REGISTER 8-10: DSADRL: DMA MOST RECENT RAM LOW ADDRESS REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSA	DR[15:8]			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSA	ADR[7:0]			
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable I	oit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknow			nown

bit 15-0 DSADR[15:0]: Most Recent DMA Address Accessed by DMA bits

1 = Write collision is detected0 = Write collision is not detected

1 = Write collision is detected0 = Write collision is not detected

1 = Write collision is detected0 = Write collision is not detected

PWCOL1: Channel 1 Peripheral Write Collision Flag bit

PWCOL0: Channel 0 Peripheral Write Collision Flag bit

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—		—	—	—	—	_	
bit 15							bit	
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	
—	—	—	—	PWCOL3	PWCOL2	PWCOL1	PWCOL0	
bit 7							bit (
Legend:								
R = Readabl	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-4	Unimplemen	ted: Read as '	0'					
bit 3	PWCOL3: Ch	annel 3 Periph	eral Write Co	llision Flag bit				
		lision is detecte lision is not det						
bit 2	PWCOL2: Ch	annel 2 Periph	eral Write Co	llision Flag bit				

REGISTER 8-11: DMAPWC: DMA PERIPHERAL WRITE COLLISION STATUS REGISTER

bit 1

bit 0

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
_	—	_	_	—	—							
bit 15							bit 8					
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0					
—	—	—	—	RQCOL3	RQCOL2	RQCOL1	RQCOL0					
bit 7							bit 0					
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'								
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 15-4	Unimplemer	nted: Read as '	0'									
bit 3	RQCOL3: Ch	nannel 3 Transf	er Request C	Collision Flag bit								
		1 = User force and interrupt-based request collision is detected										
		0 = User force and interrupt-based request collision is not detected										
bit 2			•	Collision Flag bit								
		•		est collision is de								
bit 1		•										
bit 1 RQCOL1: Channel 1 Transfer Request Collision Flag bit 1 = User force and interrupt-based request collision is detected												
bit 0		 User force and interrupt-based request collision is not detected RQCOL0: Channel 0 Transfer Request Collision Flag bit 										
			•	est collision is d								
	0 = User for	ce and interrupt	-based reque	est collision is n	ot detected							

REGISTER 8-12: DMARQC: DMA REQUEST COLLISION STATUS REGISTER

REGISTER 8-13: DMALCA: DMA LAST CHANNEL ACTIVE STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	_	—	_	—	—	_	—		
bit 15							bit 8		
U-0	U-0	U-0	U-0	R-1 R-1 R-1 R-1					
	_		_		LSTCI	H[3:0]			
bit 7							bit 0		
·									
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown		
bit 15-4	Unimplemen	ted: Read as ')'						
bit 3-0	LSTCH[3:0]:	Last DMAC Ch	annel Active	Status bits					
		MA transfer has	s occurred sin	ce system Res	set				
	1110 = Rese	rved							
	•								
	•								
	0100 = Rese i	rved							
	0011 = Last data transfer was handled by Channel 3								
	0010 = Last data transfer was handled by Channel 2								
	0001 = Last data transfer was handled by Channel 1 0000 = Last data transfer was handled by Channel 0								
	0000 = Last c	iata transfer wa	as nanuled by	Channel 0					

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0

REGISTER 8-14: DMAPPS: DMA PING-PONG STATUS REGISTER

Lonondi							
bit 7							bit 0
—	—	—	—	PPST3	PPST2	PPST1	PPST0
0-0	0-0	0-0	0-0	14-0	14-0	11-0	14-0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4	Unimplemented: Read as '0'
bit 3	PPST3: Channel 3 Ping-Pong Mode Status Flag bit
	1 = DMA3STB register is selected0 = DMA3STA register is selected
bit 2	PPST2: Channel 2 Ping-Pong Mode Status Flag bit
	1 = DMA2STB register is selected
	0 = DMA2STA register is selected
bit 1	PPST1: Channel 1 Ping-Pong Mode Status Flag bit
	1 = DMA1STB register is selected
	0 = DMA1STA register is selected
bit 0	PPST0: Channel 0 Ping-Pong mode Status Flag bit
	1 = DMA0STB register is selected
	0 = DMA0STA register is selected

NOTES:

9.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Oscillator" (www.microchip.com/ DS70580) in the "dsPIC33/PIC24 Family Reference Manual".
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EVXXXGM00X/10X family oscillator system provides:

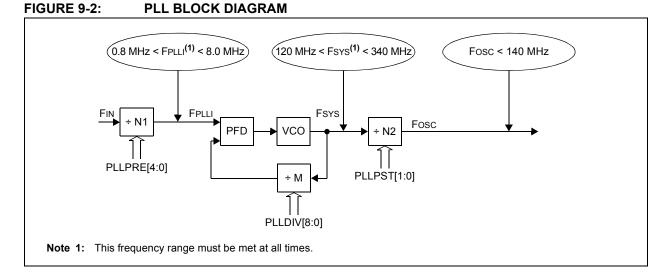
- On-Chip Phase-Locked Loop (PLL) to Boost Internal Operating Frequency on Select Internal and External Oscillator Sources
- On-the-Fly Clock Switching between Various Clock Sources
- · Doze mode for System Power Savings
- Fail-Safe Clock Monitor (FSCM) that Detects Clock Failure and Permits Safe Application Recovery or Shutdown.
- Backup FRC (BFRC) Function that Provides a System Clock when there is a Failure in the FRC Clock
- Configuration bits for Clock Source Selection
- A simplified diagram of the oscillator system is shown in Figure 9-1.

9.1 CPU Clocking System

The dsPIC33EVXXXGM00X/10X family of devices provides the following six system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with Phase-Locked Loop (PLL)
- FRC Oscillator with Postscaler
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- Low-Power RC (LPRC) Oscillator

For instruction execution speed or device operating frequency (FCY), see Equation 9-1.


EQUATION 9-1: DEVICE OPERATING FREQUENCY

FCY = FOSC/2

Figure 9-2 provides the block diagram of the PLL module.

Equation 9-2 provides the relationship between input frequency (FIN) and output frequency (FOSC).

Equation 9-3 provides the relationship between input frequency (FIN) and VCO frequency (FSYS).

EQUATION 9-2: Fosc CALCULATION

$$FOSC = FIN \times \left(\frac{M}{N1 \times N2}\right) = FIN \times \left(\frac{(PLLDIV[8:0] + 2)}{(PLLPRE[4:0] + 2) \times 2(PLLPOST[1:0] + 1)}\right)$$

Where: *N*1 = *PLLPRE*[4:0] + 2 *N*2 = 2 x (*PLLPOST*[1:0] + 1) *M* = *PLLDIV*[8:0] + 2

EQUATION 9-3: Fvco CALCULATION

$$FSYS = FIN \times \left(\frac{M}{N1}\right) = FIN \times \left(\frac{(PLLDIV[8:0]+2)}{(PLLPRE[4:0]+2)}\right)$$

DS70005144H-page 128

 Table 9-1 provides the Configuration bits which allow users to choose between the various clock modes.

Oscillator Mode	Oscillator Source	POSCMD[1:0]	FNOSC[2:0]
Fast RC Oscillator with Divide-by-N (FRCDIVN) ^(1,2)	Internal	xx	111
Fast RC Oscillator with Divide-by-16 (FRCDIV16) ⁽¹⁾	Internal	XX	110
Low-Power RC Oscillator (LPRC) ⁽¹⁾	Internal	XX	101
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011
Primary Oscillator (EC) with PLL (ECPLL) ⁽¹⁾	Primary	00	011
Primary Oscillator (HS)	Primary	10	010
Primary Oscillator (XT)	Primary	01	010
Primary Oscillator (EC) ⁽¹⁾	Primary	00	010
Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL) ⁽¹⁾	Internal	XX	001
Fast RC Oscillator (FRC) ⁽¹⁾	Internal	XX	000

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

^{© 2013-2019} Microchip Technology Inc.

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y				
_	COSC2	COSC1	COSC0	—	NOSC2 ⁽²⁾	NOSC1 ⁽²⁾	NOSC0 ⁽²⁾				
bit 15							bit 8				
R/W-0											
CLKLOCK	R/W-0	R-0 LOCK	U-0	R/C-0 CF	U-0	U-0	R/W-0 OSWEN				
bit 7	IOLOCK	LUCK	_		—	_	bit (
							bit (
Legend:		C = Clearable	e bit	y = Value set	from Configura	tion bits on PO	R				
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'					
-n = Value a	It POR	'1' = Bit is set	t	'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15	-	ted: Read as '									
bit 14-12				oits (read-only)							
		C Oscillator (F									
		C Oscillator (F ower RC Oscill		de-by-16							
		100 = Backup FRC Oscillator (BFRC) ⁽⁴⁾ 011 = Primary Oscillator (XT, HS, EC) with PLL									
		010 = Primary Oscillator (XT, HS, EC)									
001 = Fast RC Oscillator (FRC) Divided by N and PLL 000 = Fast RC Oscillator (FRC)											
bit 11		ted: Read as '	,								
bit 10-8	-	New Oscillator		(2)							
		C Oscillator (F									
		C Oscillator (F									
		ower RC Oscill	lator (LPRC)								
	100 = Reserv										
		y Oscillator (X [*] y Oscillator (X [*]		II PLL							
		C Oscillator (F		y N and PLL							
	000 = Fast R	C Oscillator (F	RC)								
bit 7		Clock Lock Ena									
		/I0 = 1, then clo ations may be r		onfigurations a	re locked; if FCk	SM0 = 0, then	clock and PLI				
	0	,		ked, configurat	ions may be mo	odified					
bit 6	IOLOCK: I/O	Lock Enable b	bit		2						
	1 = I/O lock is	s active									
	0 = I/O lock is	s not active									
bit 5	LOCK: PLL L	ock Status bit	(read-only)								
				art-up timer is -up timer is in _l	satisfied progress or PLL	is disabled					
	Vrites to this regis										
	Direct clock switch			-							
te	ed. This applies to RC mode as a tra	o clock switche	s in either dire	ection. In these	instances, the		•				
	his register reset										
	COSC[2:0] bits wil	-		-							
					at ta (0) 1 0 0' (F						

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3)

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3) (CONTINUED)

- bit 4 Unimplemented: Read as '0'
- bit 3 **CF:** Clock Fail Detect bit (read/clear by application)
 - 1 = FSCM has detected a clock failure
 - 0 = FSCM has not detected a clock failure
- bit 2-1 Unimplemented: Read as '0'
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Requests oscillator switch to selection specified by the NOSC[2:0] bits
 - 0 = Oscillator switch is complete
- **Note 1:** Writes to this register require an unlock sequence. Refer to **"Oscillator"** (www.microchip.com/DS70580) in the *"dsPIC33/PIC24 Family Reference Manual"* (available from the Microchip website) for details.
 - 2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.
 - 3: This register resets only on a Power-on Reset (POR).
 - 4: COSC[2:0] bits will be set to '0b100' when FRC fails.
 - 5: User cannot write '0b100' to NOSC[2:0]. COSC[2:0] will be set to '0b100' (BFRC) when the FRC fails.

^{© 2013-2019} Microchip Technology Inc.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
ROI	DOZE2 ⁽³⁾	DOZE1 ⁽³⁾	DOZE0 ⁽³⁾	DOZEN ^(1,4)	FRCDIV2	FRCDIV1	FRCDIV0
bit 15				1 1			bit 8
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PLLPOST1	PLLPOST0		PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0
bit 7							bit C
Legend:							
R = Readabl		W = Writable		•	nented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
L:1 4 F			:1				
bit 15		on Interrupt b will clear the D					
		have no effect		N bit			
bit 14-12	•	Processor Cloc					
	111 = FCY div						
	110 = FCY div						
	101 = FCY div						
	100 = FCY div 011 = FCY div						
	010 = FCY div	•					
	001 = FCY div						
	000 = Fcy div	/ided by 1 (def	ault)				
bit 11		e Mode Enable					
				ween the periph atio are forced		d the processo	r clocks
bit 10-8		-	-	Postscaler bits	10 1.1		
	111 = FRC di						
	110 = FRC di						
	101 = FRC di	vided by 32					
	100 = FRC di						
	011 = FRC di 010 = FRC di						
		ivided by 4 (de	fault)				
	000 = FRC di		/				
bit 7-6	PLLPOST[1:0	0]: PLL VCO C	Output Divider	Select bits (also	o denoted as 'N	N2', PLL postsc	aler)
	11 = Output c	livided by 8					
	10 = Reserve						
	01 = Output c 00 = Output c						
bit 5	-	ted: Read as '	0'				
	his bit is cleared			an interrunt occ	urs		
	his register resets			•	ui 3.		
3: D	OZE[2:0] bits car OZE[2:0] are ign	n only be writte			clear. If DOZEN	I = 1, any write	es to
- -							.

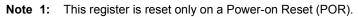
REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER⁽²⁾

4: The DOZEN bit cannot be set if DOZE[2:0] = 000. If DOZE[2:0] = 000, any attempt by user software to set the DOZEN bit is ignored.

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER⁽²⁾ (CONTINUED)

- **Note 1:** This bit is cleared when the ROI bit is set and an interrupt occurs.
 - 2: This register resets only on a Power-on Reset (POR).
 - **3:** DOZE[2:0] bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE[2:0] are ignored.
 - 4: The DOZEN bit cannot be set if DOZE[2:0] = 000. If DOZE[2:0] = 000, any attempt by user software to set the DOZEN bit is ignored.

^{© 2013-2019} Microchip Technology Inc.


U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0		
	—	—	_	—	_	—	PLLDIV8		
bit 15							bit 8		
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0		
			PLLD	DIV[7:0]					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0' '0' = Bit is cleared x = Bit is unknown					
-n = Value a	it POR	'1' = Bit is set	t	'0' = Bit is cle	ared				
bit 15-9	Unimplemer	nted: Read as '	ʻ0 '						
bit 8-0	PLLDIV[8:0]	: PLL Feedbac	k Divisor bits	(also denoted a	is 'M', PLL multi	iplier)			
	111111111	= 513							
	•								
	•								
	•	= 50 (default)							
	•								
	•								
	•								
	00000010								
	00000001	-							
	000000000	= 2							

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER⁽¹⁾

Note 1: This register is reset only on a Power-on Reset (POR).

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	_	_	—	_	—	—
bit 15							bit
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—			TUT	N[5:0]		
bit 7							bit
Legend:							
R = Readabl		W = Writable		•	nented bit, read		
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-6 bit 5-0	Unimplement TUN[5:0]: FR 111111 = Cer • • • 100001 = Cer	C Oscillator Tu hter frequency	uning bits – 0.048% (7.	,			
	100000 = Cer 011111 = Cer 011110 = Cer •	nter frequency nter frequency nter frequency	- 1.548% (7 + 1.5% (7.48 + 1.452% (7.	2552 MHz) MHz) 477 MHz)			
	000001 = Cer 000000 = Cer		•	,			

REGISTER 9-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER⁽¹⁾

 $[\]ensuremath{\textcircled{}^{\odot}}$ 2013-2019 Microchip Technology Inc.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ROON	_	ROSSLP	ROSEL	RODIV3 ⁽¹⁾	RODIV2 ⁽¹⁾	RODIV1 ⁽¹⁾	RODIV0 ⁽¹⁾		
oit 15				•			bit		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	-	-	_	_	_	_	_		
bit 7							bit		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown		
bit 15 bit 14	1 = Reference 0 = Reference	e oscillator out	out is enabled out is disabled	I on the REFCL	₋K pin ⁽²⁾				
	Unimplemented: Read as '0' ROSSLP: Reference Oscillator Run in Sleep bit								
bit 13	1 = Reference	e oscillator out	put continues	to run in Sleep d in Sleep mode					
bit 12	1 = Oscillator	erence Oscillato crystal is used lock is used as	as the refere	nce clock					
bit 11-8	1111 = Refer 1110 = Refer 1101 = Refer 1100 = Refer 1011 = Refer 1010 = Refer 1001 = Refer 0111 = Refer 0111 = Refer 0101 = Refer 0100 = Refer 0101 = Refer 0101 = Refer 0101 = Refer	Reference Osc rence clock divi rence clock divi	ided by 32,76 ided by 16,38 ided by 8,192 ided by 4,096 ided by 2,048 ided by 1,024 ided by 512 ided by 512 ided by 256 ided by 128 ided by 64 ided by 32 ided by 16 ided by 8 ided by 4	8 4					
	0000 = Refer								

REGISTER 9-5: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

- **Note 1:** The reference oscillator output must be disabled (ROON = 0) before writing to these bits.
 - 2: This pin is remappable. See Section 11.5 "Peripheral Pin Select (PPS)" for more information.

10.0 POWER-SAVING FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Watchdog Timer and Power-Saving Modes" (www.microchip.com/ DS70615) in the "dsPIC33/PIC24 Family Reference Manual".
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EVXXXGM00X/10X devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of peripherals being clocked constitutes lower consumed power.

The dsPIC33EVXXXGM00X/10X family devices can manage power consumption in the following four methods:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- · Software Controlled Doze mode
- · Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV #SLEEP_MODE ; Put the device into Sleep mode
PWRSAV #IDLE MODE ; Put the device into Idle mode

10.1 Clock Frequency and Clock Switching

The dsPIC33EVXXXGM00X/10X family devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or highprecision oscillators by simply changing the NOSCx bits (OSCCON[10:8]). For more information on the process of changing a system clock during operation, as well as limitations to the process, see Section 9.0 "Oscillator Configuration".

10.2 Instruction-Based Power-Saving Modes

The dsPIC33EVXXXGM00X/10X family devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the Assembler Include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

10.2.1 SLEEP MODE

The following events occur in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared before entering Sleep mode.
- Some device features or peripherals can continue to operate. This includes items such as the Input Change Notification (ICN) on the I/O ports or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device wakes up from Sleep mode on any of these events:

- Any interrupt source that is individually enabled
- · Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

For optimal power savings, the internal regulator and the Flash regulator can be configured to go into Standby mode when Sleep mode is entered by clearing the VREGS (RCON[8]) and VREGSF (RCON[11]) bits (default configuration).

If the application requires a faster wake-up time, and can accept higher current requirements, the VREGS (RCON[8]) and VREGSF (RCON[11]) bits can be set to keep the internal regulator and the Flash regulator active during Sleep mode.

10.2.2 IDLE MODE

The following events occur in Idle mode:

- The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- Any device Reset
- · A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (two to four clock cycles later), starting with the instruction following the PWRSAV instruction or the first instruction in the Interrupt Service Routine (ISR).

All peripherals also have the option to discontinue operation when Idle mode is entered to allow for increased power savings. This option is selectable in the control register of each peripheral; for example, the TSIDL bit in the Timer1 Control register (T1CON[13]).

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up either from Sleep mode or Idle mode.

10.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this may not be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV[11]). The ratio between peripheral and core clock speed is determined by the DOZE[2:0] bits (CLKDIV[14:12]). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV[15]). By default, interrupt events have no effect on Doze mode operation. For example, suppose the device is operating at 20 MIPS and the CAN module has been configured for 500 kbps, based on this device operating speed. If the device is placed in Doze mode, with a clock frequency ratio of 1:4, the CAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled, using the appropriate PMDx control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have any effect and read values are invalid.

A peripheral module is enabled only if both the associated bit in the PMDx register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMDx register by default.

Note: If a PMDx bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMDx bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

^{© 2013-2019} Microchip Technology Inc.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
T5MD	T4MD	T3MD	T2MD	T1MD		PWMMD	_
bit 15	•						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD		C1MD ⁽¹⁾	AD1MD
bit 7							bit C
1							
Legend:	a hit		- :4		a a stad bit way		
R = Readabl		W = Writable	DIL		nented bit, rea		014/0
-n = Value at	PUR	'1' = Bit is set		'0' = Bit is cle	areo	x = Bit is unkn	own
bit 15	T5MD. Time	r5 Module Disab	le hit				
		nodule is disable					
		nodule is enable	-				
bit 14	T4MD: Time	r4 Module Disab	le bit				
	-	nodule is disable					
		nodule is enable	-				
bit 13		r3 Module Disab					
		nodule is disable nodule is enable	-				
bit 12		r2 Module Disab					
	-	nodule is disable					
	-	nodule is enable					
bit 11	T1MD: Time	r1 Module Disab	le bit				
	-	nodule is disable					
		nodule is enable					
bit 10	-	nted: Read as '					
bit 9		WM Module Disa					
		odule is disabled odule is enabled					
bit 8		nted: Read as '	`				
bit 7	-	C1 Module Disab					
		dule is disabled					
		dule is enabled					
bit 6	U2MD: UAR	T2 Module Disa	ble bit				
	1 = UART2 I	module is disable	ed				
	0 = UART2 I	module is enable	ed				
bit 5	U1MD: UART1 Module Disable bit						
	-	module is disable module is enable					
bit 4		Pl2 Module Disat					
N IC 1		dule is disabled					
		dule is enabled					
bit 3	SPI1MD: SP	PI1 Module Disat	ole bit				
		dule is disabled					
	0 = SPI1 mo	dule is enabled					

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1

Note 1: This bit is available on dsPIC33EVXXXGM10X devices only.

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)

- bit 2 Unimplemented: Read as '0'
- bit 1 C1MD: CAN1 Module Disable bit⁽¹⁾
 - 1 = CAN1 module is disabled 0 = CAN1 module is enabled
- bit 0 AD1MD: ADC1 Module Disable bit 1 = ADC1 module is disabled 0 = ADC1 module is enabled
- Note 1: This bit is available on dsPIC33EVXXXGM10X devices only.

REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—		—	IC4MD	IC3MD	IC2MD	IC1MD
bit 15							bit 8

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—	OC4MD	OC3MD	OC2MD	OC1MD
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12	Unimplemented: Read as '0'
bit 11-8	IC[4:1]MD: Input Capture x (x = 1-4) Module Disable bits
	1 = Input Capture x module is disabled
	0 = Input Capture x module is enabled
bit 7-4	Unimplemented: Read as '0'
bit 3-0	OC[4:1]MD: Output Compare x (x = 1-4) Module Disable bits
	1 = Output Compare x module is disabled
	0 = Output Compare x module is enabled

REGISTER 10-3:	PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3
----------------	--

U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0
—	_	—	_	—	CMPMD	—	_
bit 15				-			bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			own	
bit 15-11	Unimplemen	ted: Read as '0)'				

bit 10	CMPMD: Comparator Module Disable bit
	1 = Comparator module is disabled
	0 = Comparator module is enabled
bit 9-0	Unimplemented: Read as '0'

REGISTER 10-4:	PMD4· PERIPHERAI	MODULE DISABLE CO	NTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0
—	—	—	—	REFOMD	CTMUMD	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4	Unimplemented: Read as '0'
bit 3	REFOMD: Reference Clock Module Disable bit
	1 = Reference clock module is disabled0 = Reference clock module is enabled
bit 2	CTMUMD: CTMU Module Disable bit
	1 = CTMU module is disabled
	0 = CTMU module is enabled
bit 1-0	Unimplemented: Read as '0'

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
_	—	—	—	—		PWM[3:1]MD			
bit 15					bit 8				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	—	—	—	—	—		—		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable I	bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR			'0' = Bit is clea	= Bit is cleared x = Bit is unknown				

REGISTER 10-5: PMD6: PERIPHERAL MODULE DISABLE CONTROL REGISTER 6

bit 15-11 Unimplemented: Read as '0'

bit 10-8 **PWM[3:1]MD:** PWMx (x = 1-3) Module Disable bits

1 = PWMx module is disabled 0 = PWMx module is enabled

bit 7-0 Unimplemented: Read as '0'

^{© 2013-2019} Microchip Technology Inc.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	_		_	_	_	_	—			
bit 15	·						bit 8			
U-0	U-0	U-0	R/W-0	U-0	U-0	U-0	U-0			
—	—	—	DMA0MD ⁽¹⁾		—	—	—			
			DMA1MD ⁽¹⁾							
			DMA2MD ⁽¹⁾							
			DMA3MD ⁽¹⁾							
bit 7							bit 0			
							_			
Legend:										
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'						
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15-5	•	ted: Read as '								
bit 4		DMA0MD: DMA0 Module Disable bit ⁽¹⁾								
		= DMA0 module is disabled								
		 DMA0 module is enabled DMA1MD: DMA1 Module Disable bit⁽¹⁾ 								
		dule is disable dule is enable								
		MA2 Module D								
		dule is disable								
		0 = DMA2 module is enabled								
	DMA3MD: DM	MA3 Module D	isable bit ⁽¹⁾							
	1 = DMA3 mo	dule is disable	ed							
	0 = DMA3 mc	dule is enable	d							
bit 3-0	Unimplemen	ted: Read as '	0'							

REGISTER 10-6: PMD7: PERIPHERAL MODULE DISABLE CONTROL REGISTER 7

Note 1: This single bit enables and disables all four DMA channels.

U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0		
_	_	—	SENT2MD	SENT1MD	_	_	DMTMD		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—		—			—	—		
bit 7							bit 0		
Legend:									
R = Readab	ole bit	W = Writable	e bit	U = Unimplemented bit, read as '0'					
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is cleared		x = Bit is unknown			
bit 15-13	Unimplemen	ted: Read as	'0'						
bit 12	SENT2MD: S	ENT2 Module	Disable bit						
	1 = SENT2 m	SENT2 module is disabled							
	0 = SENT2 m	odule is enab	led						
bit 11	SENT1MD: S	ENT1 Module	Disable bit						
	1 = SENT1 m	odule is disab	led						
	0 = SENT1 m	odule is enab	led						
bit 10-9	Unimplemen	ted: Read as	'0'						
bit 8	DMTMD: Dea	adman Timer [Disable bit						
	1 = Deadman	Timer is disa	bled						
	0 = Deadman	Timer is enab	bled						
hit 7 0	Unimplomen	ted. Dood oo	· ^ '						

REGISTER 10-7: PMD8: PERIPHERAL MODULE DISABLE CONTROL REGISTER 8

bit 7-0 Unimplemented: Read as '0'

NOTES:

11.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "I/O Ports" (www.microchip.com/ DS70000598) in the "dsPIC33/PIC24 Family Reference Manual".
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Many of the device pins are shared among the peripherals and the Parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity. All the pins in the device are 5V tolerant pins.

11.1 Parallel I/O (PIO) Ports

Generally, a Parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in

which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected.


When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have eight registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the Data Direction register bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx), read the latch; writes to the latch, write the latch. Reads from the port (PORTx), read the port pins, while writes to the port pins, write the latch.

Any bit and its associated data and control registers that are not valid for a particular device are disabled. This means that the corresponding LATx and TRISx registers, and the port pin are read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port, because there is no other competing source of output.

FIGURE 11-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE

11.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx and TRISx registers for data control, port pins can also be individually configured for either digital or open-drain outputs. This is controlled by the Open-Drain Control x register (ODCx) associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs other than VDD by using external pull-up resistors. The maximum open-drain voltage allowed on any pin is the same as the maximum VIH specification for that particular pin.

See Table 30-10 in **Section 30.0 "Electrical Characteristics**" for the maximum VIH specification of each pin.

11.2 Configuring Analog and Digital Port Pins

The ANSELx registers control the operation of the analog port pins. The port pins that are to function as analog inputs or outputs must have their corresponding ANSELx and TRISx bits set. In order to use port pins for I/O functionality with digital modules, such as timers, UARTs, etc., the corresponding ANSELx bits must be cleared.

The ANSELx register has a default value of 0xFFFF. Therefore, all pins that share analog functions are analog (not digital) by default.

Pins with analog functions affected by the ANSELx registers are listed with a buffer type of analog in the Pinout I/O Descriptions table (see Table 1-1 in Section 1.0 "Device Overview").

If the TRISx bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or comparator module.

When the PORTx register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

11.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP, as shown in Example 11-1.

11.3 Input Change Notification (ICN)

The Input Change Notification function (ICN) of the I/O ports allows devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States, even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a Change-of-State.

Three control registers are associated with the ICN functionality of each I/O port. The CNENx registers contain the ICN interrupt enable control bits for each of the input pins. Setting any of these bits enables an ICN interrupt for the corresponding pins.

Each I/O pin also has a weak pull-up and a weak pulldown connected to it. The pull-ups and pull-downs act as a current source or sink source connected to the pin, and eliminate the need for external resistors when push button or keypad devices are connected. The pull-ups and pull-downs are enabled separately using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

Note: The pull-ups and pull-downs on ICN pins should always be disabled when the port pin is configured as a digital output.

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

; Configure PORTB<15:8>
; as inputs
; and PORTB<7:0>
; as outputs
; Delay 1 cycle
; Next Instruction

11.4 Slew Rate Selection

The slew rate selection feature allows the device to have control over the slew rate selection on the required I/O pin which supports this feature. For this purpose, for each I/O port, there are two registers: SR1x and SR0x, which configure the selection of the slew rate. The register outputs are directly connected to the associated I/O pins, which support the slew rate selection function. The SR1x register specifies the MSb and the SR0x register provides the LSb of the 2-bit field that selects the desired slew rate. For example, slew rate selections for PORTA are as follows:

EXAMPLE 11-2: SLEW RATE SELECTIONS FOR PORTA

SRIAx, SROAx = 00 = Fastest Slew rate SRIAx, SROAx = 01 = 4x slower Slew rate SRIAx, SROAx = 10 = 8x slower Slew rate SRIAx, SROAx = 11 = 16x slower Slew rate

11.5 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient work arounds in application code, or a complete redesign, may be the only option.

The Peripheral Pin Select (PPS) configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The PPS configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to any one of these I/O pins. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping after it has been established.

11.5.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the PPS feature include the designation, "RPn" or "RPIn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions, while "RPI" indicates pins that support remappable input functions only.

11.5.2 AVAILABLE PERIPHERALS

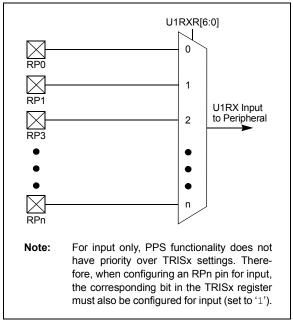
The peripherals managed by the PPS are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer related peripherals (input capture and output compare) and Interrupt-on-Change (IOC) inputs.

In comparison, some digital only peripheral modules are never included in the PPS feature, because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include I²C and the PWM. A similar requirement excludes all modules with analog inputs, such as the ADC Converter.

A key difference between the remappable and nonremappable peripherals is that the remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, the non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all the other digital I/O and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

11.5.3 CONTROLLING PERIPHERAL PIN SELECT


The PPS features are controlled through two sets of SFRs: one to map the peripheral inputs and the other to map the outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

11.5.4 INPUT MAPPING

The inputs of the PPS options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Table 11-1 and Register 11-1 through Register 11-17). Each register contains sets of 8-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 8-bit value maps the RPn pin with the corresponding value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of Peripheral Pin Selects supported by the device. For example, Figure 11-2 shows the remappable pin selection for the U1RX input.

FIGURE 11-2: REMAPPABLE INPUT FOR U1RX

11.5.4.1 Virtual Connections

dsPIC33EVXXXGM00X/10X family devices support virtual (internal) connections to the output of the op amp/comparator module (see Figure 25-1 in Section 25.0 "Op Amp/Comparator Module").

These devices provide six virtual output pins (RPV0-RPV5) that correspond to the outputs of six peripheral pin output remapper blocks (RP176-RP181). The six virtual remapper outputs (RP176-RP181) are not connected to actual pins. The six virtual pins may be read by any of the input remappers as inputs, RP176-RP181. These virtual pins can be used to connect the internal peripherals, whose signals are of significant use to the other peripherals, but these output signals are not present on the device pin.

Virtual connections provide a simple way of interperipheral connection without utilizing a physical pin. For example, by setting the FLT1R[7:0] bits of the RPINR12 register to the value of `b0000001', the output of the analog comparator, C1OUT, will be connected to the PWM Fault 1 input, which allows the analog comparator to trigger PWM Faults without the use of an actual physical pin on the device.

Input Name ⁽¹⁾	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R[7:0]
External Interrupt 2	INT2	RPINR1	INT2R[7:0]
Timer2 External Clock	T2CK	RPINR3	T2CKR[7:0]
Input Capture 1	IC1	RPINR7	IC1R[7:0]
Input Capture 2	IC2	RPINR7	IC2R[7:0]
Input Capture 3	IC3	RPINR8	IC3R[7:0]
Input Capture 4	IC4	RPINR8	IC4R[7:0]
Output Compare Fault A	OCFA	RPINR11	OCFAR[7:0]
PWM Fault 1	FLT1	RPINR12	FLT1R[7:0]
PWM Fault 2	FLT2	RPINR12	FLT2R[7:0]
UART1 Receive	U1RX	RPINR18	U1RXR[7:0]
UART2 Receive	U2RX	RPINR19	U2RXR[7:0]
SPI2 Data Input	SDI2	RPINR22	SDI2R[7:0]
SPI2 Clock Input	SCK2	RPINR22	SCK2R[7:0]
SPI2 Slave Select	SS2	RPINR23	SS2R[7:0]
CAN1 Receive	C1RX	RPINR26	C1RXR[7:0]
PWM Sync Input 1	SYNCI1	RPINR37	SYNCI1R[7:0]
PWM Dead-Time Compensation 1	DTCMP1	RPINR38	DTCMP1R[7:0]
PWM Dead-Time Compensation 2	DTCMP2	RPINR39	DTCMP2R[7:0]
PWM Dead-Time Compensation 3	DTCMP3	RPINR39	DTCMP3R[7:0]
SENT1 Input	SENT1R	RPINR44	SENT1R[7:0]
SENT2 Input	SENT2R	RPINR45	SENT2R[7:0]

TABLE 11-1:	SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)
-------------	----------------------------	-------------------------

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

Peripheral Pin Select Input Register Value		Pin Assignment	Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment	
000 0000	I	Vss	011 0010	I	RPI50	
000 0001	I	CMP1 ⁽¹⁾	011 0011	I	RPI51	
000 0010	I	CMP2 ⁽¹⁾	011 0100	I	RPI52	
000 0011	Ι	CMP3 ⁽¹⁾	011 0101	Ι	RPI53	
000 0100	I	CMP4 ⁽¹⁾	011 0110	I/O	RP54	
000 0101	—	—	011 0111	I/O	RP55	
000 1100	Ι	CMP5 ⁽¹⁾	011 1000	I/O	RP56	
000 1101	—	—	011 1001	I/O	RP57	
000 1110	—	—	011 1010	Ι	RPI58	
000 1111	_	—	011 1011	—	—	
001 0000	I	RPI16	011 1100	I	RPI60	
001 0001	Ι	RPI17	011 1101	Ι	RPI61	
001 0010	Ι	RPI18	011 1110	—	—	
001 0011	I	RPI19	011 1111	I	RPI 63	
001 0100	I/O	RP20	100 0000	—	_	
001 0101	—	_	100 0001	—		
001 0110	—	_	100 0010	—		
001 0111		_	100 0011	_		
001 1000	I	RPI24	100 0100	_		
001 1001	I	RPI25	100 0101	I/O	RP69	
001 1010	—	_	100 0110	I/O	RP70	
001 1011	I	RPI27	100 0111	_		
001 1100	I	RPI28	100 1000	I	RPI72	
001 1101		_	100 1001	_		
001 1110	_	_	100 1010	_		
001 1111	_	_	100 1011	_		
010 0000	I	RPI32	100 1110	_		
010 0001	I	RPI33	100 1111	_		
010 0010	I	RPI34	101 0010	_		
010 0011	I/O	RP35	101 0011	—		
010 0100	I/O	RP36	101 0100	—		
010 0101	I/O	RP37	010 1001	I/O	RP41	
010 0110	I/O	RP38	010 1010	I/O	RP42	
010 0111	I/O	RP39	010 1011	I/O	RP43	
010 1000	I/O	RP40	101 1000	-		
010 1100	I	RPI44	101 1001		_	
010 1101	I	RPI45	101 1010	_	_	
010 1110	I	RPI46	101 1011	_	_	
010 1111	I	RPI47	101 1100	_	_	
011 0000	I/O	RP48	101 1101		_	

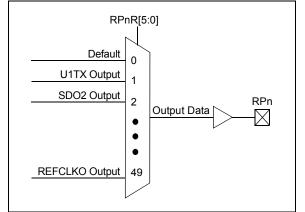
TABLE 11-2: INPUT PIN SELECTION FOR SELECTABLE INPUT SOURCES

Legend: Shaded rows indicate the PPS Input register values that are unimplemented.

Note 1: These are virtual pins. See Section 11.5.4.1 "Virtual Connections" for more information on selecting this pin assignment.

Peripheral Pin Select Input Register Value		Pin Assignment	nment Peripheral Pin Select Input Register Value			Pin Assignment	
011 0001	I/O	RP49		101 1110	Ι	RPI94	
110 0000	I	RPI96		101 1111	Ι	RPI95	
110 0001	I/O	RP97		111 0011	—	_	
110 0010	—	_		111 0100	—	_	
110 0011	—	—		111 0101	—	_	
110 0100	—	—		111 0110	I/O	RP118	
110 0101	—	—		111 0111	Ι	RPI119	
110 0110	—	—		111 1000	I/O	RP120	
110 0111	—	_		111 1001	Ι	RPI121	
110 1000	—	—		111 1010	—	—	
110 1001	—	—		111 1011	—	_	
110 1010	—	—		111 1100	Ι	RPI124	
110 1011	—	—		111 1101	I/O	RP125	
101 0101	—	—		111 1110	I/O	RP126	
101 0110	_	_		111 1111	I/O	RP127	
101 0111	—			10110000	I/O	RP176 ⁽¹⁾	
110 1100	—	—		10110001	I/O	RP177 ⁽¹⁾	
110 1101	—	—		10110010	I/O	RP178 ⁽¹⁾	
110 1110	—	_		10110011	I/O	RP179 ⁽¹⁾	
110 1111	—			10110100	I/O	RP180 ⁽¹⁾	
111 0010	_	_		10110101	I/O	RP181 ⁽¹⁾	

Legend: Shaded rows indicate the PPS Input register values that are unimplemented.


Note 1: These are virtual pins. See Section 11.5.4.1 "Virtual Connections" for more information on selecting this pin assignment.

11.5.5 OUTPUT MAPPING

In contrast to inputs, the outputs of the PPS options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 6-bit fields, with each set associated with one RPn pin (see Register 11-18 to Register 11-31). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 11-3 and Figure 11-3).

A null output is associated with the Output register Reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

FIGURE 11-3: MULTIPLEXING REMAPPABLE OUTPUT FOR RPn

11.5.5.1 Mapping Limitations

The control schema of the peripheral select pins is not limited to a small range of fixed peripheral configurations. There are no mutual or hardware-enforced lockouts between any of the peripheral mapping SFRs. Literally any combination of peripheral mappings across any or all of the RPn pins is possible. This includes both many-to-one, and one-to-many mappings of peripheral inputs and outputs to pins. While such mappings may be technically possible from a configuration point of view, they may not be supportable from an electrical point of view.

Function	RPnR[5:0]	Output Name
Default Port	000000	RPn tied to Default Pin
U1TX	000001	RPn tied to UART1 Transmit
U2TX	000011	RPn tied to UART2 Transmit
SDO2	001000	RPn tied to SPI2 Data Output
SCK2	001001	RPn tied to SPI2 Clock Output
SS2	001010	RPn tied to SPI2 Slave Select
C1TX	001110	RPn tied to CAN1 Transmit
OC1	010000	RPn tied to Output Compare 1 Output
OC2	010001	RPn tied to Output Compare 2 Output
OC3	010010	RPn tied to Output Compare 3 Output
OC4	010011	RPn tied to Output Compare 4 Output
C1OUT	011000	RPn tied to Comparator Output 1
C2OUT	011001	RPn tied to Comparator Output 2
C3OUT	011010	RPn tied to Comparator Output 3
SYNCO1	101101	RPn tied to PWM Primary Time Base Sync Output
REFCLKO	110001	RPn tied to Reference Clock Output
C4OUT	110010	RPn tied to Comparator Output 4
C5OUT	110011	RPn tied to Comparator Output 5
SENT1	111001	RPn tied to SENT Out 1
SENT2	111010	RPn tied to SENT Out 2

11.6 High-Voltage Detect (HVD)

dsPIC33EVXXXGM00X/10X devices contain High-Voltage Detection (HVD) which monitors the VCAP voltage. The HVD is used to monitor the VCAP supply voltage to ensure that an external connection does not raise the value above a safe level (~2.4V). If high core voltage is detected, all I/Os are disabled and put in a tristate condition. The device remains in this I/O tri-state condition as long as the high-voltage condition is present.

11.7 I/O Helpful Tips

- 1. In some cases, certain pins, as defined in Table 30-10 under "Injection Current", have internal protection diodes to VDD and Vss. The term, "Injection Current", is also referred to as "Clamp Current". On designated pins with sufficient external current-limiting precautions by the user, I/O pin input voltages are allowed to be greater or less than the data sheet absolute maximum ratings, with respect to the Vss and VDD supplies. Note that when the user application forward biases either of the high or low-side internal input clamp diodes, that the resulting current being injected into the device that is clamped internally by the VDD and VSS power rails may affect the ADC accuracy by four to six counts.
- 2. I/O pins that are shared with any analog input pin (i.e., ANx) are always analog pins by default after any Reset. Consequently, configuring a pin as an analog input pin automatically disables the digital input pin buffer and any attempt to read the digital input level by reading PORTx or LATx will always return a '0', regardless of the digital logic level on the pin. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the Analog Pin Configuration registers in the I/O ports module (i.e., ANSELx) by setting the appropriate bit that corresponds to that I/O port pin to a '0'.
- **Note:** Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, TRISx = 0×0 , while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.

- 3. Most I/O pins have multiple functions. Referring to the device pin diagrams in this data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name, from left-to-right. The left most function name takes precedence over any function to its right in the naming convention; for example, AN16/T2CK/T7CK/RC1. This indicates that AN16 is the highest priority in this example and will supersede all other functions to its right in the list. Those other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.
- 4. Each pin has an internal weak pull-up resistor and pull-down resistor that can be configured using the CNPUx and CNPDx registers, respectively. These resistors eliminate the need for external resistors in certain applications. The internal pull-up is up to ~(VDD – 0.8), not VDD. This value is still above the minimum VIH of CMOS and TTL devices.
- 5. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/IOH and VOL/IOL DC characteristic specifications. The respective IOH and IOL current rating only applies to maintaining the corresponding output at or above the VOH, and at or below the VOL levels. However, for LEDs, unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the absolute maximum rating section of this data sheet. For example:

VOH = 4.4V at IOH = -8 mA and VDD = 5V

The maximum output current sourced by any 8 mA I/O pin = 12 mA.

LED source current, <12 mA, is technically permitted. For more information, refer to the VOH/ IOH specifications in Section 30.0 "Electrical Characteristics".

 $[\]ensuremath{\textcircled{}^\circ}$ 2013-2019 Microchip Technology Inc.

- 6. The PPS pin mapping rules are as follows:
 - Only one "output" function can be active on a given pin at any time, regardless if it is a dedicated or remappable function (one pin, one output).
 - It is possible to assign a "remappable output" function to multiple pins and externally short or tie them together for increased current drive.
 - If any "dedicated output" function is enabled on a pin, it will take precedence over any remappable "output" function.
 - If any "dedicated digital" (input or output) function is enabled on a pin, any number of "input" remappable functions can be mapped to the same pin.
 - If any "dedicated analog" function(s) are enabled on a given pin, "digital input(s)" of any kind will all be disabled, although a single "digital output", at the user's cautionary discretion, can be enabled and active as long as there is no signal contention with an external analog input signal. For example, it is possible for the ADC to convert the digital output logic level, or to toggle a digital output on a comparator or ADC input provided there is no external analog input, such as for a Built-In Self-Test (BIST).

- Any number of "input" remappable functions can be mapped to the same pin(s) at the same time, including to any pin with a single output from either a dedicated or remappable "output".
- The TRISx registers control only the digital I/O output buffer. Any other dedicated or remappable active "output" will automatically override the TRISx setting. The TRISx register does not control the digital logic "input" buffer. Remappable digital "inputs" do not automatically override TRISx settings, which means that the TRISx bit must be set to input for pins with only remappable input function(s) assigned
- All analog pins are enabled by default after any Reset and the corresponding digital input buffer on the pin is disabled. Only the Analog Pin Select registers control the digital input buffer, not the TRISx register. The user must disable the analog function on a pin using the Analog Pin Select registers in order to use any "digital input(s)" on a corresponding pin; no exceptions.

11.8 Peripheral Pin Select Registers

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INT1F	R[7:0]			
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	_	_	—	—	—
bit 7							bit C

REGISTER 11-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

REGISTER 11-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	—	—	—	—	—	—	—		
bit 15		·					bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	INT2R[7:0]								
bit 7							bit 0		
Legend:									
R = Readabl	e bit	W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-8	Unimplemen	ted: Read as ') '						
bit 7-0		Assign External		•	rresponding RP	n Pin bits			
	10110101 =	Input tied to RF	91181						
	•								
	•								
	•								
		Input tied to CM							
	00000000 =	Input tied to Vs	S						

REGISTER 11-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		00	0.0			0.0	
—	—		—	—			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			T2CK	R[7:0]			
bit 7							bit 0
L							
Legend:							

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

			-	-			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC2R7	IC2R6	IC2R5	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC1R7	IC1R6	IC1R5	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0
bit 7							bit 0
Legend:			1.11				
R = Readabl		W = Writable		U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 7-0	10110101 = • • 000000001 = 00000000 = IC1R[7:0]: / (see Table 1	 11-2 for input pin Input tied to RI Input tied to CI Input tied to Vs Assign Input Cap 11-2 for input pin Input tied to RI 	PI181 MP1 SS oture 1 (IC1) to selection nun	o the Correspor	nding RPn Pin	bits	
		= Input tied to CI = Input tied to Vs					

REGISTER 11-4: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC4R6	IC4R5	IC4R4	IC4R3	IC4R2	IC4R1	IC4R0
						bit 8
	-		-			R/W-0
IC3R6	IC3R5	IC3R4	IC3R3	IC3R2	IC3R1	IC3R0
						bit C
le bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
10110101 = • • • 000000001 =		PI181				
	 Input field to CI Input field to Vs 					
	IC4R[7:0]: A (see Table 1 10110101 =	IC3R6 IC3R5 le bit W = Writable t POR '1' = Bit is set IC4R[7:0]: Assign Input Cap (see Table 11-2 for input pin	IC3R6 IC3R5 IC3R4 Ie bit W = Writable bit t POR '1' = Bit is set IC4R[7:0]: Assign Input Capture 4 (IC4) to	IC3R6 IC3R5 IC3R4 IC3R3 Ie bit W = Writable bit U = Unimplem t POR '1' = Bit is set '0' = Bit is cleated IC4R[7:0]: Assign Input Capture 4 (IC4) to the Correspond (see Table 11-2 for input pin selection numbers) IC4R[7:0]	IC3R6 IC3R5 IC3R4 IC3R3 IC3R2 Ie bit W = Writable bit U = Unimplemented bit, read t POR '1' = Bit is set '0' = Bit is cleared IC4R[7:0]: Assign Input Capture 4 (IC4) to the Corresponding RPn Pin I (see Table 11-2 for input pin selection numbers)	IC3R6IC3R5IC3R4IC3R3IC3R2IC3R1Ie bitW = Writable bitU = Unimplemented bit, read as '0't POR'1' = Bit is set'0' = Bit is clearedx = Bit is unkrIC4R[7:0]: Assign Input Capture 4 (IC4) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)

REGISTER 11-5: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8

REGISTER 11-6: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

bit 15							bit 8
					_		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			OCFA	R[7:0]			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLT2R7	FLT2R6	FLT2R5	FLT2R4	FLT2R3	FLT2R2	FLT2R1	FLT2R0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLT1R7	FLT1R6	FLT1R5	FLT1R4	FLT1R3	FLT1R2	FLT1R1	FLT1R0
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15 0				to the Correspo	anding DDn Din	hita	
bit 15-8		-2 for input pin	()		onding RPn Pin	DIIS	
		Input tied to R					
	•	partica to re					
	•						
	•						
		Input tied to C Input tied to V					
bit 7-0		-		to the Correspo	onding RPn Pin	hits	
		-2 for input pin	()			013	
		Input tied to R		,			
	•						
	•						

REGISTER 11-7: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12

00000001 = Input tied to CMP1 00000000 = Input tied to Vss

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	—	_	_	_	_	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			U1R>	(R[7:0]			
bit 7							bit 0
Legend:							
P - Poodoblo bit		M = Mritabla bi	+		montod hit road	1 22 (0)	

REGISTER 11-8: RPII	NR18: PERIPHERAL PIN SELECT INPUT REGISTER 18
---------------------	---

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 bit 7-0	Unimplemented: Read as '0' U1RXR[7:0]: Assign UART1 Receive (U1RX) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 10110101 = Input tied to RPI181
	• • 00000001 = Input tied to CMP1 00000000 = Input tied to Vss

REGISTER 11-9: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	_	_	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			U2RX	(R[7:0]			
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15-8	Unimpleme	nted: Read as '	0'				
bit 7-0	U2RXR[7:0]	: Assign UART2	Receive (U2	RX) to the Cor	responding RP	n Pin bits	
	(see Table 1'	1-2 for input pin	selection num	nbers)			
	10110101 =	Input tied to RF	PI181				
	•						

00000001 = Input tied to CMP1 00000000 = Input tied to Vss

© 2013-2019 Microchip Technology Inc.

•

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SCK2R7	SCK2R6	SCK2R5	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0
oit 15							bit 8
		54446		D 444 A			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SDI2R	SDI2R6	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
		Input tied to RI					
		Input tied to CI Input tied to Vs					
		Assign SPI2 Da 1-2 for input pin			sponding RPn I	Pin bits	
	10110101 =	Input tied to RI	PI181				
	•						
		Input tied to CI Input tied to Vs					

REGISTER 11-10: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	_	_	_	—		—
bit 15	÷						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SS2	R[7:0]			
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-8	Unimplemen	ted: Read as '	0'				
bit 7-0		ssign SPI2 Sla -2 for input pin	•	,	esponding RPn	Pin bits	
	10110101 =	Input tied to RI	PI181				
	•						
	•						

00000001 = Input tied to CMP1 00000000 = Input tied to Vss

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0
—	—	—	—	—	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			C1RX	R[7:0]			
bit 7							bit 0
Legend:							
						(0)	

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0' bit 7-0 C1RXR[7:0]: Assign CAN1 RX Input (C1RX) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 10110101 = Input tied to RPI181 . . 00000001 = Input tied to CMP1 00000000 = Input tied to Vss

REGISTER 11-13: RPINR37: PERIPHERAL PIN SELECT INPUT REGISTER 37

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SYNC	I1R[7:0]			
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7						-	bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown	

bit 7-0 Unimplemented: Read as '0'

REGISTER 11-14: RPINR38: PERIPHERAL PIN SELECT INPUT REGISTER 38

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DTCM	P1R[7:0]			
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_			_		<u> </u>		_
bit 7							bit C
Legend:							
R = Readabl	o hit	W = Writable	hit	سما مستعبلا – ال	monted hit rea	d oo 'O'	
	ebit		DIL	U = Unimpler	nemeu bit, rea		
		'1' = Bit is set		0 = Onimpier '0' = Bit is cle		x = Bit is unkr	iown
<u>-n = Value at</u> bit 15-8	DTCMP1R[7 (see Table 1	'1' = Bit is set	/M Dead-Time selection nur	'0' = Bit is cle	ared		
-n = Value at	DTCMP1R[7 (see Table 1 10110101 =	'1' = Bit is set'1' = Assign PW1-2 for input pin	/M Dead-Time selection nur PI181 MP1	'0' = Bit is cle	ared	x = Bit is unkr	

REGISTER 11-15: RPINR39: PERIPHERAL PIN SELECT INPUT REGISTER 39

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| DTCMP3R7 | DTCMP3R6 | DTCMP3R5 | DTCMP3R4 | DTCMP3R3 | DTCMP3R2 | DTCMP3R1 | DTCMP3R0 |
| bit 15 | • | | • | | | • | bit 8 |

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| DTCMP2R7 | DTCMP2R6 | DTCMP2R5 | DTCMP2R4 | DTCMP2R3 | DTCMP2R2 | DTCMP2R1 | DTCMP2R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	DTCMP3R[7:0]: Assign PWM Dead-Time Compensation Input 3 to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)
	10110101 = Input tied to RPI181
	•
	•
	•
	00000001 = Input tied to CMP1
	0000000 = Input tied to Vss
bit 7-0	DTCMP2R[7:0]: Assign PWM Dead-Time Compensation Input 2 to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)
	10110101 = Input tied to RPI181
	•
	•
	•
	00000001 = Input tied to CMP1
	0000000 = Input tied to Vss

^{© 2013-2019} Microchip Technology Inc.

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 SENT1R[7:0] bit 15											
bit 15 U-0 U-0 U-0 U-0 U-0 — — — — — — bit 7	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
U-0 U-0 U-0 U-0 U-0 U-0 U-0 -				1R[7:0]	SENT						
Image: Construction of the image: Constructing of the image: Construction of the image: Constructi	bit 8							bit 15			
Image: Constraint of the image: Constrai											
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-8 SENT1R[7:0]: Assign SENT Module Input 1 to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 10110101 = Input tied to RPI181 • • • 00000001 = Input tied to CMP1	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-8 SENT1R[7:0]: Assign SENT Module Input 1 to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 10110101 = Input tied to RPI181 • • • 00000001 = Input tied to CMP1	_	—	—	—	—	—	—	_			
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-8 SENT1R[7:0]: Assign SENT Module Input 1 to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 10110101 = Input tied to RPI181 • • • 00000001 = Input tied to CMP1	bit 0	<u> </u>			•		•	bit 7			
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-8 SENT1R[7:0]: Assign SENT Module Input 1 to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 10110101 = Input tied to RPI181 . . . 00000001 = Input tied to CMP1											
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-8 SENT1R[7:0]: Assign SENT Module Input 1 to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 10110101 = Input tied to RPI181 • • 00000001 = Input tied to CMP1								Legend:			
bit 15-8 SENT1R[7:0]: Assign SENT Module Input 1 to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 10110101 = Input tied to RPI181 • • • 00000001 = Input tied to CMP1		as '0'	nented bit, read	U = Unimplem	bit	W = Writable	oit	R = Readable			
<pre>(see Table 11-2 for input pin selection numbers) 10110101 = Input tied to RPI181</pre>	x = Bit is unknown		ared	'0' = Bit is cleared		'1' = Bit is set	OR	-n = Value at P			
(see Table 11-2 for input pin selection numbers) 10110101 = Input tied to RPI181 • • 00000001 = Input tied to CMP1											
10110101 = Input tied to RPI181 • • • • • • • • •		Pin bits	sponding RPn F					bit 15-8			
• • 00000001 = Input tied to CMP1				,			-				
					-		•				
							•				
					•						
00000000 = Input fied to Vss											
					S	Input tied to Vs	00000000 =				
bit 7-0 Unimplemented: Read as '0'					0'	ted: Read as '	Unimplemen	bit 7-0			

REGISTER 11-16: RPINR44: PERIPHERAL PIN SELECT INPUT REGISTER 44

REGISTER 11-17: RPINR45: PERIPHERAL PIN SELECT INPUT REGISTER 45

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	_		_	_	_	_	_			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			SENT	2R[7:0]						
bit 7							bit 0			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15-8	Unimplemen	ted: Read as '	0'							
bit 7-0		I: Assign SENT -2 for input pin	•		esponding RPn I	Pin bits				
	10110101 =	Input tied to RF	PI181							
	•									
	•									
	• 0000001 = Input tied to CMP1									

bit 7							bit 0
		RP20R5	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
—	—	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

REGISTER 11-18: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP35R[5:0]: Peripheral Output Function is Assigned to RP35 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP20R[5:0]: Peripheral Output Function is Assigned to RP20 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-19: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP37R5	RP37R4	RP37R3	RP37R2	RP37R1	RP37R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP36R5	RP36R4	RP36R3	RP36R2	RP36R1	RP36R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8**RP37R[5:0]:** Peripheral Output Function is Assigned to RP37 Output Pin bits
(see Table 11-3 for peripheral function numbers)bit 7-6**Unimplemented:** Read as '0'

bit 5-0 **RP36R[5:0]:** Peripheral Output Function is Assigned to RP36 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-20: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown		nown	
R = Readable	= Readable bit W = Writable bit U = Unimplemented		mented bit, read	l as '0'			
Legend:							
bit 7				•			bit
—	—	RP38R5	RP38R4	RP38R3	RP38R2	RP38R1	RP38R0
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15			•				bit
—	_	RP39R5	RP39R4	RP39R3	RP39R2	RP39R1	RP39R0
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP39R[5:0]: Peripheral Output Function is Assigned to RP39 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP38R[5:0]: Peripheral Output Function is Assigned to RP38 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-21: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP41R5	RP41R4	RP41R3	RP41R2	RP41R1	RP41R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP40R5	RP40R4	RP40R3	RP40R2	RP40R1	RP40R0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8	RP41R[5:0]: Peripheral Output Function is Assigned to RP41 Output Pin bits
	(see Table 11-3 for peripheral function numbers)

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP40R[5:0]:** Peripheral Output Function is Assigned to RP40 Output Pin bits (see Table 11-3 for peripheral function numbers)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP43R5	RP43R4	RP43R3	RP43R2	RP43R1	RP43R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	RP42R5	RP42R4	RP42R3	RP42R2	RP42R1	RP42R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimpler	mented bit, read	as '0'	

REGISTER 11-22: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

Legend:				
R = Readable bit	W = Writable bit	table bit U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP43R[5:0]: Peripheral Output Function is Assigned to RP43 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP42R[5:0]: Peripheral Output Function is Assigned to RP42 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-23: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP49R5	RP49R4	RP49R3	RP49R2	RP49R1	RP49R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP48R5	RP48R4	RP48R3	RP48R2	RP48R1	RP48R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP49R[5:0]:** Peripheral Output Function is Assigned to RP49 Output Pin bits (see Table 11-3 for peripheral function numbers)

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP48R[5:0]:** Peripheral Output Function is Assigned to RP48 Output Pin bits (see Table 11-3 for peripheral function numbers)

Note 1: This register is present in dsPIC33EVXXXGM004/104/006/106 devices only.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		RP55R5	RP55R4	RP55R3	RP55R2	RP55R1	RP55R0
bit 15	•						bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	RP54R5	RP54R4	RP54R3	RP54R2	RP54R1	RP54R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unl		x = Bit is unkn	iown
•							

REGISTER 11-24: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6⁽¹⁾

bit 13-8	RP55R[5:0]: Peripheral Output Function is Assigned to RP55 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP54R[5:0]: Peripheral Output Function is Assigned to RP54 Output Pin bits (see Table 11-3 for peripheral function numbers)

Unimplemented: Read as '0'

Note 1: This register is present in dsPIC33EVXXXGM004/104/006/106 devices only

REGISTER 11-25: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP57R5	RP57R4	RP57R3	RP57R2	RP57R1	RP57R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP56R5	RP56R4	RP56R3	RP56R2	RP56R1	RP56R0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP57R[5:0]:** Peripheral Output Function is Assigned to RP57 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP56R[5:0]:** Peripheral Output Function is Assigned to RP56 Output Pin bits (see Table 11-3 for peripheral function numbers)

Note 1: This register is present in dsPIC33EVXXXGM004/104/006/106 devices only.

hit 15-14

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP70R5	RP70R4	RP70R3	RP70R2	RP70R1	RP70R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP69R5	RP69R4	RP69R3	RP69R2	RP69R1	RP69R0
bit 7							bit 0

REGISTER 11-26: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8⁽¹⁾

Legend:				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP70R[5:0]: Peripheral Output Function is Assigned to RP70 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP69R[5:0]: Peripheral Output Function is Assigned to RP69 Output Pin bits (see Table 11-3 for peripheral function numbers)

Note 1: This register is present in dsPIC33EVXXXGM004/104/006/106 devices only.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP118R5	RP118R4	RP118R3	RP118R2	RP118R1	RP118R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		RP97R5	RP97R4	RP97R3	RP97R2	RP97R1	RP97R0
bit 7							bit 0

REGISTER 11-27: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9⁽¹⁾

Legend:			
R = Readable bit W = Writable bit U = Unimplemen		U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8**RP118R[5:0]:** Peripheral Output Function is Assigned to RP118 Output Pin bits
(see Table 11-3 for peripheral function numbers)bit 7-6**Unimplemented:** Read as '0'bit 5-0**RP97R[5:0]:** Peripheral Output Function is Assigned to RP97 Output Pin bits

bit 5-0 **RP97R[5:0]:** Peripheral Output Function is Assigned to RP97 Output Pin bits (see Table 11-3 for peripheral function numbers)

Note 1: This register is present in dsPIC33EVXXXGM004/106 devices only.

^{© 2013-2019} Microchip Technology Inc.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP176R5	RP176R4	RP176R3	RP176R2	RP176R1	RP176R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP120R5 ⁽¹⁾	RP120R4 ⁽¹⁾	RP120R3 ⁽¹⁾	RP120R2 ⁽¹⁾	RP120R1 ⁽¹⁾	RP120R0 ⁽¹⁾
bit 7							bit 0
Legend:							
P - Poodable k	hit	W = Writable	hit	II – I Inimpien	nontod hit road	as 'O'	

REGISTER 11-28: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10

Legend:				
R = Readable bit	W = Writable bit	W = Writable bit U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP176R[5:0]: Peripheral Output Function is Assigned to RP176 Output Pin bits
	(see Table 11-3 for peripheral function numbers)

bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP120R[5:0]: Peripheral Output Function is Assigned to RP120 Output Pin bits ⁽¹⁾
	(see Table 11-3 for peripheral function numbers)

Note 1: RP120R[5:0] bits are present in dsPIC33EVXXXGM006/106 devices only.

REGISTER 11-29: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP178R5	RP178R4	RP178R3	RP178R2	RP178R1	RP178R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP177R5	RP177R4	RP177R3	RP177R2	RP177R1	RP177R0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

- bit 13-8 **RP178R[5:0]:** Peripheral Output Function is Assigned to RP178 Output Pin bits (see Table 11-3 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP177R[5:0]:** Peripheral Output Function is Assigned to RP177 Output Pin bits (see Table 11-3 for peripheral function numbers)

U = Unimplemented bit, read as '0'

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP180R5	RP180R4	RP180R3	RP180R2	RP180R1	RP180R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP179R5	RP179R4	RP179R3	RP179R2	RP179R1	RP179R0
bit 7							bit 0
Legend:							

REGISTER 11-30: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12

-n = Value a	t POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-14	Unimpl	emented: Read as '0'		

DIL 15-14	ommplemented. Read as 0
bit 13-8	RP180R[5:0]: Peripheral Output Function is Assigned to RP180 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP179R[5:0]: Peripheral Output Function is Assigned to RP179 Output Pin bits (see Table 11-3 for peripheral function numbers)

W = Writable bit

REGISTER 11-31: RPOR13: PERIPHERAL PIN SELECT OUTPUT REGISTER 13

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP18	1R[5:0]		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

R = Readable bit

bit 5-0 **RP181R[5:0]:** Peripheral Output Function is Assigned to RP181 Output Pin bits (see Table 11-3 for peripheral function numbers)

NOTES:

12.0 TIMER1

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (www.microchip.com/ DS70362) in the "dsPIC33/PIC24 Family Reference Manual".
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer that can operate as a free-running, interval timer/counter.

The Timer1 module has the following unique features over other timers:

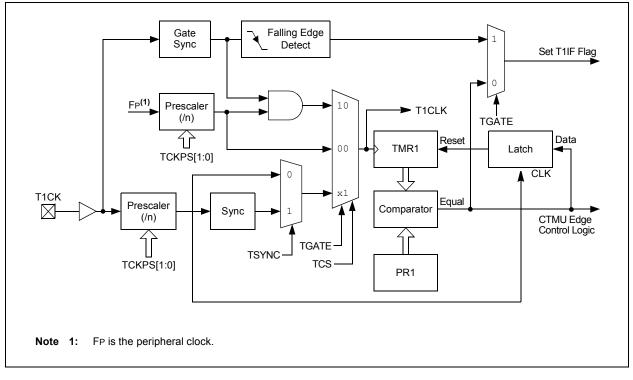
- Can be Operated in Asynchronous Counter mode from an External Clock Source
- The Timer1 External Clock Input (T1CK) can Optionally be Synchronized to the Internal Device Clock and the Clock Synchronization is Performed after the Prescaler
- A block diagram of Timer1 is shown in Figure 12-1.

The Timer1 module can operate in one of the following modes:

- Timer mode
- Gated Timer mode
- Synchronous Counter mode
- · Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:


- Timer Clock Source Control bit (TCS): T1CON[1]
- Timer Synchronization Control bit (TSYNC): T1CON[2]
- Timer Gate Control bit (TGATE): T1CON[6]

Timer control bit settings for different operating modes are given in Table 12-1.

TABLE 12-1: TIMER MODE SETTING

Mode	TCS	TGATE	TSYNC
Timer	0	0	Х
Gated Timer	0	1	х
Synchronous Counter	1	х	1
Asynchronous Counter	1	х	0

FIGURE 12-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

12.1 Timer1 Control Register

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽¹⁾	—	TSIDL	_	_	—	—	_
bit 15	-	-			•		bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
	TGATE	TCKPS1	TCKPS0		TSYNC ⁽¹⁾	TCS ⁽¹⁾	_
bit 7							bit 0
Legend:							
R = Readable		W = Writable	oit	-	nented bit, read		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	TON: Timer1	On hit(1)					
DIL 15	1 = Starts 16-						
	0 = Stops 16-						
bit 14	•	ted: Read as ')'				
bit 13	TSIDL: Timer	1 Stop in Idle N	lode bit				
		ues module op		the device ente	ers Idle mode		
	0 = Continues	s module opera	tion in Idle mo	ode			
bit 12-7	Unimplemen	ted: Read as ')'				
bit 6		er1 Gated Time	Accumulation	enable bit			
	When TCS = This bit is igno						
	When TCS =						
		ne accumulatior					
bit 5-4		Timer1 Input C		Select hits			
511 0 4	11 = 1:256						
	10 = 1:64						
	01 = 1:8						
1.1.0	00 = 1:1		.1				
bit 3	-	ted: Read as '		hranization C	-l		
bit 2		er1 External Clo	ock input Synd	chronization Se	elect Dit		
	When TCS = 1 = External of	⊥. clock input is sy	nchronized				
		clock input is no		d			
	When TCS =						
	This bit is igno						
bit 1		Clock Source S					
	1 = External o 0 = Internal cl	clock is from pir lock (FP)	n, T1CK (on th	ie rising edge)			
bit 0	Unimplemen	ted: Read as ')'				
	en Timer1 is er empts by user s				ode (TCS = 1, T nored.	SYNC = 1, TO	N = 1), any

13.0 TIMER2/3 AND TIMER4/5

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (www.microchip.com/DS70362) in the "dsPIC33/PIC24 Family Reference Manual".
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

These modules are 32-bit timers, which can also be configured as four independent, 16-bit timers with selectable operating modes.

As a 32-bit timer, Timer2/3 and Timer4/5 operate in the following three modes:

- Two Independent 16-Bit Timers (e.g., Timer2 and Timer3) with all 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter

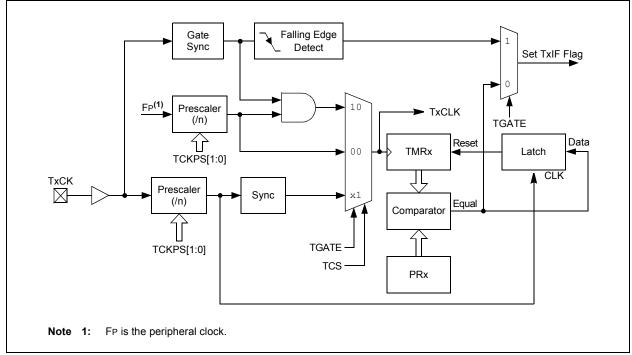
They also support these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- Interrupt on a 32-Bit Period Register Match
- Time Base for Input Capture and Output Compare Modules
- ADC1 Event Trigger (Timer2/3 only)

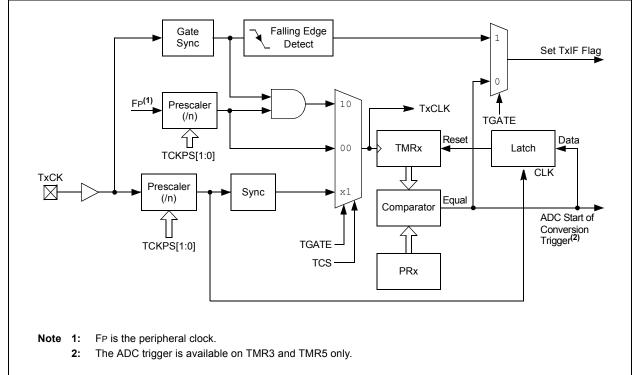
Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed previously, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON and T5CON registers. T2CON and T4CON are shown in generic form in Register 13-1. The T3CON and T5CON registers are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word (lsw). Timer3 and Timer5 are the most significant word (msw) of the 32-bit timers.

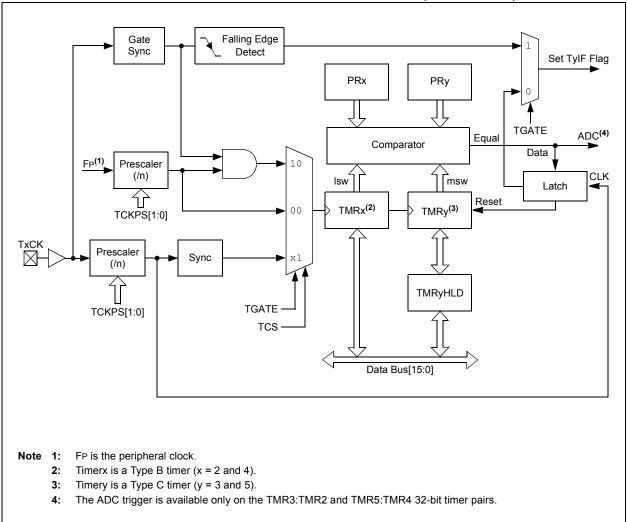
Note: For 32-bit operation, the T3CON and T5CON control bits are ignored. Only the T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 and Timer5 interrupt flags.


Block diagrams for the Type B and Type C timers are shown in Figure 13-1 and Figure 13-2, respectively.

A block diagram for an example 32-bit timer pair (Timer2/3 and Timer4/5) is shown in Figure 13-3.


Note: Only Timer2, Timer3, Timer4 and Timer5 can trigger a DMA data transfer.

dsPIC33EVXXXGM00X/10X FAMILY



^{© 2013-2019} Microchip Technology Inc.

13.1 Timer2/3 and Timer4/5 Control Registers

REGISTER 13-1: TxCON (T2CON AND T4CON) CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0					
TON		TSIDL	_	_	_	_	_					
bit 15							bit 8					
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0					
	TGATE	TCKPS1	TCKPS0	T32		TCS ⁽¹⁾						
bit 7							bit 0					
Legend:												
R = Readable		W = Writable		•	nented bit, reac							
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown					
bit 15	TON: Timerx <u>When T32 = 1</u> 1 = Starts 32- 0 = Stops 32- <u>When T32 = 0</u> 1 = Starts 16- 0 = Stops 16-	L: bit Timerx/y bit Timerx/y <u>):</u> bit Timerx										
bit 14	Unimplemen	Unimplemented: Read as '0'										
bit 13	-	x Stop in Idle N										
		ues module opera			ers Idle mode							
bit 12-7	Unimplemen	ted: Read as '	כ'									
bit 6	TGATE: Time	erx Gated Time	Accumulation	Enable bit								
	When TCS = This bit is igno											
	When TCS = 1 = Gated tim											
bit 5-4	TCKPS[1:0]:	Timerx Input C	lock Prescale	Select bits								
	11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1											
bit 3		mer Mode Sele	ect bit									
		nd Timery form nd Timery act as	•									
bit 2		ted: Read as '										
bit 1	-	Clock Source S										
	1 = External o 0 = Internal cl	clock is from pir lock (FP)	n, TxCK (on th	e rising edge)								
bit 0	Unimplemen	ted: Read as '	כ'									

Note 1: The TxCK pin is not available on all timers. Refer to the "Pin Diagrams" section for the available pins.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON ⁽¹⁾	_	TSIDL ⁽²⁾	_	_		—	_				
bit 15						·	bit 8				
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0				
—	TGATE ⁽¹⁾	TCKPS1 ⁽¹⁾	TCKPS0 ⁽¹⁾	_	—	TCS ^(1,3)	—				
bit 7							bit C				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	-	x = Bit is unkno	own				
bit 15	TON: Timery	On bit ⁽¹⁾									
	1 = Starts 16-	•									
	0 = Stops 16-	•									
bit 14	-	ted: Read as '									
bit 13		ry Stop in Idle N									
		ues module op s module opera			ers an Idle moo	de					
bit 12-7	Unimplemen	ted: Read as '	0'								
bit 6	TGATE: Time	ery Gated Time	Accumulation	Enable bit ⁽¹⁾							
	When TCS =										
	This bit is ign										
	$\frac{\text{When TCS} = 0}{1000}$										
	 Gated time accumulation is enabled Gated time accumulation is disabled 										
bit 5-4		Timery Input C		Select hits(1)							
	11 = 1:256	Timery input c									
	10 = 1:64										
	01 = 1:8										
	00 = 1:1										
bit 3-2	-	nted: Read as '									
bit 1		Clock Source S									
	1 = External (0 = Internal c	clock is from pi	n, TyCK (on th	ie rising edge)							
bit 0		nted: Read as '	0'								
Note 1: W	-			1) these hits	have no effect	on Timery operat	tion: all timer				
	nctions are set th			± <i>j</i> , mese bits							
		-									

REGISTER 13-2: TyCON (T3CON AND T5CON) CONTROL REGISTER

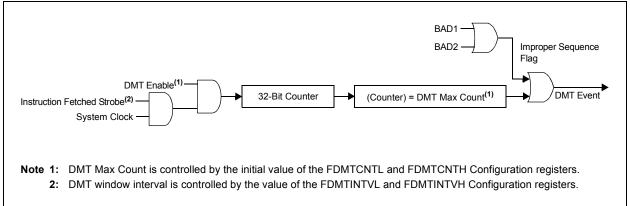
2: When 32-bit timer operation is enabled (T32 = 1) in the Timerx Control register (TxCON[3]), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

3: The TyCK pin is not available on all timers. See the "Pin Diagrams" section for the available pins.

NOTES:

14.0 DEADMAN TIMER (DMT)

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Deadman Timer (DMT)" (www.microchip.com/DS70005155) in the "dsPIC33/PIC24 Family Reference Manual".
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


The primary function of the Deadman Timer (DMT) is to reset the processor in the event of a software malfunction. The DMT, which works on the system clock, is a free-running instruction fetch timer, which is clocked whenever an instruction fetch occurs, until a count match occurs. Instructions are not fetched when the processor is in Sleep mode.

DMT can be enabled in the Configuration fuse or by software in the DMTCON register by setting the ON bit. The DMT consists of a 32-bit counter with a time-out count match value, as specified by the two 16-bit Configuration Fuse registers: FDMTCNTL and FDMTCNTH.

A DMT is typically used in mission-critical, and safetycritical applications, where any single failure of the software functionality and sequencing must be detected.

Figure 14-1 shows a block diagram of the Deadman Timer module.

14.1 Deadman Timer Control Registers

R/W-0	U-0						
	0-0	0-0	0-0	0-0	0-0	0-0	0-0
0N ⁽¹⁾		—	—	—	—	—	
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	_	—	—	—	—	—
bit 7			•		•	•	bit (

REGISTER 14-1: DMTCON: DEADMAN TIMER CONTROL REGISTER

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15 **ON:** DMT Module Enable bit⁽¹⁾

- 1 = Deadman Timer module is enabled
- 0 = Deadman Timer module is not enabled

bit 14-0 Unimplemented: Read as '0'

Note 1: This bit has control only when DMTEN = 0 in the FDMT register.

REGISTER 14-2: DMTPRECLR: DEADMAN TIMER PRECLEAR REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			STER	P1[7:0]				
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	_	
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-8	STEP1[7:0]:	DMT Preclear	Enable bits					
	01000000 All Other			mer preclear (Sl	tep 1)			
	Write Pattern	STEP1[7:0]	-	ese bits are cl cleared if the s ence.				
bit 7-0	Unimpleme	nted: Read as	0'					

loading of the STEP1[7:0] bits in the correct sequence. The write to these bits may be verified by reading the DMTCNTL/H register and observing the counter being reset.

being written to STEP2[7:0] will be captured. These bits are cleared when a DMT

Write Patterns = Sets the BAD2 bit; the value of STEP1[7:0] will remain unchanged and the new value

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—		
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			STEF	P2[7:0]				
bit 7							bit 0	
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			nown	
bit 15-8	Unimplemer	nted: Read as '	0'					
bit 7-0	STEP2[7:0]:	DMT Clear Tim	ner bits					
	00001000	= Clears STE	P1[7:0], STEF	2[7:0] and the	e Deadman Time	r if preceded l	by the correct	

REGISTER 14-3: DMTCLR: DEADMAN TIMER CLEAR REGISTER

Reset event occurs.

© 2013-2019 Microchip Technology Inc.

All Other

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_				—	—	—	_			
bit 15							bit 8			
HC/R-0	HC/R-0	HC/R-0	U-0	U-0	U-0	U-0	R-0			
BAD1	BAD2	DMTEVENT	—	—	—	—	WINOPN			
bit 7							bit 0			
Legend:		HC = Hardware	e Clearable bit							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'							
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15-8	Unimplemer	Unimplemented: Read as '0'								
bit 7	BAD1: Dead	man Timer Bad	STEP1[7:0] Val	ue Detect bit						
		STEP1[7:0] valu STEP1[7:0] valu								
bit 6	BAD2: Dead	man Timer Bad	STEP2[7:0] Val	ue Detect bit						
		STEP2[7:0] valu STEP2[7:0] valu								
bit 5	DMTEVENT:	Deadman Time	r Event bit							
	was ente	in Timer event wered prior to court	nter increment)	•	l, or bad STEI	P1[7:0] or STE	EP2[7:0] value			
		in Timer event w		1						
bit 4-1	-	nted: Read as '0								
bit 0		eadman Timer C		t						
		n Timer clear wir n Timer clear wir		n						

REGISTER 14-5: DMTCNTL: DEADMAN TIMER COUNT REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			COUN	TER[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			COUN	ITER[7:0]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bi			nented bit, rea	id as '0'			
-n = Value at Po	n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown			nown			

bit 15-0 COUNTER[15:0]: Read Current Contents of Lower DMT Counter bits

REGISTER 14-6: DMTCNTH: DEADMAN TIMER COUNT REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			COUNT	ER[31:24]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			COUNT	ER[23:16]			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimplem	ented bit, read	d as '0'	
-n = Value at P	= Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown			nown			

bit 15-0 COUNTER[31:16]: Read Current Contents of Higher DMT Counter bits

© 2013-2019 Microchip Technology Inc.

REGISTER 14-7: DMTPSCNTL: DMT POST-CONFIGURE COUNT STATUS REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PSC	NT[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PSC	NT[7:0]			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unl			x = Bit is unkr	nown			

bit 15-0 **PSCNT[15:0]:** Lower DMT Instruction Count Value Configuration Status bits This is always the value of the FDMTCNTL Configuration register.

REGISTER 14-8: DMTPSCNTH: DMT POST-CONFIGURE COUNT STATUS REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PSCN	NT[31:24]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PSCN	NT[23:16]			
bit 7							bit C
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-0 **PSCNT[31:16]:** Higher DMT Instruction Count Value Configuration Status bits This is always the value of the FDMTCNTH Configuration register.

REGISTER 14-9: DMTPSINTVL: DMT POST-CONFIGURE INTERVAL STATUS REGISTER LOW

-n = Value at POR (1' = Bit is set			(0) = Bit is cleared $x = Bit$ is unknown			nown		
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
Legend:								
bit 7							bit 0	
			PSIN	TV[7:0]				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
bit 15							bit 8	
			PSIN	TV[15:8]				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
						D // / 0		

bit 15-0 **PSINTV[15:0]:** Lower DMT Window Interval Configuration Status bits This is always the value of the FDMTINTVL Configuration register.

REGISTER 14-10: DMTPSINTVH: DMT POST-CONFIGURE INTERVAL STATUS REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PSIN	[V[31:24]				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PSIN	TV[23:16]				
bit 7							bit 0	
Legend:								
R = Readable bit W = V		W = Writable	bit	U = Unimplemented bit,		ıd as '0'		
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		

bit 15-0 **PSINTV[31:16]:** Higher DMT Window Interval Configuration Status bits This is always the value of the FDMTINTVH Configuration register.

© 2013-2019 Microchip Technology Inc.

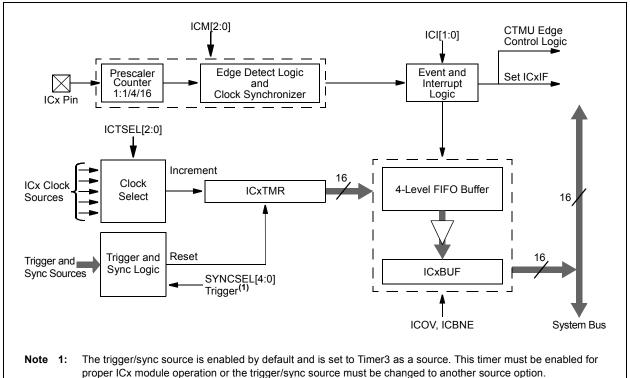
REGISTER 14-11: DMTHOLDREG: DMT HOLD REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			UPR	CNT[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			UPF	RCNT[7:0]			
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable b	oit	U = Unimplemented bit, r		d as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-0 UPRCNT[15:0]: Value of the DMTCNTH Register when DMTCNTL and DMTCNTH were Last Read bits

Note 1: The DMTHOLDREG register is initialized to '0' on Reset, and is only loaded when the DMTCNTL and DMTCNTH registers are read.

15.0 INPUT CAPTURE


- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Input Capture with Dedicated Timer" (www.microchip.com/DS70000352) in the "dsPIC33/PIC24 Family Reference Manual".
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The input capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33EVXXXGM00X/10X family devices support four input capture channels.

Key features of the input capture module include:

- Hardware-Configurable for 32-Bit Operation in All Modes by Cascading Two Adjacent modules
- Synchronous and Trigger Modes of Output Compare Operation, with up to 31 User-Selectable Trigger/Sync Sources Available
- A Four-Level FIFO Buffer for Capturing and Holding Timer Values for Several Events
- · Configurable Interrupt Generation
- Up to Six Clock Sources Available for Each Module, Driving a Separate Internal 16-Bit Counter

Figure 15-1 shows a block diagram of the Input capture module.

FIGURE 15-1: INPUT CAPTURE x MODULE BLOCK DIAGRAM

Input Capture Control Registers 15.1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0				
_		ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	_				
oit 15							bit				
U-0	R/W-0	R/W-0	HC/HS/R-0	HC/HS/R-0	R/W-0	R/W-0	R/W-0				
		ICI0		ICBNE	ICM2	ICM1	ICM0				
oit 7		1010	1001	IODINE	101012		bit				
							bit				
_egend:		HC = Hardwa	re Clearable bit	HS = Hardwar	re Settable bit						
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'					
n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unl	known				
bit 15-14	-	ited: Read as									
bit 13		-	op in Idle Mode C								
	•	 1 = Input Capture x will halt in CPU Idle mode 0 = Input Capture x will continue to operate in CPU Idle mode 									
oit 12-10	-	 Input Capture x will continue to operate in CPU Idle mode ICTSEL[2:0]: Input Capture x Timer Select bits 									
5AC 12 10	111 = Peripheral clock (FP) is the clock source of the ICx										
		110 = Reserved									
		101 = Reserved									
		100 = T1CLK is the clock source of the ICx (only the synchronous clock is supported) 011 = T5CLK is the clock source of the ICx									
	011 = T5CLK is the clock source of the ICx 010 = T4CLK is the clock source of the ICx										
	001 = T2CLK is the clock source of the ICx										
			ource of the ICx								
bit 9-7	Unimplemen	ited: Read as	0'								
oit 6-5	ICI[1:0]: Num	ICI[1:0]: Number of Captures per Interrupt Select bits (this field is not used if ICM[2:0] = 001 or 111)									
	11 = Interrupt on every fourth capture event										
	 10 = Interrupt on every third capture event 01 = Interrupt on every second capture event 										
	00 = Interrupt on every second capture event										
bit 4	-			bit (read-only)							
	ICOV: Input Capture x Overflow Status Flag bit (read-only) 1 = Input Capture x buffer overflow has occurred										
	0 = Input Capture x buffer overflow has not occurred										
bit 3	ICBNE: Input Capture x Buffer Not Empty Status bit (read-only)										
		1 = Input Capture x buffer is not empty, at least one more capture value can be read									
	0 = Input Ca	pture x buffer i	s empty								
oit 2-0	ICM[2:0]: Input Capture x Mode Select bits										
			tions as an inter		CPU Sleep an	d Idle modes	(rising edg				
		detect only, all other control bits are not applicable)									
	 110 = Unused (module is disabled) 101 = Capture mode, every 16th rising edge (Prescaler Capture mode) 										
	101 = Captu			e (Prescaler Ca	pture mode)						
		re mode, ever									
	100 = Captu 011 = Captu	re mode, ever re mode, ever re mode, ever	y 16th rising edge y 4th rising edge y rising edge (Sin	(Prescaler Cap nple Capture m	ture mode) ode)						
	100 = Captu 011 = Captu 010 = Captu	re mode, even re mode, even re mode, even re mode, even	y 16th rising edge y 4th rising edge	(Prescaler Cap nple Capture m nple Capture m	ture mode) ode) iode)	01) is not used	in this mod				

000 = Input Capture x module is turned off

REGISTER 15-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	_	IC32 ⁽¹⁾
bit 15							bit 8

R/W-0	HS/R/W-0	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1
ICTRIG ⁽²⁾	TRIGSTAT ⁽³⁾	_	SYNCSEL4(4)	SYNCSEL3(4)	SYNCSEL2(4)	SYNCSEL1(4)	SYNCSEL0 ⁽⁴⁾
bit 7							bit 0

Legend:	HS = Hardware Settable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-9	Unimplemented: Read as '0'
bit 8	IC32: Input Capture x 32-Bit Timer Mode Select bit (Cascade mode) ⁽¹⁾
	 1 = Odd ICx and even ICx form a single 32-bit input capture module 0 = Cascade module operation is disabled
bit 7	ICTRIG: Input Capture x Trigger Operation Select bit ⁽²⁾
	 1 = Input source is used to trigger the input capture timer (Trigger mode) 0 = Input source is used to synchronize the input capture timer to the timer of another module (Synchronization mode)
bit 6	TRIGSTAT: Timer Trigger Status bit ⁽³⁾
	 1 = ICxTMR has been triggered and is running 0 = ICxTMR has not been triggered and is being held clear
bit 5	Unimplemented: Read as '0'
Note 1	The IC22 bit in both the odd and even ICy must be not to enable Caseada mode

- **Note 1:** The IC32 bit in both the odd and even ICx must be set to enable Cascade mode.
 - 2: The input source is selected by the SYNCSEL[4:0] bits of the ICxCON2 register.
 - **3:** This bit is set by the selected input source (selected by the SYNCSEL[4:0] bits); it can be read, set and cleared in software.
 - 4: Do not use the ICx module as its own sync or trigger source.
 - 5: This option should only be selected as a trigger source and not as a synchronization source.
 - 6: When the source ICx timer rolls over, then in the next clock cycle, trigger or synchronization occurs.

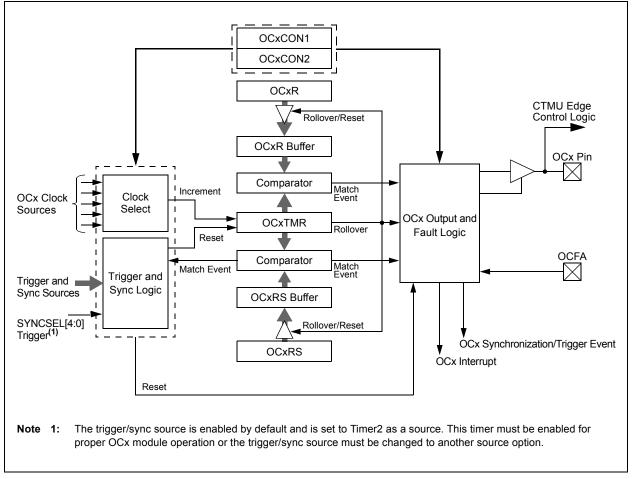
REGISTER 15-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)

bit 4-0	SYNCSEL[4:0]: Input Source Select for Synchronization and Trigger Operation bits ⁽⁴⁾
	11111 = Reserved
	11110 = Reserved
	11101 = Reserved
	11100 = CTMU trigger is the source for the capture timer synchronization
	11011 = ADC1 interrupt is the source for the capture timer synchronization ⁽⁵⁾
	11010 = Analog Comparator 3 is the source for the capture timer synchronization ⁽⁵⁾
	11001 = Analog Comparator 2 is the source for the capture timer synchronization ⁽⁵⁾
	11000 = Analog Comparator 1 is the source for the capture timer synchronization ⁽⁵⁾
	10111 = Analog Comparator 5 is the source for the capture timer synchronization ⁽⁵⁾
	10110 = Analog Comparator 4 is the source for the capture timer synchronization ⁽⁵⁾
	10101 = Reserved
	10100 = Reserved
	10011 = Input Capture 4 interrupt is the source for the capture timer synchronization
	10010 = Input Capture 3 interrupt is the source for the capture timer synchronization
	10001 = Input Capture 2 interrupt is the source for the capture timer synchronization
	10000 = Input Capture 1 interrupt is the source for the capture timer synchronization
	01111 = GP Timer5 is the source for the capture timer synchronization
	01110 = GP Timer4 is the source for the capture timer synchronization
	01101 = GP Timer3 is the source for the capture timer synchronization
	01100 = GP Timer2 is the source for the capture timer synchronization
	01011 = GP Timer1 is the source for the capture timer synchronization
	01010 = Reserved
	01001 = Reserved
	01000 = Input Capture 4 is the source for the capture timer synchronization ⁽⁶⁾
	00111 = Input Capture 3 is the source for the capture timer synchronization ⁽⁶⁾
	00110 = Input Capture 2 is the source for the capture timer synchronization ⁽⁶⁾
	00101 = Input Capture 1 is the source for the capture timer synchronization ⁽⁶⁾
	00100 = Output Compare 4 is the source for the capture timer synchronization
	00011 = Output Compare 3 is the source for the capture timer synchronization
	00010 = Output Compare 2 is the source for the capture timer synchronization
	00001 = Output Compare 1 is the source for the capture timer synchronization
	00000 = Reserved
Note 1:	The IC32 bit in both the odd and even ICx must be set to enable Cascade mode.

- 2: The input source is selected by the SYNCSEL[4:0] bits of the ICxCON2 register.
- **3:** This bit is set by the selected input source (selected by the SYNCSEL[4:0] bits); it can be read, set and cleared in software.
- 4: Do not use the ICx module as its own sync or trigger source.
- 5: This option should only be selected as a trigger source and not as a synchronization source.
- 6: When the source ICx timer rolls over, then in the next clock cycle, trigger or synchronization occurs.

16.0 OUTPUT COMPARE

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Output Compare with Dedicated Timer" (www.microchip.com/ DS70005159) in the "dsPIC33/PIC24 Family Reference Manual".
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


The dsPIC33EVXXXGM00X/10X family devices support up to four output compare modules. The output compare module can select one of eight available clock

sources for its time base. The module compares the value of the timer with the value of one or two Compare registers, depending on the operating mode selected. The state of the output pin changes when the timer value matches the Compare register value. The output compare module generates either a single output pulse, or a sequence of output pulses, by changing the state of the output pin on the compare match events. The output compare module can also generate interrupts on compare match events and trigger DMA data transfers.

Figure 16-1 shows a block diagram of the output compare module.

Note: For more information on OCxR and OCxRS register restrictions, refer to "Output Compare with Dedicated Timer" (www.microchip.com/DS70005159) in the "dsPIC33/PIC24 Family Reference Manual".

16.1 Output Compare Control Registers

REGISTER 16-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0		
—	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	—		
bit 15							bit 8		
R/W-0	U-0	U-0	HSC/R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ENFLTA		—	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0		
bit 7							bit C		
Legend:		HSC = Hardy	vare Settable/Cl	learable bit					
R = Readat	ole bit	W = Writable	bit	U = Unimplem	ented bit, rea	d as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 12-10	•	•	•		lode				
bit 15-14 bit 13	-	ted: Read as	Stop in Idle Model	de Central hit					
	•	•	inues to operate		node				
bit 12-10	OCTSEL[2:0]: Output Compare x Clock Select bits								
	111 = Peripheral clock (FP) 110 = Reserved								
	101 = Reserved								
	100 = T1CLK is the clock source of the OCx (only the synchronous clock is supported)								
			ource of the OC						
	010 = T4CLK is the clock source of the OCx 001 = T3CLK is the clock source of the OCx								
	001 - T2CLK	in the cleak of	ourse of the OC	v					
bit 9-8	000 = T2CLK	is the clock se	ource of the OC						
	000 = T2CLK Unimplemen	is the clock set ted: Read as	ource of the OC	x					
	000 = T2CLK Unimplemen ENFLTA: Out	is the clock set ted: Read as put Compare :	ource of the OC 0' k Fault A Input E	x Enable bit					
	000 = T2CLK Unimplemen ENFLTA: Out 1 = Output C	is the clock set ted: Read as put Compare s ompare Fault	ource of the OC	x Enable bit is enabled					
bit 9-8 bit 7 bit 6-5	000 = T2CLK Unimplemen ENFLTA: Out 1 = Output C 0 = Output C	is the clock set ted: Read as put Compare s ompare Fault	ource of the OC o' x Fault A Input E A (OCFA) input A (OCFA) input	x Enable bit is enabled					

- 4 **OCFLTA:** PWM Fault A Condition Status bit
 - 1 = PWM Fault A condition on the OCFA pin has occurred
 - 0 = PWM Fault A condition on the OCFA pin has not occurred
- bit 3 TRIGMODE: Trigger Status Mode Select bit
 - 1 = TRIGSTAT (OCxCON2[6]) is cleared when OCxRS = OCxTMR or in software
 - 0 = TRIGSTAT is cleared only by software
- Note 1: OCxR and OCxRS are double-buffered in PWM mode only.

REGISTER 16-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 2-0 OCM[2:0]: Output Compare x Mode Select bits
 - 111 = Center-Aligned PWM mode: Output sets high when OCxTMR = OCxR and sets low when OCxTMR = OCxRS⁽¹⁾
 - 110 = Edge-Aligned PWM mode: Output sets high when OCxTMR = 0 and sets low when OCxTMR = OCxR⁽¹⁾
 - 101 = Double Compare Continuous Pulse mode: Initializes OCx pin low, toggles OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initializes OCx pin low, toggles OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare mode: Compare event with OCxR, continuously toggles OCx pin
 - 010 = Single Compare Single-Shot mode: Initializes OCx pin high, compare event with OCxR, forces OCx pin low
 - 001 = Single Compare Single-Shot mode: Initializes OCx pin low, compare event with OCxR, forces OCx pin high
 - 000 = Output compare channel is disabled
- Note 1: OCxR and OCxRS are double-buffered in PWM mode only.

 $[\]ensuremath{\textcircled{}^{\odot}}$ 2013-2019 Microchip Technology Inc.

REGISTER 16-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0			
FLTMD	FLTOUT	FLTTRIEN	OCINV		_		OC32			
bit 15							bit 8			
R/W-0	HS/R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0			
OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0			
bit 7							bit 0			
Logondy		HS = Hardwa	ra Sattabla bit							
Legend:	. L :4				enated hit week					
R = Readable		W = Writable		•	nented bit, read					
-n = Value at	PUR	'1' = Bit is set		'0' = Bit is clea	areo	x = Bit is unkr	IOWN			
bit 15	FI TMD: Fault	t Mode Select b	nit							
		de is maintaine		It source is rem	noved; the OCF	LTA bit is clear	red in software			
	and a new	w PWM period	starts							
	0 = Fault mod	de is maintaine	d until the Fau	It source is rem	noved and a ne	w PWM period	starts			
bit 14	FLTOUT: Fau									
	1 = PWM output is driven high on a Fault									
	0 = PWM output is driven low on a Fault									
bit 13		LTTRIEN: Fault Output State Select bit								
	 1 = OCx pin is tri-stated on a Fault condition 0 = OCx pin I/O state is defined by the FLTOUT bit on a Fault condition 									
	-		-	OUT bit on a F	-ault condition					
bit 12	•	OCINV: Output Compare x Invert bit								
		 = OCx output is inverted = OCx output is not inverted 								
bit 11-9	•	ted: Read as '								
bit 8	-			bit (32-bit ope	ration)					
	OC32: Cascade Two OCx Modules Enable bit (32-bit operation) 1 = Cascade module operation is enabled									
	0 = Cascade module operation is disabled									
bit 7	OCTRIG: Output Compare x Trigger/Sync Select bit									
	1 = Triggers OCx from the source designated by the SYNCSELx bits									
	0 = Synchron	nizes OCx with	the source des	signated by the	SYNCSELx bit	ts				
bit 6	TRIGSTAT: T	RIGSTAT: Timer Trigger Status bit								
	 1 = Timer source has been triggered and is running 0 = Timer source has not been triggered and is being held clear 									
				-						
bit 5		put Compare x	•	ection Select b	bit					
	•	ompare x is tri- ompare x modu								
				Jox pin						
Note 1: Do	o not use the O	Cx module as i	ts own synchro	nization or trig	ger source.					
			ee							

2: When the OCy module is turned off, it sends a trigger out signal. If the OCx module uses the OCy module as a trigger source, the OCy module must be unselected as a trigger source prior to disabling it.

REGISTER 16-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL[4:0]: Trigger/Synchronization Source Selection bits 11111 = OCxRS compare event is used for synchronization 11110 = INT2 is the source for compare timer synchronization 11101 = INT1 is the source for compare timer synchronization 11100 = CTMU trigger is the source for compare timer synchronization 11011 = ADC1 interrupt is the source for compare timer synchronization 11010 = Analog Comparator 3 is the source for compare timer synchronization 11001 = Analog Comparator 2 is the source for compare timer synchronization 11000 = Analog Comparator 1 is the source for compare timer synchronization 10111 = Analog Comparator 5 is the source for compare timer synchronization 10110 = Analog Comparator 4 is the source for compare timer synchronization 10101 = Capture timer is unsynchronized 10100 = Capture timer is unsynchronized 10011 = Input Capture 4 interrupt is the source for compare timer synchronization 10010 = Input Capture 3 interrupt is the source for compare timer synchronization 10001 = Input Capture 2 interrupt is the source for compare timer synchronization 10000 = Input Capture 1 interrupt is the source for compare timer synchronization 01111 = GP Timer5 is the source for compare timer synchronization 01110 = GP Timer4 is the source for compare timer synchronization 01101 = GP Timer3 is the source for compare timer synchronization 01100 = GP Timer2 is the source for compare timer synchronization 01011 = GP Timer1 is the source for compare timer synchronization 01010 = Compare timer is unsynchronized 01001 = Compare timer is unsynchronized 01000 = Capture timer is unsynchronized 00101 = Compare timer is unsynchronized 00100 = Output Compare 4 is the source for compare timer synchronization^(1,2) 00011 = Output Compare 3 is the source for compare timer synchronization^(1,2) 00010 = Output Compare 2 is the source for compare timer synchronization^(1,2)
 - 00001 = Output Compare 1 is the source for compare timer synchronization^(1,2) 00000 = Compare timer is unsynchronized
- **Note 1:** Do not use the OCx module as its own synchronization or trigger source.
 - 2: When the OCy module is turned off, it sends a trigger out signal. If the OCx module uses the OCy module as a trigger source, the OCy module must be unselected as a trigger source prior to disabling it.

NOTES:

17.0 HIGH-SPEED PWM MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "High-Speed PWM" (www.microchip.com/DS70645) in the "dsPIC33/PIC24 Family Reference Manual".
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EVXXXGM00X/10X family devices support a dedicated Pulse-Width Modulation (PWM) module with up to six outputs.

The high-speed PWMx module consists of the following major features:

- Three PWM Generators
- Two PWM Outputs per PWM Generator
- Individual Period and Duty Cycle for each PWM Pair
- Duty Cycle, Dead Time, Phase Shift and Frequency Resolution of 8.32 ns
- Independent Fault and Current-Limit Inputs for Six PWM Outputs
- Redundant Output
- Center-Aligned PWM mode
- Output Override Control
- Chop mode (also known as Gated mode)
- Special Event Trigger
- Prescaler for Input Clock
- · PWMxL and PWMxH Output Pin Swapping
- Independent PWM Frequency, Duty Cycle and Phase-Shift Changes for each PWM Generator
- Dead-Time Compensation
- Enhanced Leading-Edge Blanking (LEB) Functionality
- Frequency Resolution Enhancement
- PWM Capture Functionality

Note: In Edge-Aligned PWM mode, the duty cycle, dead time, phase shift and frequency resolution are 8.32 ns at 60 MIPS.

The high-speed PWMx module contains up to three PWM generators. Each PWM generator provides two PWM outputs: PWMxH and PWMxL. The master time base generator provides a synchronous signal as a common time base to synchronize the various PWM outputs. The individual PWM outputs are available on the output pins of the device. The input Fault signals and current-limit signals, when enabled, can monitor and protect the system by placing the PWM outputs into a known "safe" state.

Each PWMx can generate a trigger to the ADC module to sample the analog signal at a specific instance during the PWM period. In addition, the high-speed PWMx module also generates a Special Event Trigger to the ADC module based on the master time base.

The high-speed PWMx module can synchronize itself with an external signal or can act as a synchronizing source to any external device. The SYNCI1 input pin, that utilizes PPS, can synchronize the high-speed PWMx module with an external signal. The SYNCO1 pin is an output pin that provides a synchronous signal to an external device.

Figure 17-1 illustrates an architectural overview of the high-speed PWMx module and its interconnection with the CPU and other peripherals.

17.1 PWM Faults

The PWMx module incorporates multiple external Fault inputs as follows:

- FLT1 and FLT2, available on 28-pin, 36-pin, 44-pin, 48-pin and 64-pin packages, which are remappable using the PPS feature
- FLT3, available on 44-pin, 48-pin and 64-pin packages, which is available as a fixed pin
- FLT4-FLT8, available on 64-pin packages, which are available as fixed pins
- FLT32 is available on a fixed pin on all devices

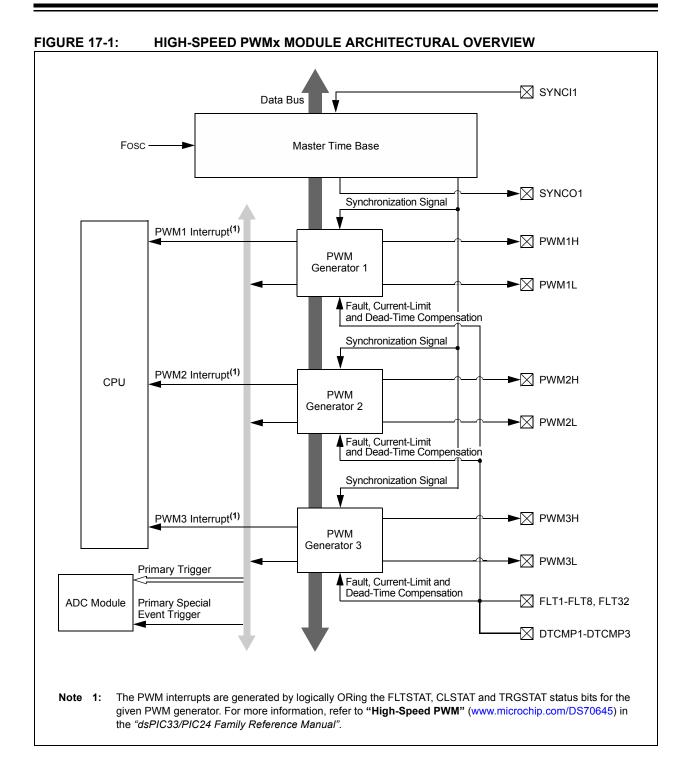
These Faults provide a safe and reliable way to safely shut down the PWM outputs when the Fault input is asserted.

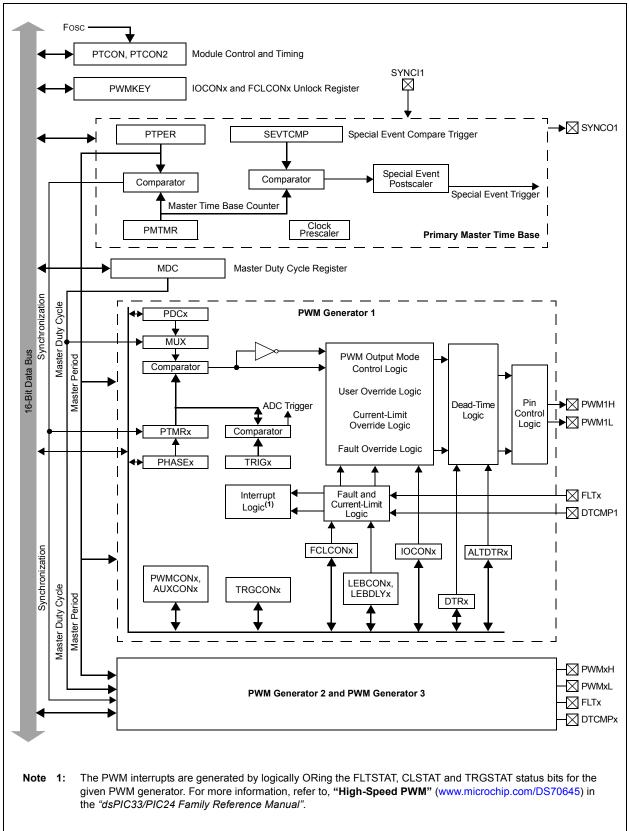
17.1.1 PWM FAULTS AT RESET

During any Reset event, the PWMx module maintains ownership of the Class B Fault, FLT32. At Reset, this Fault is enabled in Latched mode to ensure the fail-safe power-up of the application. The application software must clear the PWM Fault before enabling the highspeed motor control PWMx module. To clear the Fault condition, the FLT32 pin must first be pulled low externally or the internal pull-down resistor in the CNPDx register can be enabled.

Note: The Fault mode may be changed using the FLTMOD[1:0] bits (FCLCONx[1:0]), regardless of the state of FLT32.

17.1.2 WRITE-PROTECTED REGISTERS


On dsPIC33EVXXXGM00X/10X family devices, write protection is implemented for the IOCONx and FCLCONx registers. The write protection feature prevents any inadvertent writes to these registers. This protection feature can be controlled by the PWMLOCK Configuration bit (FDEVOPT[0]). The default state of the write protection feature is enabled (PWMLOCK = 1). The write protection feature can be disabled by configuring PWMLOCK = 0. To gain write access to these locked registers, the user application must write two consecutive values (0xABCD and 0x4321) to the PWMKEY register to perform the unlock operation. The write access to the IOCONx or FCLCONx registers must be the next SFR access following the unlock process. There can be no other SFR accesses during the unlock process and subsequent write access. To write to both the IOCONx and FCLCONx registers requires two unlock operations.


The correct unlocking sequence is described in Example 17-1.

EXAMPLE 17-1: PWM1 WRITE-PROTECTED REGISTER UNLOCK SEQUENCE

; FLT32 pin must be pulled low externally in order to clear and disable the fault ; Writing to FCLCON1 register requires unlock sequence	
<pre>mov #0xabcd, w10 ; Load first unlock key to w10 register mov #0x4321, w11 ; Load second unlock key to w11 register mov #0x0000, w0 ; Load desired value of FCLCON1 register in w0 mov w10, PWMKEY ; Write first unlock key to PWMKEY register mov w11, PWMKEY ; Write second unlock key to PWMKEY register mov w0, FCLCON1 ; Write desired value to FCLCON1 register</pre>	
; Set PWM ownership and polarity using the IOCON1 register ; Writing to IOCON1 register requires unlock sequence	
<pre>mov #0xabcd, w10 ; Load first unlock key to w10 register mov #0x4321, w11 ; Load second unlock key to w11 register mov #0xF000, w0 ; Load desired value of IOCON1 register in w0 mov w10, PWMKEY ; Write first unlock key to PWMKEY register mov w11, PWMKEY ; Write second unlock key to PWMKEY register mov w0, IOCON1 ; Write desired value to IOCON1 register</pre>	

dsPIC33EVXXXGM00X/10X FAMILY

17.2 PWM Resources

Many useful resources are provided on the main product page on the Microchip website (www.microchip.com) for the devices listed in this data sheet. This product page contains the latest updates and additional information.

Note: In case the above link is not accessible, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

17.2.1 KEY RESOURCES

- "High-Speed PWM" (www.microchip.com/ DS70645) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

^{© 2013-2019} Microchip Technology Inc.

17.3 PWMx Control Registers

REGISTER 17-1: PTCON: PWMx TIME BASE CONTROL REGISTER

R/W-0	U-0	R/W-0	HC/HS-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN	—	PTSIDL	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL ⁽¹⁾	SYNCOEN ⁽¹⁾
bit 15							bit 8
R/W-0	R/\\/_0	R/W-0	R/W_0	R/\/_0	R/W_0	R/\/_0	R/\/_0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SYNCEN ⁽¹⁾	SYNCSRC2 ⁽¹⁾	SYNCSRC1 ⁽¹⁾	SYNCSRC0 ⁽¹⁾	SEVTPS3 ⁽¹⁾	SEVTPS2 ⁽¹⁾	SEVTPS1 ⁽¹⁾	SEVTPS0 ⁽¹⁾
bit 7							bit 0

Legend:HC = Hardware Clearable bit		HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15	PTEN: PWMx Module Enable bit
	1 = PWMx module is enabled 0 = PWMx module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	PTSIDL: PWMx Time Base Stop in Idle Mode bit
bit 15	1 = PWMx time base halts in CPU Idle mode 0 = PWMx time base runs in CPU Idle mode
bit 12	SESTAT: Special Event Interrupt Status bit
	1 = Special event interrupt is pending0 = Special event interrupt is not pending
bit 11	SEIEN: Special Event Interrupt Enable bit
	 1 = Special event interrupt is enabled 0 = Special event interrupt is disabled
bit 10	EIPU: Enable Immediate Period Updates bit ⁽¹⁾
	 1 = Active Period register is updated immediately 0 = Active Period register updates occur on PWMx cycle boundaries
bit 9	SYNCPOL: Synchronize Input and Output Polarity bit ⁽¹⁾
	 1 = SYNCI1/SYNCO1 polarity is inverted (active-low) 0 = SYNCI1/SYNCO1 is active-high
bit 8	SYNCOEN: Primary Time Base Sync Enable bit ⁽¹⁾
	1 = SYNCO1 output is enabled 0 = SYNCO1 output is disabled
bit 7	SYNCEN: External Time Base Synchronization Enable bit ⁽¹⁾
	 1 = External synchronization of primary time base is enabled 0 = External synchronization of primary time base is disabled
Note 1:	These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the use

Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.

REGISTER 17-1: PTCON: PWMx TIME BASE CONTROL REGISTER (CONTINUED)

bit 6-4	SYNCSRC[2:0]: Synchronous Source Selection bits ⁽¹⁾
	111 = Reserved
	•
	•
	•
	100 = Reserved
	011 = Reserved
	010 = Reserved
	001 = Reserved
	000 = SYNCI1 input from PPS
bit 3-0	SEVTPS[3:0]: Special Event Trigger Output Postscaler Select bits ⁽¹⁾
	1111 = 1:16 postscaler generates a Special Event Trigger on every sixteenth compare match event
	•
	•
	•
	0001 = 1:2 postscaler generates a Special Event Trigger on every second compare match event
	0000 = 1:1 postscaler generates a Special Event Trigger on every compare match event

Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.

REGISTER 17-2: PTCON2: PWMx PRIMARY MASTER CLOCK DIVIDER SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	_	—	—	—	—
						bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
			—		PCLKDIV[2:0](1)	
•		•	•	•		bit 0
	_				U-0 U-0 U-0 U-0 R/W-0	

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-3 Unimplemented: Read as '0'

bit 2-0 PCLKDIV[2:0]: PWMx Input Clock Prescaler (Divider) Select bits⁽¹⁾

- 111 = Reserved
- 110 = Divide-by-64
- 101 = Divide-by-32
- 100 = Divide-by-16
- 011 = Divide-by-8
- 010 = Divide-by-4
- 001 = Divide-by-2
- 000 = Divide-by-1, maximum PWMx timing resolution (power-on default)

REGISTER 17-3: PTPER: PWMx PRIMARY MASTER TIME BASE PERIOD REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			PTPE	ER[15:8]			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
			PTP	ER[7:0]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			

bit 15-0 **PTPER[15:0]:** Primary Master Time Base (PMTMR) Period Value bits

REGISTER 17-4: SEVTCMP: PWMx PRIMARY SPECIAL EVENT COMPARE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SEVTO	CMP[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SEVT	CMP[7:0]			
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable bi	it	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown	
,							

bit 15-0 SEVTCMP[15:0]: Special Event Compare Count Value bits

REGISTER 17-5: CHOP: PWMx CHOP CLOCK GENERATOR REGISTER

R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
CHPCLKEN	—	—	—	—	—	CHOPCLK9	CHOPCLK8
bit 15							bit 8

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CHOPCLK7 | CHOPCLK6 | CHOPCLK5 | CHOPCLK4 | CHOPCLK3 | CHOPCLK2 | CHOPCLK1 | CHOPCLK0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	CHPCLKEN: Enable Chop Clock Generator bit
	1 = Chop clock generator is enabled
	0 = Chop clock generator is disabled
bit 14-10	Unimplemented: Read as '0'
bit 9-0	CHOPCLK[9:0]: Chop Clock Divider bits
	The frequency of the chop clock signal is given by the following expression: Chop Frequency = (FP/PCLKDIV[2:0])/(CHOPCLK[9:0] + 1)

REGISTER 17-6: MDC: PWMx MASTER DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MD	C[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MD	C[7:0]			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable bit	t	U = Unimpler	mented bit, read	as '0'	

'0' = Bit is cleared

bit 15-0 MDC[15:0]: PWMx Master Duty Cycle Value bits

'1' = Bit is set

-n = Value at POR

x = Bit is unknown

 $[\]ensuremath{\textcircled{}^{\odot}}$ 2013-2019 Microchip Technology Inc.

HC/HS-0	HC/HS-0	HC/HS-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTSTAT ⁽	¹⁾ CLSTAT ⁽¹⁾	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB ⁽²⁾	MDCS ⁽²⁾
bit 15	•						bit 8
		DAMO			DAMA		DAMO
R/W-0	R/W-0	R/W-0 DTCP ⁽³⁾	U-0	U-0	R/W-0 CAM ^(2,4)	R/W-0	R/W-0 IUE ⁽²⁾
DTC1	DTC0	DICPO		_	CAIM-,-,	XPRES ⁽⁵⁾	
bit 7							bit (
Legend:		HC = Hardware	Clearable bit	HS = Hardwa	are Settable bit		
R = Readat	ole bit	W = Writable bi	t	U = Unimplei	mented bit, rea	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
L:4 4 F							
bit 15		ult Interrupt Statu rrupt is pending					
		rupt is not pendi	ng				
	This bit is clea	ared by setting F	LTIEN = 0.				
bit 14		rent-Limit Interru					
		mit interrupt is pe					
		nit interrupt is no ared by setting C					
bit 13		igger Interrupt St					
		terrupt is pending					
	0 = Trigger inf	terrupt is not pen	ding				
		ared by setting T					
bit 12		t Interrupt Enable	e bit				
		rrupt is enabled rrupt is disabled a	and the FLTST	AT hit is cleare	h		
bit 11		nt-Limit Interrupt					
		mit interrupt is er					
		mit interrupt is dis		CLSTAT bit is	cleared		
bit 10	TRGIEN: Trig	ger Interrupt Ena	able bit				
		vent generates a			bit is cleared		
bit 9		vent interrupts are dent Time Base I		INE IRGSTAT	bit is cleared		
DIT 9		register provides		iod for this PW	M generator		
		egister provides t					
bit 8	MDCS: Maste	er Duty Cycle Re	gister Select bi	t ⁽²⁾			
		ster provides dut ister provides du					
Note 1: S	Software must clea	ar the interrupt st	atus here and	in the correspo	onding IFSx bit	in the interrupt	controller.
	These bits should i	-		-	TEN = 1).		
	DTC[1:0] = 11 for I			-	_		
	The Independent T CAM bit is ignored	•	1) mode must	be enabled to	use Center-Al	igned mode. If	ITB = 0, the
5:	To operate in Exter	rnal Period Rese	t mode, the ITE	3 bit must be '	1' and the CLM	IOD bit in the F	CLCONx

REGISTER 17-7: PWMCONx: PWMx CONTROL REGISTER

register must be '0'.

REGISTER 17-7: PWMCONx: PWMx CONTROL REGISTER (CONTINUED)

bit 7-6	DTC[1:0]: Dead-Time Control bits 11 = Dead-Time Compensation mode 10 = Dead-time function is disabled 01 = Negative dead time is actively applied for Complementary Output mode 00 = Positive dead time is actively applied for all Output modes
bit 5	 DTCP: Dead-Time Compensation Polarity bit⁽³⁾ <u>When Set to '1':</u> If DTCMPx = 0, PWMxL is shortened and PWMxH is lengthened. If DTCMPx = 1, PWMxH is shortened and PWMxL is lengthened. <u>When Set to '0':</u> If DTCMPx = 0, PWMxH is shortened and PWMxL is lengthened. If DTCMPx = 1, PWMxH is shortened and PWMxL is lengthened. If DTCMPx = 1, PWMxH is shortened and PWMxL is lengthened.
bit 4-3	Unimplemented: Read as '0'
bit 2	CAM: Center-Aligned Mode Enable bit ^(2,4)
	 1 = Center-Aligned mode is enabled 0 = Edge-Aligned mode is enabled
bit 1	XPRES: External PWMx Reset Control bit ⁽⁵⁾
	 1 = Current-limit source resets the time base for this PWM generator if it is in Independent Time Base mode 0 = External pins do not affect PWMx time base
bit 0	 IUE: Immediate Update Enable bit⁽²⁾ 1 = Updates to the active MDC/PDCx/DTRx/ALTDTRx/PHASEx registers are immediate 0 = Updates to the active MDC/PDCx/DTRx/ALTDTRx/PHASEx registers are synchronized to the PWMx period boundary
Note 1: 2: 3:	Software must clear the interrupt status here and in the corresponding IFSx bit in the interrupt controller. These bits should not be changed after the PWMx is enabled (PTEN = 1). DTC[1:0] = 11 for DTCP to be effective; else, DTCP is ignored.

- 4: The Independent Time Base (ITB = 1) mode must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.
- **5:** To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

REGISTER 17-8: PDCx: PWMx GENERATOR DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	x[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDO	Cx[7:0]			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimplen	nented bit, read	1 as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown					nown		

bit 15-0 **PDCx[15:0]:** PWMx Generator Duty Cycle Value bits

REGISTER 17-9: PHASEx: PWMx PRIMARY PHASE-SHIFT REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PHAS	Ex[15:8]				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PHA	SEx[7:0]				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable b	oit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkr				nown				

bit 15-0 **PHASEx[15:0]:** PWMx Phase-Shift Value or Independent Time Base Period for the PWM Generator bits

Note 1: If ITB (PWMCONx[9]) = 0, the following applies based on the mode of operation: Complementary, Redundant and Push-Pull Output modes (PMOD[1:0] (IOCONx[11:10]) = 00, 01 or 10), PHASEx[15:0] = Phase-shift value for PWMxH and PWMxL outputs.

2: If ITB (PWMCONx[9]) = 1, the following applies based on the mode of operation: Complementary, Redundant and Push-Pull Output modes (PMOD[1:0] (IOCONx[11:10]) = 00, 01 or 10), PHASEx[15:0] = Independent Time Base period value for PWMxH and PWMxL.

REGISTER 17-10: DTRx: PWMx DEAD-TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	_		DTRx[13:8]						
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			DTF	Rx[7:0]					
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at P	POR	'1' = Bit is set '0' = Bit is cleared x = Bit			x = Bit is unkr	nown			

bit 15-14 Unimplemented: Read as '0'

bit 13-0 DTRx[13:0]: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

REGISTER 17-11: ALTDTRx: PWMx ALTERNATE DEAD-TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			ALTDT	Rx[13:8]		
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ALTDT	Rx[7:0]			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-0 ALTDTRx[13:0]: Unsigned 14-Bit Alternate Dead-Time Value for PWMx Dead-Time Unit bits

dsPIC33EVXXXGM00X/10X FAMILY

REGISTER 17-12: TRGCONX: PWMx TRIGGER CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	TRGSTRT5 ⁽¹⁾	TRGSTRT4 ⁽¹⁾	TRGSTRT3 ⁽¹⁾	TRGSTRT2 ⁽¹⁾	TRGSTRT1 ⁽¹⁾	TRGSTRT0 ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12 TRGDIV[3:0]: Trigger Output Divider bits

- 1111 = Triggers output for every 16th trigger event
- 1110 = Triggers output for every 15th trigger event
- 1101 = Triggers output for every 14th trigger event
- 1100 = Triggers output for every 13th trigger event
- 1011 = Triggers output for every 12th trigger event
- 1010 = Triggers output for every 11th trigger event
- 1001 = Triggers output for every 10th trigger event
- 1000 = Triggers output for every 9th trigger event
- 0111 = Triggers output for every 8th trigger event
- 0110 = Triggers output for every 7th trigger event
- 0101 = Triggers output for every 6th trigger event
- Oloo = Triggers output for every 5th trigger event
- 0011 = Triggers output for every 4th trigger event
- 0010 = Triggers output for every 3rd trigger event
- 0001 = Triggers output for every 2nd trigger event
- 0000 = Triggers output for every trigger event
- bit 11-6 Unimplemented: Read as '0'

bit 5-0 TRGSTRT[5:0]: Trigger Postscaler Start Enable Select bits⁽¹⁾

1111111 = Waits 63 PWM cycles before generating the first trigger event after the module is enabled

•

•

000010 = Waits 2 PWM cycles before generating the first trigger event after the module is enabled 000001 = Waits 1 PWM cycle before generating the first trigger event after the module is enabled 000000 = Waits 0 PWM cycles before generating the first trigger event after the module is enabled

Note 1: The secondary PWM generator cannot generate PWMx trigger interrupts.

R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PENH	PENL	POLH	POLL	PMOD1 ⁽¹⁾	PMOD0 ⁽¹⁾	OVRENH	OVRENL
bit 15							bit 8
DAMA	D 444.0	D 444 0	DAA/ A	D 4440	DAVA	D111	D 444.0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at I	POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unkr	nown
L							
bit 15	PENH: PWM	xH Output Pin	Ownership bit				
		odule controls					
		dule controls the	-	n			
bit 14		kL Output Pin (•				
		odule controls dule controls th					
bit 13		xH Output Pin		1			
DIL 15		bin is active-low	-				
		oin is active-low					
bit 12	•	L Output Pin F	•				
		in is active-low					
		oin is active-hig					
bit 11-10	PMOD[1:0]:	PWMx I/O Pin	Mode bits ⁽¹⁾				
	11 = Reserve	•					
				I Output mode			
				nt Output mod			
bit 9		/erride Enable	•		mode		
		1 controls the o					
		enerator contro					
bit 8	OVRENL: Ov	erride Enable	for PWMxL Pi	n bit			
	1 = OVRDAT	0 controls the o	output on the l	PWMxL pin			
	•	enerator contro		•			
bit 7-6	_	-			le is Enabled bi		
		•			d by OVRDAT1		
hit E 1				-	by OVRDAT0.	d bita	
bit 5-4					MOD is Enabled		
				state specified			
bit 3-2				•	OD is Enabled I	oits	
					ecified by CLDA		
					ecified by CLDA		
Note 1: The	ese bits should	not be change	d after the PW	/Mx module is	enabled (PTEN	= 1).	
						-,-	

REGISTER 17-13: IOCONx: PWMx I/O CONTROL REGISTER⁽²⁾

2: If the PWMLOCK Configuration bit (FDEVOPT[0]) is a '1', the IOCONx register can only be written after

the unlock sequence has been executed.

REGISTER 17-13: IOCONx: PWMx I/O CONTROL REGISTER⁽²⁾ (CONTINUED)

- bit 1
 SWAP: SWAP PWMxH and PWMxL Pins bit
 1 = PWMxH output signal is connected to the PWMxL pin; PWMxL output signal is connected to the PWMxH pin
 0 = PWMxH and PWMxL pins are mapped to their respective pins
 bit 0
 OSYNC: Output Override Synchronization bit
 1 = Output overrides through the OVRDAT[1:0] bits are synchronized to the PWMx time base
 0 = Output overrides through the OVRDAT[1:0] bits occur on the next CPU clock boundary
- Note 1: These bits should not be changed after the PWMx module is enabled (PTEN = 1).
 - 2: If the PWMLOCK Configuration bit (FDEVOPT[0]) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

REGISTER 17-14: TRIGx: PWMx PRIMARY TRIGGER COMPARE VALUE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRGC	MP[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRGO	CMP[7:0]			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit	t	U = Unimpler	mented bit, read	l as '0'	

bit 15-0 TRGCMP[15:0]: Trigger Control Value bits

'1' = Bit is set

When the primary PWMx functions in the local time base, this register contains the compare values that can trigger the ADC module.

'0' = Bit is cleared

-n = Value at POR

x = Bit is unknown

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL ⁽²⁾	CLMOD
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL ⁽²⁾	FLTMOD1	FLTMOD0
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
	01011 = Com 01010 = Op A 01001 = Op A 01000 = Op A 00111 = Faul 00101 = Faul 00101 = Faul 00010 = Faul 00011 = Faul 00010 = Faul 00001 = Faul 00001 = Faul	Amp/Comparat parator 4 Amp/Comparat Amp/Comparat Amp/Comparat It 8 It 7 It 6 It 5 It 4 It 3 It 2 It 1 (default)	or 3 or 2 or 1				
bit 9	1 = The selec	ent-Limit Polari ted current-lim ted current-lim	it source is act	ive-low)		
bit 8	CLMOD: Curi	rent-Limit Mode	e Enable for P	WM Generator	x bit		

REGISTER 17-15: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER⁽¹⁾

the unlock sequence has been executed.
2: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

REGISTER 17-15: FCLCONX: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 7-3	FLTSRC[4:0]: Fault Control Signal Source Select for PWM Generator x bits 11111 = Fault 32 (default) 11110 = Reserved • • • • • • • • • • • • •
	01001 = Op Amp/Comparator 2 01000 = Op Amp/Comparator 1 00111 = Fault 8 00110 = Fault 7 00101 = Fault 6 00100 = Fault 5 00011 = Fault 4 00010 = Fault 3 00001 = Fault 2 00000 = Fault 1
bit 2	FLTPOL: Fault Polarity for PWM Generator x bit ⁽²⁾ 1 = The selected Fault source is active-low 0 = The selected Fault source is active-high
bit 1-0	FLTMOD[1:0]: Fault Mode for PWM Generator x bits 11 = Fault input is disabled 10 = Reserved 01 = The selected Fault source forces the PWMxH, PWMxL pins to FLTDAT[1:0] values (cycle)

- 00 = The selected Fault source forces the PWMxH, PWMxL pins to FLTDAT[1:0] values (latched condition)
- **Note 1:** If the PWMLOCK Configuration bit (FDEVOPT[0]) is a '1', the FCLCONx register can only be written after the unlock sequence has been executed.
 - **2:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

REGISTER 17-16: LEBCONX: PWMx LEADING-EDGE BLANKING CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
0-0	0-0	BCH ⁽¹⁾	BCL ⁽¹⁾	BPHH	BPHL	BPLH	BPLL
 bit 7		всп.,	BCL.	БЕПП	DFIL	DFLN	brit
							Dit
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	PHR: PWMxH	H Rising Edge	Trigger Enab	le bit			
				e Leading-Edge sing edge of P\	e Blanking count WMxH	er	
bit 14	PHF: PWMxH	I Falling Edge	Trigger Enab	le bit			
					e Blanking coun	ter	
L:1 1 0	•	•	•	alling edge of P	WINIXH		
bit 13		Rising Edge T			Blanking count	er	
				sing edge of P\			
bit 12	PLF: PWMxL	Falling Edge	- Trigger Enabl	e bit			
				e Leading-Edge alling edge of P	e Blanking count WMxL	er	
bit 11	FLTLEBEN: F	ault Input Lea	ding-Edge Bl	anking Enable	bit		
				the selected Fa I to the selected			
bit 10				Edge Blanking E			
				the selected cu I to the selected	rrent-limit input I current-limit inp	out	
bit 9-6	Unimplemen	ted: Read as '	0'				
bit 5				al High Enable			
					nals) when seled	cted blanking s	ignal is high
bit 4		•		ing signal is hig al Low Enable I			
DIL 4		•			nals) when seled	ted blanking s	ignal is low
				ing signal is low			.g
bit 3		ing in PWMxH	-				
		nking (of curren ng when the P			nals) when the F	WMxH output	is high
bit 2		ing in PWMxH					
		nking (of curren ng when the P			nals) when the F	WMxH output	is low
bit 1	BPLH: Blanki	ing in PWMxL	High Enable	bit			
		nking (of curren ng when the P			nals) when the F	WMxL output	is high
bit 0	BPLL: Blanki	ng in PWMxL l	ow Enable b	bit			
		nking (of curren ng when the P'			nals) when the F	WMxL output	is low

Note 1: The blanking signal is selected through the BLANKSEL[3:0] bits in the AUXCONx register.

REGISTER 17-17: LEBDLYx: PWMx LEADING-EDGE BLANKING DELAY REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	—	_		LEE	3[11:8]	
bit 15				-			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			LEI	3[7:0]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			

bit 15-12 Unimplemented: Read as '0'

bit 11-0 LEB[11:0]: Leading-Edge Blanking Delay for Current-Limit and Fault Inputs bits

dsPIC33EVXXXGM00X/10X FAMILY

REGISTER 17-18: AUXCONx: PWMx AUXILIARY CONTROL REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12 Unimplemented: Read as '0'

bit 11-8	BLANKSEL[3:0]: PWMx State Blank Source Select bits The selected state blank signal will block the current-limit and/or Fault input signals (if enabled through the BCH and BCL bits in the LEBCONx register). 1001 = Reserved •
	• 0100 = Reserved
	0011 = PWM3H is selected as the state blank source
	0010 = PWM2H is selected as the state blank source
	0001 = PWM1H is selected as the state blank source 0000 = No state blanking
bit 7-6	Unimplemented: Read as '0'
	•
bit 5-2	CHOPSEL[3:0]: PWMx Chop Clock Source Select bits
	The selected signal will enable and disable (Chop) the selected PWMx outputs. 1001 = Reserved
	•
	•
	• 0100 = Reserved
	0100 = Reserved 0011 = PWM3H is selected as the chop clock source
	0010 = PWM2H is selected as the chop clock source
	0001 = PWM1H is selected as the chop clock source
	0000 = Chop clock generator is selected as the chop clock source
bit 1	CHOPHEN: PWMxH Output Chopping Enable bit
	1 = PWMxH chopping function is enabled
	0 = PWMxH chopping function is disabled
bit 0	CHOPLEN: PWMxL Output Chopping Enable bit
	1 = PWMxL chopping function is enabled

0 = PWMxL chopping function is disabled

NOTES:

18.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Serial Peripheral Interface (SPI)" (www.microchip.com/ DS70005185) in the "dsPIC33/PIC24 Family Reference Manual".
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

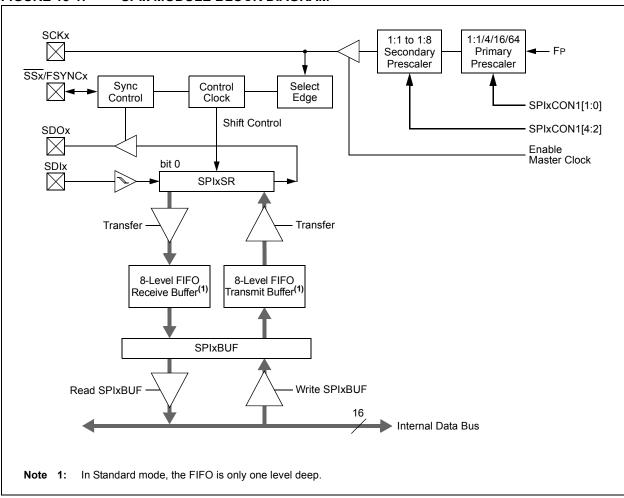
The Serial Peripheral Interface (SPI) module is a synchronous serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, ADC Converters, etc. The SPI module is compatible with the Motorola[®] SPI and SIOP interfaces.

The dsPIC33EVXXXGM00X/10X device family offers two SPI modules on a single device, SPI1 and SPI2, that are functionally identical. Each SPI module includes an eight-word FIFO buffer and allows DMA bus connections. When using the SPI module with DMA, FIFO operation can be disabled.

Note:	In this section, the SPI modules are
	referred to together as SPIx, or separately
	as SPI1 and SPI2. Special Function
	Registers follow a similar notation. For
	example, SPIxCON refers to the control
	register for the SPI1 and SPI2 modules.

The SPI1 module uses dedicated pins which allow for a higher speed when using SPI1. The SPI2 module takes advantage of the Peripheral Pin Select (PPS) feature to allow for greater flexibility in pin configuration of this module, but results in a lower maximum speed. See **Section 30.0 "Electrical Characteristics"** for more information.

The SPIx serial interface consists of the following four pins:


- SDIx: Serial Data Input
- SDOx: Serial Data Output
- · SCKx: Shift Clock Input or Output
- SSx/FSYNCx: Active-Low Slave Select or Frame Synchronization I/O Pulse

Note: All four pins of the SPIx serial interface must be configured as digital in the ANSELx registers.

The SPIx module can be configured to operate with two, three or four pins. In 3-pin mode, SSx is not used. In 2-pin mode, neither SDOx nor SSx is used.

Figure 18-1 illustrates the block diagram of the SPIx module in Standard and Enhanced modes.

Note: When SPI2 is configured as master, the SCK2 pin should be configured as both input and output.

FIGURE 18-1: SPIX MODULE BLOCK DIAGRAM

18.1 SPI Helpful Tips

- 1. In Frame mode, if there is a possibility that the master may not be initialized before the slave:
 - a) If FRMPOL (SPIxCON2[13]) = 1, use a pull-down resistor on SSx.
 - b) If FRMPOL = 0, use a pull-up resistor on $\frac{1}{SSx}$.

Note: This insures that the first frame transmission after initialization is not shifted or corrupted.

- 2. In Non-Framed 3-Wire mode (i.e., not using SSx from a master):
 - a) If CKP (SPIxCON1[6]) = 1, always place a pull-up resistor on SSx.
 - b) If CKP = 0, always place a pull-down resistor on SSx.
- **Note:** This will insure that during power-up and initialization, the master/slave will not lose sync due to an errant SCKx transition that would cause the slave to accumulate data shift errors, for both transmit and receive, appearing as corrupted data.

- 3. FRMEN (SPIxCON2[15]) = 1 and SSEN (SPIxCON1[7]) = 1 are exclusive and invalid. In Frame mode, SCKx is continuous and the Frame Sync pulse is active on the SSx pin, which indicates the start of a data frame.
- Note: Not all third-party devices support Frame mode timing. For more information, refer to the SPI specifications in Section 30.0 "Electrical Characteristics".
- In Master mode only, set the SMP bit (SPIxCON1[9]) to a '1' for the fastest SPI data rate possible. The SMP bit can only be set at the same time or after the MSTEN bit (SPIxCON1[5]) is set.

To avoid invalid slave read data to the master, the user's master software must ensure enough time for slave software to fill its write buffer before the user application initiates a master write/read cycle. It is always advisable to preload the SPIxBUF Transmit register in advance of the next master transaction cycle. SPIxBUF is transferred to the SPIx Shift register and is empty once the data transmission begins.

^{© 2013-2019} Microchip Technology Inc.

18.2 SPI Control Registers

REGISTER 18-1: SPIx STATUS AND CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
SPIEN	_	SPISIDL	_	_	SPIBEC2	SPIBEC1	SPIBEC0		
bit 15							bit 8		
R/W-0	HS/R/C-0	R/W-0	R/W-0	R/W-0	R/W-0	HS/HC/R-0	HS/HC/R-0		
SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF		
bit 7							bit (
Legend:		HC = Hardwar	e Clearable bit	HS = Hardwa	are Settable b	oit			
R = Readable	e bit	W = Writable b	bit	U = Unimple	mented bit, re	ad as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	C = Clearable	e bit		
bit 15	SPIEN: SPIX	Enable bit							
Sit TO	1 = Enables t	he SPIx module	•	s SCKx, SDO>	, SDIx and \overline{S}	Sx as serial po	ort pins		
bit 14	Unimplemen	ted: Read as '0	,						
bit 13	SPISIDL: SPI	Ix Stop in Idle M	lode bit						
		ues the SPIx me s the SPIx modu	•		vice enters Idle	e mode			
bit 12-11	Unimplemen	ted: Read as '0	,						
bit 10-8	SPIBEC[2:0]: SPIx Buffer Element Count bits (valid in Enhanced Buffer mode)								
	Master mode: Number of SF	: Plx transfers are	e pending.						
	Slave mode: Number of SF	Plx transfers are	unread.						
bit 7	SRMPT: SPIX	Shift Register	(SPIxSR) Empt	y bit (valid in E	Enhanced Buf	fer mode)			
		Shift register is Shift register is		dy to send or I	receive the da	ita			
bit 6	SPIROV: SPI	x Receive Over	flow Flag bit						
	previous	yte/word is con data in the SPI has not occurre	BUF register	ed and discard	led; the user	application ha	s not read th		
bit 5		Ix Receive FIF		lid in Enhanco	d Ruffor mod				
bit 5	1 = RX FIFO 0 = RX FIFO	is empty				-)			
bit 4-2		SPIx Buffer Inter	rupt Mode bits	(valid in Enha	nced Buffer m	node)			
	111 = Interru 110 = Interru	pt when the SP pt when the las pt when the las	Ix transmit buff t bit is shifted ir	er is full (SPIT nto SPIxSR, ar	BF bit is set) nd as a result,	the TX FIFO i			
	memo	pt when one da ry location				t, the TX FIFO	has one ope		
		pt when the SP pt when the SP							
		pt when data ar				/IPT bit is set)			
	000 = Interru								

REGISTER 18-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER (CONTINUED)

bit 1 SPITBF: SPIx Transmit Buffer Full Status bit 1 = Transmit has not yet started, the SPIxTXB bit is full 0 = Transmit has started, the SPIxTXB bit is empty Standard Buffer mode:

Automatically set in hardware when the core writes to the SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when the SPIx module transfers data from SPIxTXB to SPIxSR. Enhanced Buffer mode:

Automatically set in the hardware when the CPU writes to the SPIxBUF location, loading the last available buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write operation.

bit 0 SPIRBF: SPIx Receive Buffer Full Status bit

1 = Receive is complete, the SPIxRXB bit is full

0 = Receive is incomplete, the SPIxRXB bit is empty

Standard Buffer mode:

Automatically set in the hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when the core reads the SPIxBUF location, reading SPIxRXB.

Enhanced Buffer mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to the buffer, filling the last unread buffer location. Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR.

^{© 2013-2019} Microchip Technology Inc.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—	_	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾	
bit 15							bit	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SSEN ⁽²⁾	CKP	MSTEN	SPRE2 ⁽³⁾	SPRE1 ⁽³⁾	SPRE0 ⁽³⁾	PPRE1 ⁽³⁾	PPRE0 ⁽³⁾	
bit 7	0			0	0		bit	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'		
-n = Value a	t POR	'1' = Bit is set	t	'0' = Bit is clea		x = Bit is unkr	iown	
bit 15-13	Unimplemen	ted: Read as '	·0'					
bit 12	-			er modes only)				
	1 = Internal S	PI clock is disa	abled, pin func	• ·				
		PI clock is ena						
bit 11		able SDOx Pir						
				oin functions as	s I/O			
hit 10		is controlled b	-	at hit				
bit 10		ord/Byte Comn						
		cation is byte-						
bit 9		ata Input Sam	. ,					
	Master mode							
				ata output time of data output ti				
	Slave mode:	-		n Slave mode.				
bit 8	CKE: Clock E	dge Select bit	(1)					
						e clock state (re e clock state (re		
bit 7		Select Enable						
		used for Slav						
				is controlled b	y port function			
bit 6	CKP: Clock F	olarity Select	bit					
				ve state is a low e state is a high				
bit 5	MSTEN: Mas	ter Mode Enat	ole bit					
	1 = Master m 0 = Slave mo							
	he CKE bit is not FRMEN = 1).	used in Frame	ed SPI modes.	Program this b	oit to '0' for Frai	med SPI modes	6	
-	-	eared when FF	RMEN = 1.					
	is bit must be cleared when FRMEN = 1. o not set both primary and secondary prescalers to the value of 1:1.							

REGISTER 18-2: SPIxCON1: SPIx CONTROL REGISTER 1

3: Do not set both primary and secondary prescalers to the value of 1:1.

REGISTER 18-2: SPIxCON1: SPIx CONTROL REGISTER 1 (CONTINUED)

- bit 4-2 SPRE[2:0]: Secondary Prescale bits (Master mode)⁽³⁾
 - 111 = Secondary prescale 1:1
 - 110 = Secondary prescale 2:1
 - •
 - •
 - 000 = Secondary prescale 8:1
- bit 1-0 **PPRE[1:0]:** Primary Prescale bits (Master mode)⁽³⁾
 - 11 = Primary prescale 1:1
 - 10 = Primary prescale 4:1
 - 01 = Primary prescale 16:1
 - 00 = Primary prescale 64:1
- Note 1: The CKE bit is not used in Framed SPI modes. Program this bit to '0' for Framed SPI modes (FRMEN = 1).
 - 2: This bit must be cleared when FRMEN = 1.
 - **3:** Do not set both primary and secondary prescalers to the value of 1:1.

 $[\]ensuremath{\textcircled{}^{\odot}}$ 2013-2019 Microchip Technology Inc.

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
FRMEN	SPIFSD	FRMPOL	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	FRMDLY	SPIBEN
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at l	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15		ned SPIx Supp					
			•	pin is used as	the Frame Sy	nc pulse input/or	utput)
		Plx support is					
bit 14		x Frame Sync F		n Control bit			
		nc pulse input nc pulse outpu					
bit 13	-	ame Sync Pulse	. ,				
bit to		nc pulse is acti	,				
		nc pulse is acti	U U				
bit 12-2	Unimplemen	ted: Read as ')'				
bit 1	FRMDLY: Fra	me Sync Pulse	e Edge Select	bit			
		nc pulse coinci					
	0 = Frame Sy	nc pulse prece	des the first b	it clock			
bit 0	SPIBEN: SPI	x Enhanced Bu	Iffer Enable bi	it			
		buffer is enab		(
	0 = Enhanced	d buffer is disab	oled (Standard	i mode)			

REGISTER 18-3: SPIxCON2: SPIx CONTROL REGISTER 2

19.0 INTER-INTEGRATED CIRCUIT (I²C)

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Inter-Integrated Circuit (I²C)" (www.microchip.com/DS70000195) in the "dsPIC33/PIC24 Family Reference Manual".
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EVXXXGM00X/10X family of devices contains one Inter-Integrated Circuit (I²C) module, I2C1.

The l^2C module provides complete hardware support for both Slave and Multi-Master modes of the l^2C serial communication standard, with a 16-bit interface.

The I²C module has the following 2-pin interface:

- The SCLx pin is clock.
- The SDAx pin is data.

The I²C module offers the following key features:

- I²C Interface Supporting Both Master and Slave modes of Operation
- I²C Slave mode Supports 7 and 10-Bit Addressing
- I²C Master mode Supports 7 and 10-Bit Addressing
 I²C Port allows Bidirectional Transfers between
- If C Port allows Bidirectional Transfers between Master and Slaves
- Serial Clock Synchronization for I²C Port can be used as a Handshake Mechanism to Suspend and Resume Serial Transfer (SCLREL control)
- I²C Supports Multi-Master Operation, Detects Bus Collision and Arbitrates Accordingly
- Support for Address Bit Masking up to Lower Seven Bits
- I²C Slave Enhancements:
 - SDAx hold time selection of SMBus (300 ns or 150 ns)
 - Start/Stop bit interrupt enables

Figure 19-1 shows a block diagram of the I^2C module.

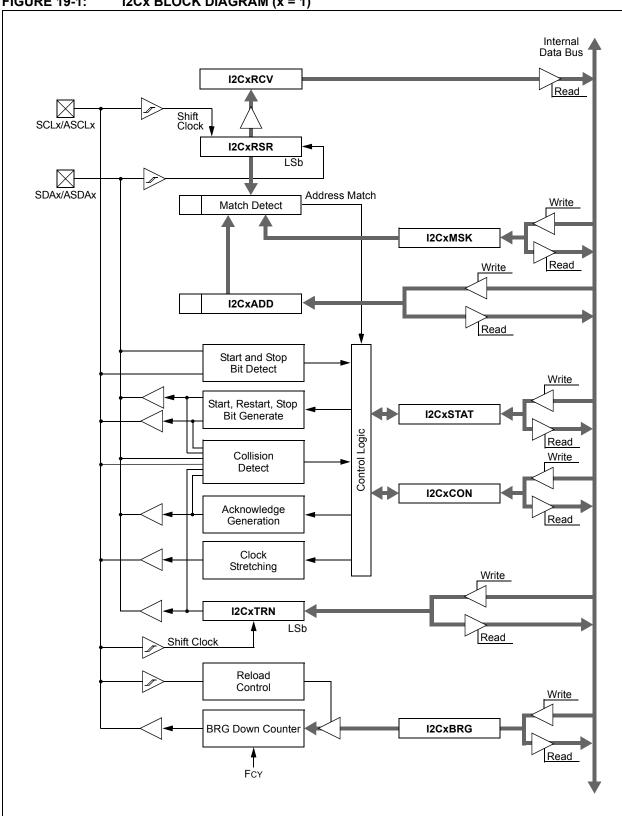
19.1 I²C Baud Rate Generator

The Baud Rate Generator (BRG) used for I²C mode operation is used to set the SCL clock frequency for 100 kHz, 400 kHz and 1 MHz. The BRG reload value is contained in the I2CxBRG register. The BRG will automatically begin counting on a write to the I2CxTRN register.

Equation 19-1 and Equation 19-2 provide the BRG reload formula and FSCL frequency, respectively.

EQUATION 19-1: BRG FORMULA

$$I2CxBRG = \left(\left(\frac{1}{FSCL} - Delay \right) \times \frac{FCY}{2} \right) - 2$$


Where:

Delay varies from 110 ns to 130 ns.

EQUATION 19-2: FSCL FREQUENCY

FSCL = FCY/((I2CxBRG + 2) * 2)

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 19-1: I2Cx BLOCK DIAGRAM (x = 1)

19.2 I²C Control Registers

REGISTER 19-1: I2CxCON1: I2Cx CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/S-1	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN	—	I2CSIDL	SCLREL ⁽¹⁾	STRICT	A10M	DISSLW	SMEN
bit 15							bit 8
R/W-0	R/W-0	R/W-0	HC/R/W-0	HC/R/W-0	HC/R/W-0	HC/R/W-0	HC/R/W-0
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7			•				bit 0

Legend: S = Settable bit		HC = Hardware Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15	I2CEN: I2Cx Enable bit (writable from SW only)
	1 = Enables the I ² C module and configures the SDAx and SCLx pins as serial port pins 0 = Disables the I ² C module and all I ² C pins are controlled by port functions
bit 14	Unimplemented: Read as '0'
bit 13	I2CSIDL: I2Cx Stop in Idle Mode bit
	 1 = Discontinues module operation when the device enters Idle mode 0 = Continues module operation in Idle mode
bit 12	SCLREL: SCLx Release Control bit (I ² C Slave mode only) ⁽¹⁾
	Module resets and (I2CEN = 0) sets SCLREL = 1.
	$\frac{\text{If STREN} = 0}{2}$
	1 = Releases clock
	0 = Forces clock low (clock stretch)
	If STREN = 1: 1 = Releases clock
	0 = Holds clock low (clock stretch); user may program this bit to '0', clock stretch at the next SCLx low
bit 11	STRICT: Strict I ² C Reserved Address Rule Enable bit
	1 = Strict reserved addressing is enforced
	In Slave mode, the device does not respond to reserved address space and addresses falling in
	that category are NACKed. 0 = Reserved addressing would be Acknowledged
	In Slave mode, the device will respond to an address falling in the reserved address space. When
	there is a match with any of the reserved addresses, the device will generate an ACK.
bit 10	A10M: 10-Bit Slave Address Flag bit
	1 = I2CxADD is a 10-bit slave address
	0 = I2CxADD is a 7-bit slave address
bit 9	DISSLW: Slew Rate Control Disable bit
	 1 = Slew rate control is disabled for Standard Speed mode (100 kHz, also disabled for 1 MHz mode) 0 = Slew rate control is enabled for High-Speed mode (400 kHz)
bit 8	SMEN: SMBus Input Levels Enable bit
	1 = Enables the input logic so thresholds are compliant with the SMBus specification
	0 = Disables the SMBus-specific inputs
Note 1:	Automatically cleared to '0' at the beginning of slave transmission; automatically cleared to '0' at the end
	of slave reception.

2: Automatically cleared to '0' at the beginning of slave transmission.

REGISTER 19-1: I2CxCON1: I2Cx CONTROL REGISTER 1 (CONTINUED)

bit 7		GCEN: General Call Enable bit (I ² C Slave mode only)
		 1 = Enables interrupt when a general call address is received in I2CxRSR; module is enabled for reception 0 = General call address is disabled.
bit 6		STREN: SCLx Clock Stretch Enable bit
		In I ² C Slave mode only, used in conjunction with the SCLREL bit. 1 = Enables clock stretching 0 = Disables clock stretching
bit 5		ACKDT: Acknowledge Data bit
		In I ² C Master mode, during Master Receive mode. The value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive.
		In I ² C Slave mode when AHEN = 1 or DHEN = 1. The value that the slave will transmit when it initiates an Acknowledge sequence at the end of an address or data reception.
		1 = NACK is sent
bit 4		0 = ACK is sent
DIL 4		ACKEN: Acknowledge Sequence Enable bit In I ² C Master mode only; applicable during Master Receive mode.
		 1 = Initiates Acknowledge sequence on SDAx and SCLx pins, and transmits ACKDT data bit 0 = Acknowledge sequence is Idle
bit 3		RCEN: Receive Enable bit (I ² C Master mode only)
		 1 = Enables Receive mode for I²C, automatically cleared by hardware at the end of 8-bit receive data byte 0 = Receive sequence is not in progress
bit 2		PEN: Stop Condition Enable bit (I ² C Master mode only)
		 1 = Initiates Stop condition on SDAx and SCLx pins 0 = Stop condition is Idle
bit 1		RSEN: Restart Condition Enable bit (I ² C Master mode only)
		 1 = Initiates Restart condition on SDAx and SCLx pins 0 = Restart condition is Idle
bit 0		SEN: Start Condition Enable bit (I ² C Master mode only)
		 1 = Initiates Start condition on SDAx and SCLx pins 0 = Start condition is Idle
Note	1:	Automatically cleared to '0' at the beginning of slave transmission; automatically cleared to '0' at the end of slave reception.

2: Automatically cleared to '0' at the beginning of slave transmission.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15	·						bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own
bit 15-7	Unimplemen	ted: Read as '	0'				
bit 6	PCIE: Stop C	ondition Interru	pt Enable bit (I ² C Slave mode	only)		
		nterrupt on det		condition			
b:+ F	•	ction interrupts			and ()		
bit 5			•	(I ² C Slave mode or Restart condi	• ·		
		ction interrupts		OF Restart Conu			
bit 4	BOEN: Buffer	r Overwrite Ena	able bit (I ² C SI	ave mode only)			
				and an ACK is g		received addr	ess/data byte,
				y if the RBF bit = ted when I2CO\			
bit 3		x Hold Time Se					
bit o				after the falling	edge of SCLx		
				after the falling			
bit 2				Enable bit (I ² C		• /	
				mpled low when			
	sequences.	and the bus g	oes lale. This	Detection mode	e is only valid d	uning data and	ACK transmit
	1 = Slave bus	collision interr					
		collision interr	•				
bit 1		ess Hold Enable	•	• •			
	1 = Following	the 8" falling	g edge of SCL cleared and th	Lx for a matchin a SCLx will be h	ng received ad	ldress byte; the	e SCLREL bit
		holding is disal					
bit 0	DHEN: Data I	Hold Enable bit	t (I ² C Slave mo	ode only)			
				for a received da	ata byte; slave	hardware clears	s the SCLREL
		CON1[12]) and ding is disabled		eld low			
		ung is disabled					

REGISTER 19-2: I2CxCON2: I2Cx CONTROL REGISTER 2

HSC/R-0	HSC/R-0	HSC/R-0	U-0	U-0	HSC/R/C-0	HSC/R-0	HSC/R-0	
			0-0	0-0				
ACKSTAT	TRSTAT	ACKTIM	_		BCL	GCSTAT	ADD10	
bit 15							bit 8	
HS/R/C-0	HS/R/C-0	HSC/R-0	HSC/R/C-0	HSC/R/C-0	HSC/R-0	HSC/R-0	HSC/R-0	
IWCOL	I2COV	D_A	Р	S	RW	RBF	TBF	
bit 7							bit 0	
Legend: C = Clearable bit HSC = Hardware Settable/Clearable bit								
R = Readabl	le bit	W = Writabl	e bit	U = Unimplem	ented bit, read a	as 'O'		
-n = Value at	t POR	'1' = Bit is s	et	'0' = Bit is clea	ared	HS = Hardware	Settable bit	
bit 15		-			ster and Slave m	nodes)		
		edge was not edge was rec						
bit 14		•			aastor: applicabl	e to master trans	mit operation)	
		ransmit is in p						
		ransmit is not						
bit 13	ACKTIM: Ad	cknowledge T	ime Status bi	t (valid in I ² C S	ave mode only)			
						g edge of SCLx o	lock	
		•	•	eared on 9 ¹¹ risi	ng edge of SCL	k clock		
bit 12-11	-	nted: Read a			1 1 20			
bit 10					eared when I ² C r	nodule is disable	d, 12CEN = 0)	
		ision has not l		•	or slave transm	it operation		
bit 9	GCSTAT: Ge	eneral Call Sta	atus bit (clear	ed after Stop d	etection)			
		call address			·			
	0 = General	call address	was not recei	ved				
bit 8			-	ared after Stop of	detection)			
		ldress was m ldress was no						
bit 7		te Collision D						
				register failed	because the I ² C	module is busy;	must be cleared	
	in softw	•				, , ,		
		n has not occ						
bit 6		Receive Ove						
				RCV register is		previous byte; 12	2COV is a "don't	
		w has not occ						
bit 5	D_A: Data/A	Address bit (w	hen operating	g as l ² C slave)				
		s that the last s that the last			was an address	5		
bit 4	P: I2Cx Stop							
			et or Stop is d	letected; cleare	d when the I ² C r	nodule is disable	ed, I2CEN = 0.	
	1 = Indicates	s that a Stop I	oit has been o	detected last				
	0 = Indicates	s that a Stop I	oit was not de	etected last				

REGISTER 19-3: I2CxSTAT: I2Cx STATUS REGISTER

REGISTER 19-3: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: I2Cx Start bit Updated when Start, Reset or Stop is detected; cleared when the I ² C module is disabled, I2CEN = $0.$ 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Indicates that a Start bit was not detected last
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	 1 = Read: Indicates that the data transfer is output from the slave 0 = Write: Indicates that the data transfer is input to the slave
bit 1	RBF: Receive Buffer Full Status bit
	 Receive is complete, the I2CxRCV bit is full Receive is not complete, the I2CxRCV bit is empty
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit is in progress, I2CxTRN is full (8 bits of data)
	0 = Transmit is complete, I2CxTRN is empty

REGISTER 19-4: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	MSK	[9:8]
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
MSK[7:0]							
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0 MSK[9:0]: I2Cx Mask for Address Bit x Select bits

1 = Enables masking for bit x of the incoming message address; bit match is not required in this position

0 = Disables masking for bit x; bit match is required in this position

© 2013-2019 Microchip Technology Inc.

NOTES:

20.0 SINGLE-EDGE NIBBLE TRANSMISSION (SENT)

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Single-Edge Nibble Transmission (SENT) Module" (www.microchip.com/ DS70005145) in the "dsPIC33/PIC24 Family Reference Manual".
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

20.1 Module Introduction

The Single-Edge Nibble Transmission (SENT) module is based on the SAE J2716, "SENT – Single-Edge Nibble Transmission for Automotive Applications". The SENT protocol is a one-way, single wire time modulated serial communication, based on successive falling edges. It is intended for use in applications where high-resolution sensor data needs to be communicated from a sensor to an Engine Control Unit (ECU).

The SENTx module has the following major features:

- Selectable Transmit or Receive mode
- Synchronous or Asynchronous Transmit modes
- Automatic Data Rate Synchronization
- Optional Automatic Detection of CRC Errors in Receive mode
- Optional Hardware Calculation of CRC in Transmit mode
- Support for Optional Pause Pulse Period
- Data Buffering for One Message Frame
- Selectable Data Length for Transmit/Receive from Three to Six Nibbles
- Automatic Detection of Framing Errors

SENT protocol timing is based on a predetermined time unit, TTICK. Both the transmitter and receiver must be preconfigured for TTICK, which can vary from 3 to 90 µs. A SENT message frame starts with a Sync pulse. The purpose of the Sync pulse is to allow the receiver to calculate the data rate of the message encoded by the transmitter. The SENT specification allows messages to be validated with up to a 20% variation in TTICK. This allows for the transmitter and receiver to run from different clocks that may be inaccurate, and drift with time and temperature. The data nibbles are four bits in length and are encoded as the data value + 12 ticks. This yields a 0 value of 12 ticks and the maximum value, 0xF, of 27 ticks.

A SENT message consists of the following:

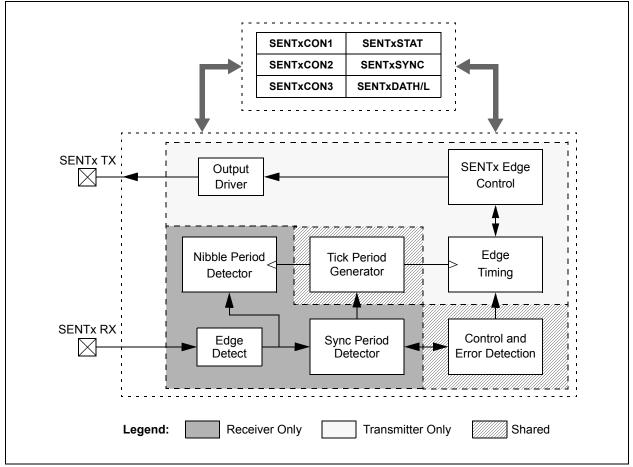

- A synchronization/calibration period of 56 tick times
- A status nibble of 12-27 tick times
- Up to six data nibbles of 12-27 tick times
- A CRC nibble of 12-27 tick times
- An optional pause pulse period of 12-768 tick times

Figure 20-1 shows a block diagram of the SENTx module.

Figure 20-2 shows the construction of a typical 6-nibble data frame, with the numbers representing the minimum or maximum number of tick times for each section.

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 20-2: SENTX PROTOCOL DATA FRAMES

Sync Period	Status	Data 1	Data 2	Data 3	Data 4	Data 5	Data 6	CRC	Pause (optional)	Ļ	
56	12-27	12-27	12-27	12-27	12-27	12-27	12-27	12-27	12-768		

20.2 Transmit Mode

By default, the SENTx module is configured for transmit operation. The module can be configured for continuous asynchronous message frame transmission, or alternatively, for Synchronous mode triggered by software. When enabled, the transmitter will send a Sync followed by the appropriate number of data nibbles, an optional CRC and optional pause pulse. The tick period used by the SENTx transmitter is set by writing a value to the TICKTIME[15:0] (SENTxCON2[15:0]) bits. The tick period calculations are shown in Equation 20-1.

EQUATION 20-1: TICK PERIOD CALCULATION

 $TICKTIME[15:0] = \frac{TTICK}{TCLK} - 1$

An optional pause pulse can be used in Asynchronous mode to provide a fixed message frame time period. The frame period used by the SENTx transmitter is set by writing a value to the FRAMETIME[15:0] (SENTxCON3[15:0]) bits. The formulas used to calculate the value of frame time are shown in Equation 20-2.

EQUATION 20-2: FRAME TIME CALCULATIONS

FRAMETIME[15:0] = TTICK/TFRAME

 $FRAMETIME[15:0] \ge 122 + 27N$

 $FRAMETIME[15:0] \ge 848 + 12N$

Where:

 T_{FRAME} = Total time of the message from ms N = The number of data nibbles in message, 1-6

Note: The module will not produce a pause period with less than 12 ticks, regardless of the FRAMETIME[15:0] value. FRAMETIME[15:0] values beyond 2047 will have no effect on the length of a data frame.

20.2.1 TRANSMIT MODE CONFIGURATION

20.2.1.1 Initializing the SENTx Module:

Perform the following steps to initialize the module:

- 1. Write RCVEN (SENTxCON1[11]) = 0 for Transmit mode.
- Write TXM (SENTxCON1[10]) = 0 for Asynchronous Transmit mode or TXM = 1 for Synchronous mode.
- 3. Write NIBCNT[2:0] (SENTxCON1[2:0]) for the desired data frame length.
- 4. Write CRCEN (SENTxCON1[8]) for hardware or software CRC calculation.
- 5. Write PPP (SENTxCON1[7]) for optional pause pulse.
- 6. If PPP = 1, write TFRAME to SENTxCON3.
- 7. Write SENTxCON2 with the appropriate value for desired tick period.
- 8. Enable interrupts and set interrupt priority.
- 9. Write initial status and data values to SENTxDATH/L.
- 10. If CRCEN = 0, calculate CRC and write the value to CRC[3:0] (SENTxDATL[3:0]).
- 11. Set the SNTEN (SENTxCON1[15]) bit to enable the module.

User software updates to SENTxDATH/L must be performed after the completion of the CRC and before the next message frame's status nibble. The recommended method is to use the message frame completion interrupt to trigger data writes.

20.3 Receive Mode

The module can be configured for receive operation by setting the RCVEN (SENTxCON1[11]) bit. The time between each falling edge is compared SYNCMIN[15:0] (SENTxCON3[15:0]) and to SYNCMAX[15:0] (SENTxCON2[15:0]), and if the measured time lies between the minimum and maximum limits, the module begins to receive data. The validated Sync time is captured in the SENTxSYNC register and the tick time is calculated. Subsequent falling edges are verified to be within the valid data width and the data are stored in the SENTxDATH/L register. An interrupt event is generated at the completion of the message and the user software should read the SENTx Data register before the reception of the next nibble. The equation for SYNCMIN[15:0] and SYNCMAX[15:0] is shown in Equation 20-3.

EQUATION 20-3: SYNCMIN[15:0] AND SYNCMAX[15:0] CALCULATIONS

 $TTICK = TCLK \bullet (TICKTIME[15:0] + 1)$

FRAMETIME[15:0] = TTICK/TFRAME

SyncCount = 8 x *FRCV* x *TTICK*

SYNCMIN[15:0] = 0.8 x *SyncCount*

SYNCMAX[15:0] = 1.2 x SyncCount

 $FRAMETIME[15:0] \ge 122 + 27N$

 $FRAMETIME[15:0] \ge 848 + 12N$

Where:

 T_{FRAME} = Total time of the message from ms N = The number of data nibbles in message, 1-6 F_{RCV} = FCY x prescaler T_{CLK} = FCY/Prescaler

For TTICK = 3.0 μ s and FCLK = 4 MHz, SYNCMIN[15:0] = 76.

Note:		•	•		be identifi N[15:0] m	
	 	than X[15:0]		value	written	to

20.3.1 RECEIVE MODE CONFIGURATION

20.3.1.1 Initializing the SENTx Module:

Perform the following steps to initialize the module:

- 1. Write RCVEN (SENTxCON1[11]) = 1 for Receive mode.
- 2. Write NIBCNT[2:0] (SENTxCON1[2:0]) for the desired data frame length.
- 3. Write CRCEN (SENTxCON1[8]) for hardware or software CRC validation.
- 4. Write PPP (SENTxCON1[7]) = 1 if pause pulse is present.
- 5. Write SENTxCON2 with the value of SYNCMAXx (Nominal Sync Period + 20%).
- Write SENTxCON3 with the value of SYNCMINx (Nominal Sync Period – 20%).
- 7. Enable interrupts and set interrupt priority.
- 8. Set the SNTEN (SENTxCON1[15]) bit to enable the module.

The data should be read from the SENTxDATH/L register after the completion of the CRC and before the next message frame's status nibble. The recommended method is to use the message frame completion interrupt trigger.

R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
SNTEN		SNTSIDL	_	RCVEN	TXM ⁽¹⁾	TXPOL ⁽¹⁾	CRCEN					
bit 15							bit 8					
DAMA	D 444 0		D /// 0		DAM 0	DAMA	DAALO					
R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0					
PPP bit 7	SPCEN ⁽²⁾	—	PS	—	NIBCNT2	NIBCNT1	NIBCNT0					
							bit (
Legend:												
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'						
-n = Value at	POR	'1' = Bit is set	:	'0' = Bit is cle	eared	x = Bit is unki	nown					
bit 15	SNTEN: SEN	NTx Enable bit										
	1 = SENTx is enabled											
	0 = SENTx is		(a)									
bit 14	•	nted: Read as										
bit 13		SNTSIDL: SENTx Stop in Idle Mode bit										
	 1 = Discontinues module operation when the device enters Idle mode 0 = Continues module operation in Idle mode 											
bit 12		nted: Read as										
bit 11	RCVEN: SENTx Receive Enable bit											
	1 = SENTx operates as a receiver											
	0 = SENTx operates as a transmitter (sensor)											
bit 10	TXM: SENTx Transmit Mode bit ⁽¹⁾											
	 1 = SENTx transmits data frame only when triggered using the SYNCTXEN status bit 0 = SENTx transmits data frames continuously while SNTEN = 1 											
bit 9	TXPOL: SENTX Transmit Polarity bit ⁽¹⁾											
	1 = SENTx data output pin is low in the Idle state											
bit 8	0 = SENTx data output pin is high in the Idle state CRCEN: CRC Enable bit											
DILO			PCVEN = 1									
	Module in Receive Mode (RCVEN = 1): 1 = SENTx performs CRC verification on received data using the preferred J2716 method 0 = SENTx does not perform CRC verification on received data											
	Module in Transmit Mode (RCVEN = 1):											
	1 = SENTx automatically calculates CRC using the preferred J2716 method											
	0 = SENTx does not calculate CRC											
bit 7		Pulse Present										
	 1 = SENTx is configured to transmit/receive SENT messages with pause pulse 0 = SENTx is configured to transmit/receive SENT messages without pause pulse 											
bit 6	SPCEN: Sho	ort PWM Code	Enable bit ⁽²⁾									
	 1 = SPC control from external source is enabled 0 = SPC control from external source is disabled 											
bit 5	Unimplemer	nted: Read as	ʻ0'									
bit 4		Module Clock F		der) bits								
	1 = Divide-by 0 = Divide-by											
Note 1: Th	is bit has no fun		e mode (RC)	(FN = 1)								
				$\pm i = \pm j$.								

REGISTER 20-1: SENTxCON1: SENTx CONTROL REGISTER 1

2: This bit has no function in Transmit mode (RCVEN = 0).

^{© 2013-2019} Microchip Technology Inc.

REGISTER 20-1: SENTxCON1: SENTx CONTROL REGISTER 1 (CONTINUED)

- bit 3 Unimplemented: Read as '0'
- bit 2-0 NIBCNT[2:0]: Nibble Count Control bits
 - 111 = Reserved; do not use
 - 110 = Module transmits/receives six data nibbles in a SENT data pocket
 - 101 = Module transmits/receives five data nibbles in a SENT data pocket
 - 100 = Module transmits/receives four data nibbles in a SENT data pocket
 - 011 = Module transmits/receives three data nibbles in a SENT data pocket
 - 010 = Module transmits/receives two data nibbles in a SENT data pocket
 - 001 = Module transmits/receives one data nibble in a SENT data pocket
 - 000 = Reserved; do not use
- **Note 1:** This bit has no function in Receive mode (RCVEN = 1).
 - 2: This bit has no function in Transmit mode (RCVEN = 0).

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
—	—	_	—	—	—	—	_					
bit 15							bit 8					
R-0	R-0	R-0	R-0	R-0	R/C-0	R-0	HC/R/W-0					
PAUSE	NIB2	NIB1	NIB0	CRCERR	FRMERR	RXIDLE	SYNCTXEN ⁽¹⁾					
bit 7							bit C					
Legend:		C = Clearable	e bit	HC = Hardwa	are Clearable b	oit						
R = Readab	le bit	W = Writable	bit		mented bit, rea							
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unk	nown					
bit 15-8	Unimplemen	ted: Read as	0'									
bit 7	PAUSE: Paus	se Period Statu	us bit									
		1 = The module is transmitting/receiving a pause period										
		0 = The module is not transmitting/receiving a pause period										
bit 6-4	NIB[2:0]: Nibble Status bit											
	<u>Module in Transmit Mode (RCVEN = 0):</u> 111 = Module is transmitting a CRC nibble											
	111 = Module is transmitting a CRC hibble 6											
	101 = Module is transmitting Data Nibble 5											
	100 = Module is transmitting Data Nibble 4											
	011 = Module is transmitting Data Nibble 3											
	010 = Module is transmitting Data Nibble 2 001 = Module is transmitting Data Nibble 1											
	000 = Module is transmitting a status nibble or pause period, or is not transmitting											
	Module in Re	Module in Receive Mode (RCVEN = 1):										
	111 = Module is receiving a CRC nibble or was receiving this nibble when an error occurred											
	110 = Module is receiving Data Nibble 6 or was receiving this nibble when an error occurred											
	101 = Module is receiving Data Nibble 5 or was receiving this nibble when an error occurred 100 = Module is receiving Data Nibble 4 or was receiving this nibble when an error occurred											
	011 = Module is receiving Data Nibble 3 or was receiving this nibble when an error occurred											
	010 = Module is receiving Data Nibble 2 or was receiving this nibble when an error occurred											
	001 = Module is receiving Data Nibble 1 or was receiving this nibble when an error occurred											
	000 = Module is receiving a status nibble or waiting for Sync											
bit 3		RC Status bit (I		• ·								
	 1 = A CRC error occurred for the 1-6 data nibbles in SENTxDATH/L 0 = A CRC error has not occurred 											
bit 2	FRMERR: Framing Error Status bit (Receive mode only)											
	 1 = A data nibble was received with less than 12 tick periods or greater than 27 tick periods 0 = Framing error has not occurred 											
bit 1	-			Receive mode	only)							
	RXIDLE: SENTx Receiver Idle Status bit (Receive mode only) 1 = The SENTx data bus has been Idle (high) for a period of SYNCMAX[15:0] or greater											
	0 = The SENTX data bus has been lide (high) for a period of SYNCMAX[15:0] of greater											
Note 1: Ir	n Receive mode	(RCVEN = 1),	the SYNCTXE	N bit is read-c	only.							

REGISTER 20-2: SENTxSTAT: SENTx STATUS REGISTER

© 2013-2019 Microchip Technology Inc.

REGISTER 20-2: SENTxSTAT: SENTx STATUS REGISTER (CONTINUED)

bit 0 SYNCTXEN: SENTx Synchronization Period Status/Transmit Enable bit⁽¹⁾ Module in Receive Mode (RCVEN = 1):

1 = A valid synchronization period was detected; the module is receiving nibble data

0 = No synchronization period has been detected; the module is not receiving nibble data

Module in Asynchronous Transmit Mode (RCVEN = 0, TXM = 0):

The bit always reads as '1' when the module is enabled, indicating the module transmits SENTx data frames continuously. The bit reads '0' when the module is disabled.

Module in Synchronous Transmit Mode (RCVEN = 0, TXM = 1):

 $\ensuremath{\mathtt{1}}$ = The module is transmitting a SENTx data frame

- 0 = The module is not transmitting a data frame, user software may set SYNCTXEN to start another data frame transmission
- **Note 1:** In Receive mode (RCVEN = 1), the SYNCTXEN bit is read-only.

(4)

bit 0

REGISTER 20-3:	SENTXDATL: SENTX RECEIVE DATA REGISTER LOW	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	DATA	4[3:0]			DATA	5[3:0]	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	DATA	6[3:0]			CRC	[3:0]	

bit 7

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12	DATA4[3:0]: Data Nibble 4 Data bits
bit 11-8	DATA5[3:0]: Data Nibble 5 Data bits
bit 7-4	DATA6[3:0]: Data Nibble 6 Data bits

bit 3-0 CRC[3:0]: CRC Nibble Data bits

Note 1: Register bits are read-only in Receive mode (RCVEN = 1). In Transmit mode, the CRC[3:0] bits are read-only when automatic CRC calculation is enabled (RCVEN = 0, CRCEN = 1).

REGISTER 20-4: SENTxDATH: SENTx RECEIVE DATA REGISTER HIGH⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
STAT[3:0]					DAT	A1[3:0]		
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	DATA	\2[3:0]		DATA3[3:0]				
bit 7							bit C	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown					

bit 15-12 **STAT[3:0]:** Status Nibble Data bits

bit 11-8 **DATA1[3:0]:** Data Nibble 1 Data bits

bit 7-4 **DATA2[3:0]:** Data Nibble 2 Data bits

bit 3-0 DATA3[3:0]: Data Nibble 3 Data bits

Note 1: Register bits are read-only in Receive mode (RCVEN = 1). In Transmit mode, the CRC[3:0] bits are read-only when automatic CRC calculation is enabled (RCVEN = 0, CRCEN = 1).

 $[\]ensuremath{\textcircled{}^\circ}$ 2013-2019 Microchip Technology Inc.

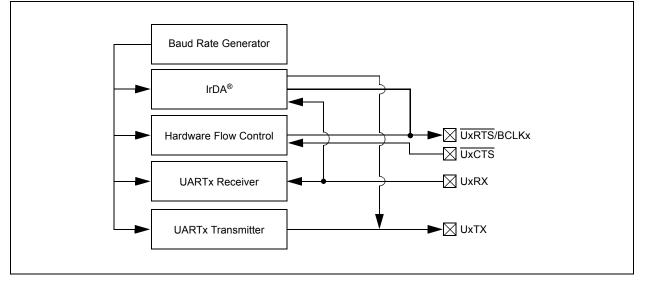
NOTES:

21.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Universal Asynchronous Receiver Transmitter (UART)" (www.microchip.com/DS70000582) in the "dsPIC33/PIC24 Family Reference Manual".
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EVXXXGM00X/10X family of devices contains two UART modules.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33EVXXXGM00X/10X device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a


hardware flow control option with the $\overline{\text{UxCTS}}$ and $\overline{\text{UxRTS}}$ pins, and also includes an IrDA[®] encoder and decoder.

Note:	Hardware flow control using UxRTS and
	UxCTS is not available on all pin count
	devices. See the "Pin Diagrams" section
	for availability.

The primary features of the UARTx module are:

- Full-Duplex, 8 or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop Bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 4.375 Mbps to 67 bps at 16x mode at 70 MIPS
- Baud Rates Ranging from 17.5 Mbps to 267 bps at 4x mode at 70 MIPS
- Four-Deep First-In First-Out (FIFO) Transmit Data Buffer
- Four-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-Bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts

FIGURE 21-1: UARTX SIMPLIFIED BLOCK DIAGRAM

21.1 UART Helpful Tips

- In multi-node direct connect UART networks, UART receive inputs react to the complementary logic level defined by the URXINV bit (UxMODE[4]), which defines the Idle state, the default of which is logic high (i.e., URXINV = 0). Because remote devices do not initialize at the same time, it is likely that one of the devices, because the RX line is floating, will trigger a Start bit detection and will cause the first byte received, after the device has been initialized, to be invalid. To avoid this situation, the user should use a pullup or pull-down resistor on the RX pin, depending on the value of the URXINV bit.
 - a) If URXINV = 0, use a pull-up resistor on the RX pin.
 - b) If URXINV = 1, use a pull-down resistor on the RX pin.

2. The first character received on wake-up from Sleep mode, caused by activity on the UxRX pin of the UART module, will be invalid. In Sleep mode, peripheral clocks are disabled. By the time the oscillator system has restarted and stabilized from Sleep mode, the baud rate bit sampling clock, relative to the incoming UxRX bit timing, is no longer synchronized, resulting in the first character being invalid. This is to be expected.

21.2 UART Control Registers

REGISTER 21-1: UxMODE: UARTx MODE REGISTER

REGISTER	21-1: UXMC	DE: UARTx N		TER			
R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN ⁽¹)	USIDL	IREN ⁽²⁾	RTSMD	_	UEN1	UEN0
bit 15							bit
HC/R/W-0) R/W-0	HC/R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL
bit 7	LI BAOK	ABAOD	UICAIN	BIXOIT	TDOLLT	TDOLLU	bit
Legend:			re Clearable bit				
R = Readab	ole bit	W = Writable I	bit	•	mented bit, rea		
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
bit 15	UARTEN: UA	ARTx Enable bit	(1)				
		s enabled; all U		controlled by U	IARTx as defin	ed by UEN[1:0	0]
		s disabled; all L	JARTx pins are	controlled by	PORT latches;	UARTx powe	r consumptio
L:1 4 4	is minima		N 3				
bit 14		ited: Read as '(
bit 13		Tx Stop in Idle N nues module op		a daviaa antar	a Idla mada		
		es module opera			s luie moue		
bit 12		Encoder and D					
		oder and decod					
	0 = IrDA end	oder and decor	ler are disabled	I			
bit 11		de Selection for					
		oin is in Simplex oin is in Flow Co					
bit 10	•	ited: Read as '(
bit 9-8	-	ARTx Pin Enabl					
		JxRX and BCLK		bled and used:	UxCTS pin is c	ontrolled by P	ORT latches ⁽³
	10 = UxTX, l	JxRX, UxCTS a	nd UxRTS pins	are enabled a	ind used ⁽⁴⁾		
		JxRX and UxRT					
	00 = UXIX a PORT li	nd UxRX pins a atches	ire enabled and	a used; UXCTS	and UXRIS/E	CLKX pins are	e controlled b
bit 7		Tx Wake-up on	Start bit Detect	During Sleep	Mode Enable b	oit	
	1 = UARTx o	ontinues to san	ple the UxRX p	pin; interrupt is	generated on t	he falling edge	, bit is cleare
		are on the follow	ving rising edge	9			
h # 0	•	is not enabled	Mada Calaath	:1			
bit 6		ARTx Loopback k mode is enab		IL			
		k mode is disab					
Note 1: F	Refer to "Univers	al Asynchron	ous Receiver	Transmitter (UART)" (www	.microchip.cor	n/
C	0 <mark>S70000582)</mark> in t	he "dsPIC33/PI	C24 Family Rei				
	nodule for receive	•					
	his feature is onl	-		-			
3: T	his feature is onl	y available on 4	4-pin, 48-pin ai	nd 64-pin devid	ces.		

4: This feature is only available on 64-pin devices.

© 2013-2019 Microchip Technology Inc.

REGISTER 21-1: UxMODE: UARTx MODE REGISTER (CONTINUED)

bit 5	ABAUD: Auto-Baud Enable bit
	 1 = Baud rate measurement on the next character is enabled – requires reception of a Sync field (55h) before other data; cleared in hardware upon completion 0 = Baud rate measurement is disabled or has completed
bit 4	URXINV: UARTx Receive Polarity Inversion bit
	1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	 1 = BRG generates four clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates sixteen clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL[1:0]: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit
	1 = Two Stop bits0 = One Stop bit
Note 1: R	efer to "Universal Asynchronous Receiver Transmitter (UART)" (www.microchip.com/

DS70000582) in the "dsPIC33/PIC24 Family Reference Manual" for information on enabling the UART module for receive or transmit operation.

- 2: This feature is only available for the 16x BRG mode (BRGH = 0).
- 3: This feature is only available on 44-pin, 48-pin and 64-pin devices.
- 4: This feature is only available on 64-pin devices.

R/W-0	R/W-0	R/W-0	U-0	HC/R/W-0	R/W-0	R-0	R-1
UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7							bit 0
Legend:		C = Clearable	hit	UC - Hardwa	are Clearable bit		
R = Readable	bit	W = Writable			mented bit, read		
-n = Value at		'1' = Bit is set		0 = Onimpler		x = Bit is unkr	
	FOR	I - DILIS SEL			aleu		IOWIT
bit 15,13	11 = Reserve 10 = Interrupt the trans 01 = Interrupt operatio 00 = Interrupt	ed; do not use t when a chara smit buffer beco t when the las ns are complet	cter is trans omes empty st character ed cter is trans	is shifted out ferred to the Tra	lection bits ansmit Shift Reg of the Transmit ansmit Shift Reg	t Shift Registe	r; all transmit
bit 14		RTx Transmit P e state is '0'					
	<u>If IREN = 1:</u> 1 = IrDA [®] en	coded UxTX Id oded UxTX Ide		,			
bit 12	Unimplemen	ted: Read as '	o'				
bit 11	1 = Sends Sy bit; cleare	ed by hardware	ext transmis upon comp		followed by twe	elve '0' bits, fol	lowed by Stop
bit 10	UTXEN: UAR	Tx Transmit Er	nable bit ⁽¹⁾				
	0 = Transmit			ntrolled by UAR ransmission is a	Tx aborted and the	e buffer is rese	t; UxTX pin is
bit 9	UTXBF: UAR	Tx Transmit Bu	uffer Full Stat	tus bit (read-onl	y)		
	1 = Transmit 0 = Transmit		ll, at least or	e more charact	er can be writte	n	
bit 8	TRMT: Transi	mit Shift Regist	er (TSR) Err	pty bit (read-on	ly)		
					s empty (the last is in progress o		as completed)
bit 7-6	URXISEL[1:0]: UARTx Rece	eive Interrup	t Mode Selectio	n bits		
	11 = Interrupt 10 = Interrupt 0x = Interrupt	t is set on UxRs is set on UxRS	SR transfer, R transfer, m ny character	making the rece aking the receive is received and	eive buffer full (i. e buffer 3/4 full (i d transferred fro	.e., has three da	ata characters)
				or Tronomitto			

REGISTER 21-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Note 1: Refer to "Universal Asynchronous Receiver Transmitter (UART)" (www.microchip.com/ DS70000582) in the "dsPIC33/PIC24 Family Reference Manual" for information on enabling the UART module for transmit operation.

REGISTER 21-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode is enabled; if 9-bit mode is not selected, this does not take effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	 1 = Framing error has been detected for the current character (character at the top of the receive FIFO) 0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (clear/read-only)
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed; clearing a previously set OERR bit (1 → 0 transition) resets the receive buffer and the UxRSR to the empty state
bit 0	URXDA: UARTx Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

Note 1: Refer to "Universal Asynchronous Receiver Transmitter (UART)" (www.microchip.com/ DS70000582) in the "dsPIC33/PIC24 Family Reference Manual" for information on enabling the UART module for transmit operation.

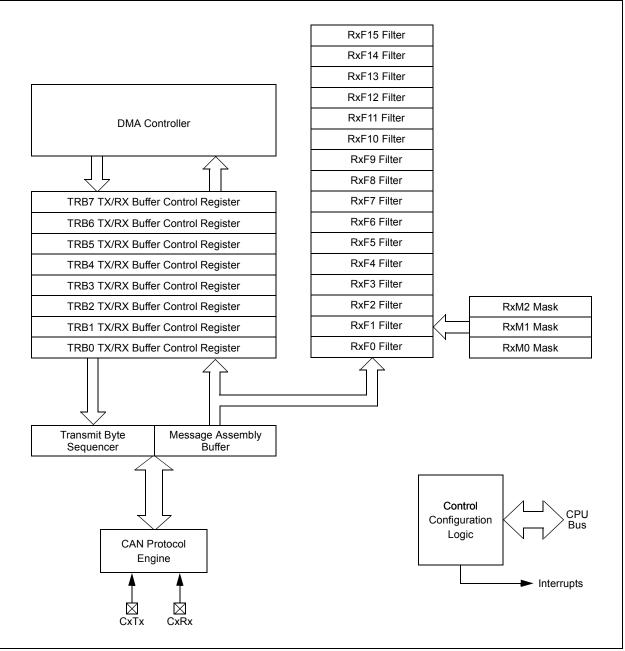
22.0 CONTROLLER AREA NETWORK (CAN) MODULE (dsPIC33EVXXXGM10X DEVICES ONLY)

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Enhanced Controller Area Network (ECAN™)" (www.microchip.com/ DS70353) in the "dsPIC33/PIC24 Family Reference Manual".
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

22.1 Overview

The Controller Area Network (CAN) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/ protocol was designed to allow communications within noisy environments. The dsPIC33EVXXXGM10X devices contain one CAN module.

The CAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH CAN specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader can refer to the BOSCH CAN specification for further details. The CAN module features are as follows:


- Implementation of the CAN Protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- · Standard and Extended Data Frames
- 0 to 8-Byte Data Length
- Programmable Bit Rate, up to 1 Mbit/sec
- Automatic Response to Remote Transmission Requests
- Up to Eight Transmit Buffers with Application Specified Prioritization and Abort Capability (each buffer can contain up to 8 bytes of data)
- Up to 32 Receive Buffers (each buffer can contain up to 8 bytes of data)
- Up to 16 Full (Standard/Extended Identifier) Acceptance Filters
- Three Full Acceptance Filter Masks
- DeviceNet[™] Addressing Support
- Programmable Wake-up Functionality with Integrated Low-Pass Filter
- Programmable Loopback Mode Supports Self-Test Operation
- Signaling through Interrupt Capabilities for All CAN Receiver and Transmitter Error States
- · Programmable Clock Source
- Programmable Link to Input Capture 2 (IC2) module for Timestamping and Network Synchronization
- · Low-Power Sleep and Idle Modes

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors, and then matched against filters to see if it should be received and stored in one of the Receive registers.

Figure 22-1 shows a block diagram of the CANx module.

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 22-1: CANX MODULE BLOCK DIAGRAM

22.2 Modes of Operation

The CANx module can operate in one of several operation modes selected by the user. These modes include:

- · Initialization mode
- · Disable mode
- Normal Operation mode
- Listen Only mode
- Listen All Messages mode
- · Loopback mode

Modes are requested by setting the REQOP[2:0] bits (CxCTRL1[10:8]). Entry into a mode is Acknowledged by monitoring the OPMODE[2:0] bits (CxCTRL1[7:5]). The module does not change the mode and the OPMODEx bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least eleven consecutive recessive bits.

22.3 CAN Control Registers

REGISTER 22-1: CxCTRL1: CANx CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0
—	—	CSIDL	ABAT	CANCKS	REQOP2	REQOP1	REQOP0
bit 15							bit 8
R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0
OPMODE2	OPMODE1	OPMODE0	_	CANCAP	—	—	WIN
bit 7	•			•		•	bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	CSIDL: CANx Stop in Idle Mode bit
	1 = Discontinues module operation when the device enters Idle mode
	0 = Continues module operation in Idle mode
bit 12	ABAT: Abort All Pending Transmissions bit
	1 = Signals all transmit buffers to abort transmission
	0 = Module will clear this bit when all transmissions are aborted
bit 11	CANCKS: CANx Module Clock (FCAN) Source Select bit
	1 = FCAN is equal to 2 * FP
	0 = FCAN is equal to FP
bit 10-8	REQOP[2:0]: Request Operation Mode bits
	111 = Sets Listen All Messages mode
	110 = Reserved 101 = Reserved
	100 = Sets Configuration mode
	011 = Sets Listen Only mode
	010 = Sets Loopback mode
	001 = Sets Disable mode
	000 = Sets Normal Operation mode
bit 7-5	OPMODE[2:0]: Operation Mode bits
	111 = Module is in Listen All Messages mode 110 = Reserved
	100 - Reserved
	100 = Module is in Configuration mode
	011 = Module is in Listen Only mode
	010 = Module is in Loopback mode
	001 = Module is in Disable mode
b :4 4	000 = Module is in Normal Operation mode
bit 4	Unimplemented: Read as '0'
bit 3	CANCAP: CANx Message Receive Timer Capture Event Enable bit
	 1 = Enables input capture based on CAN message receive 0 = Disables CAN capture
bit 2-1	
	Unimplemented: Read as '0'
bit 0	WIN: SFR Map Window Select bit
	1 = Uses filter window 0 = Uses buffer window

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—		—	—	—		
bit 15							bit 8		
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0		
—	—	—		DNCNT[4:0]					
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'			
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15-5	Unimplemen	ted: Read as '	0'						
bit 4-0	DNCNT[4:0]:	DeviceNet™ F	ilter Bit Numb	oer bits					
	10010-11111	L = Invalid sele	ction						
	10001 = Con	npare up to Dat	a Byte 3, bit 6	with EID[17]					
	•								
	•								
	00001 = Com	pare up to Dat	a Byte 1 hit 7	with FID[0]					
		not compare da	-						
			,						

REGISTER 22-2: CxCTRL2: CANx CONTROL REGISTER 2

REGISTER	22-3: CXVEC			DE REGISTI	EK					
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0			
_	—	_	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0			
bit 15							bit 8			
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0			
	ICODE6	ICODE5	ICODE4	ICODE3	ICODE2	ICODE1	ICODE0			
bit 7							bit			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15-13	Unimplemen	ted: Read as '	o '							
bit 12-8	•	Filter Hit Numb								
	10000-11111									
	01111 = Filter 15									
	•									
	•									
	00001 = Filte 00000 = Filte									
bit 7	Unimplemen	ted: Read as '	0'							
bit 6-0	ICODE[6:0]: Interrupt Flag Code bits									
		11111 = Rese								
		IFO almost full eceiver overflo								
		/ake-up interru								
	1000001 = E									
	1000000 = N	o interrupt								
	•									
	•									
		11111 = Rese								
	0001111 = RB15 buffer interrupt									
	•									
	•	D0 huffor intor	runt							
		B9 buffer inter B8 buffer inter								
	0000111 = T	RB7 buffer inte	errupt							
		RB6 buffer inte								
		RB5 buffer inte RB4 buffer inte								
		RB3 buffer inte								
		RB2 buffer inte								
		RB1 buffer inte RB0 Buffer inte								
	0000000 – 1		Shupt							

REGISTER 22-3: CxVEC: CANx INTERRUPT CODE REGISTER

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
DMABS2	DMABS1	DMABS0		—	_	_	_	
oit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	—	FSA5	FSA4	FSA3	FSA2	FSA1	FSA0	
bit 7							bit (
Legend: R = Readabl	e bit	W = Writable t	nit	U = Unimplen	nented bit rea	ad as '0'		
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unknown		
	110 = 32 buff 101 = 24 buff 100 = 16 buff 011 = 12 buff 010 = 8 buffe 001 = 6 buffe 000 = 4 buffe	ers in RAM ers in RAM ers in RAM rs in RAM rs in RAM						
bit 12-6		ted: Read as '0	3					
bit 5-0	FSA[5:0]: FIF 11111 = Rec 11110 = Rec •	FO Area Starts v eive Buffer RB3 eive Buffer RB3 RX Buffer TRB1	vith Buffer bi 1 0	ts				

REGISTER 22-4: CxFCTRL: CANx FIFO CONTROL REGISTER

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0			
		FBP5	FBP4	FBP3	FBP2	FBP1	FBP0			
bit 15							bit 8			
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0			
_		FNRB5	FNRB4	FNRB3	FNRB2	FNRB1	FNRB0			
bit 7							bit 0			
Legend:										
R = Readabl	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15-14	-	nted: Read as '								
bit 13-8		FO Buffer Point	ter bits							
	011111 = RB31 buffer									
	011110 = R	B30 buffer								
	•									
	•									
	000001 = TH									
	000000 = T									
bit 7-6	-	nted: Read as '								
bit 5-0		FIFO Next Rea	d Buffer Pointe	er bits						
	011111 = R									
	011110 = R	B30 buffer								
	•									
	•									
	000001 = TF									
	000000 = T	RB0 buffer								

REGISTER 22-5: CxFIFO: CANx FIFO STATUS REGISTER

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
—	_	ТХВО	TXBP	RXBP	TXWAR	RXWAR	EWARN
bit 15		·		·			bit 8
R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0
IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF
bit 7							bit C
Legend:		C = Writable	bit. but only 'C	' can be writter	n to clear the bit		
R = Readable	bit	W = Writable			mented bit, read		
-n = Value at I	POR	'1' = Bit is se	t	'0' = Bit is cle		x = Bit is unkr	nown
bit 15-14	Unimplemer	nted: Read as	0'				
bit 13	TXBO: Trans	mitter in Error	State Bus Off	bit			
		ter is in Bus Of ter is not in Bus					
bit 12	TXBP: Trans	mitter in Error	State Bus Pas	sive bit			
		ter is in Bus Pa					
		ter is not in Bus		-			
bit 11		iver in Error Sta		ve bit			
		is in Bus Pass is not in Bus P					
bit 10		nsmitter in Erro		ng bit			
	1 = Transmitt	ter is in Error V ter is not in Erro	/arning state	•			
bit 9		ceiver in Error	•				
		is in Error War	•				
	0 = Receiver	is not in Error	Warning state				
bit 8		nsmitter or Re		•	bit		
		ter or receiver i ter or receiver i					
bit 7	IVRIF: Invalio	d Message Inte	rrupt Flag bit				
	•	request has oc request has no					
bit 6	WAKIF: Bus	Wake-up Activ	ity Interrupt F	ag bit			
	•	request has oc request has no					
bit 5	ERRIF: Error	Interrupt Flag	bit (multiple s	ources in CxIN	TF[13:8] registe	r)	
		request has oc request has no					
bit 4	Unimplemer	nted: Read as	0'				
bit 3	FIFOIF: FIFO) Almost Full Ir	terrupt Flag b	it			
	1 = Interrupt	request has oc	curred				
	-	request has no					
bit 2		Buffer Overflo		ag bit			
	1 = Interrupt	request has oc	curred				

REGISTER 22-6: CXINTF: CANX INTERRUPT FLAG REGISTER

REGISTER 22-6: CxINTF: CANx INTERRUPT FLAG REGISTER (CONTINUED)

bit 1	RBIF: RX Buffer Interrupt Flag bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	TBIF: TX Buffer Interrupt Flag bit

- 1 = Interrupt request has occurred
- 0 = Interrupt request has not occurred

REGISTER 22-7: CxINTE: CANx INTERRUPT ENABLE REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
-	—	—			—		— —				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
IVRIE	WAKIE	ERRIE	_	FIFOIE	RBOVIE	RBIE	TBIE				
bit 7							bit 0				
Legend:											
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'											
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-8	Unimplemer	nted: Read as '	0'								
bit 7		IVRIE: Invalid Message Interrupt Enable bit									
	 1 = Interrupt request is enabled 0 = Interrupt request is not enabled 										
	•	•									
bit 6		Wake-up Activi		hable bit							
		request is enab request is not e									
bit 5		r Interrupt Enab									
		request is enab									
		request is not e									
bit 4	Unimplemer	nted: Read as '	0'								
bit 3	FIFOIE: FIFO	D Almost Full In	terrupt Enable	e bit							
		request is enab									
	-	request is not e									
bit 2		Buffer Overflov	-	able bit							
		request is enab									
1.11.A		request is not e									
bit 1		Iffer Interrupt Er									
		request is enab request is not e									
bit 0	-	ffer Interrupt En									
		request is enab									
		request is not e									

^{© 2013-2019} Microchip Technology Inc.

REGISTER 22-8: CxEC: CANx TRANSMIT/RECEIVE ERROR COUNT REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
			TERF	RCNT[7:0]				
bit 15							bit 8	
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
			RERF	RCNT[7:0]				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value at P0	at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						nown	

bit 15-8 **TERRCNT[7:0]:** Transmit Error Count bits

bit 7-0 **RERRCNT[7:0]:** Receive Error Count bits

REGISTER 22-9: CxCFG1: CANx BAUD RATE CONFIGURATION REGISTER 1

11.0	11.0					11.0					
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
	—										
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
SJW1	SJW0	BRP5	BRP4	BRP3	BRP2	BRP1	BRP0				
bit 7	·	·			·		bit (
Legend:											
R = Readable bit W = Writable bit				U = Unimpler	mented bit, read	l as '0'					
-n = Value a	-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-8	Unimpleme	nted: Read as '	ʻ0 '								
bit 7-6	SJW[1:0] : S	SJW[1:0]: Synchronization Jump Width bits									
	11 = Length	is 4 x TQ									
	10 = Length										
	01 = Length										
	00 = Length	is 1 x Tq									
bit 5-0	BRP[5:0] : B	aud Rate Presc	aler bits								
	11 1111 =	Tq = 2 x 64 x 1/	'FCAN								
	•										
	•										
	•	To 004/F	·								
		Tq = 2 x 3 x 1/F Tq = 2 x 2 x 1/F									
		TQ = 2 x 2 x 1/F TQ = 2 x 1 x 1/F									
	00 0000 -		CAN								

U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
_	WAKFIL	_	—		SEG2PH2	SEG2PH1	SEG2PH0				
bit 15		·					bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0				
bit 7							bit (
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	Unimpleme	nted: Read as '	D'								
bit 14	WAKFIL: Se	elect CAN Bus L	ine Filter for V	Vake-up bit							
		N bus line filter									
h:: 40 44		s line filter is not		e-up							
bit 13-11 bit 10-8	-	nted: Read as '									
DIL IU-O	111 = Lengt)]: Phase Segm									
	•										
	•										
	• 000 = Lengt	h is 1 v To									
bit 7	•		nt 2 Time Sele	ect hit							
	SEG2PHTS: Phase Segment 2 Time Select bit 1 = Freely programmable										
	0 = Maximum of SEG1PH[2:0] bits or Information Processing Time (IPT), whichever is greater										
bit 6	SAM: Samp	le of the CAN B	us Line bit								
	 1 = Bus line is sampled three times at the sample point 0 = Bus line is sampled once at the sample point 										
h # F 0			•	e point							
bit 5-3	111 = Lengt)]: Phase Segm	entibits								
	•	III BOXIQ									
	•										
	• 000 = Lengt	h is 1 v To									
bit 2-0	-	: Propagation T	ime Seament	hits							
	111 = Lengt		e eegment								
	•										
	•										
	• 000 = Lengt	h is 1 x Tq									
	94										

REGISTER 22-10: CxCFG2: CANx BAUD RATE CONFIGURATION REGISTER 2

REGISTER 22-11: CxFEN1: CANx ACCEPTANCE FILTER ENABLE REGISTER 1

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			FLTE	N[15:8]			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			FLTE	EN[7:0]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							

'0' = Bit is cleared

bit 15-0

-n = Value at POR

FLTEN[15:0]: Enable Filter n to Accept Messages bits

'1' = Bit is set

1 = Enables Filter n

0 = Disables Filter n

REGISTER 22-12: CxBUFPNT1: CANx FILTERS 0-3 BUFFER POINTER REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
F3BP3	F3BP2	F3BP1	F3BP0	F2BP3	F2BP2	F2BP1	F2BP0			
bit 15	•	·			•		bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
F1BP3	F1BP2	F1BP1	F1BP0	F0BP3	F0BP2	F0BP1	F0BP0			
bit 7										
Legend:										
R = Readab	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	nown			
bit 15-12 F3BP[3:0]: RX Buffer Mask for Filter 3 bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0										
bit 11-8	F2BP[3:0]: F	RX Buffer Mask	for Filter 2 bit	s (same values	s as bits 15-12)					
bit 7-4	F1BP[3:0]: RX Buffer Mask for Filter 1 bits (same values as bits 15-12)									
bit 3-0	F0BP[3:0]: RX Buffer Mask for Filter 0 bits (same values as bits 15-12)									

x = Bit is unknown

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F7BP3	F7BP2	F7BP1	F7BP0	F6BP3	F6BP2	F6BP1	F6BP0
bit 15	÷				·		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F5BP3	F5BP2	F5BP1	F5BP0	F4BP3	F4BP2	F4BP1	F4BP0
bit 7		·		-	•		bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	'0' = Bit is cleared		nown
bit 15-12	F7BP[3:0]: F	RX Buffer Mask	for Filter 7 bit	S			
	1111 = Filter	hits received in	n RX FIFO bu	ffer			
	1110 = Filter	hits received in	n RX Buffer 14	4			
	•						
	•						
	•						
		hits received in hits received in					
bit 11-8				s (same values	s as bits 15-12)		
bit 7-4					s as bits 15-12)		
					,		

REGISTER 22-13: CxBUFPNT2: CANx FILTERS 4-7 BUFFER POINTER REGISTER 2

bit 3-0 **F4BP[3:0]:** RX Buffer Mask for Filter 4 bits (same values as bits 15-12)

REGISTER 22-14: CxBUFPNT3: CANx FILTERS 8-11 BUFFER POINTER REGISTER 3

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F11BP3	F11BP2	F11BP1	F11BP0	F10BP3	F10BP2	F10BP1	F10BP0		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F9BP3	F9BP2	F9BP1	F9BP0	F8BP3	F8BP2	F8BP1	F8BP0		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			bit	U = Unimpler	mented bit, read	as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15-12 F11BP[3:0]: RX Buffer Mask for Filter 11 bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 • • 0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0									
bit 11-8	F10BP[3:0]:	RX Buffer Masl	k for Filter 10	bits (same valu	ues as bits 15-12	2)			
bit 7-4	F9BP[3:0]: RX Buffer Mask for Filter 9 bits (same values as bits 15-12)								
bit 3-0	F8BP[3:0]: R	X Buffer Mask	for Filter 8 bits	s (same values	s as bits 15-12)				

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F15BP3	F15BP2	F15BP1	F15BP0	F14BP3	F14BP2	F14BP1	F14BP0		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F13BP3	F13BP2	F13BP1	F13BP0	F12BP3	F12BP2	F12BP1	F12BP0		
bit 7	-						bit 0		
Legend:									
R = Readable bit W		W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	nown		
bit 15-12	F15BP[3:0]:	RX Buffer Mas	k for Filter 15	bits					
	1111 = Filter	hits received in	NRX FIFO but	ffer					
	1110 = Filter	hits received in	n RX Buffer 14	Ļ					
	•								
	•								
	•								
	0001 = Filter	hits received in	n RX Buffer 1						
	0000 = Filter	hits received in	n RX Buffer 0						
bit 11-8	F14BP[3:0]: RX Buffer Mask for Filter 14 bits (same values as bits 15-12)								
bit 7-4	F13BP[3:0]: RX Buffer Mask for Filter 13 bits (same values as bits 15-12)								

REGISTER 22-15: CxBUFPNT4: CANx FILTERS 12-15 BUFFER POINTER REGISTER 4

bit 3-0 F12BP[3:0]: RX Buffer Mask for Filter 12 bits (same values as bits 15-12)

^{© 2013-2019} Microchip Technology Inc.

REGISTER 22-16: CxRXFnSID: CANx ACCEPTANCE FILTER n STANDARD IDENTIFIER REGISTER (n = 0-15)

		-									
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3				
bit 15							bit 8				
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x				
SID2	SID1	SID0	—	EXIDE	—	EID17	EID16				
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown							
bit 15-5	SID[10:0]: St	andard Identifie	er bits								
	0	address bit, SI	•								
	•	address bit, SI		0' to match filte	r						
bit 4	Unimplemer	nted: Read as '	0'								
bit 3	EXIDE: Exter	EXIDE: Extended Identifier Enable bit									
	If MIDE = 1:										
		only messages									
		only messages	with Standar	d Identifier addi	resses						
	If MIDE = 0: Ignores EXID)E bit									
hit O	•		o '								
bit 2	•	Unimplemented: Read as '0'									
bit 1-0		Extended Identi									
	0	address bit, El	,								
	0 = Message	address bit, El	Dx, must be	U to match filte	it.						

REGISTER 22-17: CxRXFnEID: CANx ACCEPTANCE FILTER n EXTENDED IDENTIFIER REGISTER (n = 0-15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			EIC)[15:8]				
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
R/W-X	r/w-x	r///-X			F(/ VV-X	F(/VV-X	r///-X	
			EIL	D[7:0]				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable b	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknow			nown	
L								
bit 15-0	EID[15:0]: E	Extended Identifie	r bits					
		e address bit EIF		1' to match filte	r			

1 = Message address bit, EIDx, must be '1' to match filter 0 = Message address bit, EIDx, must be '0' to match filter

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F7MSK1	F7MSK0	F6MSK1	F6MSK0	F5MSK1	F5MSK0	F4MSK1	F4MSK0	
bit 15							bit	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F3MSK1	F3MSK0	F2MSK1	F2MSK0	F1MSK1	F1MSK0	F0MSK1	F0MSK0	
bit 7							bit	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'		
					Bit is cleared x = Bit is unknown			
bit 15-14	11 = Reserve	Mask Source d nce Mask 2 re		the mask				
		nce Mask 1 re nce Mask 0 re	•					
bit 13-12	00 = Accepta	nce Mask 0 re	gisters contain		s bits 15-14)			
bit 13-12 bit 11-10	00 = Accepta F6MSK[1:0]:	nce Mask 0 re Mask Source	gisters contain for Filter 6 bit (the mask				
	00 = Accepta F6MSK[1:0]: F5MSK[1:0]:	nce Mask 0 re Mask Source Mask Source	gisters contain for Filter 6 bit (for Filter 5 bit (the mask (same values a	s bits 15-14)			
bit 11-10	00 = Accepta F6MSK[1:0]: F5MSK[1:0]: F4MSK[1:0]:	nce Mask 0 re Mask Source Mask Source Mask Source	gisters contain for Filter 6 bit (for Filter 5 bit (for Filter 4 bit (the mask (same values a (same values a	s bits 15-14) s bits 15-14)			
bit 11-10 bit 9-8	00 = Accepta F6MSK[1:0]: F5MSK[1:0]: F4MSK[1:0]: F3MSK[1:0]:	nce Mask 0 re Mask Source Mask Source Mask Source Mask Source	gisters contain for Filter 6 bit (for Filter 5 bit (for Filter 4 bit (for Filter 3 bit (the mask (same values a (same values a (same values a	s bits 15-14) s bits 15-14) s bits 15-14)			
bit 11-10 bit 9-8 bit 7-6	00 = Accepta F6MSK[1:0]: F5MSK[1:0]: F4MSK[1:0]: F3MSK[1:0]: F2MSK[1:0]:	nce Mask 0 re Mask Source Mask Source Mask Source Mask Source	gisters contain for Filter 6 bit (for Filter 5 bit (for Filter 4 bit (for Filter 3 bit (for Filter 2 bit (the mask (same values a (same values a (same values a (same values a	s bits 15-14) s bits 15-14) s bits 15-14) s bits 15-14)			

REGISTER 22-18: CxFMSKSEL1: CANx FILTERS 7-0 MASK SELECTION REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F15MSK1	F15MSK0	F14MSK1	F14MSK0	F13MSK'	F13MSK0	F12MSK1	F12MSK0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F11MSK1	F11MSK0	F10MSK1	F10MSK0	F9MSK1	F9MSK0	F8MSK1	F8MSK0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-14		: Mask Source	e for Filter 15 b	oit			
	11 = Reserve						
		nce Mask 2 reg nce Mask 1 reg					
	•	nce Mask 0 reg	•				
bit 13-12	F14MSK[1:0]	: Mask Source	for Filter 14 b	it (same value	s as bits 15-14)		
bit 11-10	F13MSK[1:0]	: Mask Source	for Filter 13 b	it (same value	es as bits 15-14)		
bit 9-8	F12MSK[1:0]	: Mask Source	e for Filter 12 b	it (same value	s as bits 15-14)		
bit 7-6	F11MSK[1:0]	: Mask Source	for Filter 11 b	it (same value	s as bits 15-14)		
bit 5-4				-	es as bits 15-14)		
				-	,		

REGISTER 22-19: CxFMSKSEL2: CANx FILTERS 15-8 MASK SELECTION REGISTER 2

bit 3-2	F9MSK[1:0]: Mask Source for Filter 9 bit (same values as bits 15-14)
---------	---

bit 1-0 F8MSK[1:0]: Mask Source for	r Filter 8 bit (same values as bits 15-14)
-------------------------------------	--

REGISTER 22-20: CxRXMnSID: CANx ACCEPTANCE FILTER MASK n STANDARD IDENTIFIER **REGISTER** (n = 0-2)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 15	·						bit 8
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0	—	MIDE		EID17	EID16
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-5	SID[10:0]: Sta	andard Identifie	er bits				
		oit, SIDx, in filte					
	0 = Bit, SIDx,	is a don't care	in filter comp	arison			
bit 4	Unimplemen	ted: Read as '	0'				
bit 3	MIDE: Identif	ier Receive Mo	de bit				
	1 = Matches the filter	only message	types (standa	ard or extended	address) that co	prrespond to th	e EXIDE bit ir
					ge if filters match /lessage SID/EID		
bit 2	Unimplemen	ted: Read as '	0'				
bit 1-0	EID[17:16]: E	Extended Identi	fier bits				

bit 1-0 **EID[17:16]:** Extended Identifier bits

- 1 = Includes bit, EIDx, in filter comparison
- 0 = Bit, EIDx, is a don't care in filter comparison

REGISTER 22-21: CxRXMnEID: CANx ACCEPTANCE FILTER MASK n EXTENDED IDENTIFIER REGISTER (n = 0-2)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	[15:8]			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EI	D[7:0]			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable I	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0

- EID[15:0]: Extended Identifier bits
- 1 = Includes bit, EIDx, in filter comparison
- 0 = Bit, EIDx, is a don't care in filter comparison

^{© 2013-2019} Microchip Technology Inc.

REGISTER 22-22: CxRXFUL1: CANx RECEIVE BUFFER FULL REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFL	JL[15:8]			
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXF	UL[7:0]			
bit 7							bit 0
Legend:		C = Writable b	oit, but only 'C)' can be written	to clear the bi	it	
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	POR	-n = Value at POR '1' = Bit is set			ared	x = Bit is unkr	nown

bit 15-0 RXFUL[15:0]: Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

REGISTER 22-23: CxRXFUL2: CANx RECEIVE BUFFER FULL REGISTER 2

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFU	L[31:24]			
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFU	L[23:16]			
bit 7							bit 0
Legend:		C = Writable b	oit, but only '0	' can be written	to clear the bi	t	
R = Readable	bit	W = Writable b	bit	U = Unimplemented bit, read as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 RXFUL[31:16]: Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

REGISTER 22-24: CxRXOVF1: CANx RECEIVE BUFFER OVERFLOW REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
_			RXOV	F[15:8]			
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXOV	′F[7:0]			
bit 7							bit 0
Legend:		C = Writable I	oit, but only '0'	can be written	to clear the bit		

=ogonai	e milable bit, bat emy e	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

bit 15-0 **RXOVF[15:0]:** Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition (cleared by user software)

REGISTER 22-25: CxRXOVF2: CANx RECEIVE BUFFER OVERFLOW REGISTER 2

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	
			RXOV	'F[31:24]				
bit 15							bit 8	
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	
			RXOV	'F[23:16]				
bit 7							bit 0	
Legend: C = Writable bit, but or)' can be written t	o clear the bi	it		
R = Readable	bit	W = Writable b	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkr				nown				

bit 15-0 **RXOVF[31:16]:** Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition (cleared by user software)

REGISTER 22-26: CxTRmnCON: CANx TX/RX BUFFER mn CONTROL REGISTER

R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TXENn	TXABTn	TXLARBn	TXERRn	TXREQn	RTRENn	TXnPRI1	TXnPRI0
bit 15							bit 8
D 444 A				D 444 0	D 444 0	D 444 0	D 444 0
R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TXENm	TXABTm ⁽¹⁾	TXLARBm ⁽¹⁾	TXERRm ⁽¹⁾	TXREQm	RTRENm	TXmPRI1	TXmPRI0
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-8	See Definition	n for bits 7-0, co	ontrols Buffer r	1.			
bit 7	TXENm: TX/	RX Buffer Selee	ction bit				
	,	RBm, is a transi					
		RBm, is a receiv					
bit 6		essage Abortec	bit ⁽¹⁾				
	1 = Message	was aborted completed tran	emission succ	ocefully			
bit 5	•	Vessage Lost A		•			
		lost arbitration					
		did not lose arl					
bit 4	TXERRm: Er	ror Detected D	uring Transmis	sion bit ⁽¹⁾			
		or occurred whi or did not occu					
bit 3		essage Send R		saye was bei	ng sent		
		•	•	hit automatica	ally clears wher	the message i	is successfully
	sent				any clears when	The message	
	0 = Clearing	the bit to '0' wh	ile set request	s a message a	abort		
	RTRENm: Au	uto-Remote Tra	nsmit Enable I	oit			
bit 2			is received T	KREQ will be s			
bit 2							
	0 = When a r	emote transmit	is received, T		unaffected		
	0 = When a r TXmPRI[1:0]	emote transmit : Message Tra	is received, T		unaffected		
	0 = When a r TXmPRI[1:0] 11 = Highest	emote transmit : Message Trai message priori	is received, TX nsmission Prio ty		unaffected		
bit 2 bit 1-0	0 = When a r TXmPRI[1:0] 11 = Highest 10 = High inte	emote transmit : Message Tra	is received, TX nsmission Prio ty sage priority		unaffected		

Note 1: This bit is cleared when TXREQm is set.

Note: The buffers, SID, EID, DLC, Data Field and Receive Status registers, are located in DMA RAM.

22.4 CAN Message Buffers

CAN Message Buffers are part of RAM memory. They are not CAN Special Function Registers. The user application must directly write into the RAM area that is configured for CAN Message Buffers. The location and size of the buffer area is defined by the user application.

BUFFER 22-1: CANx MESSAGE BUFFER WORD 0

-							
U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	—	SID10	SID9	SID8	SID7	SID6
bit 15	·	- -		÷			bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID5	SID4	SID3	SID2	SID1	SID0	SRR	IDE
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12-2	SID[10:0]: Sta	andard Identifie	er bits				
bit 1	SRR: Substitu	ute Remote Re	quest bit				
	When IDE =):					
	1 = Message	will request rer	note transmis	sion			
	0 = Normal m	lessage					
	When IDE = 1	1 <u>:</u>					
	The SRR bit r	must be set to '	1'.				
bit 0	IDE: Extende	d Identifier bit					
	1 = Message	will transmit ar	Extended Id	entifier			
	•	will transmit a					
	-						

BUFFER 22-2: CANx MESSAGE BUFFER WORD 1

U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x		
_	_		_	EID[17:14]					
bit 15		·		·			bit 8		
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
			EID	[13:6]					
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is s		'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown		

bit 15-12 Unimplemented: Read as '0'

bit 11-0 EID[17:6]: Extended Identifier bits

© 2013-2019 Microchip Technology Inc.

dsPIC33EVXXXGM00X/10X FAMILY

-	-								
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1		
bit 15						• •	bit 8		
U-x	U-x	U-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
			RB0	DLC3	DLC2	DLC1	DLC0		
bit 7							bit (
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-10	EID[5:0]: Ext	ended Identifie	r bits						
bit 9	RTR: Remote	e Transmission	Request bit						
	When IDE =								
	-	will request re	mote transmi	ssion					
	0 = Normal m	•							
	When IDE = The RTR bit i								
bit 8	RB1: Reserve	-							
	User must se	t this bit to '0' p	per CAN proto	ocol.					
bit 7-5		ted: Read as '	•						
bit 4	RB0: Reserve								
	User must se	t this bit to '0' p	per CAN proto	ocol.					
		- 1							

BUFFER 22-3: CANx MESSAGE BUFFER WORD 2

bit 3-0	DLC[3:0]: Data Length Code bits
DIL 3-0	DEC[3.0]. Data Length Code bits

BUFFER 22-4: CANx MESSAGE BUFFER WORD 3

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	1[15:8]			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	0[7:0]			
bit 7			-				bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set	Value at POR '1' = Bit is set '0' = Bit is cleared x =		x = Bit is unkr	nown	

bit 15-8 Byte 1[15:8]: CANx Message Byte 1 bits

bit 7-0 Byte 0[7:0]: CANx Message Byte 0 bits

BUFFER 22-5: CANx MESSAGE BUFFER WORD 4

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	3[15:8]			
bit 15			-				bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	2[7:0]			
bit 7							bit 0
Legend:							
R = Readable bi	t	W = Writable bit	t	U = Unimpler	nented bit, read	l as '0'	

-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Ax Message Byte 3 bits

bit 7-0 Byte 2[7:0]: CANx Message Byte 2 bits

BUFFER 22-6: CANx MESSAGE BUFFER WORD 5

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	5[15:8]			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
R/VV-X	K/ VV-X	R/VV-X			R/W-X	K/W-X	K/VV-X
			Byte	e 4[7:0]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		•		x = Bit is unkr	nown

bit 15-8	Byte 5[15:8]: CANx Message Byte 5 bits

bit 7-0 Byte 4[7:0]: CANx Message Byte 4 bits

BUFFER 22-7: CANx MESSAGE BUFFER WORD 6

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	7[15:8]			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	6[7:0]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-8 Byte 7[15:8]: CANx Message Byte 7 bits

bit 7-0 Byte 6[7:0]: CANx Message Byte 6 bits

BUFFER 22-8: CANx MESSAGE BUFFER WORD 7

	—			FILHIT[4:0] ⁽¹⁾			
						bit 8	
J-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—		—	—		—	
						bit 0	
	W = Writable b	oit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	
	J-0 —	W = Writable t	W = Writable bit	W = Writable bit U = Unimplen	J-0 U-0 U-0 U-0 — — — — W = Writable bit U = Unimplemented bit, read	J-0 U-0 U-0 U-0 — — — — — W = Writable bit U = Unimplemented bit, read as '0'	

bit 15-13 **Unimplemented:** Read as '0'

bit 12-8 **FILHIT[4:0]:** Filter Hit Code bits⁽¹⁾

Encodes number of filter that resulted in writing this buffer.

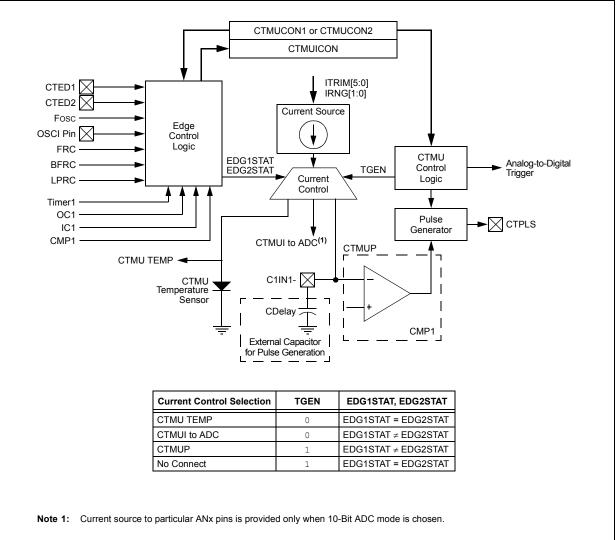
bit 7-0 Unimplemented: Read as '0'

Note 1: Only written by module for receive buffers, unused for transmit buffers.

23.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Charge Time Measurement Unit (CTMU) and CTMU Operation with Threshold Detect" (www.microchip.com/DS30009743) in the "dsPIC33/PIC24 Family Reference Manual".
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Charge Time Measurement Unit (CTMU) is a flexible analog module that provides accurate differential time measurement between pulse sources, as well as asynchronous pulse generation. Its key features include:


- Nine Edge Input Trigger Sources
- Polarity Control for Each Edge Source
- · Control of Edge Sequence
- · Control of Response to Edges
- · Time Measurement Resolution Down to 200 ps
- Accurate Current Source Suitable for Capacitive Measurement
- On-Chip Temperature Measurement using a Built-in Diode
- Pulse Generation Generates a Pulse using the C1INB Comparator Input and Outputs the Pulse onto the CTPLS Remappable Output

Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses that are independent of the system clock.

The CTMU module is ideal for interfacing with capacitive-based sensors. The CTMU is controlled through three registers: CTMUCON1, CTMUCON2 and CTMUICON. CTMUCON1 and CTMUCON2 enable the module and control edge source selection, edge source polarity selection and edge sequencing. The CTMUICON register controls the selection and trim of the current source.

dsPIC33EVXXXGM00X/10X FAMILY

23.1 CTMU Control Registers

REGISTER 23-1: CTMUCON1: CTMU CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CTMUEN		CTMUSIDL	TGEN ⁽²⁾	EDGEN	EDGSEQEN	IDISSEN ⁽¹⁾	CTTRIG			
pit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
		_		_	_					
bit 7							bit (
Legend:										
R = Readabl		W = Writable bit U = Unimplemented bit, re				ead as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15		TMUL Enable bit								
	CTMUEN: CTMU Enable bit 1 = Module is enabled									
	1 = Module is enabled0 = Module is disabled									
oit 14	Unimpleme	Unimplemented: Read as '0'								
pit 13	CTMUSIDL: CTMU Stop in Idle Mode bit									
	1 = Discontinues module operation when the device enters Idle mode									
	0 = Continues module operation in Idle mode									
bit 12	TGEN: Time Generation Enable bit ⁽²⁾									
	 Edge delay generation is enabled Edge delay generation is disabled 									
bit 11	EDGEN: Edge Enable bit									
	1 = Hardware modules are used to trigger edges (TMRx, CTEDx, etc.)									
	0 = Software is used to trigger edges (manual set of EDGxSTAT)									
bit 10	EDGSEQEN: Edge Sequence Enable bit									
	1 = Edge 1 event must occur before Edge 2 event can occur									
	0 = No edge sequence is needed									
bit 9	IDISSEN: Analog Current Source Control bit ⁽¹⁾									
	 Analog current source output is grounded Analog current source output is not grounded 									
bit 8	CTTRIG: ADC Trigger Control bit									
	1 = CTMU triggers the ADC start of conversion									
	0 = CTMU does not trigger the ADC start of conversion									
bit 7-0	Unimpleme	nted: Read as '0	,							
Note 1: The co	he ADC modul onversion cycle DC capacitor b	nted: Read as 'o le Sample-and-H es. Any software l pefore conducting	old (S&H) cap using the ADC J the measure	as part of a ca ment. The IDIS	pacitance meas SEN bit, when s	surement must of set to '1', perfor	discharge rms this fu			

capacitor array.
If the TGEN bit is set to '1', then the CMP1 module should be selected as the Edge 2 source in the EDG2SELx bits field; otherwise, the module will not function.

tion. The ADC must be sampling while the IDISSEN bit is active to connect the discharge sink to the

^{© 2013-2019} Microchip Technology Inc.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT		
bit 15		•				•	bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0		
EDG2MOD	EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0	—	—		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown		
bit 15	EDG1MOD: Edge 1 Edge Sampling Mode Selection bit								
	1 = Edge 1 is edge-sensitive								
	0 = Edge 1 is level-sensitive								
bit 14		dge 1 Polarity							
	1 = Edge 1 is programmed for a positive edge response								
h# 12 10	 0 = Edge 1 is programmed for a negative edge response EDG1SEL[3:0]: Edge 1 Source Select bits 								
bit 13-10	-	UJ: Edge 1 Sou	rce Select bits						
	1111 = FCY								
	1110 = OSCI pin 1101 = FRC Oscillator								
	1100 = BFRC Oscillator								
	1011 = Internal LPRC Oscillator								
	1010 = Reserved								
	1001 = Reserved 1000 = Reserved								
	0111 = Reserved								
	0110 = Reserved								
	0101 = Reserved								
	0100 = Reserved								
	0011 = CTED1 pin 0010 = CTED2 pin								
	0001 = OC1 module								
	0000 = TMR 1	1 module							
bit 9	EDG2STAT: Edge 2 Status bit								
	Indicates the status of Edge 2 and can be written to control the edge source.								
	 1 = Edge 2 has occurred 0 = Edge 2 has not occurred 								
bit 8	-								
	EDG1STAT: Edge 1 Status bit								
	Indicates the status of Edge 1 and can be written to control the edge source. 1 = Edge 1 has occurred								
	0 = Edge 1 has not occurred								
bit 7	EDG2MOD: Edge 2 Edge Sampling Mode Selection bit								
	1 = Edge 2 is edge-sensitive								
	•	s level-sensitive							
bit 6	EDG2POL: E	dge 2 Polarity	Select bit						
		s programmed f							
	0 = Edge 2 is	s programmed f	or a negative e	edge response					

REGISTER 23-2: CTMUCON2: CTMU CONTROL REGISTER 2

REGISTER 23-2: CTMUCON2: CTMU CONTROL REGISTER 2 (CONTINUED)

- bit 5-2 EDG2SEL[3:0]: Edge 2 Source Select bits
 - 1111 **= Fcy**
 - 1110 = OSCI pin
 - 1101 = FRC Oscillator
 - 1100 = BFRC Oscillator
 - 1011 = Internal LPRC Oscillator
 - 1010 = Reserved
 - 1001 = Reserved
 - 1000 = Reserved
 - 0111 = Reserved
 - 0110 = Reserved
 - 0101 = Reserved
 - 0100 = CMP1 module
 - 0011 = CTED2 pin
 - 0010 = CTED1 pin
 - 0001 = OCMP1 module
 - 0000 = IC1 module
- bit 1-0 Unimplemented: Read as '0'

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ITRIM5 ⁽⁴⁾	ITRIM4 ⁽⁴⁾	ITRIM3 ⁽⁴⁾	ITRIM2 ⁽⁴⁾	ITRIM1 ⁽⁴⁾	ITRIM0 ⁽⁴⁾	IRNG1 ⁽²⁾	IRNG0 ⁽²⁾			
bit 15		1	1				bit			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
		_	_	_	_	_	_			
bit 7							bit			
Legend:										
R = Readable bit		W = Writable bit U = Unimplemented bit, re			nented bit, read	ad as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15-10	ITRIM[5:0]: Current Source Trim bits ⁽⁴⁾									
	011111 = Maximum positive change from nominal current + 62% 011110 = Maximum positive change from nominal current + 60%									
	•									
	•									
	•									
	000010 = Minimum positive change from nominal current + 4%									
	000001 = Minimum positive change from nominal current + 2% 000000 = Nominal current output specified by IRNG[1:0]									
	111111 = Minimum negative change from nominal current – 2%									
	111110 = Minimum negative change from nominal current – 4%									
	•									
	•									
	•									
	100010 = Maximum negative change from nominal current – 60% 100001 = Maximum negative change from nominal current – 62%									
bit 9-8	IRNG[1:0] : Current Source Range Select bits ⁽²⁾									
DIL 9-0										
	11 = 100 × Base Current 10 = 10 × Base Current									
	01 = Base Current Level									
	$00 = 1000 \times Base Current^{(1)}$									
bit 7-0	Unimplemen	ted: Read as '	0'							
Note 1:	This current range	e is not availab	le for use with	the internal ten	nperature meas	surement diode	·-			
	Refer to the CTMU Current Source Specifications (Table 30-53) in Section 30.0 "Electrical Characteristics" for the current range selection values.									
3: (Current sources are not generated when 12-Bit ADC mode is chosen. Current sources are active only									

REGISTER 23-3: CTMUICON: CTMU CURRENT CONTROL REGISTER⁽³⁾

when 10-Bit ADC mode is chosen.4: The current step generated by the Current Source Trim bits is not always linear.

DS70005144H-page 288

24.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Analog-to-Digital Converter (ADC)" (www.microchip.com/ DS70621) in the "dsPIC33/PIC24 Family Reference Manual".
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Analog-to-Digital (ADC) module in the dsPIC33EVXXXGM00X/10X family devices supports up to 36 analog input channels.

The ADC module can be configured by the user as either a 10-bit, four Sample-and-Hold (S&H) ADC (default configuration) or a 12-bit, one S&H ADC.

Note: The ADC module needs to be disabled before modifying the AD12B bit.

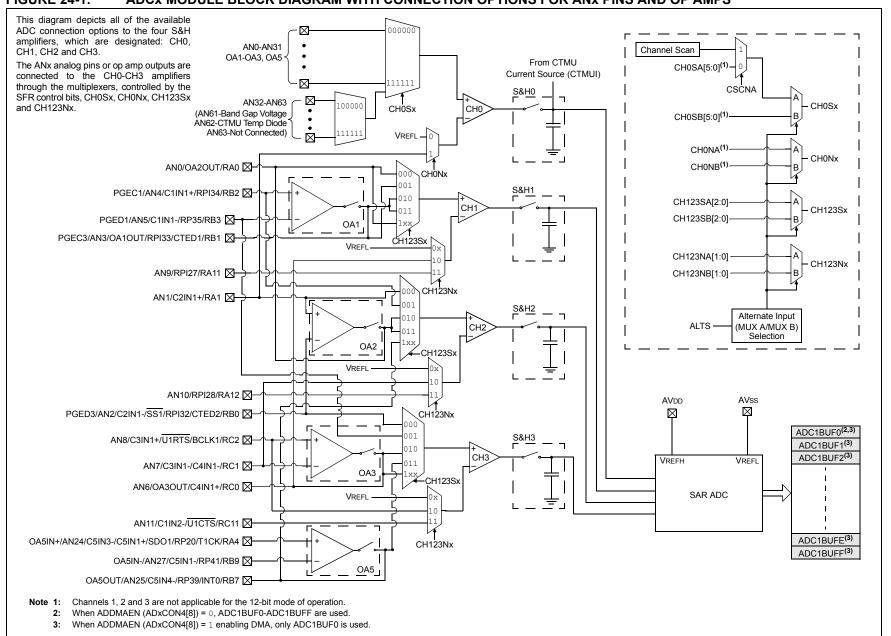
24.1 Key Features

24.1.1 10-BIT ADC CONFIGURATION

The 10-bit ADC configuration has the following key features:

- Successive Approximation (SAR) Conversion
- Conversion Speeds of up to 1.1 Msps
- Up to 36 Analog Input Pins
- Connections to Four Internal Op Amps
- Connections to the Charge Time Measurement Unit (CTMU) and Temperature Measurement Diode
- Simultaneous Sampling of:
- Up to four analog input pins
- Four op amp outputs
- · Combinations of Analog Inputs and Op Amp Outputs
- Automatic Channel Scan mode
- Selectable Conversion Trigger Source
- Selectable Buffer Fill modes
- Four Result Alignment Options (signed/unsigned, fractional/integer)
- · Operation during CPU Sleep and Idle Modes

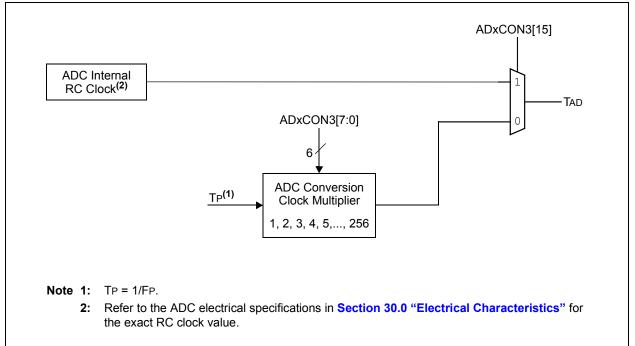
24.1.2 12-BIT ADC CONFIGURATION


The 12-bit ADC configuration supports all the features listed previously, with the exception of the following:

- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only one S&H amplifier in the 12-bit configuration. Therefore, simultaneous sampling of multiple channels is not supported.

The ADC has up to 36 analog inputs. The analog inputs, AN32 through AN63, are multiplexed, thus providing flexibility in using any of these analog inputs in addition to the analog inputs, AN0 through AN31. Since AN32 through AN63 are multiplexed, do not use two channels simultaneously, since it may result in erroneous output from the module. These analog inputs are shared with op amp inputs and outputs, comparator inputs and external voltage references. When op amp/comparator functionality is enabled, the analog input that shares that pin is no longer available. The actual number of analog input pins and op amps depends on the specific device.

A block diagram of the ADC module with connection options is shown in Figure 24-1. Figure 24-2 shows a block diagram of the ADC conversion clock period.


^{© 2013-2019} Microchip Technology Inc.

C33EVXXXGM00X/10X FAMILY

FIGURE 24-1: ADCx MODULE BLOCK DIAGRAM WITH CONNECTION OPTIONS FOR ANX PINS AND OP AMPS

^{© 2013-2019} Microchip Technology Inc.

24.2 ADC Helpful Tips

- 1. The SMPIx control bits in the ADxCON2 registers:
 - a) Determine when the ADC interrupt flag is set and an interrupt is generated, if enabled.
 - b) When the CSCNA bit in the ADxCON2 register is set to '1', this determines when the ADC analog scan channel list, defined in the ADxCSSL/ADxCSSH registers, starts over from the beginning.
 - c) When the DMA peripheral is not used (ADDMAEN = 0), this determines when the ADC Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0.
 - d) When the DMA peripheral is used (ADDMAEN = 1), this determines when the DMA Address Pointer is incremented after a sample/conversion operation. ADC1BUF0 is the only ADC buffer used in this mode. The ADC Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0. The DMA address is incremented after completion of every 32nd sample/conversion operation. Conversion results are stored in the ADC1BUF0 register for transfer to RAM using the DMA peripheral.
- 2. When the DMA module is disabled (ADDMAEN = 0), the ADC has 16 result buffers. ADC conversion results are stored sequentially in ADC1BUF0-ADC1BUFF, regardless of which analog inputs are being used subject to the SMPIx bits and the condition described in 1.c) above. There is no relationship between the ANx input being measured and which ADC buffer (ADC1BUF0-ADC1BUFF) that the conversion results will be placed in.

- 3. When the DMA module is enabled (ADDMAEN = 1), the ADC module has only 1 ADC result buffer (i.e., ADCxBUF0) per ADC peripheral and the ADC conversion result must be read, either by the CPU or DMA Controller, before the next ADC conversion is complete to avoid overwriting the previous value.
- 4. The DONE bit (ADxCON1[0]) is only cleared at the start of each conversion and is set at the completion of the conversion, but remains set indefinitely, even through the next sample phase until the next conversion begins. If application code is monitoring the DONE bit in any kind of software loop, the user must consider this behavior because the CPU code execution is faster than the ADC. As a result, in Manual Sample mode, particularly where the user's code is setting the SAMP bit (ADxCON1[1]), the DONE bit should also be cleared by the user application just before setting the SAMP bit.
- 5. Enabling op amps, comparator inputs and external voltage references can limit the availability of analog inputs (ANx pins). For example, when Op Amp 2 is enabled, the pins for AN0, AN1 and AN2 are used by the op amp's inputs and output. This negates the usefulness of Alternate Input mode since the MUX A selections use AN0-AN2. Carefully study the ADC block diagram to determine the configuration that will best suit your application. For configuration examples, refer to "Analog-to-Digital Converter (ADC)" (www.microchip.com/DS70621) in the "dsPIC33/PIC24 Family Reference Manual".

24.3 ADC Control Registers

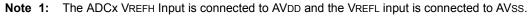
REGISTER 24-1: ADxCON1: ADCx CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
ADON	—	ADSIDL	ADDMABM		AD12B	FORM1	FORM0
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	HC/HS/R/W-0	HC/HS/R/C-0
SSRC2	SSRC1	SSRC0	SSRCG	SIMSAM	ASAM	SAMP	DONE ⁽¹⁾
bit 7							bit 0

Legend:	C = Clearable bit	U = Unimplemented bit, read	l as '0'
R = Readable bit	W = Writable bit	HS = Hardware Settable bit	HC = Hardware Clearable bit
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	ADON: ADCx Operating Mode bit
	1 = ADCx module is operating
	0 = ADCx is off
bit 14	Unimplemented: Read as '0'
bit 13	ADSIDL: ADCx Stop in Idle Mode bit
	 1 = Discontinues module operation when the device enters Idle mode 0 = Continues module operation in Idle mode
bit 12	ADDMABM: ADCx DMA Buffer Build Mode bit
	 DMA buffers are written in the order of conversion; the module provides an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer DMA buffers are written in Scatter/Gather mode; the module provides a Scatter/Gather mode address to the DMA channel based on the index of the analog input and the size of the DMA buffer
bit 11	Unimplemented: Read as '0'
bit 10	AD12B: ADCx 10-Bit or 12-Bit Operation Mode bit
	1 = 12-bit, 1-channel ADC operation
	0 = 10-bit, 4-channel ADC operation
bit 9-8	FORM[1:0]: Data Output Format bits
	For 10-Bit Operation:
	11 = Signed fractional (Dout = sddd dddd dd00 0000, where s = .NOT.d[9])
	10 = Fractional (Dout = dddd dddd dd00 0000) 01 = Signed integer (Dout = ssss sssd dddd dddd, where s = .NOT.d[9])
	00 = Integer (Dour = 0000 00dd dddd dddd)
	For 12-Bit Operation:
	11 = Signed fractional (Dout = sddd dddd dddd 0000, where s = .NOT.d[11])
	10 = Fractional (Dout = dddd dddd dddd 0000)
	01 = Signed integer (Dout = ssss sddd dddd dddd, where s = .NOT.d[11]) 00 = Integer (Dout = 0000 dddd dddd dddd)


REGISTER 24-1: ADxCON1: ADCx CONTROL REGISTER 1 (CONTINUED)

bit 7-5	SSRC[2:0]: Sample Clock Source Select bits
	If SSRCG = 1:
	111 = Reserved 110 = Reserved
	101 = Reserved
	100 = Reserved
	011 = Reserved
	010 = PWM Generator 3 primary trigger compare ends sampling and starts conversion
	001 = PWM Generator 2 primary trigger compare ends sampling and starts conversion
	000 = PWM Generator 1 primary trigger compare ends sampling and starts conversion
	If SSRCG = 0:
	111 = Internal counter ends sampling and starts conversion (auto-convert)
	110 = CTMU ends sampling and starts conversion
	101 = Reserved
	100 = Timer5 compare ends sampling and starts conversion 011 = PWM primary Special Event Trigger ends sampling and starts conversion
	010 = Timer3 compare ends sampling and starts conversion
	001 = Active transition on the INTO pin ends sampling and starts conversion
	000 = Clearing the Sample bit (SAMP) ends sampling and starts conversion (Manual mode)
bit 4	SSRCG: Sample Trigger Source Group bit
	See SSRC[2:0] for details.
bit 3	SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS[1:0] = 01 or 1x)
	In 12-Bit Mode (AD12B = 1), SIMSAM is Unimplemented and is Read as '0':
	1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS[1:0] = 1x) or samples CH0 and CH1
	simultaneously (when CHPS[1:0] = 01)
	0 = Samples multiple channels individually in sequence
bit 2	ASAM: ADCx Sample Auto-Start bit
	1 = Sampling begins immediately after last conversion; SAMP bit is auto-set
	0 = Sampling begins when SAMP bit is set
bit 1	SAMP: ADCx Sample Enable bit
	1 = ADCx Sample-and-Hold amplifiers are sampling
	0 = ADCx Sample-and-Hold amplifiers are holding
	If ASAM = 0, software can write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If
	SSRC[2:0] = 000, software can write '0' to end sampling and start conversion. If SSRC[2:0] \neq 000,
	automatically cleared by hardware to end sampling and start conversion.
bit 0	DONE: ADCx Conversion Status bit ⁽¹⁾
	1 = ADCx conversion cycle is completed.
	 a ADCx conversion has not started or is in progress Automatically set by hardware when conversion is complete. Software can write '0' to clear DONE bit
	status (software not allowed to write '1'). Clearing this bit does NOT affect any operation in progress.
	Automatically cleared by hardware at the start of a new conversion.

Note 1: Do not clear the DONE bit in software if auto-sample is enabled (ASAM = 1).

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
VCFG2 ⁽¹⁾	VCFG1 ⁽¹⁾	VCFG0 ⁽¹⁾		_	CSCNA	CHPS1	CHPS0				
bit 15							bit				
R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
BUFS	SMPI4	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS				
bit 7							bit				
Legend:											
R = Readable	e bit	W = Writable b	bit	U = Unimpler	mented bit, read	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15-13	VCFG[2:0]:	Converter Voltag	e Reference C	Configuration b	its ⁽¹⁾						
	Value	VREFH	VREFL								
	XXX	AVDD	AVss								
bit 12-11	Unimpleme	nted: Read as '0	,								
bit 10	CSCNA: Inp	out Scan Select b	it								
		puts for CH0+ du	uring Sample N	/UX A							
		t scan inputs									
oit 9-8	CHPS[1:0]: Channel Select bits										
	In 12-Bit Mode (AD21B = 1), CHPS[1:0] bits are Unimplemented and are Read as '0': $1 \times$ = Converts CH0, CH1, CH2 and CH3										
	1x = Converts CH0, CH1, CH2 and CH3 01 = Converts CH0 and CH1										
	00 = Conve										
bit 7	BUFS: Buffe	er Fill Status bit (d	only valid when	1 BUFM = 1)							
		s currently filling t	he second half	of the buffer; t	he user applicat	tion should acce	ess data in th				
		f of the buffer									
		s currently filling half of the buffer	the first half of	the buffer; the	e user application	on should acce	ess data in th				
bit 6-2		ncrement Rate b	its								
	When ADD										
	x1111 = Ge	nerates interrupt nerates interrupt			•						
	•										
	•										
	• x0001 = Generates interrupt after completion of every 2nd sample/conversion operation										
	x_{0000} = Generates interrupt after completion of every sample/conversion operation										
	When ADDMAEN = 1:										
		rements the DM/ rements the DM/									
	•										
	•										
		rements the DM									
		H Input is connec									

REGISTER 24-2: ADxCON2: ADCx CONTROL REGISTER 2

^{© 2013-2019} Microchip Technology Inc.

REGISTER 24-2: ADxCON2: ADCx CONTROL REGISTER 2 (CONTINUED)

bit 1	 BUFM: Buffer Fill Mode Select bit 1 = Starts buffer filling the first half of the buffer on the first interrupt and the second half of the buffer on the next interrupt 0 = Always starts filling the buffer from the Start address
bit 0	 Always stats mining the burlet from the Statt address ALTS: Alternate Input Sample Mode Select bit 1 = Uses channel input selects for Sample MUX A on the first sample and Sample MUX B on the next sample 0 = Always uses channel input selects for Sample MUX A

Note 1: The ADCx VREFH Input is connected to AVDD and the VREFL input is connected to AVss.

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	—	—	SAMC4 ⁽¹⁾	SAMC3 ⁽¹⁾	SAMC2 ⁽¹⁾	SAMC1 ⁽¹⁾	SAMC0 ⁽¹⁾
bit 15		•		·			bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADCS7 ⁽²⁾	ADCS6 ⁽²⁾	ADCS5 ⁽²⁾	ADCS4 ⁽²⁾	ADCS3 ⁽²⁾	ADCS2 ⁽²⁾	ADCS1 ⁽²⁾	ADCS0 ⁽²⁾
bit 7							bit
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 14-13		ived from syste ted: Read as '(
bit 15	_	Conversion Clernal RC clock	lock Source bit				
	•						
bit 12-8		Auto-Sample Ti	me bits(")				
	11111 = 31 T •	AD					
	•						
	•						
	00001 = 1 TA 00000 = 0 TA	-					
bit 7-0	ADCS[7:0]: A	DCx Conversion	on Clock Selec	t bits ⁽²⁾			
	11111111 =	TP • (ADCS[7:	0] + 1) = TP •	256 = Tad			
	•						
	•						
		TP • (ADCS[7: TP • (ADCS[7:					
		TP • (ADCS[7: TP • (ADCS[7:					
Note 1: The	ese bits are only						

REGISTER 24-3: ADxCON3: ADCx CONTROL REGISTER 3

© 2013-2019 Microchip Technology Inc.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0			
_	—	—	—	—	—	—	ADDMAEN			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
—	—	—	—	—	DMABL2	DMABL1	DMABL0			
bit 7							bit 0			
Legend:										
R = Readabl	le bit	W = Writable b	oit	U = Unimple	mented bit, read	d as '0'				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown			
bit 15-9	Unimplemen	ted: Read as '0)'							
bit 8	ADDMAEN: A	ADCx DMA Ena	able bit							
	1 = Conversion results are stored in the ADC1BUF0 register for transfer to RAM using DMA									
	0 = Conversion results are stored in the ADC1BUF0 through ADC1BUFF registers; DMA will not be used									
bit 7-3	Unimplemen	ted: Read as '0)'							
bit 2-0	DMABL[2:0]:	Selects Number	er of DMA Buf	fer Locations p	per Analog Inpu	t bits				
		es 128 words o		0 1						
		es 64 words of		• •						
		es 32 words of		0 1						
		es 16 words of es 8 words of b		0 1						
		es a words of b es 4 words of b		0 1						

REGISTER 24-4: ADxCON4: ADCx CONTROL REGISTER 4

001 = Allocates 2 words of buffer to each analog input

000 = Allocates 1 word of buffer to each analog input

bit 15 bit U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 - - - CH123SA2 CH123SA1 CH123NA0 CH123SA0 bit 7 - - CH123SA2 CH123SA1 CH123NA0 CH123SA0 bit 7 - - - CH123SA2 CH123SA1 CH123NA0 CH123SA0 bit 7 - - - CH123SA2 CH123SA1 CH123NA0 CH123SA0 bit 7 - - - CH123SA2 CH123SA1 CH123NA0 CH123SA0 bit 7 - - - - CH123SA2 CH123SA1 CH123NA0 CH123SA0 bit 7 - - - - - CH123SA2 CH123SA1 CH123NA0 CH123SA0 bit 15-13 Unimplemented: Read as '0' -	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 H H H123SA2 CH123SA1 CH123NA1 CH123NA0 CH123SA0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'		—	_	CH123SB2	CH123SB1	CH123NB1	CH123NB0	CH123SB0					
- - CH123SA2 CH123SA1 CH123NA1 CH123NA0 CH123SA0 bit 7 bit 7 bit 7 bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-13 Unimplemented: Read as '0' bit 12:11 CH123SB[2:1]: Channels 1, 2, 3 Positive Input Select for Sample B bits 1xx = CH1 positive input is AN0 (Op Amp 2), CH2 positive input is AN25 (Op Amp 5), CH3 positive input is AN5 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN5 (Op Amp 3) 010 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN5 (Op Amp 3) 011 = CH1 positive input is AN3, CH2 positive input is AN1 (CH3 positive input is AN2 001 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 001 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 001 = CH1 positive input is AN3, CH2 negative input is AN1, CH3 positive input is AN8 002 = CH1, CH2, CH3 negative input is AN3, CH2 negative input is AN1, CH3 positive input is AN8 012 = CH1 positive input is AN6, CH2 negative input is AN1, CH3 negative input is AN8 012 = CH1 positive input is AN3 (Op Amp 1), CH2 positive inp	bit 15							bit 8					
- - CH123SA2 CH123SA1 CH123NA1 CH123NA0 CH123SA0 bit 7 bit 7 bit 7 bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-13 Unimplemented: Read as '0' bit 12:11 CH123SB[2:1]: Channels 1, 2, 3 Positive Input Select for Sample B bits 1xx = CH1 positive input is AN0 (Op Amp 2), CH2 positive input is AN25 (Op Amp 5), CH3 positive input is AN5 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN5 (Op Amp 3) 010 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN5 (Op Amp 3) 011 = CH1 positive input is AN3, CH2 positive input is AN1 (CH3 positive input is AN2 001 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 001 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 001 = CH1 positive input is AN3, CH2 negative input is AN1, CH3 positive input is AN8 002 = CH1, CH2, CH3 negative input is AN3, CH2 negative input is AN1, CH3 positive input is AN8 012 = CH1 positive input is AN6, CH2 negative input is AN1, CH3 negative input is AN8 012 = CH1 positive input is AN3 (Op Amp 1), CH2 positive inp													
bit 7 bit Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-13 Unimplemented: Read as '0' bit 12-11 CH123SB[2:1]: Channels 1, 2, 3 Positive Input Select for Sample B bits 1xx = CH1 positive input is AN0 (Op Amp 2), CH2 positive input is AN25 (Op Amp 5), CH3 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN5 (Op Amp 5) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN5 (Op Amp 3) 011 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN5 (Op Amp 3) 011 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 011 = CH1 negative input is AN3, CH2 negative input is AN1, CH3 positive input is AN3 11 = CH1 negative input is AN3, CH2 negative input is AN1, CH3 positive input is AN1	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-13 Unimplemented: Read as '0' bit 12-11 CH123SB[2:1]: Channels 1, 2, 3 Positive Input Select for Sample B bits 1xx = CH1 positive input is AN0 (Op Amp 2), CH2 positive input is AN25 (Op Amp 5), CH3 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN25 (Op Amp 5) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 011 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN5 001 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN5 001 = CH1 positive input is AN3, CH2 negative input is AN1, CH3 positive input is AN5 001 = CH1 negative input is AN3, CH2 negative input is AN1, CH3 positive input is AN1 10 = CH1 negative input is AN3, CH2 negative input is AN1, CH3 negative input is AN1 11 = CH1 negative input is AN4, CH2 negative input is AN1 11 = CH1 negative input is AN3, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input select for Sample B bit 11 = CH1 negative input is AN3 (Op Amp 1), CH2 positive input is AN2 (Op Amp 5), CH3 positive input is AN8 (Op Amp 3) 11 = CH1 positive input is AN3 (Op Amp 1), CH2 pos	—	—		CH123SA2	CH123SA1	CH123NA1	CH123NA0	CH123SA0					
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-13 Unimplemented: Read as '0' bit 12-11 CH123SB[2:1]: Channels 1, 2, 3 Positive Input Select for Sample B bits 1xx = CH1 positive input is AN0 (Op Amp 2), CH2 positive input is AN25 (Op Amp 5), CH3 positive input is AN25 (Op Amp 5) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN25 (Op Amp 5) 011 = CH1 positive input is AN3, CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 011 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 011 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 011 = CH1 angative input is AN3, CH2 negative input select for Sample B bits 11 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN11 10 = CH123SB[2:1]: Channels 1, 2, 3 Positive Input Select for Sample B bits 11 = CH1 negative input is AN3 (Op Amp 2), CH2 positive input is AN25 (Op Amp 5), CH3 positive input is AN2 bit 4 CH123SB[2:1]: Channels 1, 2, 3 Positive Input Select for Sample A bits 1x =	bit 7							bit C					
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-13 Unimplemented: Read as '0' bit 12-11 CH123SB[2:1]: Channels 1, 2, 3 Positive Input Select for Sample B bits Ixxx = CH1 positive input is AN0 (Op Amp 2), CH2 positive input is AN25 (Op Amp 5), CH3 positive input is AN25 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN25 (Op Amp 5) 00 = CH1 positive input is AN3, CP2 positive input is AN0, CP3 positive input is AN5 (Op Amp 3) 001 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 00 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 bit 10-9 CH123NB[1:0]: Channels 1, 2, 3 Negative input Select for Sample B bits 11 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input select for Sample B bit See bits[12:11] for bit selections. bit 4.3 CH123SB[2:1]: Channels 1, 2, 3 Positive Input Select for Sample B bit 1x = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN25 (Op Amp 5), CH3 positive input is AN25 (Op Amp 3) 011 = CH1 negative input is AN3 (Op Amp 1), CH2 positive input is AN25 (Op Amp 5), CH3 positive input is AN25 (Op Amp 3) 012 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is	l egend:												
 bit 15-13 Unimplemented: Read as '0' bit 12-11 CH123SB[2:1]: Channels 1, 2, 3 Positive Input Select for Sample B bits xx = CH1 positive input is AN0 (Op Amp 2), CH2 positive input is AN25 (Op Amp 5), CH3 positive input is AN25 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN25 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 001 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 (Op Amp 3) 001 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 000 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 bit 10-9 CH123NB[1:0]: Channels 1, 2, 3 Negative Input Select for Sample B bits 11 = CH1 negative input is AN6, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 regative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input s rev REFL bit 8 CH123SB0: Channels 1, 2, 3 Positive Input Select for Sample B bit See bits[12:11] for bit selections. bit 7-5 Unimplemented: Read as '0' bit 4-3 CH123SA[2:1]: Channels 1, 2, 3 Positive Input Select for Sample A bits 1xx = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN25 (Op Amp 5), CH3 positive input is AN5 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN5 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN5 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN5 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN5 (Op Amp 3)	-	le bit	W = Writable	e bit	U = Unimpler	mented bit, read	l as '0'						
 bit 12-11 CH123SB[2:1]: Channels 1, 2, 3 Positive Input Select for Sample B bits 1xx = CH1 positive input is AN3 (Op Amp 2), CH2 positive input is AN25 (Op Amp 5), CH3 positive input is AN6 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN25 (Op Amp 3) 010 = CH1 positive input is AN3 (OP Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 001 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN5 000 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN5 001 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN1 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 11 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative inputs are VREFL bit 8 CH123SB0: Channels 1, 2, 3 Positive Input Select for Sample B bits 11xx = CH1 positive input is AN0 (Op Amp 2), CH2 positive input is AN25 (Op Amp 5), CH3 positive 11xx = CH1 positive input is AN0 (Op Amp 2), CH2 positive input is AN25 (Op Amp 5), CH3 positive 11xx = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input 11xx = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input 12x = AN6 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input 12x = AN6 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN3 001 = CH1 positive input is AN3 (CP Amp 1), CH2 positive input is AN3 001 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 001 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN1 10 = CH1 negative input is AN3, CH2 positive input is AN1, CH3 negative input	-n = Value a	t POR	'1' = Bit is se	t	-			nown					
 bit 12-11 CH123SB[2:1]: Channels 1, 2, 3 Positive Input Select for Sample B bits 1xx = CH1 positive input is AN3 (Op Amp 2), CH2 positive input is AN25 (Op Amp 5), CH3 positive input is AN6 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN25 (Op Amp 3) 010 = CH1 positive input is AN3 (OP Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 001 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN5 000 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN5 001 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN1 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 11 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative inputs are VREFL bit 8 CH123SB0: Channels 1, 2, 3 Positive Input Select for Sample B bits 11xx = CH1 positive input is AN0 (Op Amp 2), CH2 positive input is AN25 (Op Amp 5), CH3 positive 11xx = CH1 positive input is AN0 (Op Amp 2), CH2 positive input is AN25 (Op Amp 5), CH3 positive 11xx = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input 11xx = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input 12x = AN6 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input 12x = AN6 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN3 001 = CH1 positive input is AN3 (CP Amp 1), CH2 positive input is AN3 001 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 001 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN1 10 = CH1 negative input is AN3, CH2 positive input is AN1, CH3 negative input													
 1xx = CH1 positive input is AN0 (Op Amp 2), CH2 positive input is AN25 (Op Amp 5), CH3 positive input is AN6 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive inpu is AN25 (Op Amp 5) 010 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive inpu is AN5 (Op Amp 3) 001 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 (OD Amp 3) 001 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN5 (OD Amp 3) 011 = CH1 negative input is AN9, CH2 negative input is AN1, CH3 positive input is AN1 (D1 = CH1 negative input is AN9, CH2 negative input is AN1, CH3 negative input is AN1 (D1 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative inputs are VREFL bit 8 CH123SB0: Channels 1, 2, 3 Positive Input Select for Sample B bit See bits[12:11] for bit selections. bit 4-3 CH123SA[2:1]: Channels 1, 2, 3 Positive Input Select for Sample A bits 1xx = CH1 positive input is AN3 (Op Amp 2), CH2 positive input is AN2 (Op Amp 5), CH3 positive input is AN5 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN2 (Op Amp 2), CH3 positive input is AN2 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN2 (Op Amp 5) 010 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN2 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN2 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN2 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive	bit 15-13	Unimplemen	ted: Read as	'0'									
 input is AN6 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN25 (Op Amp 5) 010 = CH1 positive input is AN3, (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 001 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 (O0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 bit 10-9 CH123NB[1:0]: Channels 1, 2, 3 Negative Input Select for Sample B bits 11 = CH1 negative input is AN6, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input Select for Sample B bit See bits[12:11] for bit selections. bit 7-5 Unimplemented: Read as '0' bit 4-3 CH123SA[2:1]: Channels 1, 2, 3 Positive Input Select for Sample A bits 1xx = CH1 positive input is AN3 (Op Amp 2), CH2 positive input is AN0 (Op Amp 5), CH3 positive input is AN6 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN25 (Op Amp 5) 010 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN5 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN5 (Op Amp 5) 010 = CH1 positive input is AN3, CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN5 (Op Amp 1) 011 = CH1 positive input is AN3, CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN5 (Op Amp 5) 011 = CH1 positive input is AN3, CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN5 (OP Amp 3) 011 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN5 (O0 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is A	bit 12-11	_	=		=	-							
 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN25 (Op Amp 5) 010 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 001 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 000 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 bit 10-9 CH123NB[1:0]: Channels 1, 2, 3 Negative Input Select for Sample B bits 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input s are VREFL bit 8 CH123SB0: Channels 1, 2, 3 Positive Input Select for Sample B bit See bits[12:11] for bit selections. bit 7-5 Unimplemented: Read as '0' bit 4-3 CH123SA[2:1]: Channels 1, 2, 3 Positive Input Select for Sample A bits 1xx = CH1 positive input is AN3 (Op Amp 2), CH2 positive input is AN0 (Op Amp 5), CH3 positive input is AN6 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN5 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN5 (Op Amp 3) 011 = CH1 positive input is AN3, CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 011 = CH1 positive input is AN3, CH2 positive input is AN1 (CH3 positive input is AN5 (O0 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN2 011 = CH1 positive input is AN3, CH2 positive input is AN1 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 011 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 010 = CH1 positive input is AN3, CH2 positive inpu		1xx = CH1 positive input is AN0 (Op Amp 2), CH2 positive input is AN25 (Op Amp 5), CH3 positive											
 is AN25 (Op Amp 5) 010 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 001 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 000 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 bit 10-9 CH123NE[1:0]: Channels 1, 2, 3 Negative Input Select for Sample B bits 11 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input select for Sample B bit See bits[12:11] for bit selections. bit 7-5 Unimplemented: Read as '0' bit 4-3 CH123SA[2:1]: Channels 1, 2, 3 Positive Input Select for Sample A bits 1xx = CH1 positive input is AN3 (Op Amp 2), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 011 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 bit 2-1 CH123NA[1:0]: Channels 1, 2, 3 Negative input is AN4, CH3 positive input is AN2 bit 2-1 CH123NA[1:0]: Channels 1, 2, 3 Negative input is AN1, CH3 positive input is AN2 001 = CH1 positive input is AN9, CH2 positive input is AN1, CH3 positive input is AN2 bit 2-1 CH123NA		011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input											
 is AN6 (Op Amp 3) 001 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 000 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 bit 10-9 CH123NB[1:0]: Channels 1, 2, 3 Negative Input Select for Sample B bits 11 = CH1 negative input is AN6, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative inputs are VREFL bit 8 CH123SB0: Channels 1, 2, 3 Positive Input Select for Sample B bit See bits[12:11] for bit selections. bit 7-5 Unimplemented: Read as '0' bit 4-3 CH123SA[2:1]: Channels 1, 2, 3 Positive Input Select for Sample A bits 1xx = CH1 positive input is AN0 (Op Amp 2), CH2 positive input is AN25 (Op Amp 5), CH3 positive input is AN6 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 011 = CH1 positive input is AN3 (OP Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 011 = CH1 positive input is AN3 (CH2 positive input is AN1, CH3 positive input is AN5 000 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 bit 2-1 CH123NA[1:0]: Channels 1, 2, 3 Negative Input Select for Sample A bits 11 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 bit 2-1 CH123NA[1:0]: Channels 1, 2, 3 Negative input is AN10, CH3 negative input is AN2 bit 2-1 CH123NA[1:0]: Channels 1, 2, 3 Negative input is AN10, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input server input is AN7, CH3		is AN2	is AN25 (Op Amp 5)										
 001 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 000 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 bit 10-9 CH123NB[1:0]: Channels 1, 2, 3 Negative Input Select for Sample B bits 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative inputs are VREFL bit 8 CH123SB0: Channels 1, 2, 3 Positive Input Select for Sample B bit See bits[12:11] for bit selections. bit 7-5 Unimplemented: Read as '0' bit 4-3 CH123SA[2:1]: Channels 1, 2, 3 Positive Input Select for Sample A bits 1xx = CH1 positive input is AN3 (Op Amp 2), CH2 positive input is AN25 (Op Amp 5), CH3 positive input is AN6 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN25 (Op Amp 5) 010 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 001 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 000 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 bit 2-1 CH123NA[1:0]: Channels 1, 2, 3 Negative Input Select for Sample A bits 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN1 10 = CH1 negative input is AN9, CH2 negative input is AN1, CH3 negative input is AN1 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN3 0x = CH1, CH2, CH3 negative input select for Sample A bits 11 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input select for Sample A bits 				AN3 (Op Amp '	1), CH2 positive	e input is AN0 (0	Op Amp 2), CH3	3 positive inpu					
 000 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 bit 10-9 CH123NB[1:0]: Channels 1, 2, 3 Negative Input Select for Sample B bits 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 													
 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative inputs are VREFL bit 8 CH123SB0: Channels 1, 2, 3 Positive Input Select for Sample B bit See bits[12:11] for bit selections. bit 7-5 Unimplemented: Read as '0' bit 4-3 CH123SA[2:1]: Channels 1, 2, 3 Positive Input Select for Sample A bits 1xx = CH1 positive input is AN0 (Op Amp 2), CH2 positive input is AN25 (Op Amp 5), CH3 positive input is AN6 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN25 (Op Amp 5) 010 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 001 = CH1 positive input is AN3, CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 001 = CH1 positive input is AN3, CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 001 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 bit 2-1 CH123NA[1:0]: Channels 1, 2, 3 Negative Input Select for Sample A bits 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input sare VREFL bit 0 CH123SA0: Channels 1, 2, 3 Positive Input Select for Sample A bit 													
 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative inputs are VREFL bit 8 CH123SB0: Channels 1, 2, 3 Positive Input Select for Sample B bit See bits[12:11] for bit selections. bit 7-5 Unimplemented: Read as '0' bit 4-3 CH123SA[2:1]: Channels 1, 2, 3 Positive Input Select for Sample A bits 1xx = CH1 positive input is AN0 (Op Amp 2), CH2 positive input is AN25 (Op Amp 5), CH3 positive input is AN6 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN25 (Op Amp 5) 010 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN26 (Op Amp 3) 001 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 000 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 bit 2-1 CH123NA[1:0]: Channels 1, 2, 3 Negative Input Select for Sample A bits 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input s are VREFL bit 0 CH123SA0: Channels 1, 2, 3 Positive Input Select for Sample A bit 	bit 10-9												
 0x = CH1, CH2, CH3 negative inputs are VREFL bit 8 CH123SB0: Channels 1, 2, 3 Positive Input Select for Sample B bit See bits[12:11] for bit selections. bit 7-5 Unimplemented: Read as '0' bit 4-3 CH123SA[2:1]: Channels 1, 2, 3 Positive Input Select for Sample A bits 1xx = CH1 positive input is AN0 (Op Amp 2), CH2 positive input is AN25 (Op Amp 5), CH3 positive input is AN6 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN25 (Op Amp 5) 010 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 001 = CH1 positive input is AN3, CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 001 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 bit 2-1 CH123NA[1:0]: Channels 1, 2, 3 Negative Input Select for Sample A bits 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN10, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative inputs are VREFL bit 0 CH123SA0: Channels 1, 2, 3 Positive Input Select for Sample A bit 													
 bit 8 CH123SB0: Channels 1, 2, 3 Positive Input Select for Sample B bit See bits[12:11] for bit selections. bit 7-5 Unimplemented: Read as '0' bit 4-3 CH123SA[2:1]: Channels 1, 2, 3 Positive Input Select for Sample A bits 1xx = CH1 positive input is AN0 (Op Amp 2), CH2 positive input is AN25 (Op Amp 5), CH3 positive input is AN6 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN25 (Op Amp 5) 010 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 001 = CH1 positive input is AN3, CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 001 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 000 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 bit 2-1 CH123NA[1:0]: Channels 1, 2, 3 Negative Input Select for Sample A bits 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input select for Sample A bits bit 0 CH123SA0: Channels 1, 2, 3 Positive Input Select for Sample A bit 						N7, CH3 negati	ve input is AN8	}					
 See bits[12:11] for bit selections. bit 7-5 Unimplemented: Read as '0' bit 4-3 CH123SA[2:1]: Channels 1, 2, 3 Positive Input Select for Sample A bits 1xx = CH1 positive input is AN0 (Op Amp 2), CH2 positive input is AN25 (Op Amp 5), CH3 positive input is AN6 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN25 (Op Amp 5) 010 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 5) 010 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 001 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 000 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 bit 2-1 CH123NA[1:0]: Channels 1, 2, 3 Negative Input Select for Sample A bits 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative inputs are VREFL bit 0 CH123SA0: Channels 1, 2, 3 Positive Input Select for Sample A bit	hit Q			•		mala R hit							
 bit 7-5 Unimplemented: Read as '0' bit 4-3 CH123SA[2:1]: Channels 1, 2, 3 Positive Input Select for Sample A bits 1xx = CH1 positive input is AN0 (Op Amp 2), CH2 positive input is AN25 (Op Amp 5), CH3 positive input is AN6 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN25 (Op Amp 5) 010 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 001 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 001 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 000 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 bit 2-1 CH123NA[1:0]: Channels 1, 2, 3 Negative Input Select for Sample A bits 11 = CH1 negative input is AN6, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative inputs are VREFL bit 0 CH123SA0: Channels 1, 2, 3 Positive Input Select for Sample A bits 	DILO			•		пріе в віс							
 bit 4-3 CH123SA[2:1]: Channels 1, 2, 3 Positive Input Select for Sample A bits 1xx = CH1 positive input is AN0 (Op Amp 2), CH2 positive input is AN25 (Op Amp 5), CH3 positive input is AN6 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN25 (Op Amp 5) 010 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 001 = CH1 positive input is AN3, CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 001 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 000 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 bit 2-1 CH123NA[1:0]: Channels 1, 2, 3 Negative Input Select for Sample A bits 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input select for Sample A bit bit 0 CH123SA0: Channels 1, 2, 3 Positive Input Select for Sample A bit 	bit 7-5	-	-										
 1xx = CH1 positive input is AN0 (Op Amp 2), CH2 positive input is AN25 (Op Amp 5), CH3 positive input is AN6 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN25 (Op Amp 5) 010 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 001 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 (Op Amp 3) 001 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 (Op amp 3) 001 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 (Op amp 3) 011 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 bit 2-1 CH123NA[1:0]: Channels 1, 2, 3 Negative Input Select for Sample A bits 11 = CH1 negative input is AN6, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative inputs are VREFL bit 0 CH123SA0: Channels 1, 2, 3 Positive Input Select for Sample A bit 		-			nnut Select for	r Samnle A hits							
 input is AN6 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN25 (Op Amp 5) 010 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 001 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 000 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 bit 2-1 CH123NA[1:0]: Channels 1, 2, 3 Negative Input Select for Sample A bits 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative inputs are VREFL bit 0 CH123SA0: Channels 1, 2, 3 Positive Input Select for Sample A bit 		-	-			•	25 (Op Amp 5)	CH3 positive					
 is AN25 (Op Amp 5) 010 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 001 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 000 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 bit 2-1 CH123NA[1:0]: Channels 1, 2, 3 Negative Input Select for Sample A bits CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 CH2, CH3 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 bit 0 CH123SA0: Channels 1, 2, 3 Positive Input Select for Sample A bit 													
 010 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 001 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 000 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 bit 2-1 CH123NA[1:0]: Channels 1, 2, 3 Negative Input Select for Sample A bits 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative inputs are VREFL bit 0 CH123SA0: Channels 1, 2, 3 Positive Input Select for Sample A bit 			011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input										
 is AN6 (Op Amp 3) 001 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 000 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 bit 2-1 CH123NA[1:0]: Channels 1, 2, 3 Negative Input Select for Sample A bits 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative inputs are VREFL bit 0 CH123SA0: Channels 1, 2, 3 Positive Input Select for Sample A bit 													
 001 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 000 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 bit 2-1 CH123NA[1:0]: Channels 1, 2, 3 Negative Input Select for Sample A bits 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative inputs are VREFL bit 0 CH123SA0: Channels 1, 2, 3 Positive Input Select for Sample A bit 													
bit 2-1CH123NA[1:0]: Channels 1, 2, 3 Negative Input Select for Sample A bits11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN1110 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN80x = CH1, CH2, CH3 negative inputs are VREFLbit 0CH123SA0: Channels 1, 2, 3 Positive Input Select for Sample A bit		001 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5											
11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN1110 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN80x = CH1, CH2, CH3 negative inputs are VREFLbit 0CH123SA0: Channels 1, 2, 3 Positive Input Select for Sample A bit			•	•	•	•	•						
10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN80x = CH1, CH2, CH3 negative inputs are VREFLbit 0CH123SA0: Channels 1, 2, 3 Positive Input Select for Sample A bit	bit 2-1	-	-	•	•	•							
0x = CH1, CH2, CH3 negative inputs are VREFL bit 0 CH123SA0: Channels 1, 2, 3 Positive Input Select for Sample A bit													
bit 0 CH123SA0: Channels 1, 2, 3 Positive Input Select for Sample A bit						iar, ono negali	ve input is Alvo	1					
	bit 0		-	-		ample A bit							
						• • •							

REGISTER 24-5: ADxCHS123: ADCx INPUT CHANNELS 1, 2, 3 SELECT REGISTER

dsPIC33EVXXXGM00X/10X FAMILY

						-	
R/W-0) U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0N	в —	CH0SB5 ^(1,3)	CH0SB4 ^(1,3)	CH0SB3 ^(1,3)	CH0SB2 ^(1,3)	CH0SB1 ^(1,3)	CH0SB0 ^(1,3)
bit 15							bit 8
R/W-0) U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CHON	A _	CH0SA5 ^(1,3)	CH0SA4 ^(1,3)	CH0SA3 ^(1,3)	CH0SA2 ^(1,3)	CH0SA1 ^(1,3)	CH0SA0 ^(1,3)
bit 7							bit 0
Legend:						(a)	
R = Read		W = Writable b	bit	-	ented bit, read		
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	nown
bit 15	1 = Channel	annel 0 Negativ I 0 negative inpi I 0 negative inpi	ut is AN1 ⁽¹⁾	for Sample MU	IX B bit		
bit 14		nted: Read as					
bit 13-8	=	: Channel 0 Po		act for Sampla	MUX P hite(1,3)		
	111110 = C 111101 = C	channel 0 positiv channel 0 positiv channel 0 positiv channel 0 positiv channel 0 positiv	ve input is AN6 ve input is AN6 ve input is AN3 ve input is AN3	2 (CTMU temp 1 (internal band 1	erature diode)		
		hannel 0 positiv		(Op Amp 2) ⁽²⁾			
bit 7	CH0NA: Ch 1 = Channel	annel 0 Negativ I 0 negative inpu I 0 negative inpu	ve Input Select ut is AN1 ⁽¹⁾		IX A bit		
bit 6	Unimpleme	nted: Read as	ʻ0 '				
Note 1: 2:	AN0 to AN7 are redetermine how en If the op amp is sis used.	abling a particul	ar op amp or co	mparator affect	s selection choic	ces for Channel	s 1, 2 and 3.

REGISTER 24-6: ADxCHS0: ADCx INPUT CHANNEL 0 SELECT REGISTER

3: See the "Pin Diagrams" section for the available analog channels for each device.

REGISTER 24-6: ADxCHS0: ADCx INPUT CHANNEL 0 SELECT REGISTER (CONTINUED)

- **Note 1:** AN0 to AN7 are repurposed when comparator and op amp functionality are enabled. See Figure 24-1 to determine how enabling a particular op amp or comparator affects selection choices for Channels 1, 2 and 3.
 - 2: If the op amp is selected (OPAEN bit (CMxCON[10]) = 1), the OAx input is used; otherwise, the ANx input is used.
 - 3: See the "Pin Diagrams" section for the available analog channels for each device.

^{© 2013-2019} Microchip Technology Inc.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS31	CSS30	CSS29	CSS28	CSS27	CSS26 ⁽¹⁾	CSS25 ⁽¹⁾	CSS24 ⁽¹⁾
bit 15			•	•			bit
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
		0-0		CSS19	CSS18	CSS17	CSS16
bit 7				00013	00010	00017	bit
Legend: R = Readable	o hit	W = Writable	hit	II – Unimplo	montod hit rook	1 oo 'O'	
-n = Value at		'1' = Bit is set		'0' = Bit is cle	mented bit, read	x = Bit is unkr	
	FOR	I - DILISSEL			aleu	X - DIL IS ULIKI	IOWII
bit 15	CSS31: ADC	x Input Scan S	election bit				
		Nx for input sc x for input scar					
bit 14	CSS30: ADC	x Input Scan S	election bit				
		Nx for input sc					
bit 13	-	x for input scar x Input Scan S					
DIL 15		Nx for input scan s					
		x for input scar					
bit 12		528: ADCx Input Scan Selection bit					
		Nx for input sc x for input scar					
bit 11	CSS27: ADC	x Input Scan S	election bit				
		Nx for input sc					
bit 10	•	x for input scar x Input Scan S					
		Nx for input sc					
		x for input scar					
bit 9		x Input Scan S					
		Nx for input sc x for input scar					
bit 8	•	x Input Scan S					
		Nx for input sc					
		x for input scar					
bit 7-4	•	ted: Read as '					
bit 3		x Input Scan S					
		Nx for input sc x for input scar					
bit 2	-	x Input Scan S					
		Nx for input sc					
		x for input scar					

REGISTER 24-7: ADxCSSH: ADCx INPUT SCAN SELECT REGISTER HIGH⁽²⁾

- **Note 1:** If the op amp is selected (OPAEN bit (CMxCON[10]) = 1), the OAx input is used; otherwise, the ANx input is used.
 - 2: All bits in this register can be selected by the user application. However, inputs selected for scan without a corresponding input on the device convert VREFL.

REGISTER 24-7: ADxCSSH: ADCx INPUT SCAN SELECT REGISTER HIGH⁽²⁾ (CONTINUED)

- bit 1 CSS17: ADCx Input Scan Selection bit 1 = Selects ANx for input scan
 - 0 = Skips ANx for input scan
- bit 0 CSS16: ADCx Input Scan Selection bit
 - 1 = Selects ANx for input scan
 - 0 = Skips ANx for input scan
- **Note 1:** If the op amp is selected (OPAEN bit (CMxCON[10]) = 1), the OAx input is used; otherwise, the ANx input is used.
 - 2: All bits in this register can be selected by the user application. However, inputs selected for scan without a corresponding input on the device convert VREFL.

^{© 2013-2019} Microchip Technology Inc.

REGISTER 24-8: ADxCSSL: ADCx INPUT SCAN SELECT REGISTER LOW^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CSS	[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CSS	6[7:0]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		t	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown	
L							

bit 15-0 CSS[15:0]: ADCx Input Scan Selection bits

1 = Selects ANx for input scan

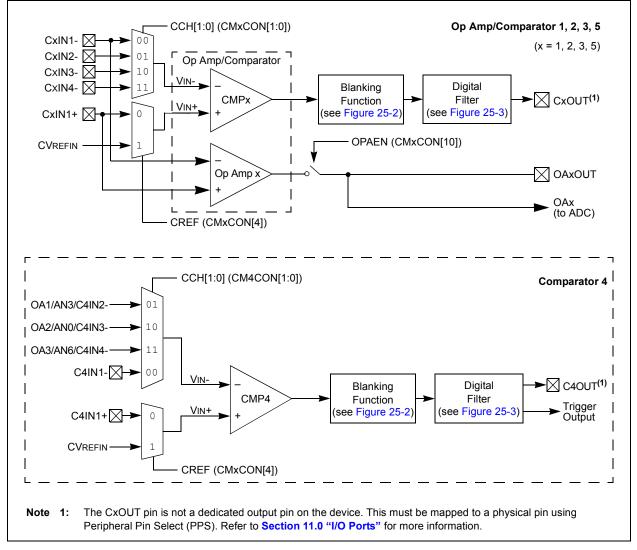
0 = Skips ANx for input scan

Note 1: On devices with less than 16 analog inputs, all bits in this register can be selected by the user application. However, inputs selected for scan without a corresponding input on the device convert VREFL.

2: CSSx = ANx, where x = 0-5.

25.0 OP AMP/COMPARATOR MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Op Amp/Comparator" (www.microchip.com/DS70000357) in the "dsPIC33/PIC24 Family Reference Manual".
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


The dsPIC33EVXXXGM00X/10X family devices contain up to five comparators that can be configured in various ways. CMP1, CMP2, CMP3 and CMP5 also have the option to be configured as op amps, with the output being brought to an external pin for gain/filtering connections. As shown in Figure 25-1, individual comparator options are specified by the comparator module's Special Function Register (SFR) control bits.

The following options allow users to:

- Select the Edge for Trigger and Interrupt Generation
- Configure the Comparator Voltage Reference
- Configure Output Blanking and Masking
- Configure as a Comparator or Op Amp (CMP1, CMP2, CMP3 and CMP5 only)

Note: Not all op amp/comparator input/output connections are available on all devices. See the "Pin Diagrams" section for available connections.

© 2013-2019 Microchip Technology Inc.

Figure 25-2, shows the user-programmable blanking function block diagram.

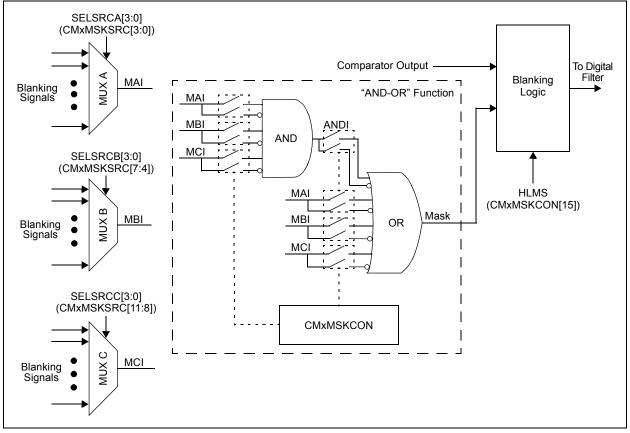
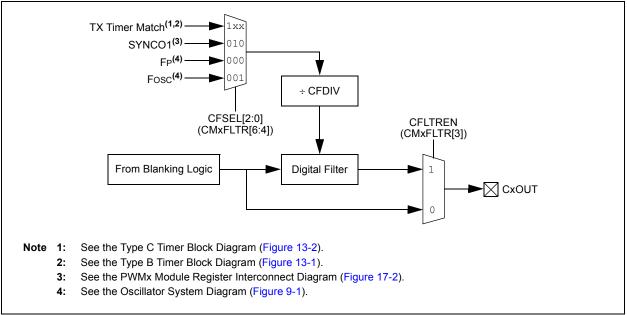



Figure 25-3, shows the digital filter interconnect block diagram.

25.1 Op Amp/Comparator Control Registers

REGISTER 25-1: CMSTAT: OP AMP/COMPARATOR STATUS REGISTER

R/W-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
PSIDL	—		C5EVT ⁽¹⁾	C4EVT ⁽¹⁾	C3EVT ⁽¹⁾	C2EVT ⁽¹⁾	C1EVT ⁽¹⁾
bit 15							bit 8

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
—	—	—	C5OUT ⁽²⁾	C4OUT ⁽²⁾	C3OUT ⁽²⁾	C2OUT ⁽²⁾	C1OUT ⁽²⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	PSIDL: Op Amp/Comparator Stop in Idle Mode bit 1 = Discontinues operation of all op amps/comparators when device enters Idle mode 0 = Continues operation of all op amps/comparators in Idle mode
bit 14-13	Unimplemented: Read as '0'
bit 12-8	C[5:1]EVT: Op Amp/Comparator 1-5 Event Status bits ⁽¹⁾
	1 = Op amp/comparator event occurred0 = Op amp/comparator event did not occur
bit 7-5	Unimplemented: Read as '0'
bit 4-0	C[5:1]OUT: Op Amp/Comparator 1-5 Output Status bits ⁽²⁾
	When CPOL = 0:
	1 = VIN + > VIN-
	$0 = VIN + \langle VIN - VIN \rangle$
	When CPOL = 1:
	1 = VIN + < VIN-
	0 = VIN + > VIN-

- **Note 1:** Reflects the value of the of the CEVT bit in the respective Op Amp/Comparator Control register, CMxCON[9].
 - 2: Reflects the value of the COUT bit in the respective Op Amp/Comparator Control register, CMxCON[8].

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R-0
CON	COE	CPOL	_	_	OPAEN ⁽²⁾	CEVT	COUT
bit 15							bit 8
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
EVPOL1 ⁽³⁾	EVPOL0 ⁽³⁾		CREF ⁽¹⁾	—	—	CCH1 ⁽¹⁾	CCH0 ⁽¹⁾
bit 7							bit C
Legend:	1.11					(0)	
R = Readable		W = Writable			mented bit, read		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	iown
bit 15		p/Comparator >	(Enable bit				
	•	Comparator x is					
		Comparator x is					
bit 14	COE: Compa	rator x Output I	Enable bit				
		tor output is pre		xOUT pin			
	0 = Comparat	tor output is inte	ernal only				
bit 13	•	arator x Output	•	ct bit			
		tor output is inv					
	•	tor output is not					
bit 12-11	-	ted: Read as '					
bit 10	•	Amp x Enable b	Dit ^(_)				
	1 = Op Amp > 0 = Op Amp >						
bit 9	• •	arator x Event b	oit				
				DL[1:0] settings	s, occurred; disa	bles future trigo	pers and inter-
	rupts unt	il the bit is clear	red		, ,		
	0 = Compara	tor event did no	ot occur				
bit 8	•	arator x Output					
	$\frac{\text{When CPOL}}{1 = \text{VIN} + > \text{VIN}}$	= 0 (non-inverte	ed polarity):				
	1 = VIN + > VII $0 = VIN + < VII$						
	• • • • • • •	-	plarity):				
	$\frac{\text{When CPOL} = 1 \text{ (inverted polarity):}}{1 = V(N + \leq V(N + \leq 1))}$						
	1 = VIN+ < VI	N-					

REGISTER 25-2: CMxCON: COMPARATOR x CONTROL REGISTER (x = 1, 2, 3 OR 5)

- Note 1: Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.
 - **2:** The op amp and the comparator can be used simultaneously in these devices. The OPAEN bit only enables the op amp while the comparator is still functional.
 - 3: After configuring the comparator, either for a high-to-low or low-to-high COUT transition (EVPOL[1:0] (CMxCON[7:6]) = 10 or 01), the Comparator x Event bit, CEVT (CMxCON[9]), and the Comparator Interrupt Flag, CMPIF (IFS1[2]), must be cleared before enabling the Comparator Interrupt Enable bit, CMPIE (IEC1[2]).

REGISTER 25-2: CMxCON: COMPARATOR x CONTROL REGISTER (x = 1, 2, 3 OR 5) (CONTINUED)

- bit 7-6 **EVPOL[1:0]:** Trigger/Event/Interrupt Polarity Select bits⁽³⁾
 - 11 = Trigger/event/interrupt generated on any change of the comparator output (while CEVT = 0)
 - 10 = Trigger/event/interrupt generated only on high-to-low transition of the polarity selected comparator output (while CEVT = 0)

If CPOL = 1 (inverted polarity): Low-to-high transition of the comparator output. If CPOL = 0 (non-inverted polarity):

- High-to-low transition of the comparator output.
- 01 = Trigger/event/interrupt generated only on low-to-high transition of the polarity selected comparator output (while CEVT = 0)

If CPOL = 1 (inverted polarity):

High-to-low transition of the comparator output.

- If CPOL = 0 (non-inverted polarity):
- Low-to-high transition of the comparator output.
- 00 = Trigger/event/interrupt generation is disabled
- bit 5 Unimplemented: Read as '0'
- bit 4 CREF: Comparator x Reference Select bit (VIN+ input)⁽¹⁾
 - 1 = VIN+ input connects to the internal CVREFIN voltage
 - 0 = VIN+ input connects to the CxIN1+ pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH[1:0]: Op Amp/Comparator x Channel Select bits⁽¹⁾
 - 11 = Inverting input of op amp/comparator connects to the CxIN4- pin
 - 10 = Inverting input of op amp/comparator connects to the CxIN3- pin
 - 01 = Inverting input of op amp/comparator connects to the CxIN2- pin
 - 00 = Inverting input of op amp/comparator connects to the CxIN1- pin
- Note 1: Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.
 - **2:** The op amp and the comparator can be used simultaneously in these devices. The OPAEN bit only enables the op amp while the comparator is still functional.
 - **3:** After configuring the comparator, either for a high-to-low or low-to-high COUT transition (EVPOL[1:0] (CMxCON[7:6]) = 10 or 01), the Comparator x Event bit, CEVT (CMxCON[9]), and the Comparator Interrupt Flag, CMPIF (IFS1[2]), must be cleared before enabling the Comparator Interrupt Enable bit, CMPIE (IEC1[2]).

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R-0
CON	COE	CPOL	_	—		CEVT	COUT
bit 15	•						bit 8
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
EVPOL1 ⁽²⁾	EVPOL0 ⁽²⁾	—	CREF ⁽¹⁾	—	—	CCH1 ⁽¹⁾	CCH0 ⁽¹⁾
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15		p/Comparator 4	4 Enable bit				
	1 = Comparat						
	0 = Comparat						
bit 14	•	rator 4 Output					
		or output is pre		4001 pin			
bit 13	•	arator 4 Outpu	5	ect bit			
	-	or output is inv	-				
	0 = Comparat	or output is no	t inverted				
bit 12-10	Unimplemen	ted: Read as '	כי				
bit 9	CEVT: Compa	arator 4 Event I	oit				
	•		ding to EVPOL	[1:0] settings, o	occurred; disab	les future triggers	and interrupt
		bit is cleared tor event did n	ot occur				
	•	arator 4 Output					
hit 8	COOL Comp						
bit 8	When CPOL :	= () (non-invert					
bit 8	$\frac{\text{When CPOL}}{1 = \text{VIN} + > \text{VIN}}$		eu polanty).				
bit 8		۷-	eu polanty).				
bit 8	1 = VIN+ > VIN 0 = VIN+ < VIN When CPOL :	ז- ז- = 1 (inverted po					
bit 8	1 = VIN+ > VIN 0 = VIN+ < VIN	N- N- = 1 (inverted po N-					

REGISTER 25-3: CM4CON: COMPARATOR 4 CONTROL REGISTER

2: After configuring the comparator, either for a high-to-low or low-to-high COUT transition (EVPOL[1:0] (CMxCON[7:6]) = 10 or 01), the comparator Event bit, CEVT (CMxCON[9]), and the Comparator Combined Interrupt Flag, CMPIF (IFS1[2]), must be cleared before enabling the Comparator Interrupt Enable bit, CMPIE (IEC1[2]).

REGISTER 25-3: CM4CON: COMPARATOR 4 CONTROL REGISTER (CONTINUED)

bit 7-6	EVPOL[1:0]: Trigger/Event/Interrupt Polarity Select bits ⁽²⁾
	 11 = Trigger/event/interrupt generated on any change of the comparator output (while CEVT = 0) 10 = Trigger/event/interrupt generated only on high-to-low transition of the polarity selected comparator output (while CEVT = 0)
	If CPOL = 1 (inverted polarity): Low-to-high transition of the comparator output.
	If CPOL = 0 (non-inverted polarity): High-to-low transition of the comparator output.
	01 = Trigger/event/interrupt generated only on low-to-high transition of the polarity selected comparator output (while CEVT = 0)
	If CPOL = 1 (inverted polarity): High-to-low transition of the comparator output.
	If CPOL = 0 (non-inverted polarity): Low-to-high transition of the comparator output.
	00 = Trigger/event/interrupt generation is disabled
bit 5	Unimplemented: Read as '0'
bit 4	CREF: Comparator 4 Reference Select bit (VIN+ input) ⁽¹⁾
	 1 = VIN+ input connects to the internal CVREFIN voltage 0 = VIN+ input connects to the C4IN1+ pin
bit 3-2	Unimplemented: Read as '0'
bit 1-0	CCH[1:0]: Comparator 4 Channel Select bits ⁽¹⁾
	11 = VIN- input of comparator connects to the C4IN4- pin 10 = VIN- input of comparator connects to the C4IN3- pin 01 = VIN- input of comparator connects to the C4IN2- pin 00 = VIN- input of comparator connects to the C4IN1- pin
Note 1:	Inputs that are selected and not available will be tied to VSS. See the "Pin Diagrams" section for available

2: After configuring the comparator, either for a high-to-low or low-to-high COUT transition (EVPOL[1:0] (CMxCON[7:6]) = 10 or 01), the comparator Event bit, CEVT (CMxCON[9]), and the Comparator Combined Interrupt Flag, CMPIF (IFS1[2]), must be cleared before enabling the Comparator Interrupt Enable bit, CMPIE (IEC1[2]).

inputs for each package.

REGISTER 25-4: CMxMSKSRC: COMPARATOR x MASK SOURCE SELECT **CONTROL REGISTER**

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	RW-0
—	—	_	_	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0
bit 15							bit 8

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| SELSRCB3 | SELSRCB2 | SELSRCB1 | SELSRCB0 | SELSRCA3 | SELSRCA2 | SELSRCA1 | SELSRCA0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12 Uni	mplemented: Read as '0'
---------------	-------------------------

bit 15-12	Unimplemented: Read as '0'
bit 11-8	SELSRCC[3:0]: Mask C Input Select bits
	1111 = FLT4
	1110 = FLT2
	1101 = Reserved
	1100 = Reserved
	1011 = Reserved
	1010 = Reserved
	1001 = Reserved
	1000 = Reserved
	0111 = Reserved
	0110 = Reserved
	0101 = PWM3H
	0100 = PWM3L
	0011 = PWM2H 0010 = PWM2L
	0001 = PWM2L
	0000 = PWM1L
bit 7-4	SELSRCB[3:0]: Mask B Input Select bits
	1111 = FLT4
	1110 = FLT2
	1101 = Reserved
	1100 = Reserved
	1011 = Reserved
	1010 = Reserved
	1001 = Reserved
	1000 = Reserved
	0111 = Reserved
	0110 = Reserved
	0101 = PWM3H
	0100 = PWM3L
	0011 = PWM2H
	0010 = PWM2L
	0001 = PWM1H
	0000 = PWM1L

REGISTER 25-4: CMxMSKSRC: COMPARATOR x MASK SOURCE SELECT CONTROL REGISTER (CONTINUED)

- bit 3-0 SELSRCA[3:0]: Mask A Input Select bits
 - 1111 = FLT4

1110 **= FLT2**

1101 = Reserved

1100 = Reserved

- 1011 = Reserved
- 1010 = Reserved
- 1001 = Reserved
- 1000 = Reserved
- 0111 = Reserved
- 0110 = Reserved
- 0101 = PWM3H
- 0100 = PWM3L 0011 = PWM2H
- 0011 = PWM2H
- 00010 = PWM2L
- 0000 = PWM1L

 $\ensuremath{\textcircled{}^{\odot}}$ 2013-2019 Microchip Technology Inc.

	REGIS										
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
HLMS		OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN				
bit 15							bit				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN				
bit 7							bit				
Legend:											
R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'					
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unk	nown				
bit 15	HLMS: High	or Low-Level I	Masking Select	bit							
					erted ('0') compa erted ('1') compa						
bit 14		nted: Read as	-	,	()	0	1 1 0				
bit 13	-	Bate C Input E									
	1 = MCI is co	onnected to OF ot connected to	R gate								
bit 12			Inverted Enable	e bit							
	1 = Inverted	MCI is connec	ted to OR gate nected to OR g								
bit 11		Gate B Input E	-	juto							
	1 = MBI is co	onnected to OF ot connected to	R gate								
bit 10			Inverted Enable	e bit							
			ted to OR gate nected to OR g	jate							
bit 9	OAEN: OR G	Bate A Input E	nable bit								
		nnected to OF									
	0 = MAI is no	ot connected to	OR gate								
bit 8	OANEN: OR	Gate A Input	nverted Enable	e bit							
			ted to OR gate nected to OR g	jate							
bit 7	NAGS: AND	Gate Output I	nverted Enable	bit							
			cted to OR gate nnected to OR								
bit 6	PAGS: AND	Gate Output E	nable bit								
	 1 = ANDI is connected to OR gate 0 = ANDI is not connected to OR gate 										
bit 5		Gate C Input I	•								
	1 = MCI is co	onnected to AN ot connected to	ID gate								
bit 4			t Inverted Enab	ole bit							
	1 = Inverted	MCI is connec	ted to AND gat nected to AND	е							
				-							

REGISTER 25-5: CMxMSKCON: COMPARATOR x MASK GATING CONTROL REGISTER (CONTINUED)

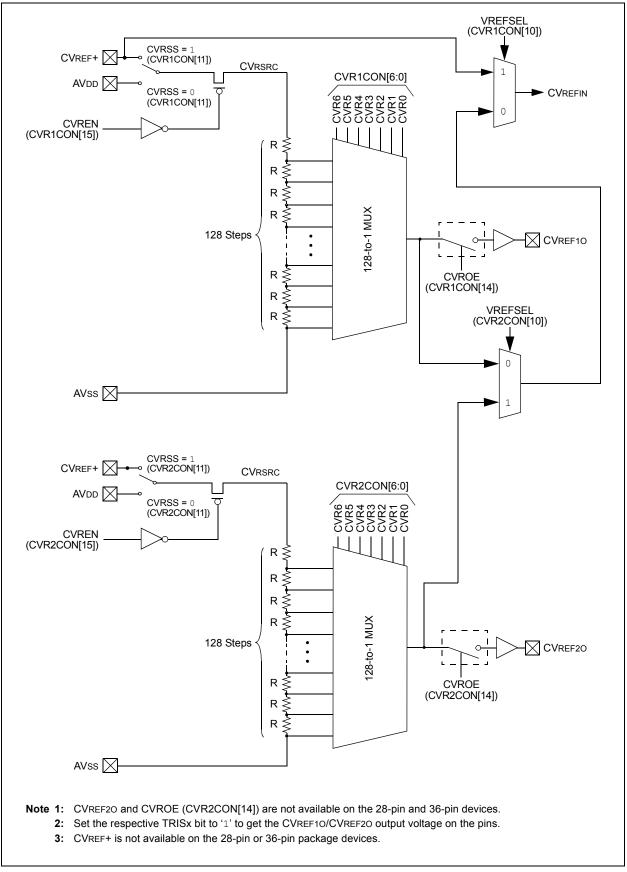
- bit 3 ABEN: AND Gate B Input Enable bit
 - 1 = MBI is connected to AND gate
 - 0 = MBI is not connected to AND gate
- bit 2 **ABNEN:** AND Gate B Input Inverted Enable bit 1 = Inverted MBI is connected to AND gate
 - 0 = Inverted MBI is not connected to AND gate
- bit 1 AAEN: AND Gate A Input Enable bit 1 = MAI is connected to AND gate 0 = MAI is not connected to AND gate
- bit 0 AANEN: AND Gate A Input Inverted Enable bit
 - 1 = Inverted MAI is connected to AND gate
 - 0 = Inverted MAI is not connected to AND gate

^{© 2013-2019} Microchip Technology Inc.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	_	—	_	_	_	—	_			
oit 15		·					bit 8			
			5444.6							
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
 Dit 7	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0 bit 0			
<i>nt 7</i>							DILC			
_egend:										
R = Readab	le bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
	111 = T5CLK 110 = T4CLK 101 = T3CLK 011 = Reserv 010 = SYNCC 001 = Fosc ⁽⁴ 000 = Fp ⁽⁴⁾	(2) (1) (2) /ed O1 ⁽³⁾								
oit 3	CFLTREN: C 1 = Digital filte 0 = Digital filte		Iter Enable bit							
bit 2-0	CFDIV[2:0]: Comparator x Filter Clock Divide Select bits 111 = Clock divide 1:128 110 = Clock divide 1:64 101 = Clock divide 1:32 100 = Clock divide 1:16 011 = Clock divide 1:18 010 = Clock divide 1:4 001 = Clock divide 1:2 000 = Clock divide 1:1									

REGISTER 25-6: CMxFLTR: COMPARATOR x FILTER CONTROL REGISTER

- **2:** See the Type B Timer Block Diagram (Figure 13-1).
 - 3: See the High-Speed PWMx Module Register Interconnection Diagram (Figure 17-2).
 - 4: See the Oscillator System Diagram (Figure 9-1).


26.0 COMPARATOR VOLTAGE REFERENCE

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Op Amp/Comparator" (www.microchip.com/DS70000357) in the "dsPIC33/PIC24 Family Reference Manual".
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

26.1 Configuring the Comparator Voltage Reference

The comparator voltage reference module is controlled through the CVRxCON registers (Register 26-1 and Register 26-2). The comparator voltage reference provides a range of output voltages with 128 distinct levels. The comparator reference supply voltage can come from either VDD and Vss, or the external CVREF+ and AVss pins. The voltage source is selected by the CVRSS bit (CVRxCON[11]). The settling time of the comparator voltage reference must be considered when changing the CVREF output.

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 26-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

26.2 Comparator Voltage Reference Registers

REGISTER 26-1: CVR1CON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER 1

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0
CVREN	CVROE	—	—	CVRSS	VREFSEL	—	—
bit 15		•	·		•		bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	CVR6	CVR5	CVR4	CVR3	CVR2	CVR1	CVR0
bit 7	•	•	•	•	·	•	bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	CVREN: Comparator Voltage Reference Enable bit
	1 = Comparator voltage reference circuit is powered on
	0 = Comparator voltage reference circuit is powered down
bit 14	CVROE: Comparator Voltage Reference Output Enable (CVREF10 Pin) bit
	1 = Voltage level is output on the CVREF10 pin
	0 = Voltage level is disconnected from the CVREF10 pin
bit 13-12	Unimplemented: Read as '0'
bit 11	CVRSS: Comparator Voltage Reference Source Selection bit
	1 = Comparator reference source, CVRSRC = CVREF+ – AVSS
	0 = Comparator reference source, CVRSRC = AVDD – AVSS
bit 10	VREFSEL: Voltage Reference Select bit
	1 = CVREFIN = CVREF+
	0 = CVREFIN is generated by the resistor network
bit 9-7	Unimplemented: Read as '0'
bit 6-0	CVR[6:0]: Comparator Voltage Reference Value Selection bits
	11111111 = 127/128 x VREF input voltage
	•
	•
	0000000 = 0.0 volts

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0						
CVREN	CVROE ⁽¹⁾	—	_	CVRSS	VREFSEL	—	_						
bit 15							bit 8						
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
—	CVR6	CVR5	CVR4	CVR3	CVR2	CVR1	CVR0						
bit 7			I		1		bit 0						
Legend:													
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'							
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own						
				0 2000 000									
bit 15	CVREN: Com	parator Voltag	e Reference I	Enable bit									
		or voltage refe											
	0 = Comparator voltage reference circuit is powered down												
bit 14	CVROE: Com	parator Voltag	e Reference (Output Enable	(CVREF20 Pin)	oit ⁽¹⁾							
		vel is output or vel is disconne											
bit 13-12	•	ted: Read as '											
bit 11	-	parator Voltag		Source Selectio	on bit								
	1 = Comparat	or reference so	ource, CVRSR	c = CVREF+ -	AVss								
	•	or reference so		C = AVDD - AV	SS								
bit 10		oltage Referen				1							
		1 = Comparator Reference Source 2 (CVR2) provides inverting input voltage when VREFSEL (CVR1CON[10]) = 0											
	0 = Compara	L 1/	Source 1 (CVR1) provide	es inverting inpu	ut voltage whe	en VREFSEL						
bit 9-7	Unimplemen	ted: Read as '	0'										
bit 6-0	CVR[6:0]: Co	mparator Volta	ge Reference	Value Selection	on bits								
	1111111 = 127/128 x VREF input voltage												
	•												
	•												
	0000000 = 0 .	0 volts											

REGISTER 26-2: CVR2CON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER 2

Note 1: CVROE (CVR2CON[14]) is not available on the 28-pin and 36-pin devices.

27.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com).

The dsPIC33EVXXXGM00X/10X family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard™ Security
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation

27.1 Configuration Bits

In dsPIC33EVXXXGM00X/10X family devices, the Configuration bytes are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data are stored at the top of the on-chip program memory space, known as the Flash Configuration bytes. Their specific locations are shown in Table 27-1. The configuration data are automatically loaded from the Flash Configuration bytes to the proper Configuration Shadow registers during device Resets.

Note:	Configuration data are reloaded on a	II									
	types of device Resets.										

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration bytes for configuration data in their code for the compiler. This is to ensure that program code is not stored in this address when the code is compiled.

The upper two bytes of all Flash Configuration Words in program memory should always be '1111 1111 1111 1111'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '1's to these locations has no effect on device operation.

Note:	Performing a page erase operation on the
	last page of program memory clears the
	Flash Configuration bytes, enabling code
	protection as a result. Therefore, users
	should avoid performing page erase
	operations on the last page of program
	memory.

The Configuration Flash bytes map is shown in Table 27-1.

^{© 2013-2019} Microchip Technology Inc.

File Name	Address	Device Memory Size (Kbytes)	Bits 23-16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
FSEC	005780	32																		
	00AB80	64																		
	015780	128	-	AIVTDIS	—	—	—	CSS2	CSS1	CSS0	CWRP	GSS1	GSS0	GWRP	—	BSEN	BSS1	BSS0	BWRP	
	02AB80	256																		
FBSLIM	005790	32													1					
	00AB90	64																		
	015790	128		_	_	_		BSLIM[12:0]												
	02AB90	256																		
Reserved	005794	32																		
	00AB94	64	_	Reserved ⁽¹⁾	_		_		_											
	015794	128	_	Reserved	Reserved	_	_	_	_	_	_	_	_	_	—	-	_	_	_	—
	02AB94	256																		
FOSCSEL	005798	32																		
	00AB98	64	_	_	_		_		_	_	_	IESO		_	_	_	FNOSC2	FNOSC1	FNOSC0	
	015798	128										ILCO					1110002	110001		
	02AB98	256																		
FOSC	00579C	32								- — Pllke			FCKSM0 IOL							
	00AB9C	64	_	_	_	_	_				PLLKEN	FCKSM1		IOL1WAY	IOL1WAY —	- OSCIOFNO	POSCMD1	POSCMD0		
	01579C	128																		
	02AB9C	256			-															
FWDT	0057A0	32																		
	00ABA0	64	_	_	_	_	_	_	_	WDTWIN1	WDTWIN0	WINDIS	FWDTEN1	FWDTEN0	WDTPRE	WDTPS3	WDTPS2	WDTPS1	WDTPS0	
	0157A0	128	-																	
5000	02ABA0	256																		
FPOR	0057A4	32																		
	00ABA4	64	—	—	—	_	_	_	_	—	_	—	—	—	—	—	—	—	BOREN	
	0157A4 02ABA4	128 256																		
FICD	02ABA4 0057A8	256 32																		
FICD	0057A8	32 64																	ICS0	
	00ABA0	128	—	—	—	—	_	—	—	—	—	Reserved ⁽²⁾	—		—	—	-	ICS1		
	0157A6	256																		

dsPIC33EVXXXGM00X/10X FAMILY

TABLE 27-1: CONFIGURATION WORD REGISTER MAP

Legend: — = unimplemented, read as '1'.

Note 1:This bit is reserved and must be programmed as '0'.2:This bit is reserved and must be programmed as '1'.

File Name	Address	Device Memory Size (Kbytes)	Bits 23-16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
FDMTINTVL	0057AC	32																			
	00ABAC	64			DMTIVT[15:0]																
	0157AC	128	—																		
	02ABAC	256																			
FDMTINTVH	0057B0	32																			
	00ABB0	64											24.461								
	0157B0	128	-										31.10]								
	02ABB0	256																			
FDMTCNTL	0057B4	32																			
	00ABB4	64																			
	0157B4	128	—		DMTCNT[15:0]																
	02ABB4	256																			
FDMTCNTH	0057B8	32																			
	00AB8	64																			
	0157B8	128	—	DMTCNT[31:16]																	
	02ABB8	256																			
FDMT	0057BC	32																			
	00ABBC	64																	DMTEN		
	0157BC	128	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	DIVITEN		
	02ABBC	256																			
FDEVOPT	0057C0	32																			
	00ABC0	64															Reserved ⁽²⁾		PWMLOC		
	0157C0	128	_	_	_	_	_	_	—	_	_	_	_	_	—	ALTIZUT	Reserved	—	PVVIVILOC		
	02ABC0	256																			
FALTREG	0057C4	32																			
	00ABC4	64																			
	0157C4	128	_	_	_	_	_	_	_	—	_	_		CTXT2[2:0]		_		CTXT1[2:0]			
	02ABC4	256																			

 Legend:
 — = unimplemented, read as '1'.

 Note 1:
 This bit is reserved and must be programmed as '0'.

 2:
 This bit is reserved and must be programmed as '1'.

Bit Field	Register	Description
BWRP	FSEC	Boot Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
BSS[1:0]	FSEC	Boot Segment Code Flash Protection Level bits 11 = No protection (other than BWRP write protection) 10 = Standard security 0x = High security
BSEN	FSEC	Boot Segment Control bit 1 = No Boot Segment 0 = Boot Segment size is determined by BSLIM[12:0]
GWRP	FSEC	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
GSS[1:0]	FSEC	General Segment Code Flash Protection Level bits 11 = No protection (other than GWRP write protection) 10 = Standard security 0x = High security
CWRP	FSEC	Configuration Segment Write-Protect bit 1 = Configuration Segment is not write-protected 0 = Configuration Segment is write-protected
CSS[2:0]	FSEC	Configuration Segment Code Flash Protection Level bits 111 = No protection (other than CWRP write protection) 110 = Standard security 10x = Enhanced security 0xx = High security
AIVTDIS	FSEC	Alternate Interrupt Vector Table Disable bit 1 = Disables AIVT 0 = Enables AIVT
BSLIM[12:0]	FBSLIM	Boot Segment Code Flash Page Address Limit bits Contains the page address of the first active General Segment page. The value to be programmed is the inverted page address, such that programming additional '0's can only increase the Boot Segment size. For example, 0x1FFD = 2 pages or 1024 instruction words.
FNOSC[2:0]	FOSCSEL	Initial Oscillator Source Selection bits 111 = Internal Fast RC (FRC) Oscillator with Postscaler 110 = Internal Fast RC (FRC) Oscillator with Divide-by-16 101 = LPRC Oscillator 100 = Reserved 011 = Primary (XT, HS, EC) Oscillator with PLL 010 = Primary (XT, HS, EC) Oscillator 001 = Internal Fast RC (FRC) Oscillator with PLL 000 = FRC Oscillator
IESO	FOSCSEL	 Two-Speed Oscillator Start-up Enable bit 1 = Starts up device with FRC, then automatically switches to the user-selected oscillator source when ready 0 = Starts up device with user-selected oscillator source
POSCMD[1:0]	FOSC	Primary Oscillator Mode Select bits 11 = Primary Oscillator is disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode

TABLE 27-2: dsPIC33EVXXXGM00X/10X CONFIGURATION BITS DESCRIPTION

Bit Field	Register	Description			
OSCIOFNC	FOSC	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is the clock output 0 = OSC2 is the general purpose digital I/O pin			
IOL1WAY	FOSC	Peripheral Pin Select Configuration bit 1 = Allows only one reconfiguration 0 = Allows multiple reconfigurations			
FCKSM[1:0]	FOSC	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled			
PLLKEN	FOSC	PLL Lock Wait Enable bit 1 = Clock switches to the PLL source; will wait until the PLL lock signal is valid 0 = Clock switch will not wait for PLL lock			
WDTPS[3:0]	FWDT	Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384 • • • 0001 = 1:2 0000 = 1:1			
WDTPRE	FWDT	Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32			
FWDTEN[1:0]	FWDT	 Watchdog Timer Enable bits 11 = WDT is enabled in hardware 10 = WDT is controlled through the SWDTEN bit 01 = WDT is enabled only while device is active and disabled in Sleep; the SWDTEN bit is disabled 00 = WDT and the SWDTEN bit are disabled 			
WINDIS	FWDT	Watchdog Timer Window Enable bit 1 = Watchdog Timer is in Non-Window mode 0 = Watchdog Timer is in Window mode			
WDTWIN[1:0]	FWDT	Watchdog Timer Window Select bits 11 = WDT window is 25% of WDT period 10 = WDT window is 37.5% of WDT period 01 = WDT window is 50% of WDT period 00 = WDT window is 75% of WDT period			
BOREN	FPOR	Brown-out Reset (BOR) Detection Enable bit 1 = BOR is enabled 0 = BOR is disabled			
ICS[1:0]	FICD	ICD Communication Channel Select bits 11 = Communicates on PGEC1 and PGED1 10 = Communicates on PGEC2 and PGED2 01 = Communicates on PGEC3 and PGED3 00 = Reserved, do not use			
DMTIVT[15:0]	FDMTINTVL	Lower 16 Bits of 32-Bit Field that Configures the DMT Window Interval bits			
DMTIVT[31:16]	FDMTINTVH	Upper 16 Bits of 32-Bit Field that Configures the DMT Window Interval bits			
DMTCNT[15:0]	FDMTCNTL	Lower 16 Bits of 32-Bit Field that Configures the DMT Instruction Count Time-out Value bits			

TABLE 27-2 :	dsPIC33EVXXXGM00X/10X CONFIGURATION BITS DESCRIPTION (CONTINUED)
---------------------	--

^{© 2013-2019} Microchip Technology Inc.

Bit Field	Register	Description				
DMTCNT[31:16]	FDMCNTH	Upper 16 Bits of 32-Bit Field that Configures the DMT Instruction Count Time-out Value bits				
DMTEN	FDMT	Deadman Timer Enable bit 1 = Deadman Timer is enabled and cannot be disabled by software 0 = Deadman Timer is disabled and can be enabled by software				
PWMLOCK	FDEVOPT	PWM Lock Enable bit 1 = Certain PWM registers may only be written after a key sequence 0 = PWM registers may be written without a key sequence				
ALTI2C1	FDEVOPT	Alternate I ² C Pins for I2C1 bit 1 = I2C1 is mapped to the SDA1/SCL1 pins 0 = I2C1 is mapped to the ASDA1/ASCL1 pins				
CTXT1[2:0]	FALTREG	Specifies the Alternate Working Register Set 1 Association with Interrupt Priority Level (IPL) bits 111 = Not assigned 110 = Alternate Register Set 1 is assigned to IPL Level 7 101 = Alternate Register Set 1 is assigned to IPL Level 6 100 = Alternate Register Set 1 is assigned to IPL Level 5 011 = Alternate Register Set 1 is assigned to IPL Level 4 010 = Alternate Register Set 1 is assigned to IPL Level 3 001 = Alternate Register Set 1 is assigned to IPL Level 3 001 = Alternate Register Set 1 is assigned to IPL Level 2				
CTXT2[2:0]	FALTREG	Specifies the Alternate Working Register Set 2 Association with Interrupt Priority Level (IPL) bits 111 = Not assigned 110 = Alternate Register Set 2 is assigned to IPL Level 7 101 = Alternate Register Set 2 is assigned to IPL Level 6 100 = Alternate Register Set 2 is assigned to IPL Level 5 011 = Alternate Register Set 2 is assigned to IPL Level 4 010 = Alternate Register Set 2 is assigned to IPL Level 3 001 = Alternate Register Set 2 is assigned to IPL Level 3 001 = Alternate Register Set 2 is assigned to IPL Level 2				

TABLE 27-2: dsPIC33EVXXXGM00X/10X CONFIGURATION BITS DESCRIPTION (CONTINUED)

R	R	R	R	R	R	R	R
			DEVID[23:16] ⁽¹⁾			
bit 23							bit 16
R	R	R	R	R	R	R	R
			DEVID	[15:8] ⁽¹⁾			
bit 15							bit 8
R	R	R	R	R	R	R	R
			DEVID)[7:0] ⁽¹⁾			
bit 7							bit 0
Legend:	R = Read-Only bit			U = Unimplen	nented bit		

REGISTER 27-1: DEVID: DEVICE ID REGISTER

bit 23-0 **DEVID[23:0]:** Device Identifier bits⁽¹⁾

Note 1: Refer to "*dsPIC33EVXXXGM00X/10X Families Flash Programming Specification*" (DS70005137) for the list of Device ID values.

REGISTER 27-2: DEVREV: DEVICE REVISION REGISTER

R	R	R	R	R	R	R	R
			DEVREV	[23:16] ⁽¹⁾			
bit 23							bit 16
r							
R	R	R	R	R	R	R	R
			DEVRE	/[15:8] ⁽¹⁾			
bit 15							bit 8
R	R	R	R	R	R	R	R
			DEVRE	V[7:0] ⁽¹⁾			
bit 7							bit 0
r							
Legend:	R = Read-only bit			U = Unimplen	nented bit		

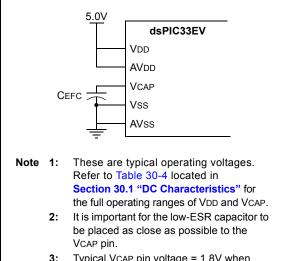
bit 23-0 **DEVREV[23:0]:** Device Revision bits⁽¹⁾

Note 1: Refer to "*dsPIC33EVXXXGM00X/10X Families Flash Programming Specification*" (DS70005137) for the list of device revision values.

^{© 2013-2019} Microchip Technology Inc.

27.2 User OTP Memory

Locations, 800F80h-800FFEh, are a One-Time-Programmable (OTP) memory area. The user OTP words can be used for storing product information, such as serial numbers, system manufacturing dates, manufacturing lot numbers and other application-specific information.


27.3 On-Chip Voltage Regulator

All of the dsPIC33EVXXXGM00X/10X family devices power their core digital logic at a nominal 1.8V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 5.0V. To simplify system design, all devices in the dsPIC33EVXXXGM00X/10X family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. A low-ESR (less than 1 Ohm) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (see Figure 27-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 30-5, located in Section 30.0 "Electrical Characteristics".

Note: It is important for the low-ESR capacitor to be placed as close as possible to the VCAP pin.

FIGURE 27-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR^(1,2,3)

3: Typical VCAP pin voltage = 1.8V when VDD ≥ VDDMIN.

27.4 Brown-out Reset (BOR)

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage, VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source based on the device Configuration bit values (FNOSC[2:0] and POSCMD[1:0]).

If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON[5]) is '1'.

Concurrently, the Power-up Timer (PWRT) Time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM is applied. The total delay in this case is TFSCM. Refer to Parameter SY35 in Table 30-22 of **Section 30.0 "Electrical Characteristics"** for specific TFSCM values.

The BOR status bit (RCON[1]) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle mode and resets the device should VDD fall below the BOR threshold voltage.

27.5 Watchdog Timer (WDT)

For dsPIC33EVXXXGM00X/10X family devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

27.5.1 PRESCALER/POSTSCALER

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a WDT Time-out Period (TWDT), as shown in Parameter SY12 in Table 30-22.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST[3:0] Configuration bits (FWDT[3:0]), which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSCx bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

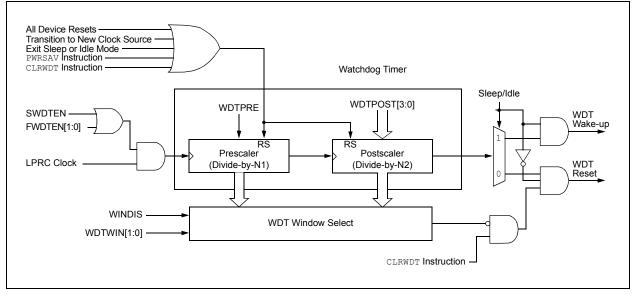
Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

FIGURE 27-2: WDT BLOCK DIAGRAM

27.5.2 SLEEP AND IDLE MODES

If the WDT is enabled, it continues to run during Sleep or Idle modes. When the WDT time-out occurs, the device wakes the device and code execution continues from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bit (RCON[3:2]) needs to be cleared in software after the device wakes up.

27.5.3 ENABLING WDT


The WDT is enabled or disabled by the FWDTEN[1:0] Configuration bits in the FWDT Configuration register. When the FWDTEN[1:0] Configuration bits are set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTENx Configuration bits have been programmed to '00'. The WDT is enabled in software by setting the SWDTEN control bit (RCON[5]). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

The WDT flag bit, WDTO (RCON[4]), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

27.5.4 WDT WINDOW

The Watchdog Timer has an optional Windowed mode enabled by programming the WINDIS bit in the WDT Configuration register (FWDT[7]). In the Windowed mode (WINDIS = 0), the WDT should be cleared based on the settings in the programmable Watchdog Timer Window (WDTWIN[1:0]) select bits.

© 2013-2019 Microchip Technology Inc.

27.6 In-Circuit Serial Programming

The dsPIC33EVXXXGM00X/10X family devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data, and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to "dsPIC33EVXXXGM00X/10X Families Flash Programming Specification" (DS70005137) for details about In-Circuit Serial Programming[™] (ICSP[™]).

Any of the following three pairs of programming clock/ data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

27.7 In-Circuit Debugger

When MPLAB[®] ICD 3 or REAL ICE^m is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB X IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the following three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, Vss and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins (PGECx and PGEDx).

27.8 Code Protection and CodeGuard™ Security

The dsPIC33EVXXXGM00X/10X family devices offer Intermediate CodeGuard Security that supports General Segment (GS) security, Boot Segment (BS) security and Configuration Segment (CS) security. This feature helps protect individual Intellectual Properties.

Note:	Refer to "CodeGuard™ Intermediate
	Security" (www.microchip.com/
	DS70005182) in the "dsPIC33/PIC24
	Family Reference Manual" for further
	information on usage, configuration and
	operation of CodeGuard Security.

28.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33EV instruction set is almost identical to that of the dsPIC30F and dsPIC33F.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into following five basic categories:

- Word or byte-oriented operations
- · Bit-oriented operations
- · Literal operations
- DSP operations
- Control operations

Table 28-1 lists the general symbols used in describingthe instructions.

The dsPIC33E instruction set summary in Table 28-2 lists all the instructions, along with the Status Flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have the following three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- · The file register specified by the value 'f'
- The destination, which could be either the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The MAC class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- · The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- The accumulator write-back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions can use some of the following operands:

- A program memory address
- The mode of the Table Read and Table Write instructions

Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the eight MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the Program Counter is changed as a result of the instruction, or a PSV or Table Read is performed. In these cases, the execution takes multiple instruction cycles with the additional instruction cycle(s) executed as a NOP. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note: For more details on the instruction set, refer to the *"16-Bit MCU and DSC Programmer's Reference Manual"* (DS70000157).

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{}	Optional field or operation
$a\in\{b,c,d\}$	a is selected from the set of values b, c, d
[n:m]	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.w	Word mode selection (default)
Acc	One of two accumulators {A, B}
AWB	Accumulator Write-Back Destination Address register \in {W13, [W13]+ = 2}
bit4	4-bit bit selection field (used in word-addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal $\in \{015\}$
lit5	5-bit unsigned literal $\in \{031\}$
lit8	8-bit unsigned literal $\in \{0255\}$
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal $\in \{016384\}$
lit16	16-bit unsigned literal $\in \{065535\}$
lit23	23-bit unsigned literal \in {08388608}; LSb must be '0'
None	Field does not require an entry, can be blank
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate
PC	Program Counter
Slit10	10-bit signed literal ∈ {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal \in {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor Working register pair (Direct Addressing)

TABLE 28-1:	SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description
Wm*Wm	Multiplicand and Multiplier Working register pair for Square instructions \in {W4 * W4,W5 * W5,W6 * W6,W7 * W7}
Wm*Wn	Multiplicand and Multiplier Working register pair for DSP instructions ∈ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}
Wn	One of 16 Working registers ∈ {W0W15}
Wnd	One of 16 Destination Working registers ∈ {W0W15}
Wns	One of 16 Source Working registers ∈ {W0W15}
WREG	W0 (Working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }
Wx	X Data Space Prefetch Address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}
Wxd	X Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}
Wy	Y Data Space Prefetch Address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}
Wyd	Y Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}

TABLE 28-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
# 1	ADD	ADD	Acc	Add Accumulators	1	1	OA,OB,SA, SB
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA, SB
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA	C,Expr	Branch if Carry	1	1 (4)	None
		BRA	GE,Expr	Branch if Greater Than or Equal	1	1 (4)	None
		BRA	GEU, Expr	Branch if Unsigned Greater Than or Equal	1	1 (4)	None
		BRA	GT,Expr	Branch if Greater Than	1	1 (4)	None
		BRA	GTU, Expr	Branch if Unsigned Greater Than	1	1 (4)	None
		BRA	LE,Expr	Branch if Less Than or Equal	1	1 (4)	None
		BRA	LEU,Expr	Branch if Unsigned Less Than or Equal	1	1 (4)	None
		BRA	LT,Expr	Branch if Less Than	1	1 (4)	None
		BRA	LTU,Expr	Branch if Unsigned Less Than	1	1 (4)	None
		BRA	N,Expr	Branch if Negative	1	1 (4)	None
		BRA	NC,Expr	Branch if Not Carry	1	1 (4)	None
		BRA	NN,Expr	Branch if Not Negative	1	1 (4)	None
		BRA	NOV, Expr	Branch if Not Overflow	1	1 (4)	None
		BRA	NZ,Expr	Branch if Not Zero	1	1 (4)	None
		BRA	OA,Expr	Branch if Accumulator A Overflow	1	1 (4)	None
		BRA	OB,Expr	Branch if Accumulator B Overflow	1	1 (4)	None
		BRA	OV,Expr	Branch if Overflow	1	1 (4)	None
		BRA	SA,Expr	Branch if Accumulator A Saturated	1	1 (4)	None
		BRA	SB,Expr	Branch if Accumulator B Saturated	1	1 (4)	None
		BRA	Expr	Branch Unconditionally	1	4	None
		BRA	Z,Expr	Branch if Zero	1	1 (4)	None
		BRA	Wn	Computed Branch	1	4	None
7	BSET	BSET	f,#bit4	Bit Set f	1	1	None
		BSET	Ws,#bit4	Bit Set Ws	1	1	None

TABLE 28-2: INSTRUCTION SET OVERVIEW

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
8	BSW	BSW.C	Ws,Wb	Write C bit to Ws[Wb]	1	1	None
		BSW.Z	Ws,Wb	Write Z bit to Ws[Wb]	1	1	None
9	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws[Wb] to C	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws[Wb] to Z	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call Subroutine	2	4	SFA
		CALL	Wn	Call Indirect Subroutine	1	4	SFA
		CALL.L	Wn	Call Indirect Subroutine (long address)	1	4	SFA
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc,Wx,Wxd,Wy,Wyd,AWB	Clear Accumulator	1	1	OA,OB,SA, SB
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	COM	COM	f	f = f	1	1	N,Z
		COM	f,WREG	WREG = \overline{f}	1	1	N,Z
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,#lit8	Compare Wb with lit8	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CPO	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CP0	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit8	Compare Wb with lit8, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb <u>w</u> ith Ws, with Borrow (Wb – Ws – C)	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None
	CPBEQ	CPBEQ	Wb,Wn,Expr	Compare Wb with Wn, Branch if =	1	1 (5)	None
22	CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None
	CPBGT	CPBGT	Wb,Wn,Expr	Compare Wb with Wn, Branch if >	1	1 (5)	None
23	CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None
	CPBLT	CPBLT	Wb,Wn,Expr	Compare Wb with Wn, Branch if <	1	1 (5)	None
24	CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, Skip if ≠	1	1 (2 or 3)	None
		1					1

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
25	CTXTSWP	CTXTSWP	#lit3	Switch CPU Register Context to Context Defined by lit3	1	2	None
		CTXTSWP	Wn	Switch CPU Register Context to Context Defined by Wn	1	2	None
26	DAW	DAW	Wn	Wn = Decimal Adjust Wn	1	1	С
27	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
28	DEC2	DEC2	f	f = f – 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = f – 2	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
29	DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None
30	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
31	DIVF	DIVF	Wm,Wn	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV
32	DO	DO	#lit15,Expr	Do Code to PC + Expr, lit15 + 1 Times	2	2	None
		DO	Wn,Expr	Do Code to PC + Expr, (Wn) + 1 Times	2	2	None
33	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB
34	EDAC	EDAC	Wm*Wm, Acc, Wx, Wy, Wxd	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB
35	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
36	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
37	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
38	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
39	GOTO	GOTO	Expr	Go to Address	2	4	None
		GOTO	Wn	Go to Indirect	1	4	None
		GOTO.L	Wn	Go to Indirect (long address)	1	4	None
40	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
41	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
42	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
43	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
44	LNK	LNK	#lit14	Link Frame Pointer	1	1	SFA
45	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemonic			Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
46	MAC	MAC Wm*Wn,Acc,Wx,Wxd,Wy,Wyd,AWB		Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
		MAC	Wm*Wm, Acc, Wx, Wxd, Wy, Wyd	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
47	MOV	MOV	f,Wn	Move f to Wn		1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	None
		MOV	#lit16,Wn	Move 16-bit Literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit Literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
48	MOVPAG	MOVPAG	#lit10,DSRPAG	Move 10-bit Literal to DSRPAG	1	1	None
		MOVPAG	#lit9,DSWPAG	Move 9-bit Literal to DSWPAG	1	1	None
		MOVPAG	#lit8,TBLPAG	Move 8-bit Literal to TBLPAG	1	1	None
		MOVPAGW	Ws, DSRPAG	Move Ws[9:0] to DSRPAG	1	1	None
		MOVPAGW	Ws, DSWPAG	Move Ws[8:0] to DSWPAG	1	1	None
		MOVPAGW	Ws, TBLPAG	Move Ws[7:0] to TBLPAG	1	1	None
49	MOVSAC	MOVSAC	Acc, Wx, Wxd, Wy, Wyd, AWB	Prefetch and Store Accumulator	1	1	None
50	MPY	MPY	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		MPY	Wm*Wm, Acc, Wx, Wxd, Wy, Wyd	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
51	MPY.N	MPY.N	Wm*Wn, Acc, Wx, Wxd, Wy, Wyd	-(Multiply Wm by Wn) to Accumulator	1	1	None
52	MSC	MSC	Wm*Wm, Acc, Wx, Wxd, Wy, Wyd, AWB	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB

Base Instr #	Assembly Mnemonic	Inemonic Assembly Syntax		Description	# of Words	# of Cycles ⁽¹⁾	Status Flag Affected
# 53	MUL			{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
00	11011	MUL.SS	Wb,Ws,Acc	Accumulator = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,Ws,Acc	Accumulator = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Acc	Accumulator = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.US	Wb,Ws,Acc	Accumulator = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.UU	Wb,#lit5,Acc	Accumulator = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,Ws,Acc	Accumulator = unsigned(Wb) * unsigned(Ws)	1	1	None
		MULW.SS	Wb,Ws,Wnd	Wnd = signed(Wb) * signed(Ws)	1	1	None
		MULW.SU	Wb,Ws,Wnd	Wnd = signed(Wb) * unsigned(Ws)	1	1	None
		MULW.US	Wb,Ws,Wnd	Wnd = unsigned(Wb) * signed(Ws)	1	1	None
		MULW.UU	Wb,Ws,Wnd	Wnd = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	Wnd = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	Wnd = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
54	NEG	NEG	Асс	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
55	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
56	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
57	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
58	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
59	RCALL	RCALL	Expr	Relative Call	1	4	SFA
		RCALL	Wn	Computed Call	1	4	SFA
60	REPEAT	REPEAT	#lit15	Repeat Next Instruction lit15 + 1 Times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 Times	1	1	None
61	RESET	RESET		Software Device Reset	1	1	None
62	RETFIE	RETFIE		Return from Interrupt	1	6 (5)	SFA

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #			Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected	
63 RETLW		RETIW #lit10,Wn Return with Literal in Wn		Return with Literal in Wn	1	6 (5)	SFA
64	RETURN	RETURN		Return from Subroutine	1	6 (5)	SFA
65	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
66	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
67	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z
68	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
69	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
70	SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C,N,Z
71	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
72 S	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB
73	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
74	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C,DC,N,OV,Z
75	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
76	SUBR	SUBR	f	f = WREG - f	1	1	C,DC,N,OV,Z
-		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws - Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
77	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
	2000/			WREG = WREG – f – (\overline{C})	1	1	
		SUBBR	f,WREG				C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z

TABLE 28-2 :	INSTRUCTION SET OVERVIEW ((CONTINUED)	

Base Instr #	Assembly Mnemonic	Assembly Syntax Description		# of Words	# of Cycles ⁽¹⁾	Status Flags Affected	
78	SWAP	SWAP.b	Wn	Wn = Nibble Swap Wn	1	1	None
		SWAP	Wn	Wn = Byte Swap Wn	1	1	None
79	TBLRDH	TBLRDH	Ws,Wd	Read Prog[23:16] to Wd[7:0]	1	5	None
80	TBLRDL	TBLRDL	Ws,Wd	Read Prog[15:0] to Wd	1	5	None
81	TBLWTH	TBLWTH	Ws,Wd	Write Ws[7:0] to Prog[23:16]	1	2	None
82	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog[15:0]	1	2	None
83	ULNK	ULNK		Unlink Frame Pointer	1	1	SFA
84	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
85	ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C,Z,N

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

29.0 DEVELOPMENT SUPPORT

Move a design from concept to production in record time with Microchip's award-winning development tools. Microchip tools work together to provide state of the art debugging for any project with easy-to-use Graphical User Interfaces (GUIs) in our free MPLAB[®] X and Atmel Studio Integrated Development Environments (IDEs), and our code generation tools. Providing the ultimate ease-of-use experience, Microchip's line of programmers, debuggers and emulators work seamlessly with our software tools. Microchip development boards help evaluate the best silicon device for an application, while our line of third party tools round out our comprehensive development tool solutions.

Microchip's MPLAB X and Atmel Studio ecosystems provide a variety of embedded design tools to consider, which support multiple devices, such as $PIC^{@}$ MCUs, $AVR^{@}$ MCUs, SAM MCUs and $dsPIC^{@}$ DSCs. MPLAB X tools are compatible with Windows[®], Linux[®] and Mac[®] operating systems while Atmel Studio tools are compatible with Windows.

Go to the following website for more information and details:

https://www.microchip.com/development-tools/

dsPIC33EVXXXGM00X/10X FAMILY

NOTES:

30.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33EVXXXGM00X/10X family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33EVXXXGM00X/10X family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	-0.3V to +6.0V
Voltage on VCAP with respect to Vss	1.62V to 1.98V
Maximum current out of Vss pin	
Maximum current into VDD pin ⁽²⁾	
Maximum current sunk by any I/O pin	
Maximum current sourced by I/O pin	
Maximum current sourced/sunk by all ports ⁽²⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 30-2).

30.1 DC Characteristics

Characteristic	VDD Range	Temperature Range	Maximum MIPS		
	(in Volts)	(in °C)	dsPIC33EVXXXGM00X/10X Family		
L Tomp	4.5V to 5.5V ^(1,2)	-40°C to 0°C	60		
I-Temp	4.50 10 5.50	0°C to +85°C	70		
E-Temp	4.5V to 5.5V ^(1,2)	-40°C to +125°C	60		

TABLE 30-1: OPERATING MIPS vs. VOLTAGE

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, op amp/comparator and comparator voltage reference will have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

2: When BOR is enabled, the device will work from 4.7V to 5.5V.

Note 1: Customer operating voltage range is specified as: 4.5V to 5.5V.

TABLE 30-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Тур.	Max.	Unit
Industrial Temperature Devices:					
Operating Junction Temperature Range	TJ	-40	_	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Extended Temperature Devices:					
Operating Junction Temperature Range	TJ	-40	—	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+125	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD \times (IDD - \Sigma IOH)$	PD	PINT + PI/O			V
I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} \times IOH) + \Sigma (VOL \times IOL)$					
Maximum Allowed Power Dissipation	Pdmax	DMAX (TJ – ΤΑ)/θJA W			W

TABLE 30-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур.	Max.	Unit	Notes
Package Thermal Resistance, 64-Pin QFN, 9x9x0.9 mm	θJA	28.0	_	°C/W	1
Package Thermal Resistance, 64-Pin TQFP, 10x10x1 mm	θJA	48.3	—	°C/W	1
Package Thermal Resistance, 44-Pin QFN, 8x8 mm	θJA	29.0	_	°C/W	1
Package Thermal Resistance, 44-Pin TQFP, 10x10x1 mm	θJA	49.8	_	°C/W	1
Package Thermal Resistance, 48-pin TQFP, 7x7x1 mm	θJA	62.76	_	°C/W	1
Package Thermal Resistance, 36-Pin UQFN, 5x5 mm	θJA	29.2	_	°C/W	1
Package Thermal Resistance, 28-Pin QFN-S, 6x6x0.9 mm	θJA	30.0	_	°C/W	1
Package Thermal Resistance, 28-Pin SOIC, 7.50 mm	θJA	69.7	_	°C/W	1
Package Thermal Resistance, 28-Pin SSOP, 5.30 mm	θJA	71.0	_	°C/W	1
Package Thermal Resistance, 28-Pin SPDIP, 300 mil	θJA	60.0	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 30-4:	DC TEMPERATURE AND VOLTAGE SPECIFICATIONS
-------------	---

DC CHARACTERISTICS			$\begin{array}{l} Standard Operating Conditions (see Note 3): 4.5V to 5.5V $				
Param No.	¹ Symbol Characteristic Min. Typ. ⁽¹⁾ Max. Units		Conditions				
Operati	ng Voltag	e					
DC10	Vdd	Supply Voltage ⁽³⁾	VBOR	_	5.5	V	
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8	_	—	V	
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	_	_	Vss	V	
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	1.0	_	—	V/ms	0V-5.0V in 5 ms
DC18	VCORE	VDD Core Internal Regulator Voltage	1.62	1.8	1.98	V	Voltage is dependent on load, temperature and VDD

Note 1: Data in "Typ." column are at 5.0V, +25°C unless otherwise stated.

2: This is the limit to which VDD may be lowered without losing RAM data.

3: VDD voltage must remain at Vss for a minimum of 200 µs to ensure POR.

TABLE 30-5: FILTER CAPACITOR (CEFC) SPECIFICATIONS

	$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated):} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol Characteristics Min Typ Max Units Comments						
	Cefc	External Filter Capacitor Value ⁽¹⁾	4.7	10	—	μF	Capacitor must have a low series resistance (< 1Ω)

Note 1: Typical VCAP Voltage = 1.8 volts when VDD \ge VDDMIN.

DC CHARACT	ERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Typ. ⁽²⁾	Max.	Units		Conditions	5		
Operating Cur	rrent (IDD) ⁽¹⁾							
DC20d	4.5	5.5	mA	-40°C				
DC20a	4.65	5.6	mA	+25°C	5.0V	10 MIPS		
DC20b	4.85	6.0	mA	+85°C	5.00	TO IVITPS		
DC20c	5.6	7.2	mA	+125°C				
DC22d	8.6	10.6	mA	-40°C		20 MIPS		
DC22a	8.8	10.8	mA	+25°C	5.0V			
DC22b	9.1	11.1	mA	+85°C	5.00			
DC22c	9.8	12.6	mA	+125°C				
DC23d	16.8	18.5	mA	-40°C		(0.14)20		
DC23a	17.2	19.0	mA	+25°C	5.0V			
DC23b	17.55	19.2	mA	+85°C	5.00	40 MIPS		
DC23c	18.3	21.0	mA	+125°C				
DC24d	25.15	28.0	mA	-40°C				
DC24a	25.5	28.0	mA	+25°C	5.0)/			
DC24b	25.5	28.0	mA	+85°C	5.0V	60 MIPS		
DC24c	25.55	28.5	mA	+125°C				
DC25d	29.0	31.0	mA	-40°C				
DC25a	28.5	31.0	mA	+25°C	5.0V	70 MIPS		
DC25b	28.3	31.0	mA	+85°C	7			

TABLE 30-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

 Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as outputs and driving low
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
- CPU executing
 - while(1) {
 - NOP();
 - }
- 2: Data in "Typ." column are at 5.0V, +25°C unless otherwise stated.

DC CHARACTI	ERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Parameter No.	Тур. ⁽²⁾	Max.	Units		Conditions			
Idle Current (II	dle) ⁽¹⁾							
DC40d	1.25	2	mA	-40°C				
DC40a	1.25	2	mA	+25°C	5.0V	10 MIPS		
DC40b	1.5	2.6	mA	+85°C	5.00			
DC40c	1.5	2.6	mA	+125°C				
DC42d	2.3	3	mA	-40°C				
DC42a	2.3	3	mA	+25°C	5.0V	20 MIPS		
DC42b	2.6	3.45	mA	+85°C	5.00	20 1011-5		
DC42c	2.6	3.85	mA	+125°C				
DC44d	6.9	8	mA	-40°C				
DC44a	6.9	8	mA	+25°C	5.0V	70 MIPS		
DC44b	7.25	8.6	mA	+85°C				

TABLE 30-7: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Base Idle current (IIDLE) is measured as follows:

• CPU core is off, oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as outputs and driving low
- MCLR = VDD, WDT and FSCM are disabled
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
- The NVMSIDL bit (NVMCON[12]) = 1 (i.e., Flash regulator is set to standby while the device is in Idle mode)
- The VREGSF bit (RCON[11]) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)
- 2: Data in "Typ." column are at 5.0V, +25°C unless otherwise stated.

^{© 2013-2019} Microchip Technology Inc.

DC CHARA	CTERISTIC	cs	$\begin{array}{ll} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$								
Parameter No.	Тур.	Max.	Units	Units Conditions							
Power-Dow	n Current	(IPD) – dsP	IC33EVXX	C33EVXXXGM00X/10X							
DC60d	9.25	35	μA	-40°C 5.0V		Grade 3 Mission Profile					
DC000	9.25	60	μA	-40 C	5.00	Grade 1 Mission Profile					
DC60a	15.75	40	μA	+25°C 5.0V		Grade 3 Mission Profile					
DC00a	15.75	75	μA	+25 C	5.00	Grade 1 Mission Profile	Base Power-Down Current				
DC60b	67.75	300	μA	+85°C	5.0V	Grade 3 Mission Profile	ounon				
DC000	67.75	425	μA	+05 C	5.00	Grade 1 Mission Profile					
DC60c	270	820	μA	+125°C	5.0V	Grade 1 Mission Profile					
DC61d	1	7	μA	-40°C							
DC61a	1.25	8	μA	+25°C	5.01/	Watehdag Timer Current: Alwor					
DC61b	3.5	12	μA	+85°C	5.0V Watchdog Timer Current: ΔIWDT		ΔΙΨΨΤ				
DC61c	5	15	μA	+125°C							

TABLE 30-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACTER	(unless ot	$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$							
Parameter No. Typ. ⁽²⁾ Max.			Doze Ratio	Units		Conditions			
Doze Current (IDOZE) ⁽¹⁾									
DC73a	16.0	18.25	1:2	mA	-40°C	5.0V	70 MIPS		
DC73g	7.1	8.0	1:128	mA	-40 C				
DC70a	16.25	18.5	1:2	mA	+25°C	5.0V	70 МИРО		
DC70g	7.3	8.2	1:128	mA	+20 C	5.00	70 MIPS		
DC71a	17.0	19.0	1:2	mA	105%0	E 0)/			
DC71g	7.5	8.9	1:128	mA	+85°C	5.0V	70 MIPS		
DC72a	17.75	19.95	1:2	mA	+125°C	5.0V	60 MIPS		
DC72g	8.25	9.32	1:128	mA	+125 C				

TABLE 30-9: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

Note 1: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

• Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

• CLKO is configured as an I/O input pin in the Configuration Word

• All I/O pins are configured as outputs and driving low

• MCLR = VDD, WDT and FSCM are disabled

• CPU, SRAM, program memory and data memory are operational

• No peripheral modules are operating or being clocked (defined PMDx bits are all ones)

CPU executing

```
while(1)
{
NOP();
}
```

2: Data in "Typ." column are at 5.0V, +25°C unless otherwise stated.

TABLE 30-10:	DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS
--------------	--

DC CH	ARACTER						
Param No.	Symbol	Characteristic	Min. Typ. ⁽¹⁾		Max.	Units	Conditions
	VIL	Input Low Voltage					
DI10		I/O Pins	Vss	_	0.2 Vdd	V	
	Vih	Input High Voltage					
DI20		I/O Pins	0.75 VDD	—	5.5	V	
DI30	ICNPU	Change Notification Pull-up Current	200	375	600	μA	VDD = 5.0V, VPIN = VSS
DI31	ICNPD	Change Notification Pull-Down Current ⁽⁷⁾	175	400	625	μA	VDD = 5.0V, VPIN = VDD
	lı∟	Input Leakage Current ^(2,3)					
DI50		I/O Pins	-100	_	100	nA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ & {\sf pin} \mbox{ at high-impedance } \end{split}$
DI55		MCLR	-700	_	700	nA	$Vss \leq V \text{PIN} \leq V \text{DD}$
DI56		OSC1	-200	_	200	nA	$\label{eq:VSS} \begin{split} &VSS \leq V \text{PIN} \leq V \text{DD}, \\ &XT \text{ and } HS \text{ modes} \end{split}$
DI60a	licl	Input Low Injection Current	0	—	_5 ^(4,6)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP and RB7
DI60b	ІІСН	Input High Injection Current	0		+5 ^(5,6)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, RB7 and all 5V tolerant pins ⁽⁵⁾
DI60c	∑lict	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁷⁾	_	+20 ⁽⁷⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT

Note 1: Data in "Typ." column are at 5.0V, +25°C unless otherwise stated.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.
- **3:** Negative current is defined as current sourced by the pin.
- 4: VIL source < (Vss 0.3). Characterized but not tested.
- 5: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 6: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.
- 7: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted, provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic	Min. ⁽¹⁾ Typ. Max. Units Conditions				Conditions	
DO16	Vol	Output Low Voltage 4x Sink Driver Pins ⁽²⁾	_	_	0.4	V	Iol = 8.8 mA, Vdd = 5.0V	
DO10	Vol	Output Low Voltage 8x Sink Driver Pins ⁽³⁾	_	_	0.4	V	Iol = 10.8 mA, VDD = 5.0V	
DO26	Vон	Output High Voltage 4x Sink Driver Pins ⁽²⁾	Vdd - 0.6		_	v	Іон = -8.3 mA, Vdd = 5.0V	
DO20	Voн	Output High Voltage 8x Sink Driver Pins	Vdd - 0.6		_	V	Іон = -12.3 mA, Vdd = 5.0V	

TABLE 30-11: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

2: Includes all I/O pins that are not 8x sink driver pins (see below).

3: Includes pins, such as RA3, RA4 and RB[15:10] for 28-pin and 36-pin devices, RA3, RA4, RA9 and RB[15:10] for 44-pin and 48-pin devices, RA4, RA7, RA9, RB[15:10] and RC15 for 64-pin devices.

TABLE 30-12: ELECTRICAL CHARACTERISTICS: BOR

		$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min. ⁽¹⁾	Тур.	Max.	Units	Conditions
BO10	VBOR	BOR Event on VDD Transition High-to-Low	4.15	4.285	4.4	V	VDD (see Note 2, Note 3 and Note 4)

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: The VBOR specification is relative to the VDD.

3: The device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, op amp/comparator and comparator voltage reference will have degraded performance. Device functionality is tested but not characterized.

4: The start-up VDD must rise above 4.6V.

DC CHA	(unless	-	ise state	d) -40°C ≤	s: 4.5V to 5.5V \leq TA \leq +85°C for Industrial \leq TA \leq +125°C for Extended			
Param No.	Symbol	Characteristic	Min.	Min. Typ. ⁽¹⁾ Max.		Units	Conditions	
		Program Flash Memory						
D130	Eр	Cell Endurance	10,000	—		E/W	-40°C to +125°C	
D131	Vpr	VDD for Read	4.5	—	5.5	V		
D132b	VPEW	VDD for Self-Timed Write	4.5	—	5.5	V		
D134	TRETD	Characteristic Retention	20	—	—	Year	Provided no other specifications are violated, -40°C to +125°C	
D135	IDDP	Supply Current During Programming	_	10	—	mA		
D136a	Trw	Row Write Cycle Time	0.657	—	0.691	ms	Trw = 4965 FRC cycles, Ta = +85°C (see <mark>Note 2)</mark>	
D136b	Trw	Row Write Cycle Time	0.651	—	0.698	ms	Trw = 4965 FRC cycles, Ta = +125°C (see <mark>Note 2)</mark>	
D137a	TPE	Page Erase Time	19.44	—	20.44	ms	TPE = 146893 FRC cycles, Ta = +85°C (see <mark>Note 2)</mark>	
D137b	TPE	Page Erase Time	19.24	—	20.65	ms	TPE = 146893 FRC cycles, TA = +125°C (see Note 2)	
D138a	Tww	Word Write Cycle Time	45.78	—	48.15	μs	Tww = 346 FRC cycles, TA = +85°C (see <mark>Note 2)</mark>	
D138b	Tww	Word Write Cycle Time	45.33	—	48.64	μs	Tww = 346 FRC cycles, TA = +125°C (see <mark>Note 2)</mark>	

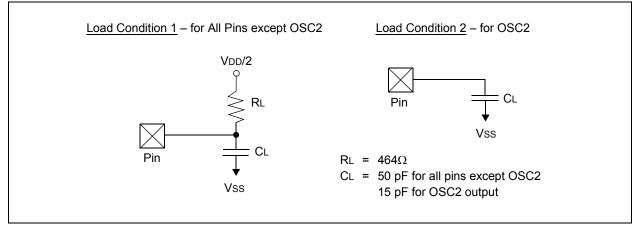
TABLE 30-13: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typ." column are at 5.0V, +25°C unless otherwise stated.

2: Other conditions: FRC = 7.3728 MHz, TUN[5:0] = b'011111 (for Min), TUN[5:0] = b'100000 (for Max). This parameter depends on the FRC accuracy (see Table 30-20) and the value of the FRC Oscillator Tuning register.

TABLE 30-14: ELECTRICAL CHARACTERISTICS: INTERNAL BAND GAP REFERENCE VOLTAGE

DC CHAR	DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions		
DVR10	Vbg	Internal Band Gap Reference Voltage	1.14	1.2	1.26	V			


30.2 AC Characteristics and Timing Parameters

This section defines the dsPIC33EVXXXGM00X/10X family AC characteristics and timing parameters.

TABLE 30-15: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

AC CHARACTERISTICS	Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for ExtendedOperating voltage VDD range as described in Section 30.1 "DC
	Characteristics".

FIGURE 30-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

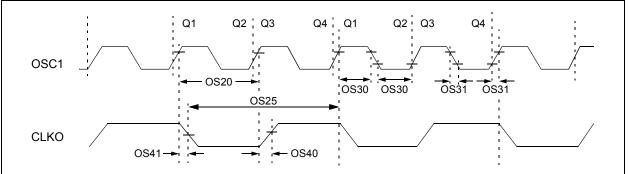


TABLE 30-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO50	Cosco	OSC2 Pin	_	—	15	pF	In XT and HS modes, when external clock is used to drive OSC1
DO56	Сю	All I/O Pins and OSC2	_	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	_	_	400	pF	In I ² C mode

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 30-2: EXTERNAL CLOCK TIMING

Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C \leq TA \leq +85°C for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended Param Typ.⁽¹⁾ Sym Min. Units Conditions Characteristic Max. No. OS10 FIN External CLKI Frequency DC 40 MHz EC (External clocks allowed only in EC and ECPLL modes) **Oscillator Crystal Frequency** XT 3.5 10 MHz HS 10 25 MHz **OS20** Tosc Tosc = 1/Fosc 12.5 DC TA = +125°C ns Instruction Cycle Time⁽²⁾ **OS25** TCY 25 DC TA = +125°C ns OS30 TosL External Clock in (OSC1) 0.375 x Tosc 0.625 x Tosc EC ns High or Low Time TosH **OS31** TosR. External Clock in (OSC1) 20 ns EC TosF Rise or Fall Time 5.2 OS40 TckR CLKO Rise Time⁽³⁾ ns CLKO Fall Time⁽³⁾ **OS41** TckF 5.2 ns **OS42** Gм External Oscillator 12 mA/V HS. VDD = 5.0V. Transconductance⁽⁴⁾ TA = +25°C XT, VDD = 5.0V,6 mA/V $TA = +25^{\circ}C$

TABLE 30-17: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typ." column are at 5.0V, +25°C unless otherwise stated.

2: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Minimum" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Maximum" cycle time limit is "DC" (no clock) for all devices.

3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.

4: This parameter is characterized but not tested in manufacturing.

TABLE 30-18: PLL CLOCK TIMING SPECIFICATIONS

			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min. Typ. ⁽¹⁾ Max. Units Conditions						
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range	0.8		8.0	MHz	ECPLL, XTPLL modes		
OS51	Fsys	On-Chip VCO System Frequency	120	—	340	MHz			
OS52	TLOCK	PLL Start-up Time (Lock Time)	0.9	1.5	3.1	ms			
OS53	DCLK	CLKO Stability (Jitter) ⁽²⁾	-3	0.5	3	%			

Note 1: Data in "Typ." column are at 5.0V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This jitter specification is based on clock cycle-by-clock cycle measurements. To get the effective jitter for individual time bases or communication clocks used by the application, use the following formula:

$$Effective Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Time Base or Communication Clock}}}$$

For example, if FOSC = 120 MHz and the SPI bit rate = 10 MHz, the effective jitter is as follows:

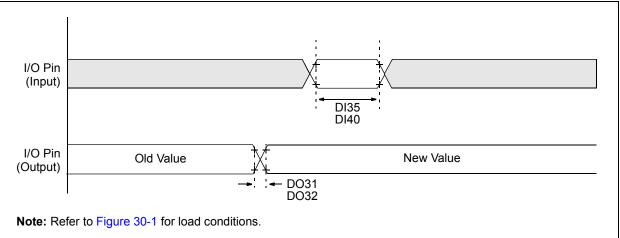
Effective Jitter =
$$\frac{DCLK}{\sqrt{\frac{120}{10}}} = \frac{DCLK}{\sqrt{12}} = \frac{DCLK}{3.464}$$

TABLE 30-19: INTERNAL FRC ACCURACY

АС СНА	RACTERISTICS		$\begin{array}{ll} \mbox{Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param No.	Characteristic		Тур.	Max.	Units	Condi	tions			
Internal	FRC Accuracy @ FRC Fre	equency	= 7.37 M	Hz ⁽¹⁾						
F20a	FRC	-1	0.5	+1	%	$-40^{\circ}C \leq TA \leq +85^{\circ}C$	VDD = 4.5-5.5V			
F20b	FRC	-2	1	+2	%	$-40^\circ C \le T A \le +125^\circ C$	VDD = 4.5-5.5V			

Note 1: Frequency calibrated at +25°C and 5.0V. TUN[5:0] bits can be used to compensate for temperature drift.

TABLE 30-20: INTERNAL LPRC ACCURACY


АС СНА	ARACTERISTICS	$\begin{array}{ll} \mbox{Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$							
Param No.	Characteristic	Min.	Тур.	Max.	Units	Conditions			
LPRC @) 32.768 kHz ⁽¹⁾								
F21a	LPRC	-15	5	+15	%	$-40^{\circ}C \le TA \le +85^{\circ}C \qquad VDD = 4.5-5.5V$			
F21b	LPRC	-30	10	+30	%	$-40^{\circ}C \leq TA \leq +125^{\circ}C VDD = 4.5-5.5V$			

Note 1: Change of LPRC frequency as VDD changes.

^{© 2013-2019} Microchip Technology Inc.

dsPIC33EVXXXGM00X/10X FAMILY

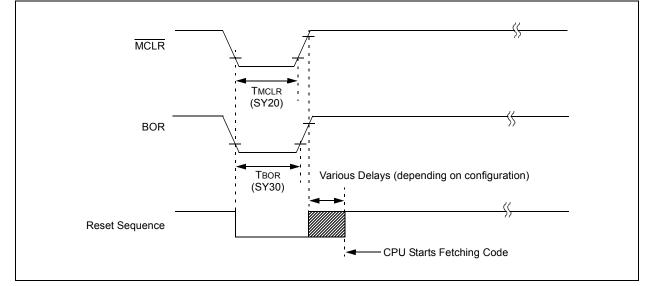
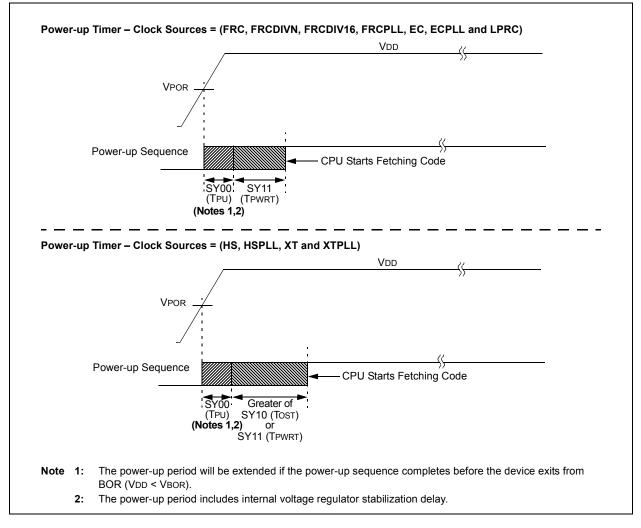


TABLE 30-21: I/O TIMING REQUIREMENTS


AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions		
DO31	TioR	Port Output Rise Time	_	5	10	ns			
DO32	TIOF	Port Output Fall Time	_	5	10	ns			
DI35	TINP	INTx Pin High or Low Time (input)	20	—	_	ns			
DI40	Trbp	CNx High or Low Time (input)	2	—	_	TCY			

Note 1: Data in "Typ." column are at 5.0V, +25°C unless otherwise stated.

FIGURE 30-4: BOR AND MASTER CLEAR RESET TIMING CHARACTERISTICS

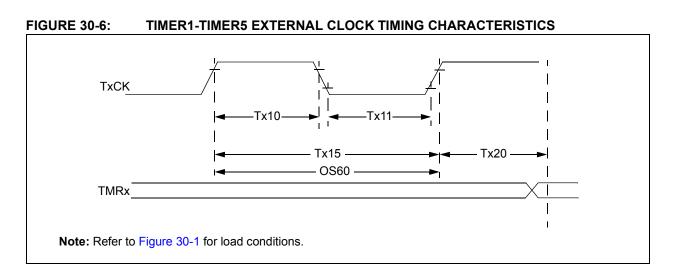

^{© 2013-2019} Microchip Technology Inc.

TABLE 30-22:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions			
SY00	Τρυ	Power-up Period	-	400	600	μs				
SY10	Tost	Oscillator Start-up Time		1024 Tosc		—	Tosc = OSC1 period			
SY11	TPWRT	Power-up Timer Period	_	1		ms	Using LPRC parameters indicated in F21a/F21b (see Table 30-20)			
SY12	Twdt	Watchdog Timer Time-out Period	0.8	_	1.2	ms	WDTPRE = 0, WDTPS[3:0] = 0000, using LPRC tolerances indicated in F21a/F21b (see Table 30-20) at +85°C			
			3.2	_	4.8	ms	WDTPRE = 1, WDTPS[3:0] = 0000, using LPRC tolerances indicated in F21a/F21b (see Table 30-20) at +85°C			
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μs				
SY20	TMCLR	MCLR Pulse Width (low)	2	—	-	μs				
SY30	TBOR	BOR Pulse Width (low)	1	—		μs				
SY35	TFSCM	Fail-Safe Clock Monitor Delay		500	900	μs	-40°C to +85°C			
SY36	TVREG	Voltage Regulator Standby-to-Active mode Transition Time		_	30	μs				
SY37	TOSCDFRC	FRC Oscillator Start-up Delay	46	48	54	μs				
SY38	TOSCDLPRC	LPRC Oscillator Start-up Delay		—	70	μs				

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column are at 5.0V, +25°C unless otherwise stated.

AC CH/	ARACTERIS	TICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	cteristic ⁽²⁾	Min.	Тур.	Max.	Units	Conditions			
TA10	ТтхН	T1CK High Time	Synchronous mode	Greater of: 20 or (TCY + 20)/N		_	ns	Must also meet Parameter TA15, N = Prescaler Value (1, 8, 64, 256)		
			Asynchronous mode	35	_	—	ns			
TA11	ΤτχL	T1CK Low Time	Synchronous mode	Greater of: 20 or (TCY + 20)/N	_	_	ns	Must also meet Parameter TA15, N = Prescaler Value (1, 8, 64, 256)		
			Asynchronous mode	10		_	ns			
TA15	ΤτχΡ	T1CK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	_	_	ns	N = Prescaler Value (1, 8, 64, 256)		
OS60	Ft1	T1CK Oscillator Input Frequency Range (oscillator enabled by setting TCS (T1CON[1]) bit)		DC		50	kHz			
TA20	TCKEXTMRL	Delay from External T1CK Clock Edge to Timer Increment		0.75 Tcy + 40	—	1.75 Tcy + 40	ns			

Note 1: Timer1 is a Type A.

2: These parameters are characterized but not tested in manufacturing.

^{© 2013-2019} Microchip Technology Inc.

TABLE 30-24: TIMER2 AND TIMER4 (TYPE B TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS

Standard Operating Conditions: 4.5V to 5.5V

АС СН	ARACTERIS	STICS		Standard Operating Conditions: 4.5v to 5.5v(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param No.	Symbol	Characteristic ⁽¹⁾		Min.	Тур.	Max.	Units	Conditions			
TB10	ТтхН	TxCK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_	—	ns	Must also meet Parameter TB15, N = Prescaler Value (1, 8, 64, 256)			
TB11	ΤτχL	TxCK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_	_	ns	Must also meet Parameter TB15, N = Prescaler Value (1, 8, 64, 256)			
TB15	ΤτχΡ	TxCK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	—	_	ns	N = Prescaler Value (1, 8, 64, 256)			
TB20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increment		0.75 Tcy + 40	_	1.75 Tcy + 40	ns				

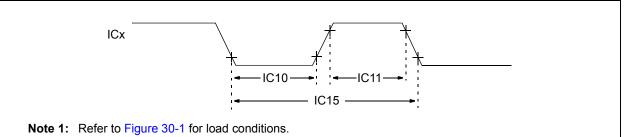

Note 1: These parameters are characterized but not tested in manufacturing.

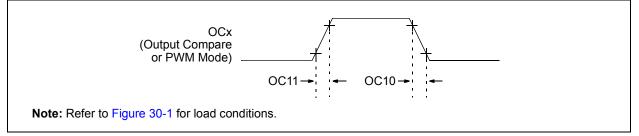
TABLE 30-25: TIMER3 AND TIMER5 (TYPE C TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS

АС СНА	ARACTERIS	TICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Chara	cteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions		
TC10	ТтхН	TxCK High Time	Synchronous	Tcy + 20			ns	Must also meet Parameter TC15		
TC11	ΤτxL	TxCK Low Time	Synchronous	Tcy + 20	_	—	ns	Must also meet Parameter TC15		
TC15	ΤτχΡ	TxCK Input Period	Synchronous, with Prescaler	2 Tcy + 40	_	—	ns	N = Prescaler Value (1, 8, 64, 256)		
TC20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increment		0.75 Tcy + 40	—	1.75 Tcy + 40	ns			

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 30-7: INPUT CAPTURE x (ICx) TIMING CHARACTERISTICS

TABLE 30-26: INPUT CAPTURE x (ICx) TIMING REQUIREMENTS


АС СНА	RACTERI	STICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param. No. Symbol Characteristics ⁽¹⁾			Min.	Max.	Units	Conc	litions		
IC10	TCCL	ICx Input Low Time	Greater of: 12.5 + 25 or (0.5 Tcy/N) + 25	_	ns	Must also meet Parameter IC15			
IC11	ТссН	ICx Input High Time	Greater of: 12.5 + 25 or (0.5 Tcy/N) + 25	—	ns	Must also meet Parameter IC15	N = Prescaler Value (1, 4, 16)		
IC15	TCCP	ICx Input Period	Greater of: 25 + 50 or (1 Tcy/N) + 50	—	ns				

Note 1: These parameters are characterized but not tested in manufacturing.

^{© 2013-2019} Microchip Technology Inc.

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 30-8: OUTPUT COMPARE x (OCx) TIMING CHARACTERISTICS



TABLE 30-27: OUTPUT COMPARE x (OCx) TIMING REQUIREMENTS

			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	o. Max. Units Condition				
OC10	TccF	OCx Output Fall Time	— — ns See Parameter DO32						
OC11	TccR	OCx Output Rise Time	— — ns See Parameter DO31						

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 30-9: OCx/PWMx MODULE TIMING CHARACTERISTICS

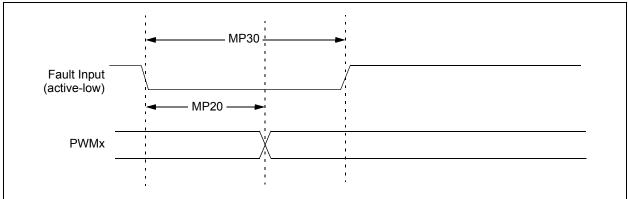
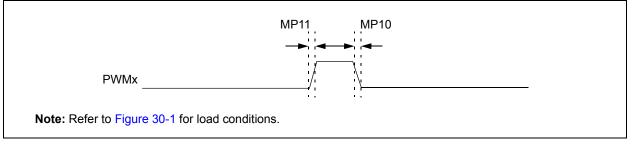


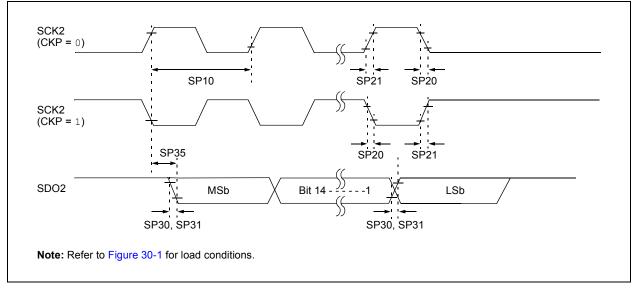
TABLE 30-28: OCx/PWMx MODE TIMING REQUIREMENTS


			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$							
Param No.	Symbol	Characteristic ⁽¹⁾	Min. Typ. Max. Units Conditions							
OC15	TFD	Fault Input to PWMx I/O Change	— — TCY + 20 ns							
OC20	TFLT	Fault Input Pulse Width	Tcy + 20 — ns							

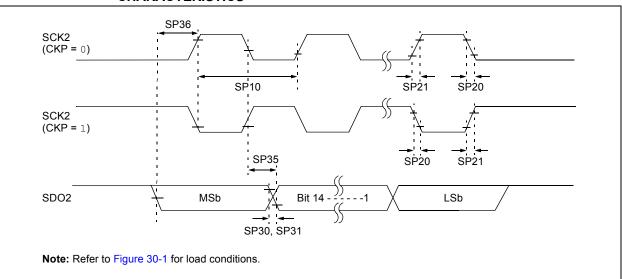
Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 30-11: HIGH-SPEED PWMx MODULE TIMING CHARACTERISTICS

TABLE 30-29: HIGH-SPEED PWMx MODULE TIMING REQUIREMENTS


			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min. Typ. Max. Units Conditions					
MP10	TFPWM	PWMx Output Fall Time	—	_	—	ns	See Parameter DO32	
MP11	TRPWM	PWMx Output Rise Time	—	—	_	ns	See Parameter DO31	
MP20	Tfd	Fault Input ↓ to PWMx I/O Change	—	_	15	ns		
MP30	Тғн	Fault Input Pulse Width	15	_		ns		

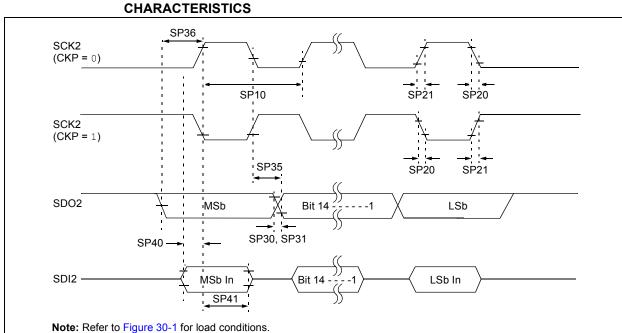
Note 1: These parameters are characterized but not tested in manufacturing.


TABLE 30-30: SPI2 MAXIMUM DATA/CLOCK RATE SUMMARY

AC CHARAG	CTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP			
15 MHz	Table 30-31	_	_	0,1	0,1	0,1			
9 MHz	—	Table 30-32	—	1	0,1	1			
9 MHz	_	Table 30-33	—	0	0,1	1			
15 MHz	—	—	Table 30-34	1	0	0			
11 MHz	_	_	Table 30-35	1	1	0			
15 MHz	_	—	Table 30-36	0	1	0			
11 MHz	_	—	Table 30-37	0	0	0			

FIGURE 30-12: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS

TABLE 30-31: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS


AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP10	FscP	Maximum SCK2 Frequency		_	15	MHz	See Note 3	
SP20	TscF	SCK2 Output Fall Time	—	—		ns	See Parameter DO32 and Note 4	
SP21	TscR	SCK2 Output Rise Time	—	_	_	ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDO2 Data Output Fall Time	—	_	_	ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDO2 Data Output Rise Time	—	_	_	ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	_	6	20	ns		
SP36	TdiV2scH, TdiV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	_	ns		

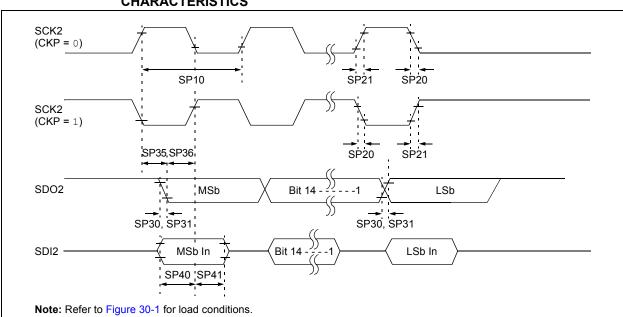
Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column are at 5.0V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

FIGURE 30-14: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS


TABLE 30-32:SPI2 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1)TIMING REQUIREMENTS

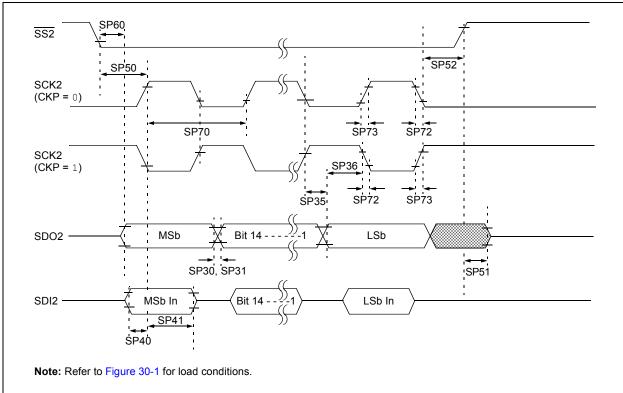
AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions		
SP10	FscP	Maximum SCK2 Frequency		_	9	MHz	See Note 3		
SP20	TscF	SCK2 Output Fall Time	_	—	_	ns	See Parameter DO32 and Note 4		
SP21	TscR	SCK2 Output Rise Time	_	—	_	ns	See Parameter DO31 and Note 4		
SP30	TdoF	SDO2 Data Output Fall Time	_	—		ns	See Parameter DO32 and Note 4		
SP31	TdoR	SDO2 Data Output Rise Time	_	—	_	ns	See Parameter DO31 and Note 4		
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	_	6	20	ns			
SP36	TdoV2sc, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	_	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	_	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	—	—	ns			

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column are at 5.0V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCK2 is 111 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPI2 pins.

FIGURE 30-15: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS


TABLE 30-33:SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS

АС СНА	RACTERIST	ICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions		
SP10	FscP	Maximum SCK2 Frequency		—	9	MHz	-40°C to +125°C and see Note 3		
SP20	TscF	SCK2 Output Fall Time	—	—	—	ns	See Parameter DO32 and Note 4		
SP21	TscR	SCK2 Output Rise Time	_	—	_	ns	See Parameter DO31 and Note 4		
SP30	TdoF	SDO2 Data Output Fall Time	—	—	—	ns	See Parameter DO32 and Note 4		
SP31	TdoR	SDO2 Data Output Rise Time	—	—	—	ns	See Parameter DO31 and Note 4		
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	_	6	20	ns			
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	_	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	—	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	—	—	ns			

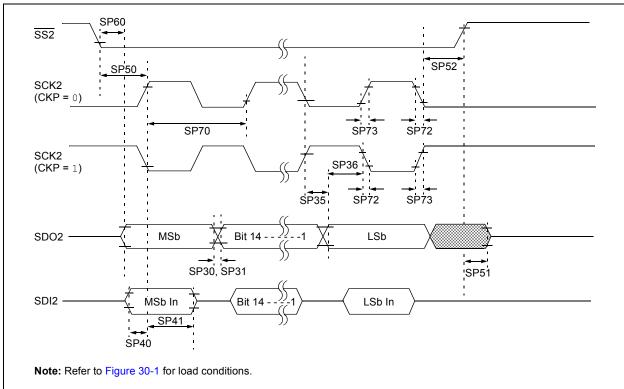
Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column are at 5.0V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCK2 is 111 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPI2 pins.

FIGURE 30-16: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

TABLE 30-34:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)TIMING REQUIREMENTS


АС СНА				$\begin{array}{ll} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions			
SP70	FscP	Maximum SCK2 Input Frequency	_	_	15	MHz	See Note 3			
SP72	TscF	SCK2 Input Fall Time	—	—	_	ns	See Parameter DO32 and Note 4			
SP73	TscR	SCK2 Input Rise Time	—	_	_	ns	See Parameter DO31 and Note 4			
SP30	TdoF	SDO2 Data Output Fall Time	—	_	_	ns	See Parameter DO32 and Note 4			
SP31	TdoR	SDO2 Data Output Rise Time	—	_	_	ns	See Parameter DO31 and Note 4			
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns				
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	_	_	ns				
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	_	ns				
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	_	_	ns				
SP50	TssL2scH, TssL2scL	SS2 ↓ to SCK2 ↑ or SCK2 ↓ Input	120	-	—	ns				
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	—	50	ns	See Note 4			
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 Tcy + 40	—	_	ns	See Note 4			
SP60	TssL2doV	SDO2 Data Output Valid after SS2 Edge	—	_	50	ns				

Note 1: These parameters are characterized but not tested in manufacturing.

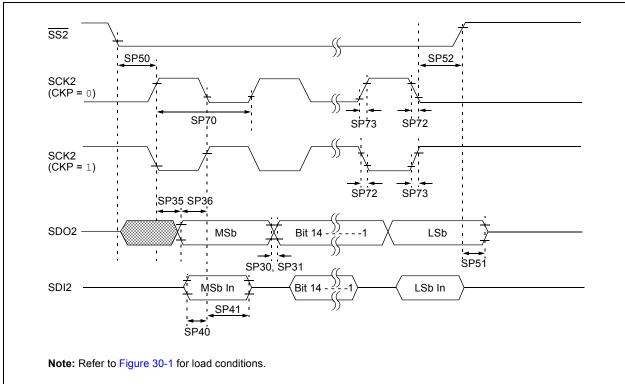
2: Data in "Typ." column are at 5.0V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 66.7 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

FIGURE 30-17: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

TABLE 30-35:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)TIMING REQUIREMENTS


			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCK2 Input Frequency	—	—	11	MHz	See Note 3	
SP72	TscF	SCK2 Input Fall Time	—	—	_	ns	See Parameter DO32 and Note 4	
SP73	TscR	SCK2 Input Rise Time	—	-	_	ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDO2 Data Output Fall Time	—	—	_	ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDO2 Data Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	_		ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	_	_	ns		
SP50	TssL2scH, TssL2scL	$\overline{SS2}$ ↓ to SCK2 ↑ or SCK2 ↓ Input	120	—	_	ns		
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	—	50	ns	See Note 4	
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 TCY + 40	—		ns	See Note 4	
SP60	TssL2doV	SDO2 Data Output Valid after SS2 Edge	—	_	50	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

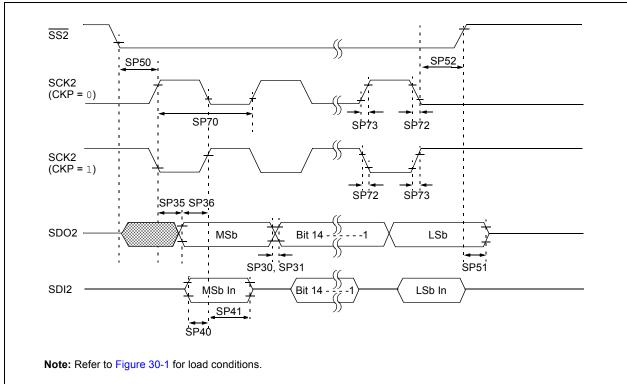
2: Data in "Typ." column are at 5.0V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 91 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

FIGURE 30-18: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

TABLE 30-36:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)TIMING REQUIREMENTS


			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCK2 Input Frequency	_	_	15	MHz	See Note 3	
SP72	TscF	SCK2 Input Fall Time	—			ns	See Parameter DO32 and Note 4	
SP73	TscR	SCK2 Input Rise Time	_			ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDO2 Data Output Fall Time	_		_	ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDO2 Data Output Rise Time	—		_	ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	_	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30		_	ns		
SP50	TssL2scH, TssL2scL	SS2 ↓ to SCK2 ↑ or SCK2 ↓ Input	120	_	_	ns		
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	_	50	ns	See Note 4	
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 Tcy + 40		_	ns	See Note 4	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column are at 5.0V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 66.7 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

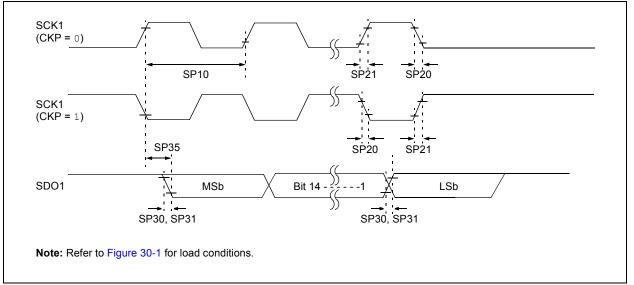
FIGURE 30-19: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

TABLE 30-37:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCK2 Input Frequency	_	_	11	MHz	See Note 3	
SP72	TscF	SCK2 Input Fall Time	_		_	ns	See Parameter DO32 and Note 4	
SP73	TscR	SCK2 Input Rise Time	_		_	ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDO2 Data Output Fall Time	_	-	_	ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDO2 Data Output Rise Time	—	_	_	ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	—	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	_	_	ns		
SP50	TssL2scH, TssL2scL	SS2 ↓ to SCK2 ↑ or SCK2 ↓ Input	120	—		ns		
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	—	50	ns	See Note 4	
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 Tcy + 40	—		ns	See Note 4	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column are at 5.0V, +25°C unless otherwise stated.


3: The minimum clock period for SCK2 is 91 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.

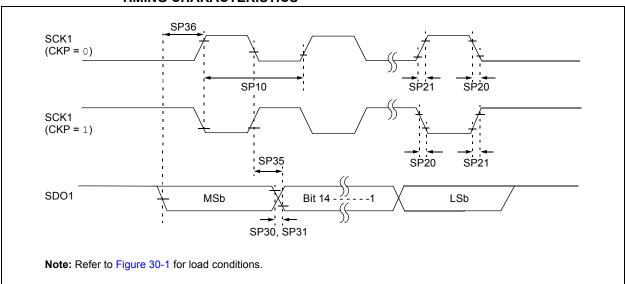
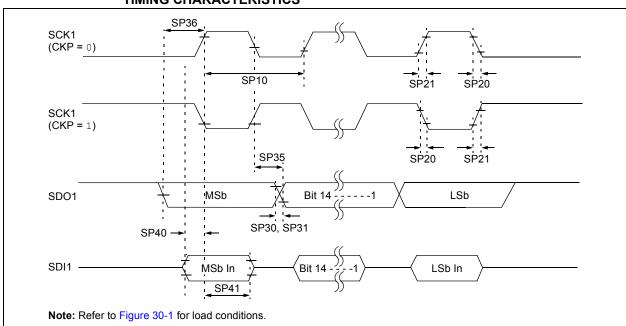

4: Assumes 50 pF load on all SPI2 pins.

TABLE 30-38: SPI1 MAXIMUM DATA/CLOCK RATE SUMMARY

AC CHARACTERISTICS			$\begin{array}{ c c c c c c } \hline Standard Operating Conditions: 4.5V to 5.5V \\ \hline (unless otherwise stated) \\ \hline Operating temperature & -40^{\circ}C \leq TA \leq +85^{\circ}C \text{ for Indu} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \text{ for Ex} \\ \hline \end{array}$				
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP	
25 MHz	Table 30-39		—	0,1	0,1	0,1	
25 MHz	—	Table 30-40	—	1	0,1	1	
25 MHz	—	Table 30-41	—	0	0,1	1	
25 MHz	—	—	Table 30-42	1	0	0	
25 MHz	—	—	Table 30-43	1	1	0	
25 MHz	_	—	Table 30-44	0	1	0	
25 MHz	_	—	Table 30-45	0	0	0	

FIGURE 30-20: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS

FIGURE 30-21: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS


TABLE 30-39	SPI1 MASTER MODE (HAL	F-DUPLEX, TRANSMIT	ONLY) TIMING REQUIREMENTS
--------------------	-----------------------	--------------------	---------------------------

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$. ≤ +85°C for Industrial
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK1 Frequency	—		25	MHz	See Note 3
SP20	TscF	SCK1 Output Fall Time	—	—	_	ns	See Parameter DO32 and Note 4
SP21	TscR	SCK1 Output Rise Time	—	-	_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDO1 Data Output Fall Time	—	_	_	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDO1 Data Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge		6	20	ns	
SP36	TdiV2scH, TdiV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	_		ns	

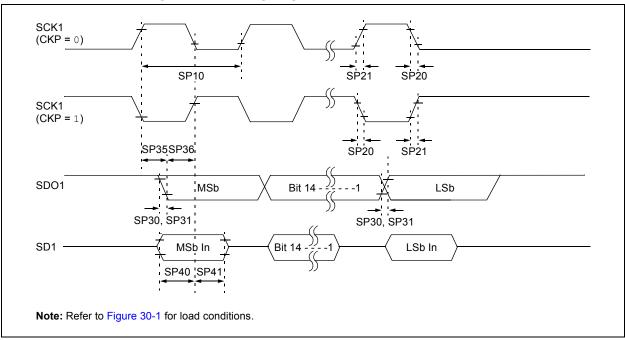
Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column are at 5.0V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCK1 is 40 ns. Therefore, the clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPI1 pins.

FIGURE 30-22: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 30-40:SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
REQUIREMENTS


AC CHARACTERISTICS			Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				+85°C for Industrial
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK1 Frequency	_		25	MHz	See Note 3
SP20	TscF	SCK1 Output Fall Time	—	—	_	ns	See Parameter DO32 and Note 4
SP21	TscR	SCK1 Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDO1 Data Output Fall Time	_	—	_	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDO1 Data Output Rise Time	_	—		ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2sc, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	20	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	15	—		ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column are at 5.0V, +25°C unless otherwise stated.

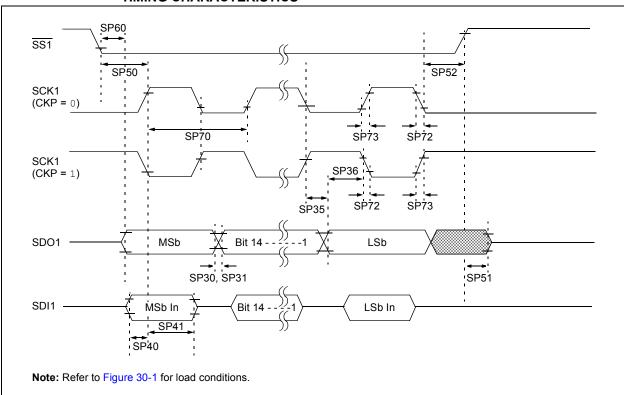
3: The minimum clock period for SCK1 is 40 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

FIGURE 30-23: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS

© 2013-2019 Microchip Technology Inc.

TABLE 30-41:SPI1 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS


AC CHARACTERISTICS			Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK1 Frequency			25	MHz	-40°C to +125°C and see Note 3
SP20	TscF	SCK1 Output Fall Time	_	_	—	ns	See Parameter DO32 and Note 4
SP21	TscR	SCK1 Output Rise Time	_	—	_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDO1 Data Output Fall Time	_	—	_	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDO1 Data Output Rise Time	_	—	_	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	_	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	-	—	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	20	—	—	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	20			ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column are at 5.0V, +25°C unless otherwise stated.

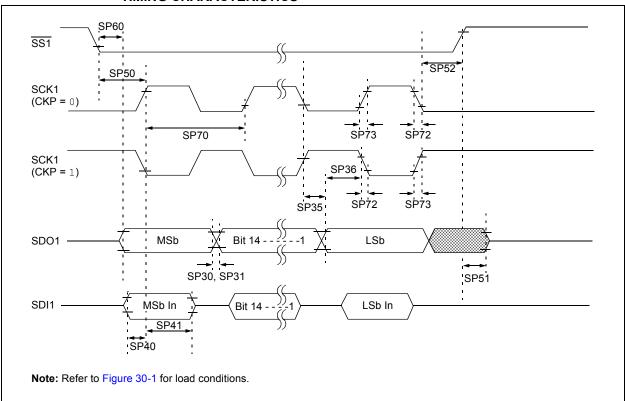
3: The minimum clock period for SCK1 is 40 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

FIGURE 30-24: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

© 2013-2019 Microchip Technology Inc.

TABLE 30-42:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)TIMING REQUIREMENTS


			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Min. Typ. ⁽²⁾ Max.			Conditions
SP70	FscP	Maximum SCK1 Input Frequency	_	_	25	MHz	See Note 3
SP72	TscF	SCK1 Input Fall Time	—	—	_	ns	See Parameter DO32 and Note 4
SP73	TscR	SCK1 Input Rise Time	—	—	_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDO1 Data Output Fall Time	_	_	_	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDO1 Data Output Rise Time	—	_	_	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCK1 Edge	20	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	15	—	_	ns	
SP50	TssL2scH, TssL2scL	SS1 ↓ to SCK1 ↑ or SCK1 ↓ Input	120	-	—	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	See Note 4
SP52	TscH2ssH TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 TCY + 40	—	_	ns	See Note 4
SP60	TssL2doV	SDO1 Data Output Valid after SS1 Edge	—	_	50	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

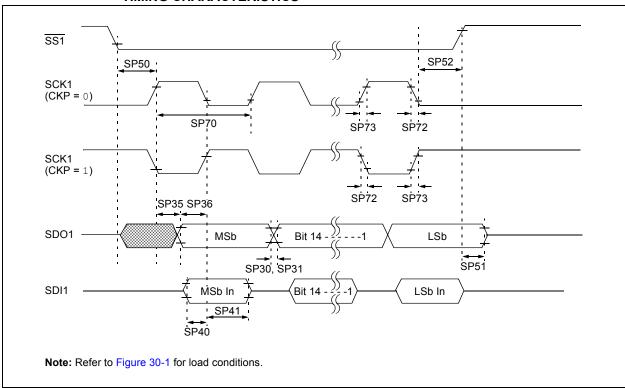
2: Data in "Typ." column are at 5.0V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 40 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

FIGURE 30-25: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

TABLE 30-43:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)TIMING REQUIREMENTS


			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK1 Input Frequency	—		25	MHz	See Note 3
SP72	TscF	SCK1 Input Fall Time	—	—	_	ns	See Parameter DO32 and Note 4
SP73	TscR	SCK1 Input Rise Time	—	—	_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDO1 Data Output Fall Time	—	—	_	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDO1 Data Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	20	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	15	—	_	ns	
SP50	TssL2scH, TssL2scL	$\overline{SS1}$ ↓ to SCK1 ↑ or SCK1 ↓ Input	120	-	_	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	See Note 4
SP52	TscH2ssH, TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 TCY + 40	—	_	ns	See Note 4
SP60	TssL2doV	SDO1 Data Output Valid after SS1 Edge	—	_	50	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

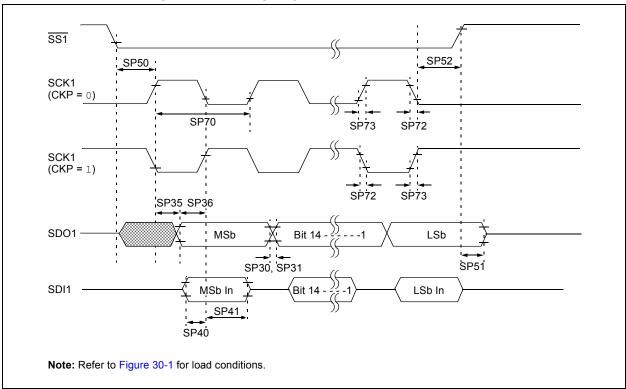
2: Data in "Typ." column are at 5.0V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 40 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

FIGURE 30-26: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

TABLE 30-44:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)TIMING REQUIREMENTS


АС СНА				$\begin{array}{c} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industria} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extend} \end{array}$			+85°C for Industrial
Param.	Symbol	Characteristic ⁽¹⁾	Min. Typ. ⁽²⁾ Max. Units				Conditions
SP70	FscP	Maximum SCK1 Input Frequency	_	—	25	MHz	See Note 3
SP72	TscF	SCK1 Input Fall Time	—			ns	See Parameter DO32 and Note 4
SP73	TscR	SCK1 Input Rise Time	_			ns	See Parameter DO31 and Note 4
SP30	TdoF	SDO1 Data Output Fall Time	_	_	_	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDO1 Data Output Rise Time	—	_	_	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	20			ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	20			ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	15	_	_	ns	
SP50	TssL2scH, TssL2scL	SS1 ↓ to SCK1 ↑ or SCK1 ↓ Input	120	_	_	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	_	50	ns	See Note 4
SP52	TscH2ssH, TscL2ssH	SS1	1.5 Tcy + 40		_	ns	See Note 4

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column are at 5.0V, +25°C unless otherwise stated.

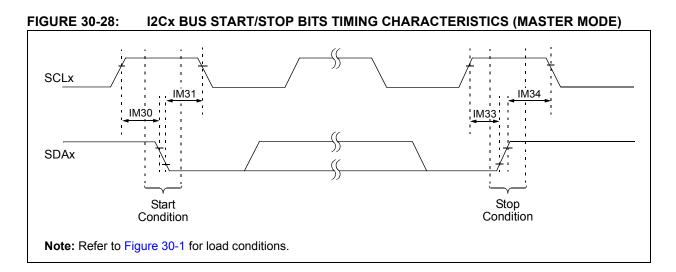
3: The minimum clock period for SCK1 is 40 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

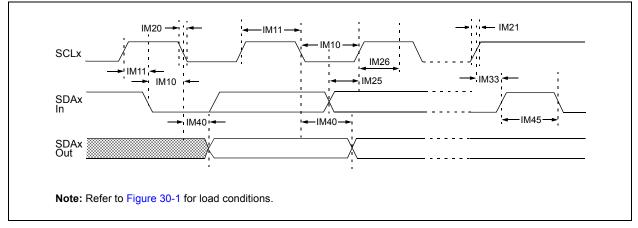
FIGURE 30-27: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

© 2013-2019 Microchip Technology Inc.

TABLE 30-45:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)TIMING REQUIREMENTS


			$\begin{array}{c} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industria} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$			+85°C for Industrial	
Param.	Symbol	Characteristic ⁽¹⁾	Min. Typ. ⁽²⁾ Max. Unit				Conditions
SP70	FscP	Maximum SCK1 Input Frequency	—	_	25	MHz	See Note 3
SP72	TscF	SCK1 Input Fall Time	—			ns	See Parameter DO32 and Note 4
SP73	TscR	SCK1 Input Rise Time	_		_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDO1 Data Output Fall Time	_		_	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDO1 Data Output Rise Time	—	_	_	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	20			ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	20			ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	15	_	_	ns	
SP50	TssL2scH, TssL2scL	SS1 ↓ to SCK1 ↑ or SCK1 ↓ Input	120	_	_	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10		50	ns	See Note 4
SP52	TscH2ssH, TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 Tcy + 40	—		ns	See Note 4

Note 1: These parameters are characterized but not tested in manufacturing.

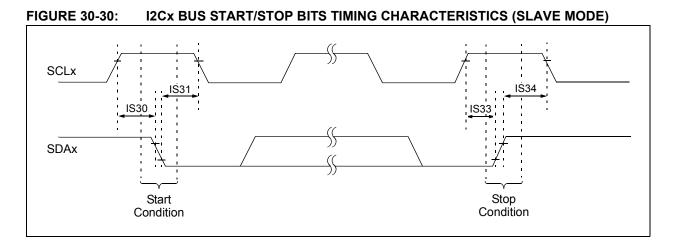

2: Data in "Typ." column are at 5.0V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 40 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

^{© 2013-2019} Microchip Technology Inc.

TABLE 30-46: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)


AC CH4	ARACTER	ISTICS		Standard Operatin (unless otherwise Operating tempera	e stated) ature -40)°C ≤ Ta ≤	5V to 5.5V +85°C for Industrial +125°C for Extended
Param No.	Symbol	Characteristic ⁽⁴⁾		Min. ⁽¹⁾	Max.	Units	Conditions
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 2)	_	μs	
			400 kHz mode	Tcy/2 (BRG + 2)		μs	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)		μs	
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 2)		μs	
			400 kHz mode	Tcy/2 (BRG + 2)		μs	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μs	
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
			1 MHz mode ⁽²⁾	_	100	ns	
IM21	TR:SCL	SDAx and SCLx	100 kHz mode		1000	ns	CB is specified to be from 10 to 400 pF
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	
			1 MHz mode ⁽²⁾		300	ns	
IM25	TSU:DAT	Data Input	100 kHz mode	250		ns	-
		Setup Time	400 kHz mode	100		ns	
			1 MHz mode ⁽²⁾	40		ns	
IM26	THD:DAT	Data Input	100 kHz mode	0		μs	
		Hold Time	400 kHz mode	0	0.9	μs	
			1 MHz mode ⁽²⁾	0.2	_	μs	-
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 2)		μs	Only relevant for
		Setup Time	400 kHz mode	Tcy/2 (BRG + 2)	_	μs	Repeated Start
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)		μs	condition
IM31	THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 2)	_	μs	After this period, the
		Hold Time	400 kHz mode	Tcy/2 (BRG +2)		μs	first clock pulse is
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)		μs	generated
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 2)	_	μs	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 2)	_	μs	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μs	
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 2)		μs	
		Hold Time	400 kHz mode	Tcy/2 (BRG + 2)		μs	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)		μs	
IM40	TAA:SCL	Output Valid	100 kHz mode		3500	ns	
		From Clock	400 kHz mode		1000	ns	1
			1 MHz mode ⁽²⁾		400	ns	1
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μs	Time the bus must be free before a new transmission can star
-			400 kHz mode	1.3		μs	
			1 MHz mode ⁽²⁾	0.5		μs	
IM50	Св	Bus Capacitive L			400	pF	
IM51	TPGD	Pulse Gobbler De	<u> </u>	65	390	ns	See Note 3
Note 1:			-	nerator. Refer to "In			

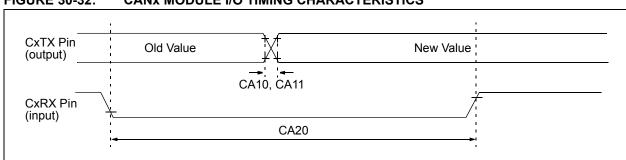
Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to "**Inter-Integrated Circuit (I²C)**" (www.microchip.com/DS70000195) in the "*dsPIC33/PIC24 Family Reference Manual*". Please see the Microchip website for the latest "*dsPIC33/PIC24 Family Reference Manual*" sections.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.

4: These parameters are characterized but not tested in manufacturing.

^{© 2013-2019} Microchip Technology Inc.


TABLE 30-47:	I2Cx BUS DATA	TIMING REQUIREMENTS	(SLAVE MODE)
--------------	---------------	---------------------	--------------

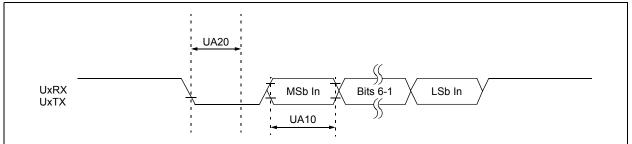
AC CHA	RACTERI	STICS		Standard Operating Conditions: 4.5V to 5.5V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended			
Param. No.	Symbol	Characte	eristic ⁽³⁾	Min.	Max.	Units	Conditions
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7		μs	
			400 kHz mode	1.3		μs	
			1 MHz mode ⁽¹⁾	0.5		μs	
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μs	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	-	μs	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5	—	μs	
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	—	100	ns]
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	—	300	ns	
IS25	TSU:DAT	Data Input	100 kHz mode	250	—	ns	
		Setup Time	400 kHz mode	100		ns	
			1 MHz mode ⁽¹⁾	100	—	ns	
IS26	THD:DAT	Data Input	100 kHz mode	0		μs	
		Hold Time	400 kHz mode	0	0.9	μs	
			1 MHz mode ⁽¹⁾	0	0.3	μs	
IS30	TSU:STA	Start Condition	100 kHz mode	4.7		μs	Only relevant for Repeated
		Setup Time	400 kHz mode	0.6	—	μs	Start condition
			1 MHz mode ⁽¹⁾	0.25		μs	
IS31	THD:STA	Start Condition	100 kHz mode	4.0		μs	After this period, the first
		Hold Time	400 kHz mode	0.6		μs	clock pulse is generated
			1 MHz mode ⁽¹⁾	0.25		μs	
IS33	TSU:STO	Stop Condition	100 kHz mode	4.7		μs	
		Setup Time	400 kHz mode	0.6		μs	
			1 MHz mode ⁽¹⁾	0.6		μs	
IS34	THD:STO	Stop Condition	100 kHz mode	4	—	μs	
		Hold Time	400 kHz mode	0.6	—	μs	
			1 MHz mode ⁽¹⁾	0.25		μs	
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns	
		From Clock	400 kHz mode	0	1000	ns	
			1 MHz mode ⁽¹⁾	0	350	ns	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be free
			400 kHz mode	1.3	—	μs	before a new transmission
			1 MHz mode ⁽¹⁾	0.5	—	μs	can start
IS50	Св	Bus Capacitive Lo	bading	—	400	pF	
IS51	Tpgd	Pulse Gobbler De	lay	65	390	ns	See Note 2

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

2: The typical value for this parameter is 130 ns.

3: These parameters are characterized but not tested in manufacturing.

FIGURE 30-32: CANX MODULE I/O TIMING CHARACTERISTICS


TABLE 30-48: CANX MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				≤ +85°C for Industrial
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
CA10	TIOF	Port Output Fall Time	—	—		ns	See Parameter DO32
CA11	TIOR	Port Output Rise Time	—	—	_	ns	See Parameter DO31
CA20	TCWF	Pulse Width to Trigger CAN Wake-up Filter	120			ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column are at 5.0V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 30-33: UARTX MODULE I/O TIMING CHARACTERISTICS

TABLE 30-49: UARTx MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
UA10	TUABAUD	UARTx Baud Time	66.67	—	_	ns	
UA11	FBAUD	UARTx Baud Frequency		—	15	Mbps	
UA20	TCWF	Start Bit Pulse Width to Trigger UARTx Wake-up	500	_	—	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column are at 5.0V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

^{© 2013-2019} Microchip Technology Inc.

TABLE 30-50: OP AMP/COMPARATOR x SPECIFICATIONS

			$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 3): 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$								
Param No.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions				
	Comparator AC Characteristics										
CM10	Tresp	Response Time	_	19	80	ns	V+ input step of 100 mV, V- input held at VDD/2				
CM11	Тмс2оv	Comparator Mode Change to Output Valid	—	—	10	μs					
		Com	nparator DC C	haracte	ristics						
CM30	VOFFSET	Comparator Offset Voltage	-80	±60	80	mV					
CM31	VHYST	Input Hysteresis Voltage	_	30		mV					
CM32	Trise/ Tfall	Comparator Output Rise/Fall Time	—	20	—	ns	1 pF load capacitance on input				
CM33	Vgain	Open-Loop Voltage Gain	—	90	—	db					
CM34	VICM	Input Common-Mode Voltage	AVss	—	AVDD	V					
		Or	o Amp AC Cha	aracteris	stics						
CM20	SR	Slew Rate	—	9	—	V/µs	10 pF load				
CM21	Рм	Phase Margin	—	35	—	°C	G = 100V/V, 10 pF load				
CM22	Gм	Gain Margin	—	20	_	db	G = 100V/V, 10 pF load				
CM23	Gвw	Gain Bandwidth	—	10	—	MHz	10 pF load				
		Op	o Amp DC Cha	aracteris	stics						
CM40	VCMR	Common-Mode Input Voltage Range	AVss	-	AVDD	V					
CM41	CMRR	Common-Mode Rejection Ratio	—	45	—	db	Vcm = AVdd/2				
CM42	VOFFSET	Op Amp Offset Voltage	-50	±6	50	mV					
CM43	Vgain	Open-Loop Voltage Gain	—	90	—	db					
CM44	los	Input Offset Current		_	_		See pad leakage currents in Table 30-10				
CM45	lв	Input Bias Current	—	_	—	_	See pad leakage currents in Table 30-10				
CM46	Ιουτ	Output Current	_		420	μA	With minimum value of RFEEDBACK (CM48)				
CM48	RFEEDBACK	Feedback Resistance Value	8	_	—	kΩ	See Note 2				
CM49a	Vout	Output Voltage	AVss + 0.075	_	AVDD - 0.075	V	Ιουτ = 420 μΑ				

Note 1: Data in "Typ." column are at 5.0V, +25°C unless otherwise stated.

2: Resistances can vary by ±10% between op amps.

3: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

TABLE 30-51: OP AMP/COMPARATOR x VOLTAGE REFERENCE SETTLING TIME SPECIFICATIONS

AC CHA	ARACTERISTICS (unless			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param.	Symbol	Characteristic	Min. Typ. Max. Units Conditions					
VRD310	TSET	Settling Time	—	1	10	μs	See Note 1	

Note 1: Settling time measured while CVRSS = 1 and the CVR[6:0] bits transition from '0000000' to '1111111'.

2: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

TABLE 30-52: OP AMP/COMPARATOR x VOLTAGE REFERENCE SPECIFICATIONS

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 1): 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristics	Min. Typ. Max. Units Condi					
VRD311	CVRAA	Absolute Accuracy of Internal DAC Input to Comparators	_	±25	_	mV	AVDD = CVRSRC = 5.0V	
VRD312	CVRAA1	Absolute Accuracy of CVREFXO Pins	_	_	+35/-65	mV	AVDD = CVRSRC = 5.0V	
VRD313	CVRSRC	Input Reference Voltage	0	_	AVDD + 0.3	V		
VRD314	CVRout	Buffer Output Resistance	_	1.5k	—	Ω		
VRD315	CVCL	Permissible Capacitive Load (CVREFxO pins)	—	_	25	pF		
VRD316	IOCVR	Permissible Current Output (CVREFxO pins)	_	_	1	mA		
VRD317	ION	Current Consumed when Module is Enabled	_	_	500	μA	AVDD = 5.0V	
VRD318	IOFF	Current Consumed when Module is Disabled	_	_	1	nA	AVDD = 5.0V	

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

TABLE 30-53:	CTMU CURRENT SOURCE SPECIFICATIONS
--------------	------------------------------------

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min. Typ. Max. Units Conditions					
		СТМИ	Current	Source				
CTMUI1	IOUT1	Base Range		550		nA	CTMUICON[9:8] = 01	
CTMUI2	IOUT2	10x Range	_	5.5	_	μA	CTMUICON[9:8] = 10	
CTMUI3	IOUT3	100x Range	_	55	_	μA	CTMUICON[9:8] = 11	
CTMUI4	IOUT4	1000x Range	_	550	_	μA	CTMUICON[9:8] = 00	
CTMUFV1	VF	Temperature Diode Forward Voltage ^(1,2)	_	0.525		V	TA = +25°C, CTMUICON[9:8] = 01	
			_	0.585	-	V	TA = +25°C, CTMUICON[9:8] = 10	
			_	0.645		V	TA = +25°C, CTMUICON[9:8] = 11	
CTMUFV2	VFVR	Temperature Diode Rate of	—	-1.92		mV/°C	CTMUICON[9.8] = 01	
		Change ^(1,2)	_	-1.74	_	mV/°C	CTMUICON[9:8] = 10	
			_	-1.56	_	mV/°C	CTMUICON[9:8] = 11	

Note 1: Nominal value at center point of current trim range (CTMUICON[15:10] = 000000).

2: Parameters are characterized but not tested in manufacturing. Measurements are taken with the following conditions:

- VREF = AVDD = 5.0V
- ADC configured for 10-bit mode
- ADC configured for conversion speed of 500 ksps
- All PMDx bits are cleared (PMDx = 0)
- CPU executing

```
while(1)
{
NOP();
```

- }
- Device operating from the FRC with no PLL

AC CH		RISTICS	$\begin{array}{ll} \mbox{Standard Operating Conditions (see Note 1): 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min. Typ. Max.			Units	Conditions	
			Devic	e Suppl	у			
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or VBOR	VDD - 0.3 VDD + 0.3		V		
AD02	AVss	Module Vss Supply	Vss – 0.3		Vss + 0.3	V		
	_		Refere	nce Inpu	Its		-	
AD05	Vrefh	Reference Voltage High	4.5		5.5	V	VREFH = AVDD, VREFL = AVSS = 0	
AD06	Vrefl	Reference Voltage Low	AVss	_	AVDD - VBORMIN	V	See Note 1	
AD06a			0	—	0	V	VREFH = AVDD, VREFL = AVSS = 0	
AD07	Vref	Absolute Reference Voltage	4.5		5.5	V	VREF = VREFH – VREFL	
AD08	IREF	Current Drain	_		10 600	μΑ μΑ	ADC off ADC on	
AD09	IAD	Operating Current	_	5 2		mA mA	ADC operating in 10-bit mode (see Note 1) ADC operating in 12-bit mode (see Note 1)	
		•	Anal	og Input				
AD12	VINH	Input Voltage Range VINH	VINL		Vrefh	V	This voltage reflects Sample-and-Hold Channels 0, 1, 2 and 3 (CH0-CH3), positive input	
AD13	VINL	Input Voltage Range Vin∟	VREFL		AVss + 1V	V	This voltage reflects Sample-and-Hold Channels 0, 1, 2 and 3 (CH0-CH3), negative input	
AD17	Rin	Recommended Impedance of Analog Voltage Source		_	200	Ω	Impedance to achieve maximum performance of ADC	

TABLE 30-54: ADC MODULE SPECIFICATIONS

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but is not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

			$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 1): 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min. Typ. Max.			Units	Conditions		
	•	ADC	Accurac	су (12-Ві	t Mode)				
AD20a	Nr	Resolution	1:	2 data bi	ts	bits			
AD21a	INL	Integral Nonlinearity	-2	_	+2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5.5V		
AD22a	DNL	Differential Nonlinearity	> -1	—	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5.5V		
AD23a	Gerr	Gain Error	-10	4	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5.5V		
AD24a	EOFF	Offset Error	-10	1.75	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5.5V		
AD25a	_	Monotonicity ⁽²⁾	_	_	_	—	Guaranteed		
		Dynamic	c Perforn	nance (1	2-Bit Mo	de)			
AD30a	THD	Total Harmonic Distortion	—	—	-75	dB			
AD31a	SINAD	Signal to Noise and Distortion	68.5	69.5	_	dB			
AD32a	SFDR	Spurious Free Dynamic Range	80	—	—	dB			
AD33a	Fnyq	Input Signal Bandwidth	—	—	250	kHz			
AD34a	ENOB	Effective Number of Bits	11.09	11.3	_	bits			

TABLE 30-55: ADC MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

2: The conversion result never decreases with an increase in the input voltage.

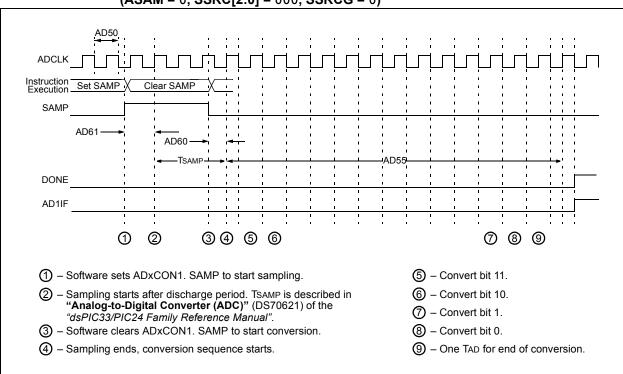

			$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 1): 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
		ADC A	Accuracy	(10-Bit	Mode)	•		
AD20b	Nr	Resolution	1() data bi	ts	bits		
AD21b	INL	Integral Nonlinearity	-1.5	-1.5 — +1.5 l		LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 5.5V	
AD22b	DNL	Differential Nonlinearity	≥ 1	_	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5.5V	
AD23b	Gerr	Gain Error	1	3	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5.5V	
AD24b	EOFF	Offset Error	1	2	4	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 5.5V	
AD25b	—	Monotonicity ⁽²⁾	_		_		Guaranteed	
		Dynamic	Performa	nce (10-	Bit Mod	e)		
AD30b	THD	Total Harmonic Distortion	—	—	-64	dB		
AD31b	SINAD	Signal to Noise and Distortion	57	58.5	—	dB		
AD32b	SFDR	Spurious Free Dynamic Range	72	_	—	dB		
AD33b	Fnyq	Input Signal Bandwidth	_	—	550	kHz		
AD34b	ENOB	Effective Number of Bits	9.16	9.4		bits		

TABLE 30-56: ADC MODULE SPECIFICATIONS (10-BIT MODE)

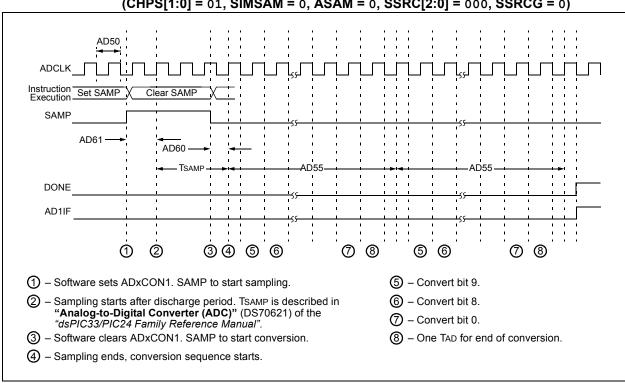
Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but is not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

2: The conversion result never decreases with an increase in the input voltage.

^{© 2013-2019} Microchip Technology Inc.

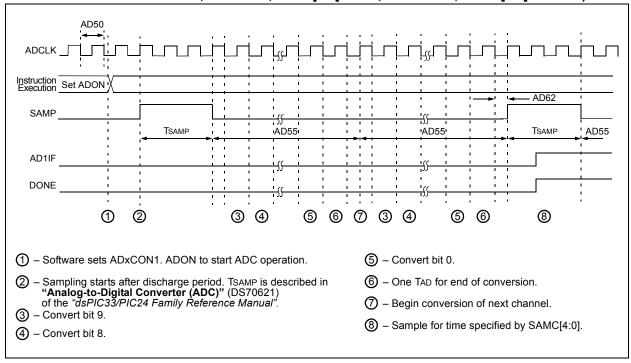
FIGURE 30-34: ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS (ASAM = 0, SSRC[2:0] = 000, SSRCG = 0)

TABLE 30-57: AI	DC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS
-----------------	-----------------	-------------	-----------------------


			$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 2): 4.5V to 5.5 (unless otherwise stated) \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Тур. ⁽⁴⁾	Max.	Units	Conditions	
	•	Cloc	k Parame	ters		•		
AD50	TAD	ADC Clock Period	117.6			ns		
AD51	tRC	ADC Internal RC Oscillator Period	—	250	_	ns		
		Con	version R	ate				
AD55	tCONV	Conversion Time	—	14	_	TAD		
AD56	FCNV	Throughput Rate	—	—	500	ksps		
AD57a	TSAMP	Sample Time when Sampling Any ANx Input	3	—	_	Tad		
AD57b	TSAMP	Sample Time when Sampling the Op Amp Outputs	3	—	_	Tad		
		Timin	g Parame	eters				
AD60	tPCS	Conversion Start from Sample Trigger ⁽¹⁾	2		3	Tad	Auto-convert trigger is not selected	
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽¹⁾	2	—	3	Tad		
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽¹⁾	—	0.5	—	Tad		
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽¹⁾	—	—	20	μs	See Note 3	

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

2: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but is not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.


3: The parameter, tDPU, is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (ADON (ADxCON1[15]) = 1). During this time, the ADC result is indeterminate.

4: These parameters are characterized but not tested in manufacturing.

FIGURE 30-35: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS[1:0] = 01, SIMSAM = 0, ASAM = 0, SSRC[2:0] = 000, SSRCG = 0)

FIGURE 30-36: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS[1:0] = 01, SIMSAM = 0, ASAM = 1, SSRC[2:0] = 111, SSRCG = 0, SAMC[4:0] = 00010)

AC CH/	ARACTE	RISTICS	(unless	rd Operat otherwis ng temper	e stated) ature -4	, I0°C ≤ Ta	ee Note 1): 4.5V to 5.5V ≤ +85°C for Industrial ≤ +125°C for Extended
Param No.	Symbol	Characteristic	Min.	Тур. ⁽⁴⁾	Max.	Units	Conditions
		Cloc	k Param	eters			
AD50	TAD	ADC Clock Period	75	_		ns	
AD51	tRC	ADC Internal RC Oscillator Period	_	250	_	ns	
		Con	version I	Rate			
AD55	tCONV	Conversion Time	—	12	_	TAD	
AD56	FCNV	Throughput Rate	_		1.1	Msps	Using simultaneous sampling
AD57a	TSAMP	Sample Time When Sampling Any ANx Input	2		—	TAD	
AD57b	TSAMP	Sample Time When Sampling the Op Amp Outputs	4	—	—	TAD	
		Timir	ng Param	eters			
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2	—	3	TAD	Auto-convert trigger is not selected
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2	—	3	Tad	
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾		0.5	_	Tad	
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽²⁾		—	20	μs	See Note 3

TABLE 30-58: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but is not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

- 2: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.
- **3:** The parameter, tDPU, is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (ADON (ADxCON1[15]) = 1). During this time, the ADC result is indeterminate.
- 4: These parameters are characterized but not tested in manufacturing.

TABLE 30-59: DMA MODULE TIMING REQUIREMENTS

АС СНА	ARACTERISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Characteristic	Min.	Max.	Units	Conditions		
DM1	DMA Byte/Word Transfer Latency	1 Tcy ⁽²⁾	—	ns			

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because DMA transfers use the CPU data bus, this time is dependent on other functions on the bus.

^{© 2013-2019} Microchip Technology Inc.

NOTES:

31.0 HIGH-TEMPERATURE ELECTRICAL CHARACTERISTICS

This section provides an overview of the dsPIC33EVXXXGM00X/10X family electrical characteristics for devices operating in an ambient temperature range of -40°C to +150°C.

The specifications between -40° C to $+150^{\circ}$ C are identical to those shown in **Section 30.0 "Electrical Characteristics"** for operation between -40° C to $+125^{\circ}$ C, with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, Parameter DC10 in **Section 30.0 "Electrical Characteristics"** is the Industrial and Extended temperature equivalent of HDC10.

Absolute maximum ratings for the dsPIC33EVXXXGM00X/10X family high-temperature devices are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias ⁽²⁾	40°C to +150°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	0.3V to +6.0V
Maximum current out of Vss pin	350 mA
Maximum current into Vod pin ⁽³⁾	350 mA
Maximum junction temperature	
Maximum current sunk by any I/O pin	20 mA
Maximum current sourced by I/O pin	
Maximum current sunk by all ports combined	
Maximum current sourced by all ports combined ⁽³⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.
 - 2: AEC-Q100 reliability testing for devices intended to operate at +150°C is 1,000 hours. Any design in which the total operating time from +125°C to +150°C will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc.
 - 3: Maximum allowable current is a function of device maximum power dissipation (see Table 31-2).

31.1 High-Temperature DC Characteristics

TABLE 31-1: OPERATING MIPS vs. VOLTAGE

Characteristic	VDD Range	Temperature Range	Max MIPS
Characteristic	(in Volts)	(in °C)	dsPIC33EVXXXGM00X/10X Family
HDC5	4.5V to 5.5V ^(1,2)	-40°C to +150°C	40

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules, such as the ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Device functionality is tested but is not characterized. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

2: When BOR is enabled, the device will work from 4.7V to 5.5V.

TABLE 31-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
High-Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+155	°C
Operating Ambient Temperature Range	TA	-40	—	+150	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD	I	Pint + Pi/c)	W
Maximum Allowed Power Dissipation	Pdmax	(TJ — TA)/θJA			W

TABLE 31-3: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions (see Note 3): 4.5V to 5.5V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature						
Param No.	Symbol	Characteristic	Min. Typ. ⁽¹⁾ Max. Units Conditions						
Operati	ng Voltag	e							
HDC10	Vdd	Supply Voltage ⁽³⁾	VBOR		5.5	V			
HDC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8	—	_	V			
HDC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal		_	Vss	V			
HDC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	1.0	_	—	V/ms	0V-5.0V in 5 ms		
HDC18		VDD Core Internal Regulator Voltage	1.62	1.8	1.98	V	Voltage is dependent on load, temperature and VDD		

Note 1: Data in "Typ." column are at 5.0V, +25°C unless otherwise stated.

2: This is the limit to which VDD may be lowered without losing RAM data.

3: VDD voltage must remain at Vss for a minimum of 200 µs to ensure POR.

DC CHARACTERISTICS				Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature				
Parameter No.	Units	Conditions						
Power-Down	Current (IPD)							
DC60d	9.25	90	μA	-40°C				
DC60a	15.75	100	μA	+25°C				
DC60b	67.75	465	μA	+85°C	5)/	Base Power-Down Current, Grade 0 Mission Profile		
DC60c	270	860	μA	+125°C	5V			
HDC60e	1300	2500	μA	+150°C	1			
HDC61c	10	50	μA	+150°C		Watchdog Timer Current: ΔIWDT		

TABLE 31-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

TABLE 31-5: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

DC CHARAG	CTERISTICS			rating Conditions: 4.5V to 5.5V (unless otherwise stated) perature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature			
Parameter No.	Typical	Мах	Units	Conditions			
HDC40e	2.6	5.0	mA	+150°C 5V 10 MIPS		10 MIPS	
HDC42e	3.6	7.0	mA	+150°C	5V	20 MIPS	

TABLE 31-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARA	CTERISTICS		•	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Parameter No.	Typical	Мах	Units	Conditions					
HDC20e	5.9	8.0	mA	+150°C	5V	10 MIPS			
HDC22e	10.3	15.0	mA	+150°C 5V 20 MIPS		20 MIPS			
HDC23e	19.0	25.0	mA	+150°C	5V	40 MIPS			

TABLE 31-7: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

DC CHARA	CTERISTICS		Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stateOperating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature							
Parameter No.	Typical	Мах	Doze Ratio	Units	Conditions					
HDC73a	18.5	22.0	1:2	mA	+150°C	5\/				
HDC73g	8.35	12.0	1:128	mA	+150°C 5V 40 MIPS					

DC CH	ARACTE	RISTICS	Standard Op (unless othe Operating ten	erwise sta	ated)		to 5.5V 50°C for High Temperature
Param No.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions
	VIL	Input Low Voltage					
DI10		Any I/O Pins	Vss	_	0.2 Vdd	V	
	VIH	Input High Voltage					
DI20		I/O Pins	0.75 VDD	_	5.5	V	
DI30	ICNPU	Change Notification Pull-up Current	200	375	600	μA	VDD = 5.0V, VPIN = VSS
DI31	ICNPD	Change Notification Pull-Down Current ⁽⁷⁾	175	400	625	μA	VDD = 5.0V, VPIN = VDD
	lı∟	Input Leakage Current ^(2,3)					
DI50		I/O Pins	-200	_	200	nA	$VSS \le VPIN \le VDD,$ pin at high-impedance
DI55		MCLR	-1.5	_	1.5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
DI56		OSC1	-300	—	300	nA	$\label{eq:VSS} \begin{split} &VSS \leq VPIN \leq VDD, \\ &XT \text{ and } HS \text{ modes} \end{split}$
Dl60a	licl	Input Low Injection Current	0	—	_5 ^(4,6)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP and RB7
DI60b	Іісн	Input High Injection Current	0	_	+5 ^(5,6)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, RB7 and all 5V tolerant pins ⁽⁵⁾
DI60c	∑lict	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁷⁾	_	+20 ⁽⁷⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT

TABLE 31-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ." column are at 5.0V, +25°C unless otherwise stated.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.
- **3:** Negative current is defined as current sourced by the pin.
- 4: VIL source < (VSS 0.3). Characterized but not tested.
- 5: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- **6:** Non-zero injection currents can affect the ADC results by approximately four to six counts.
- 7: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted, provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min. ⁽¹⁾	Тур.	Max.	Units	Conditions	
HDO16	Vol	Output Low Voltage 4x Sink Driver Pins ⁽²⁾	_		0.4	V	Iol = 8.8 mA, Vdd = 5.0V	
HDO10	Vol	Output Low Voltage 8x Sink Driver Pins ⁽³⁾	_	_	0.4	V	IOL = 10.8 mA, VDD = 5.0V	
HDO26	Vон	Output High Voltage 4x Sink Driver Pins ⁽²⁾	Vdd - 0.6		_	v	Іон = -8.3 mA, Vdd = 5.0V	
HDO20	Vон	Output High Voltage 8x Sink Driver Pins	Vdd - 0.6	_	_	V	Іон = -12.3 mA, Vdd = 5.0V	

TABLE 31-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized but not tested.

2: Includes all I/O pins that are not 8x sink driver pins (see below).

3: Includes pins, such as RA3, RA4 and RB[15:10] for 28-pin and 36-pin devices, RA3, RA4, RA9 and RB[15:10] for 44-pin and 48-pin devices, RA4, RA7, RA9, RB[15:10] and RC15 for 64-pin devices.

TABLE 31-10: ELECTRICAL CHARACTERISTICS: BOR

DC CHA	Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature							
Param No.	Symbol	Characteristic	Min. ⁽¹⁾ Typ. Max. Units Conditions					
HBO10	VBOR	BOR Event on VDD Transition High-to-Low	4.15	4.285	4.4	V	VDD (see Note 2, Note 3 and Note 4)	

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

- **2:** The VBOR specification is relative to the VDD.
- **3:** The device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, op amp/comparator and comparator voltage reference will have degraded performance. Device functionality is tested but is not characterized.
- 4: The start-up VDD must rise above 4.6V.

TABLE 31-11: DC CHARACTERISTICS: PROGRAM MEMORY

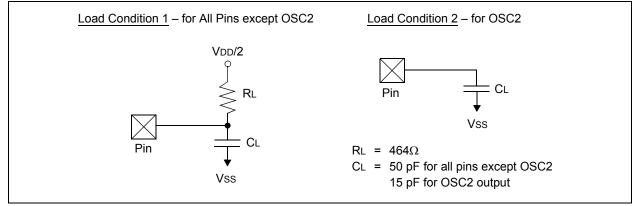
DC CHA	RACTERI	STICS	Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Min. Typ. Max. Units			Conditions	
		Program Flash Memory						
HD130	Eр	Cell Endurance	10,000	—	—	E/W	-40°C to +150°C ⁽²⁾	
HD134	Tretd	Characteristic Retention	20	_	—	Year	1000 E/W cycles or less and no other specifications are violated	

Note 1: These parameters are assured by design, but are not characterized or tested in manufacturing.

2: Programming of the Flash memory is allowed up to +150°C.

^{© 2013-2019} Microchip Technology Inc.

31.2 AC Characteristics and Timing Parameters


The information contained in this section defines the dsPIC33EVXXXGM00X/10X family AC characteristics and timing parameters for high-temperature devices. However, all AC timing specifications in this section are the same as those in Section 30.2 "AC Characteristics and Timing Parameters", with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, Parameter OS53 in Section 30.2 "AC Characteristics and Timing Parameters" is the Industrial and Extended temperature equivalent of HOS53.

TABLE 31-12: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$
	Operating voltage VDD range as described in Table 31-1.

FIGURE 31-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 31-13: PLL CLOCK TIMING SPECIFICATIONS

			Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$						
Param No.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions		
HOS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range	0.8	_	8.0	MHz	ECPLL, XTPLL modes		
HOS51	Fsys	On-Chip VCO System Frequency	120	—	340	MHz			
HOS52	TLOCK	PLL Start-up Time (Lock Time)	0.9	1.5	3.1	ms			
HOS53	DCLK	CLKO Stability (Jitter) ⁽²⁾	-3	0.5	3	%			

Note 1: Data in "Typ." column are at 5.0V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This jitter specification is based on clock cycle-by-clock cycle measurements. To get the effective jitter for individual time bases or communication clocks used by the application, use the following formula:

$$Effective Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Time Base or Communication Clock}}}$$

For example, if Fosc = 120 MHz and the SPI bit rate = 10 MHz, the effective jitter is as follows:

Effective Jitter =
$$\frac{DCLK}{\sqrt{\frac{120}{10}}} = \frac{DCLK}{\sqrt{12}} = \frac{DCLK}{3.464}$$

TABLE 31-14: INTERNAL FRC ACCURACY

AC CHA	RACTERISTICS	Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature $-40^\circ C \le TA \le +150^\circ C$							
Param No.	Characteristic	Min	Тур	Max	Units	Conditions			
Internal FRC Accuracy @ FRC Frequency = 7.3728 MHz									
HF20C	FRC	-3	1	+3	%	-40°C \leq TA \leq +150°C $$ VDD = 4.5V to 5.5V $$			

TABLE 31-15: INTERNAL LPRC ACCURACY

AC CHARACTERISTICSStandard Operating Conditions: 4.5V to 5.5V (unless otherwise Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$										
Param No.	Characteristic	Min	Тур	Max	Units	Conditions				
LPRC @	LPRC @ 32.768 kHz ^(1,2)									
HF21C	LPRC	-30	10	+30	%	$-40^{\circ}C \le TA \le +150^{\circ}C VDD = 4.5V \text{ to } 5.5V$				

Note 1: Change of LPRC frequency as VDD changes.

2: LPRC accuracy impacts the Watchdog Timer Time-out Period (TwDT1). See Section 27.5 "Watchdog Timer (WDT)" for more information.

TABLE 31-16: CTMU CURRENT SOURCE SPECIFICATIONS

DC CHARACI	DC CHARACTERISTICS			Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions			
CTMU Current Source										
HCTMUI1	IOUT1	Base Range	_	550		nA	CTMUICON[9.8] = 01			
HCTMUI2	IOUT2	10x Range	—	5.5	_	μA	CTMUICON[9.8] = 10			
HCTMUI3	IOUT3	100x Range	_	55	_	μA	CTMUICON[9.8] = 11			
HCTMUI0	IOUT4	1000x Range	_	550	_	μA	CTMUICON[9.8] = 00			
HCTMUFV1	VF	Temperature Diode Forward Voltage ⁽²⁾	—	0.525	_	V	TA = +25°C, CTMUICON[9.8] = 01			
			—	0.585		V	TA = +25°C, CTMUICON[9.8] = 10			
			—	0.645	_	V	TA = +25°C, CTMUICON[9.8] = 11			

Note 1: Normal value at center point of current trim range (CTMUICON[15:10] = 000000).

2: Parameters are characterized but not tested in manufacturing. Measurements are taken with the following conditions:

- VREF = AVDD = 5.0V
- ADC module configured for 10-bit mode
- ADC module configured for conversion speed of 500 ksps
- All PMDx bits are cleared (PMDx = 0)
- CPU executing
 while(1)
 {
 NOP();
 - }
- Device operating from the FRC with no PLL

DC CHARACTERISTICS			Standard Operating Conditions (see Note 3): 4.5V to 5.5V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$					
Param No.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions	
Comparator DC Characteristics								
HCM30	VOFFSET	Comparator Offset Voltage	-80	±60	80	mV		
HCM31	VHYST	Input Hysteresis Voltage	_	30	_	mV		
HCM34	VICM	Input Common-Mode Voltage	AVss	_	AVdd	V		
Op Amp DC Characteristics ⁽²⁾								
HCM40	VCMR	Common-Mode Input Voltage Range	AVss	—	AVdd	V		
HCM42	VOFFSET	Op Amp Offset Voltage	-50	±6	50	mV		

Note 1: Data in "Typ." column are at 5.0V, +25°C unless otherwise stated.

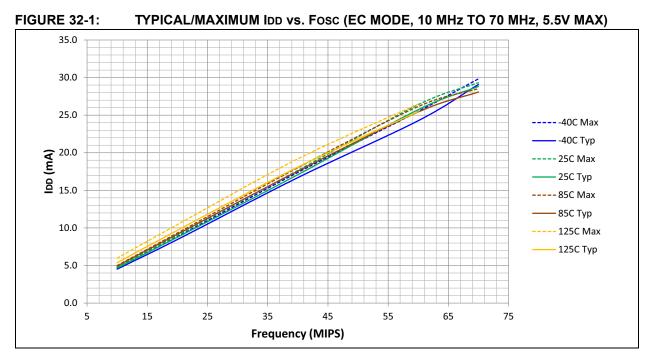
2: Resistances can vary by ±10% between op amps.

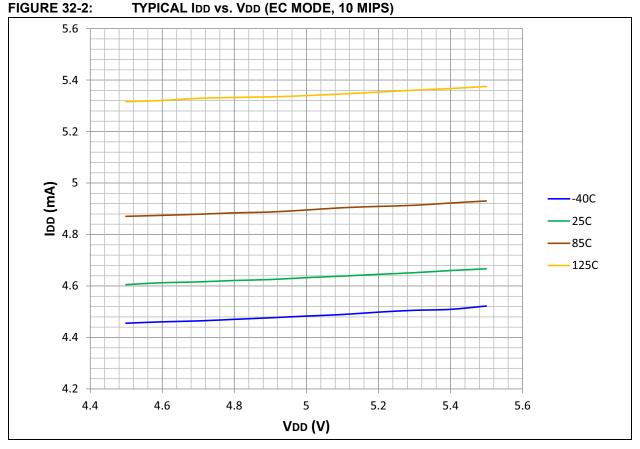
3: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but is not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter HBO10 in Table 31-10 for the minimum and maximum BOR values.

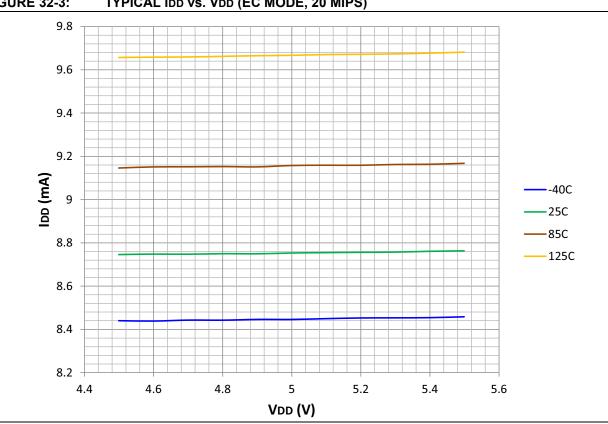
TABLE 31-18: ADC MODULE SPECIFICATIONS (12-BIT MODE)

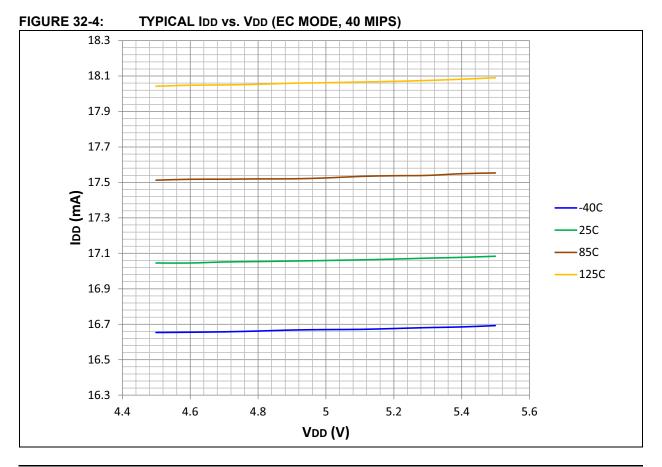
AC CHARACTERISTICS			Standard Operating Conditions (see Note 1): 4.5V to 5.5V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$							
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions			
	ADC Accuracy (12-Bit Mode)									
HAD20a	Nr	Resolution	12 data bits		bits					
HAD21a	INL	Integral Nonlinearity	-2		+2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5.5V			
HAD22a	DNL	Differential Nonlinearity	> -1	_	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5.5V			
HAD23a	Gerr	Gain Error	-10	4	10	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 5.5V			
HAD24a	EOFF	Offset Error	-10	1.75	10	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 5.5V			

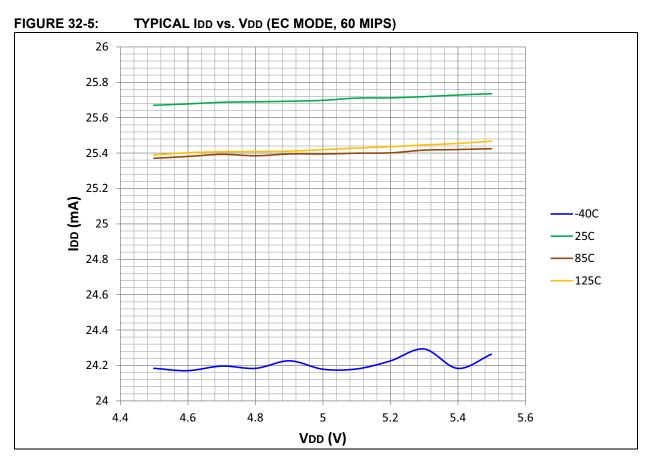
Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but is not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

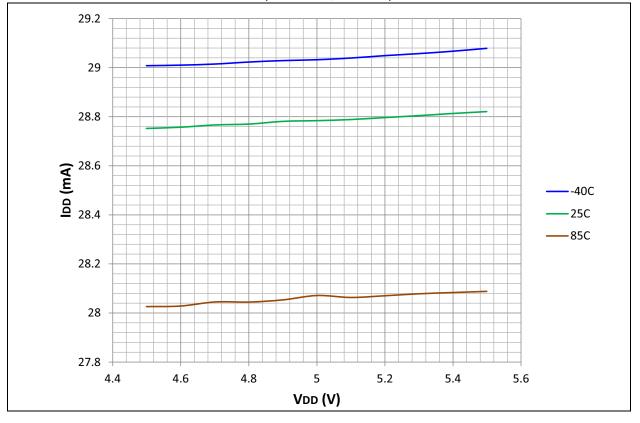

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 1): 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +150^{\circ}C \end{array}$					
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
ADC Accuracy (10-Bit Mode)								
HAD20b	Nr	Resolution	10 data bits			bits		
HAD21b	INL	Integral Nonlinearity	-1.5	_	+1.5	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 5.5V	
HAD22b	DNL	Differential Nonlinearity	≥ 1	_	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5.5V	
HAD23b	Gerr	Gain Error	1	3	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5.5V	
HAD24b	EOFF	Offset Error	1	2	4	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5.5V	

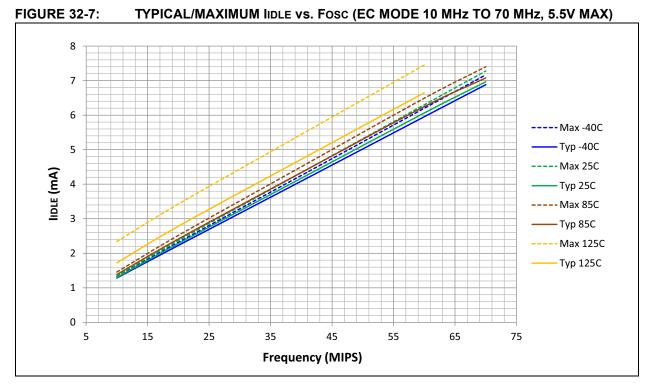

TABLE 31-19: ADC MODULE SPECIFICATIONS (10-BIT MODE)

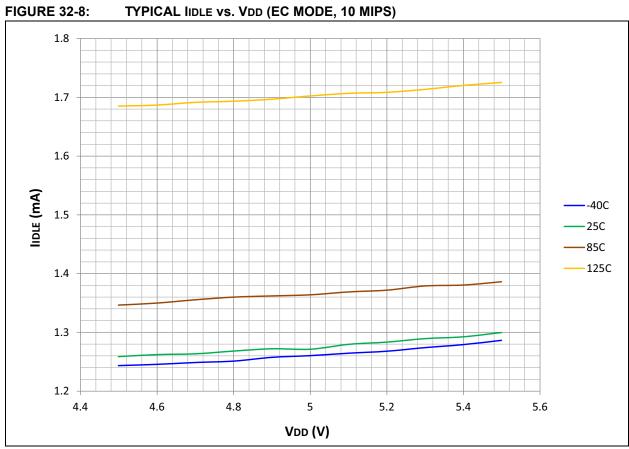

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but is not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter HBO10 in Table 31-10 for the minimum and maximum BOR values.

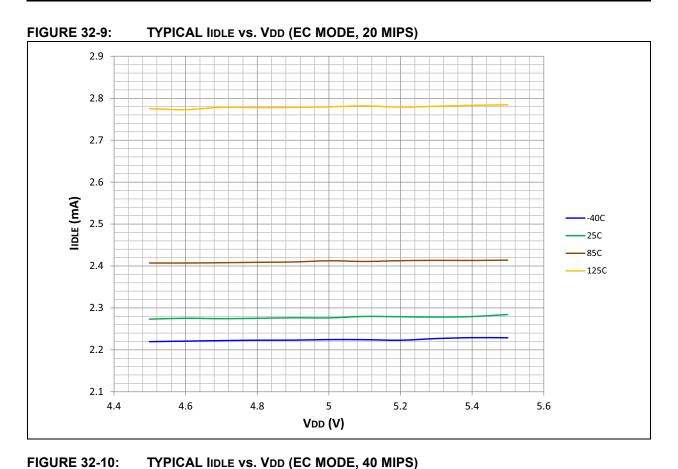

32.0 CHARACTERISTICS FOR INDUSTRIAL/EXTENDED TEMPERATURE DEVICES (-40°C TO +125°C)

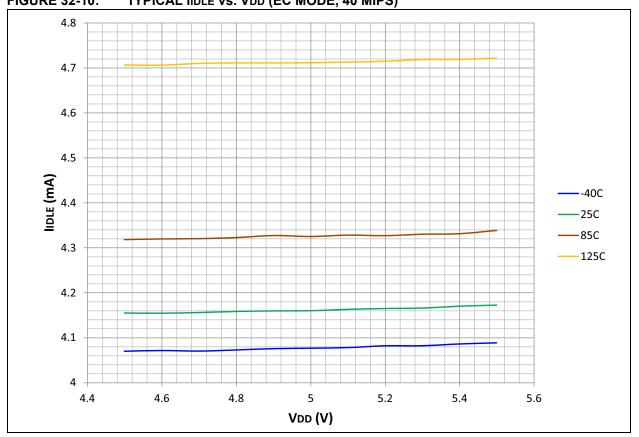


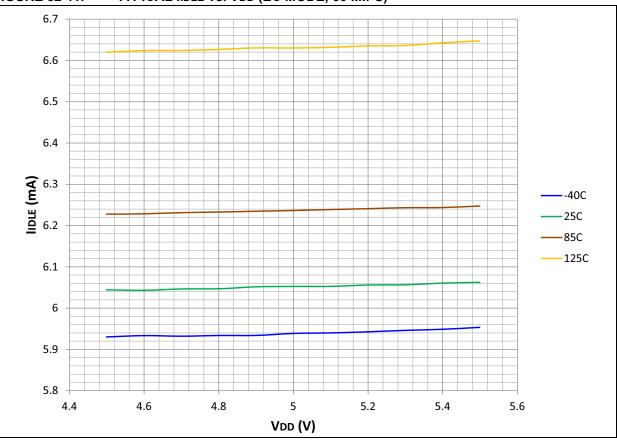


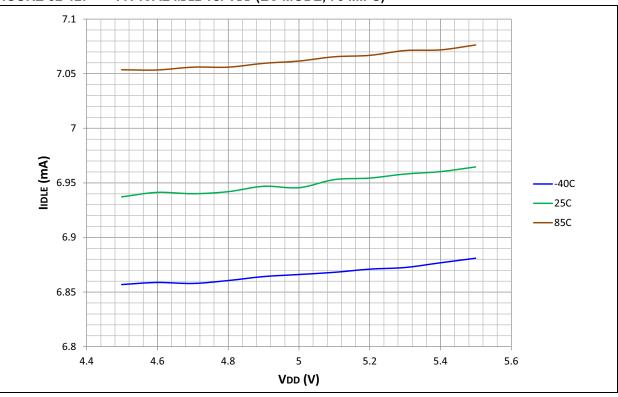

FIGURE 32-3: TYPICAL IDD vs. VDD (EC MODE, 20 MIPS)






32.2 IIDLE


DS70005144H-page 418


© 2013-2019 Microchip Technology Inc.

Downloaded From Oneyac.com

DS70005144H-page 420

32.3 IDOZE

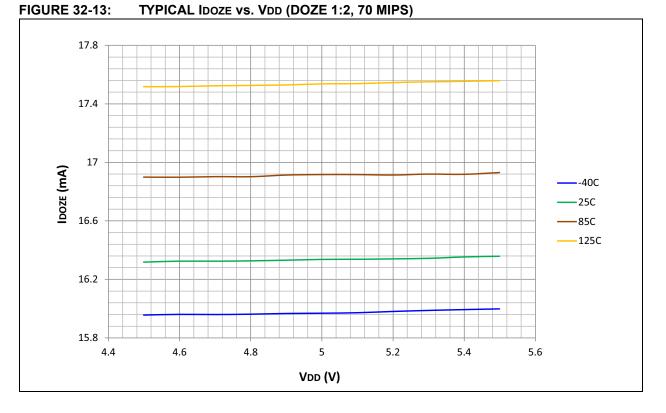
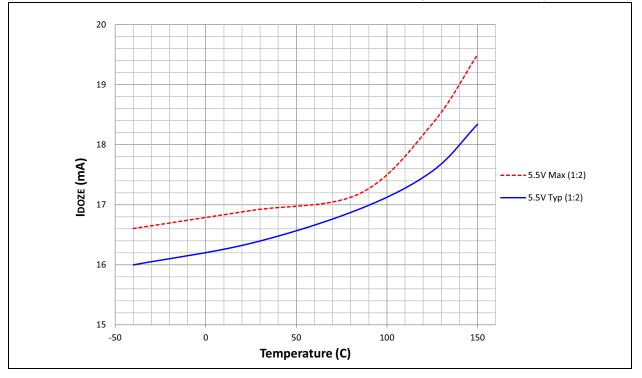



FIGURE 32-14: TYPICAL/MAXIMUM IDOZE vs. TEMPERATURE (DOZE 1:2, 70 MIPS)

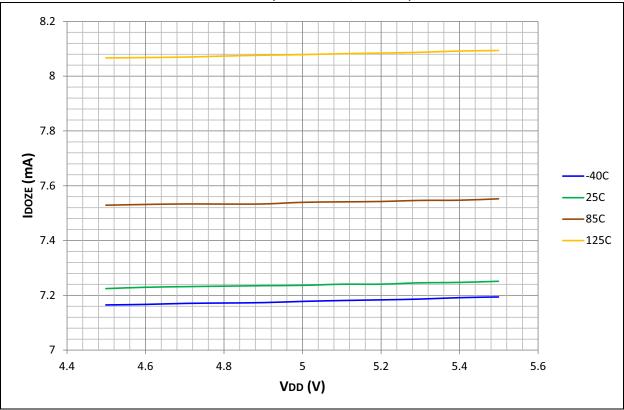
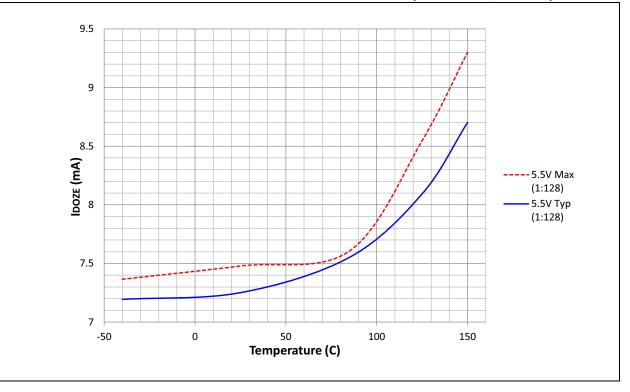
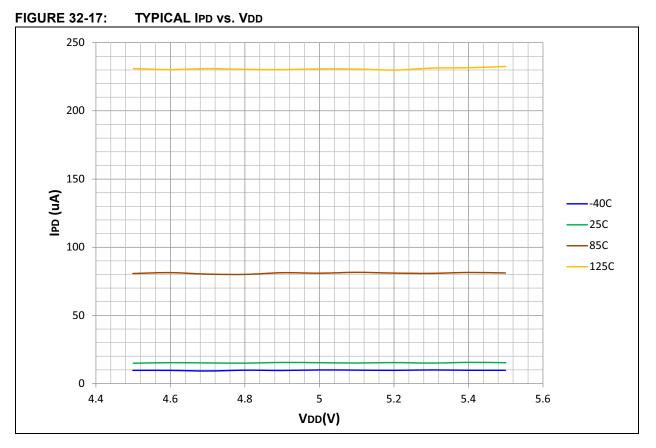
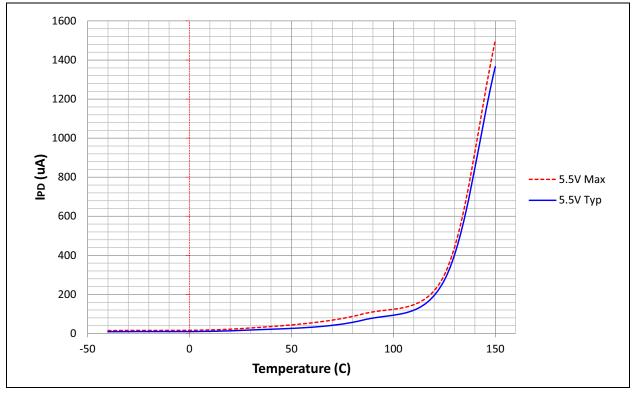
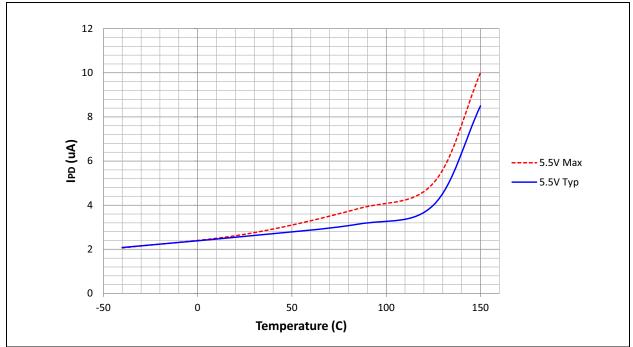
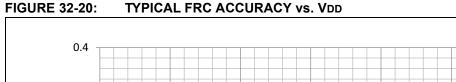
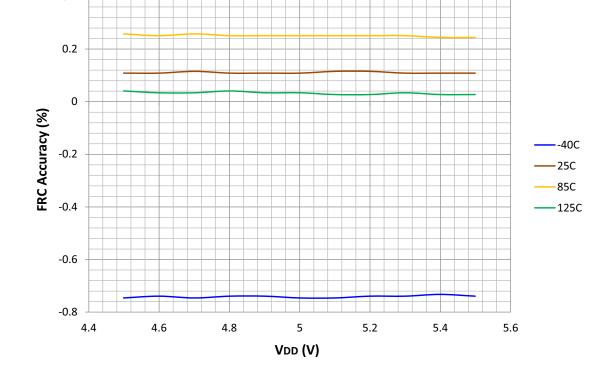




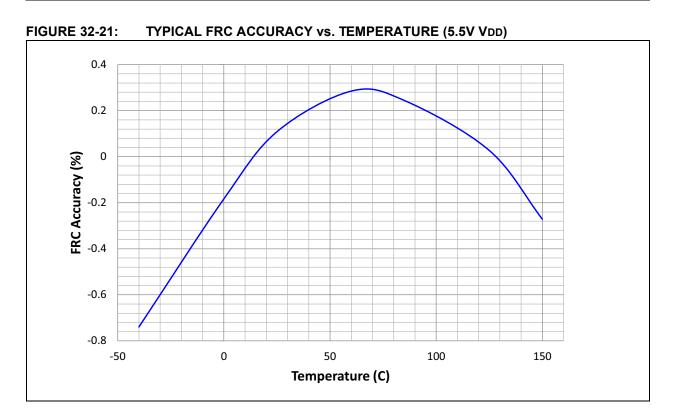
FIGURE 32-15: TYPICAL IDOZE vs. VDD (DOZE 1:128, 70 MIPS)


FIGURE 32-16: TYPICAL/MAXIMUM IDOZE vs. TEMPERATURE (DOZE 1:128, 70 MIPS)

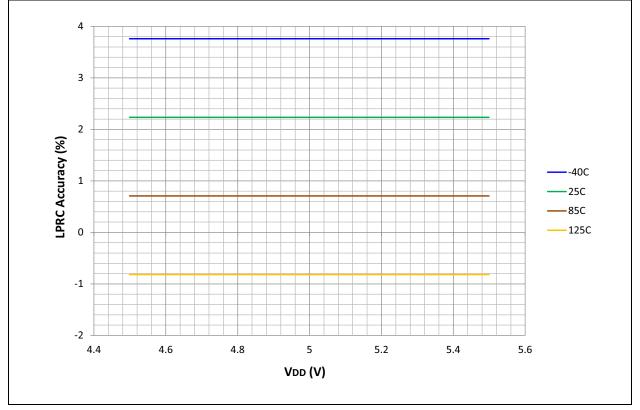

32.4 IPD

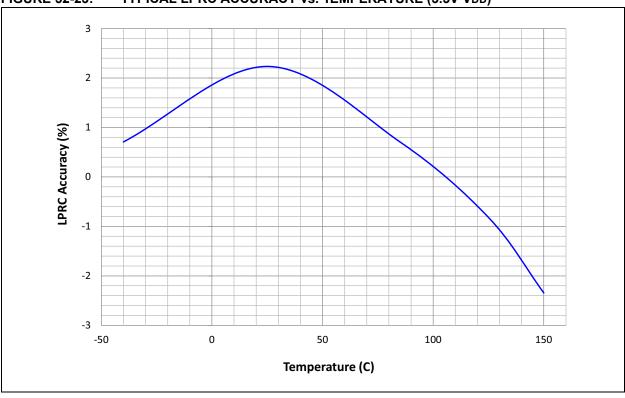





FIGURE 32-19: TYPICAL/MAXIMUM *Alwdt* vs. TEMPERATURE

32.5 FRC





32.6 LPRC

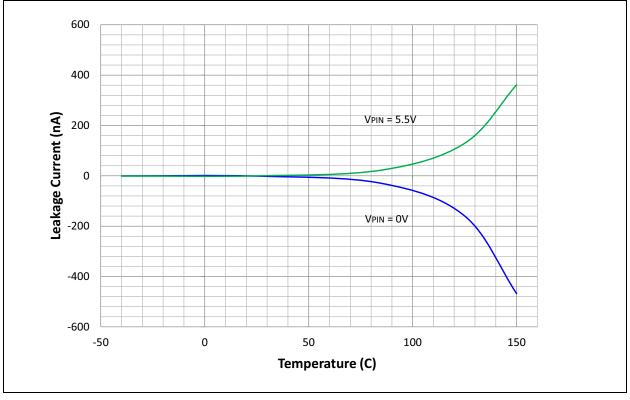


FIGURE 32-23: TYPICAL LPRC ACCURACY vs. TEMPERATURE (5.5V VDD)

32.7 Leakage Current

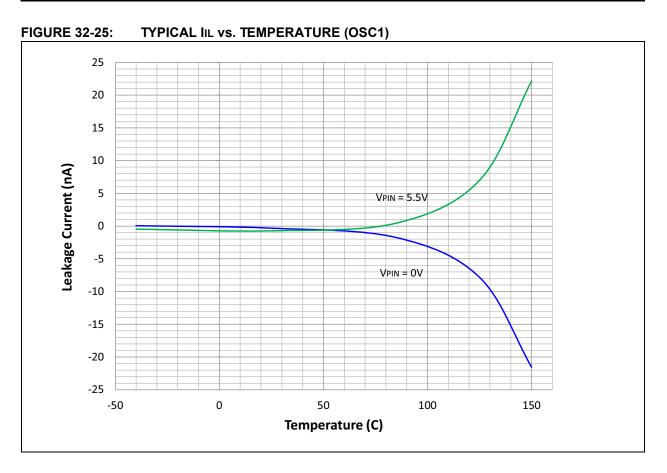
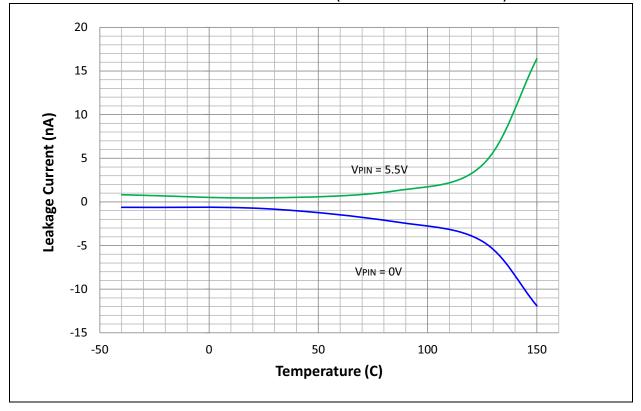
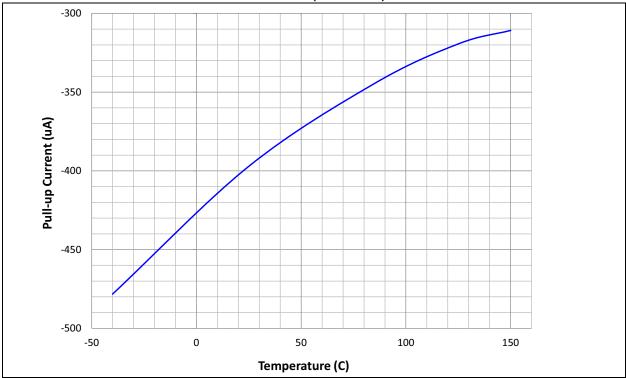




FIGURE 32-26: TYPICAL IIL vs. TEMPERATURE (GENERAL PURPOSE I/Os)

32.8 Pull-up and Pull-Down Current

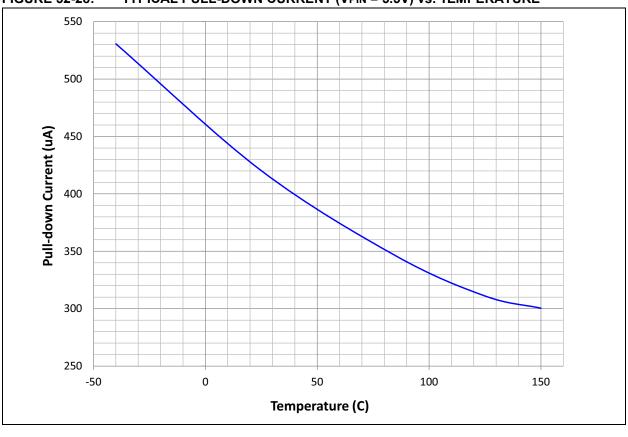
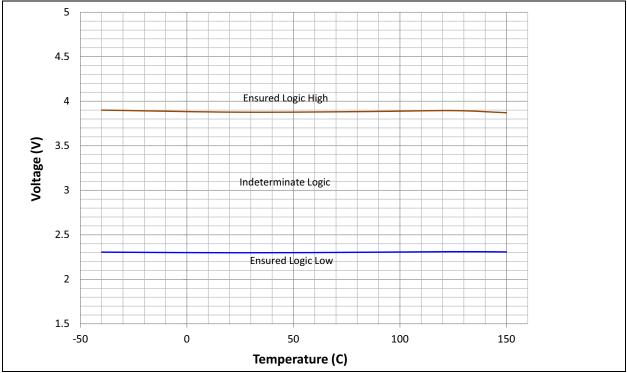



FIGURE 32-27: TYPICAL PULL-UP CURRENT (VPIN = VSS) vs. TEMPERATURE

32.10 Voltage Output Low (VOL) – Voltage Output High (VOH)

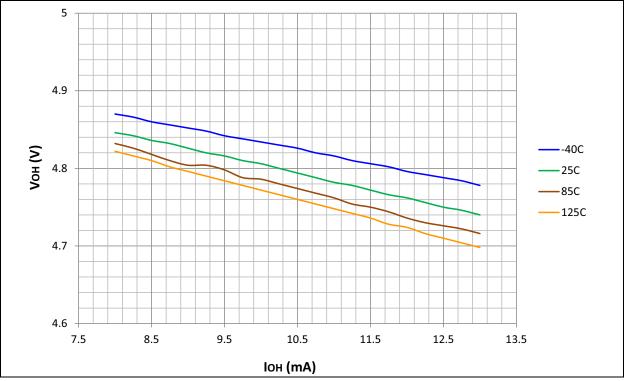


FIGURE 32-31: TYPICAL VOH 4x DRIVER PINS vs. IOH (GENERAL PURPOSE I/Os, TEMPERATURES AS NOTED)

FIGURE 32-32: TYPICAL Vol 8x DRIVER PINS vs. IoL (GENERAL PURPOSE I/Os, TEMPERATURES AS NOTED)

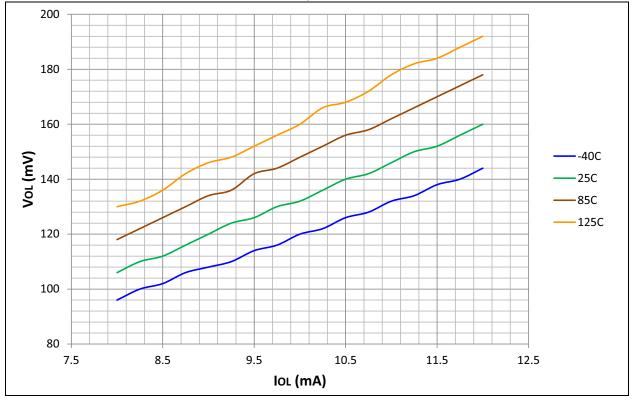
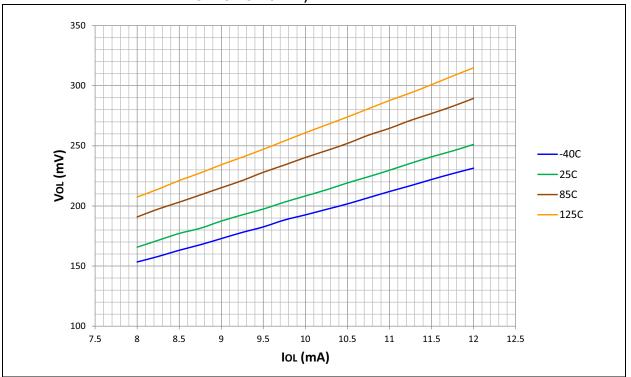
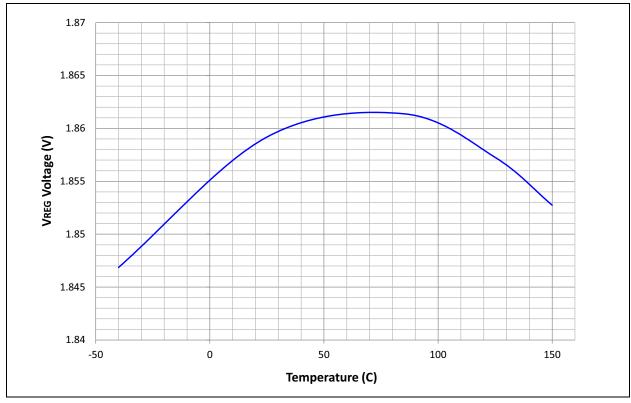
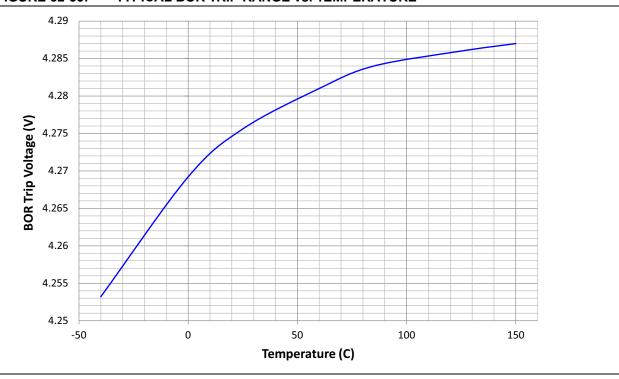




FIGURE 32-33: TYPICAL VOL 4x DRIVER PINS vs. IOL (GENERAL PURPOSE I/Os, TEMPERATURES AS NOTED)



32.11 VREG

FIGURE 32-34: TYPICAL REGULATOR VOLTAGE vs. TEMPERATURE

32.12 VBOR

FIGURE 32-35: TYPICAL BOR TRIP RANGE vs. TEMPERATURE

32.13 RAM Retention

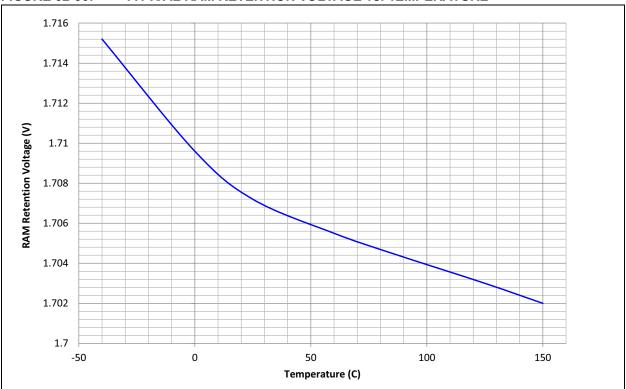
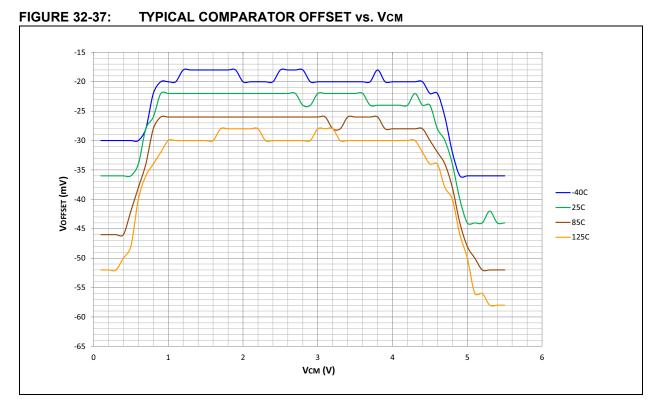
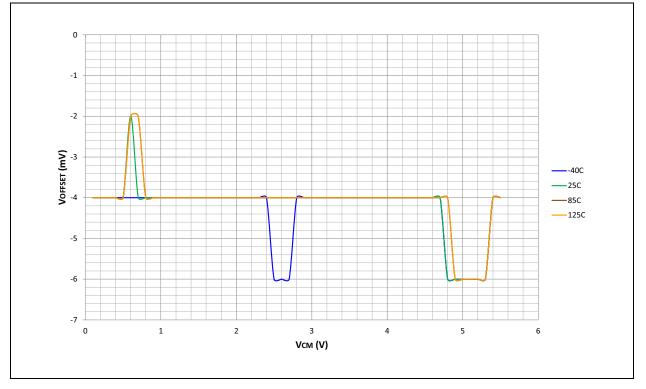
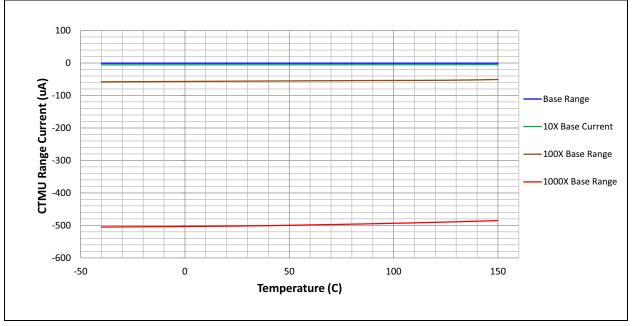
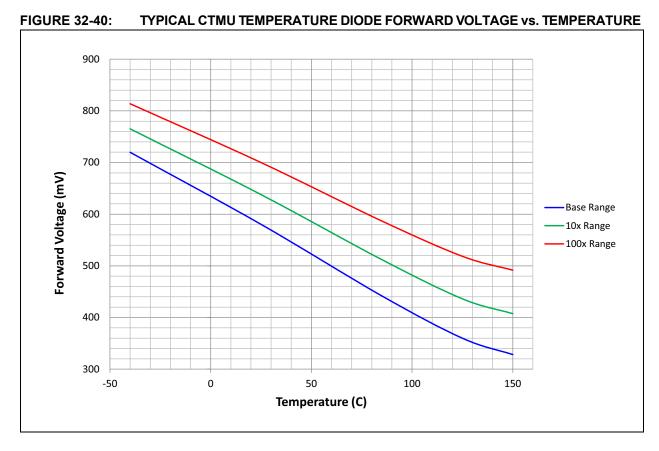
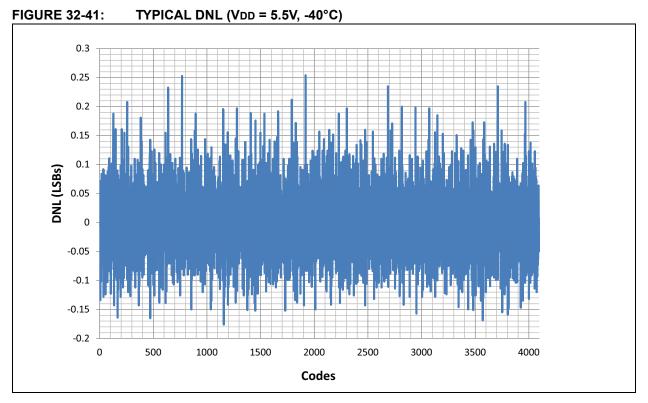




FIGURE 32-36: TYPICAL RAM RETENTION VOLTAGE vs. TEMPERATURE


32.14 Comparator Op Amp Offset





32.16 CTMU Temperature Forward Diode

32.17 ADC DNL

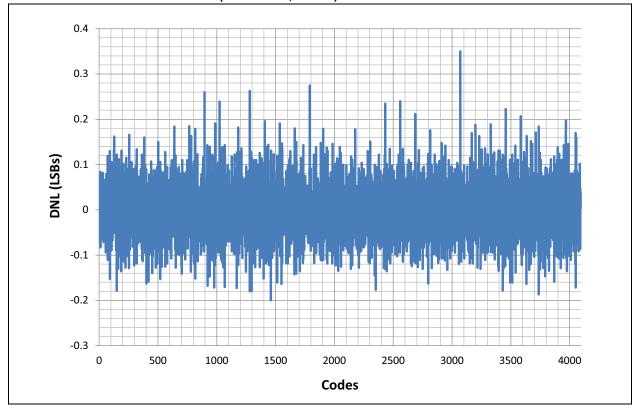
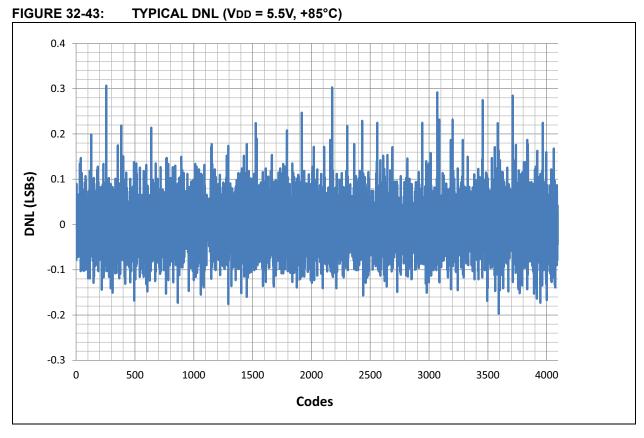



FIGURE 32-42: TYPICAL DNL (VDD = 5.5V, +25°C)

 $\ensuremath{\textcircled{}^{\odot}}$ 2013-2019 Microchip Technology Inc.

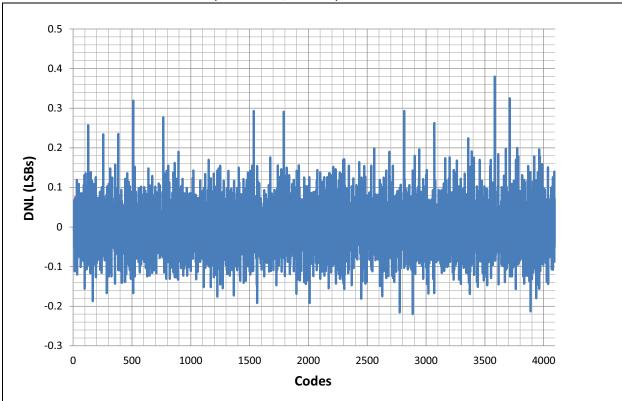
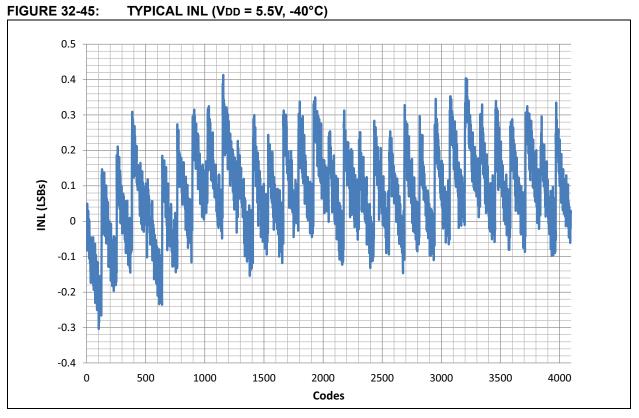



FIGURE 32-44: TYPICAL DNL (VDD = 5.5V, +125°C)

32.18 ADC INL

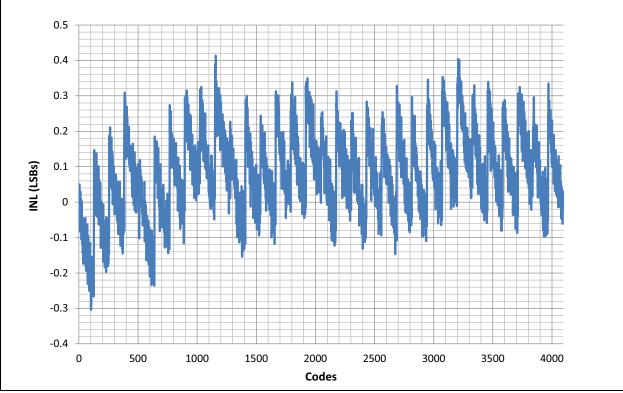
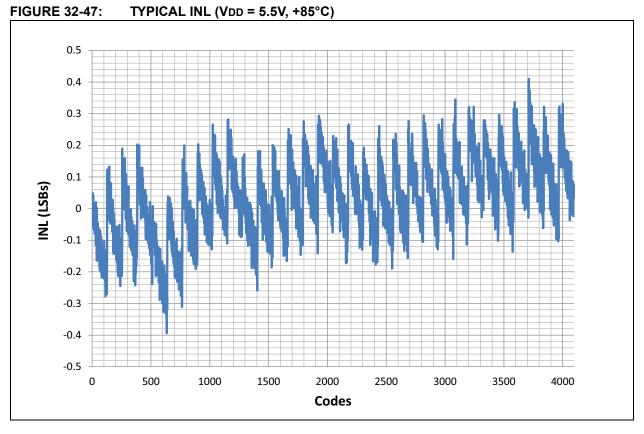



FIGURE 32-46: TYPICAL INL (VDD = 5.5V, +25°C)

 $\ensuremath{\textcircled{}^{\odot}}$ 2013-2019 Microchip Technology Inc.

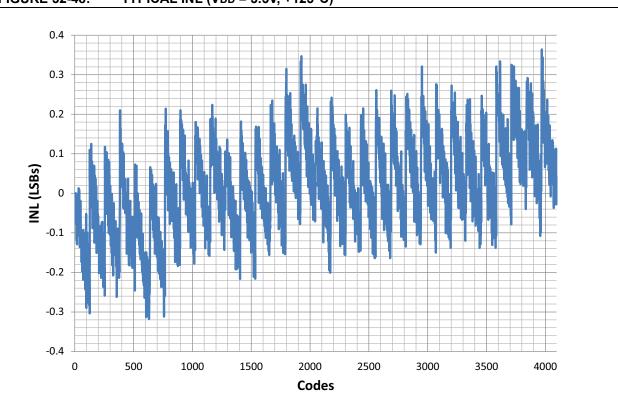
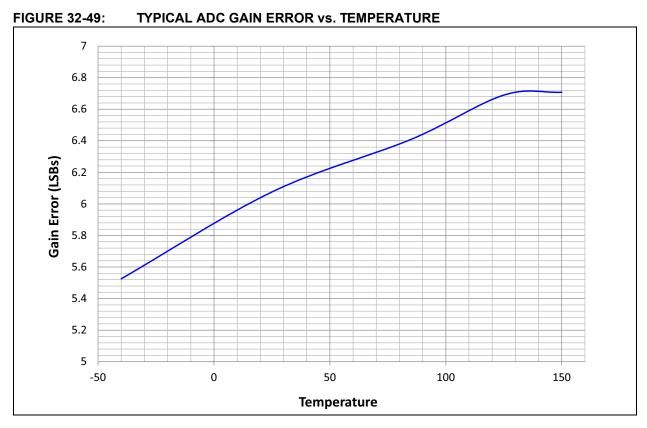
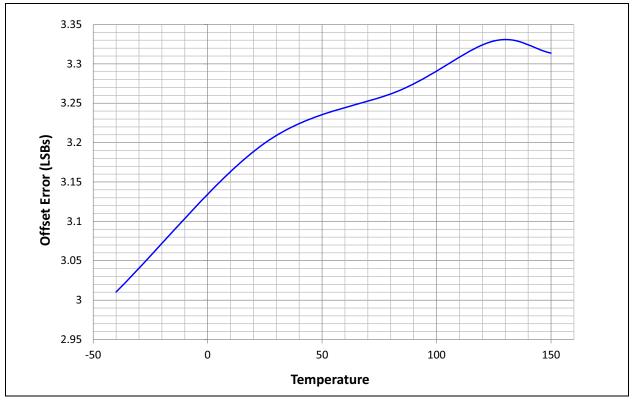
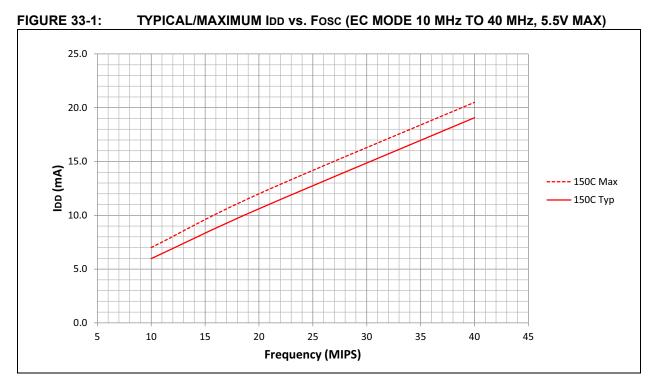
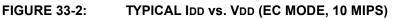
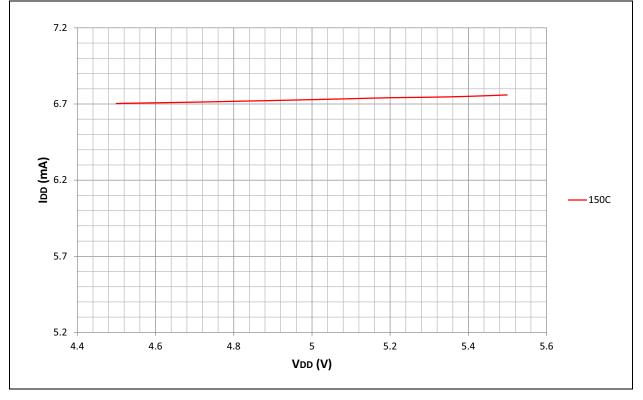




FIGURE 32-48: TYPICAL INL (VDD = 5.5V, +125°C)

32.19 ADC Gain Offset Error

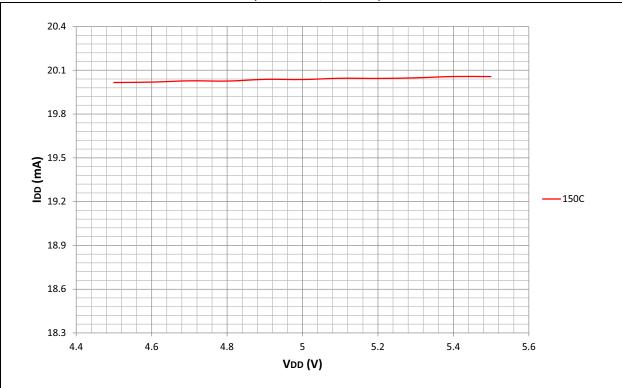
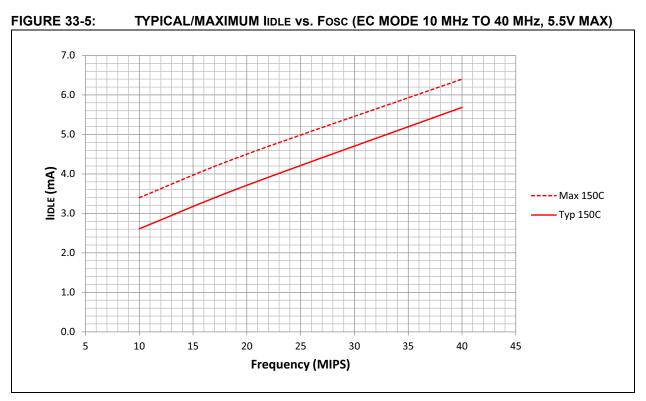
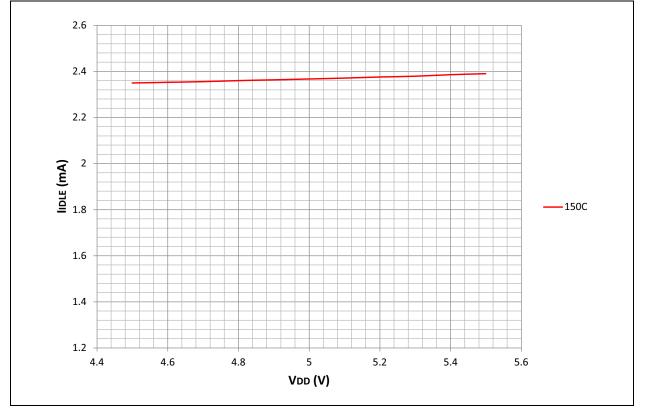


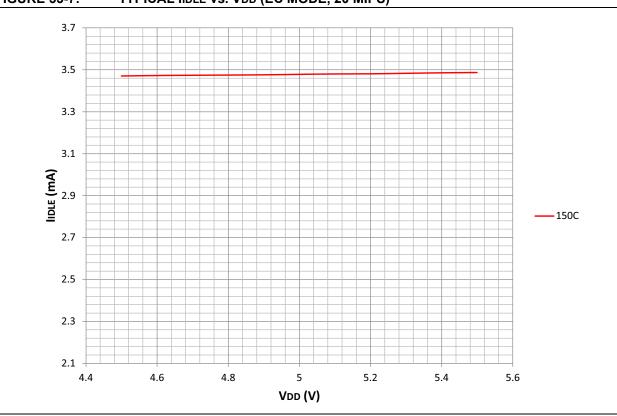



NOTES:


33.0 CHARACTERISTICS FOR HIGH-TEMPERATURE DEVICES (+150°C)

33.1 IDD


FIGURE 33-4: TYPICAL IDD vs. VDD (EC MODE, 40 MIPS)

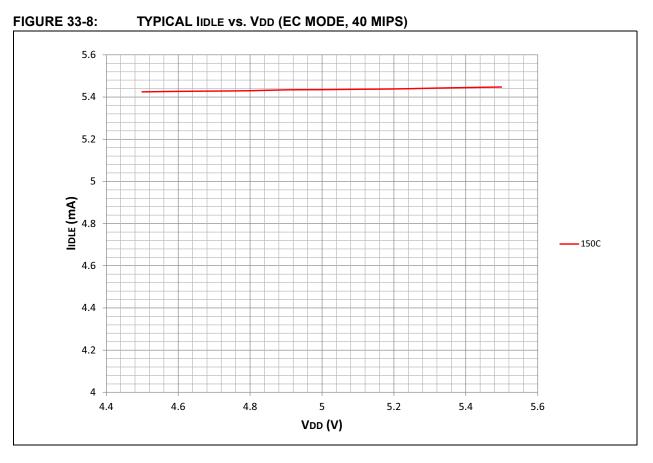


FIGURE 33-7: TYPICAL lidLe vs. Vdd (EC MODE, 20 MIPS)

DS70005144H-page 444

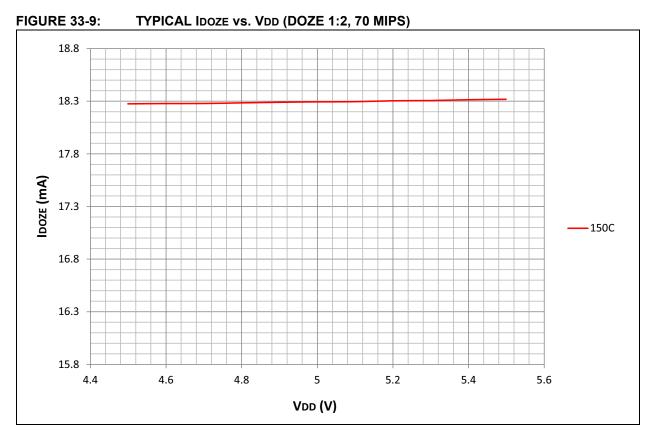
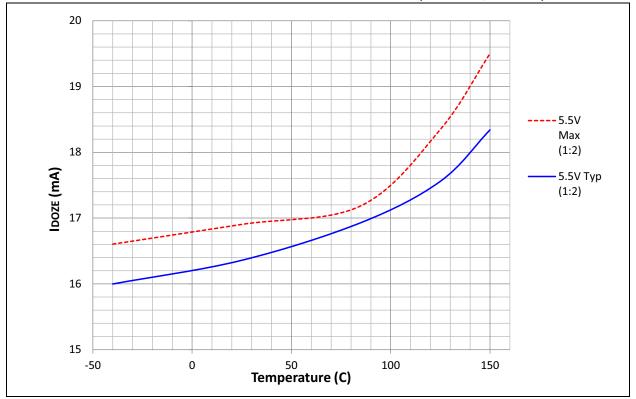



FIGURE 33-10: TYPICAL/MAXIMUM IDOZE vs. TEMPERATURE (DOZE 1:2, 70 MIPS)

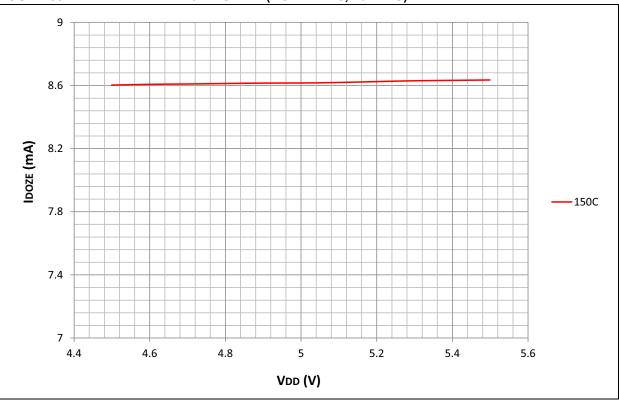


FIGURE 33-12: TYPICAL/MAXIMUM IDOZE vs. TEMPERATURE (DOZE 1:128, 70 MIPS)

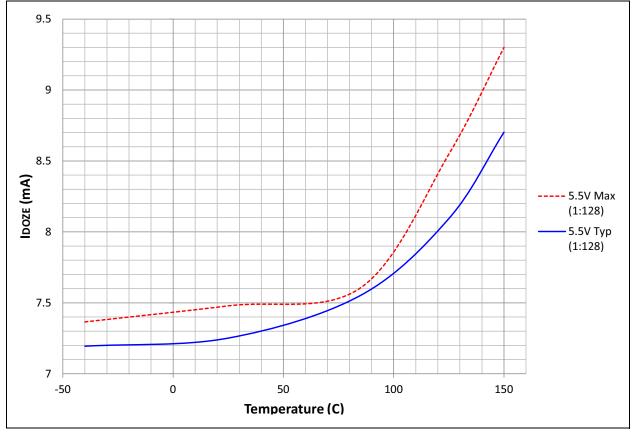
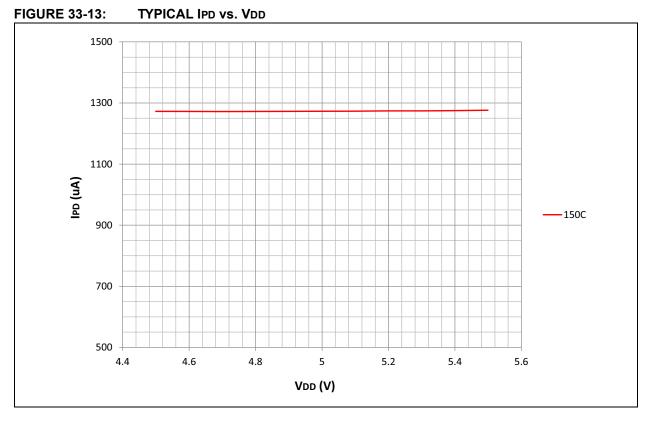
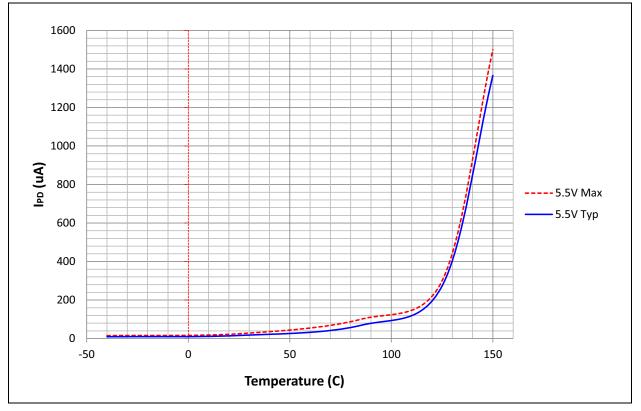
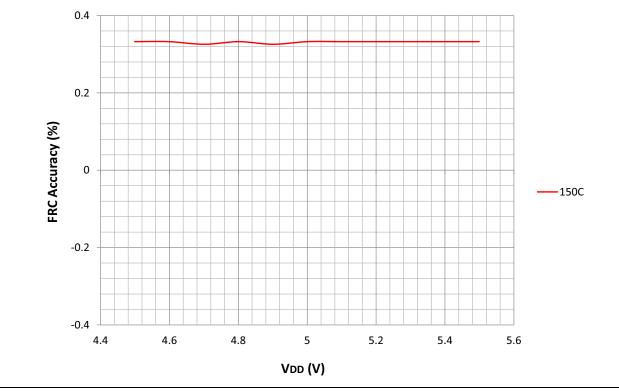
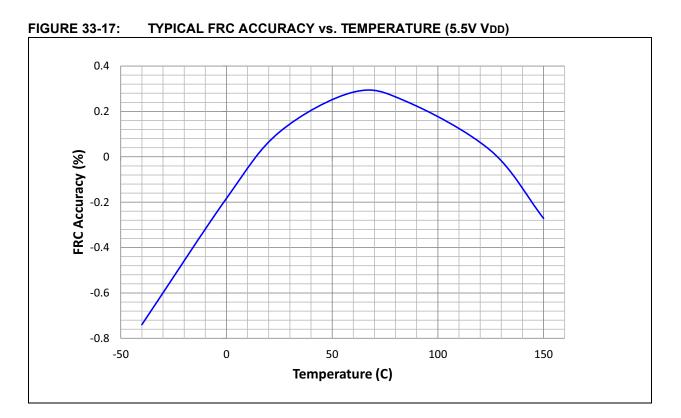




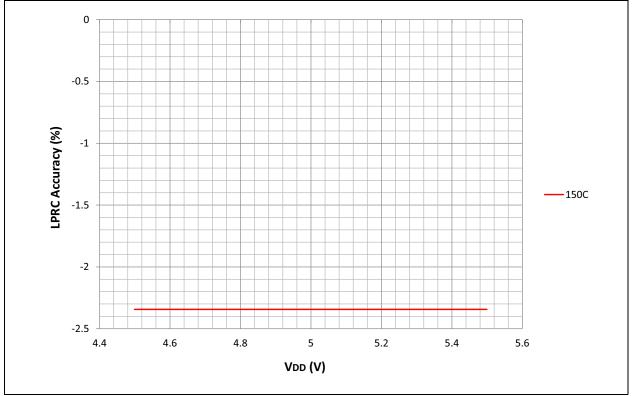
FIGURE 33-11: TYPICAL IDOZE vs. VDD (DOZE 1:128, 70 MIPS)

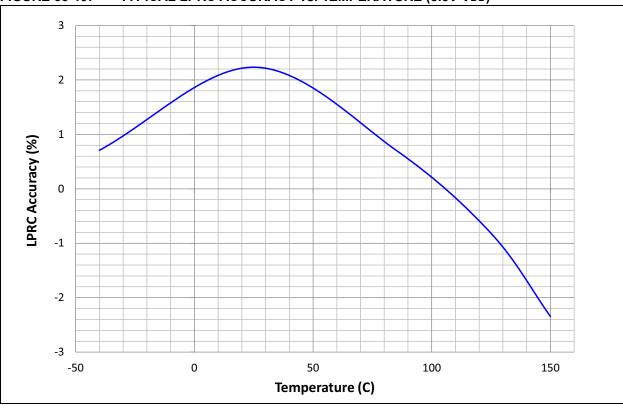
33.4 IPD




12 10 8 IPD (NA) 6 ---- 5.5V Max – 5.5V Typ 4 2 0 -50 0 50 100 150 Temperature (C)

33.5 FRC




FIGURE 33-15: TYPICAL/MAXIMUM AlwDT vs. TEMPERATURE

33.6 LPRC

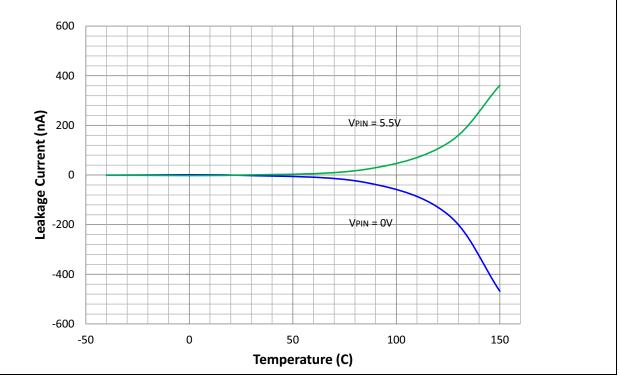


FIGURE 33-19: TYPICAL LPRC ACCURACY vs. TEMPERATURE (5.5V VDD)

33.7 Leakage Current

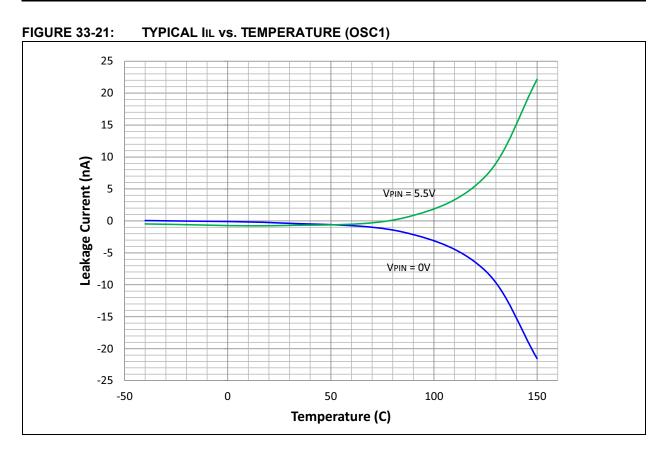
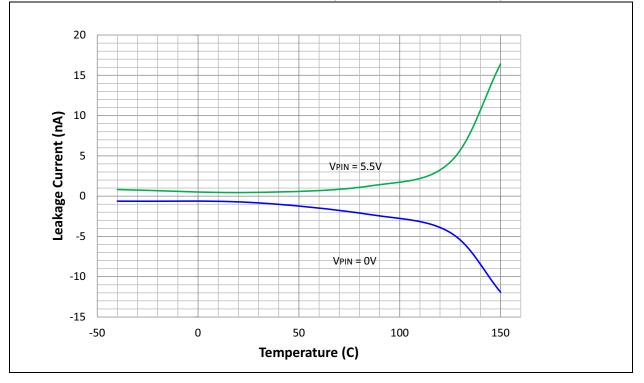
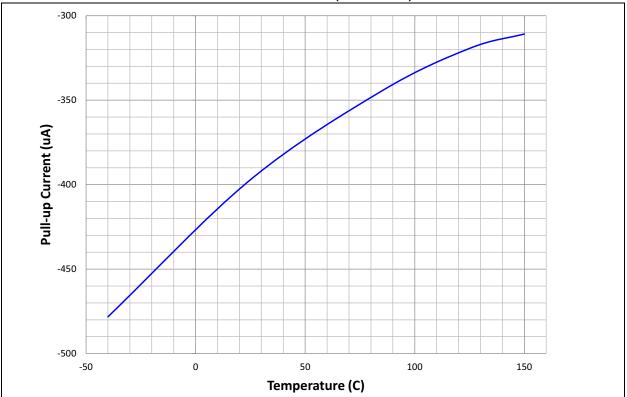
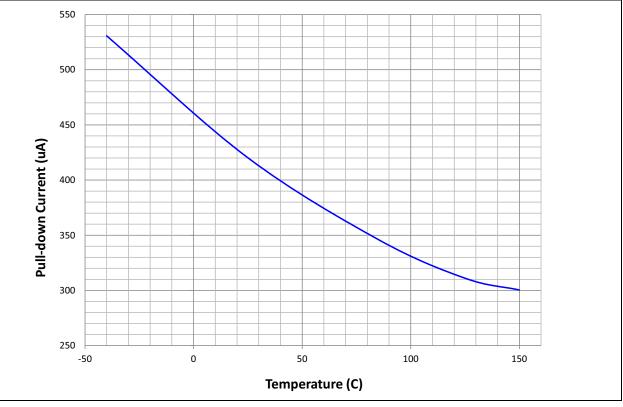




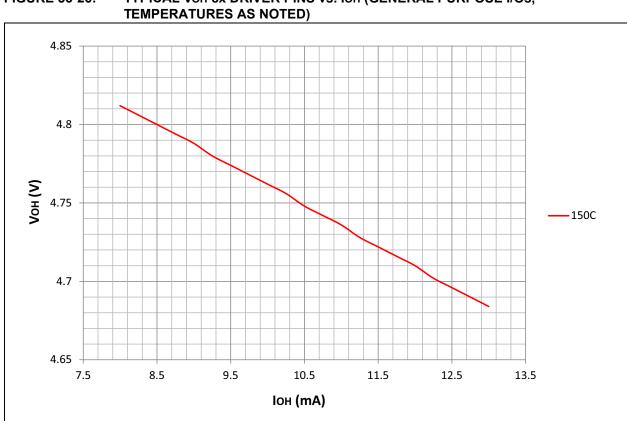
FIGURE 33-22: TYPICAL IIL vs. TEMPERATURE (GENERAL PURPOSE I/Os)



33.8 Pull-up/Pull-Down Current



DS70005144H-page 452



^{© 2013-2019} Microchip Technology Inc.

33.10 Voltage Output Low (VOL) – Voltage Output High (VOH)

FIGURE 33-26: TYPICAL VOH 8x DRIVER PINS vs. IOH (GENERAL PURPOSE I/Os,

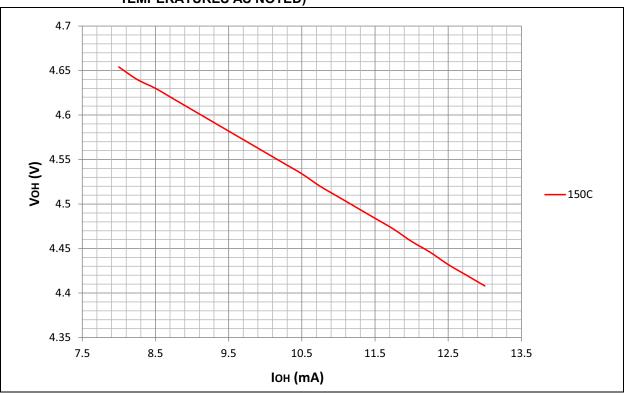
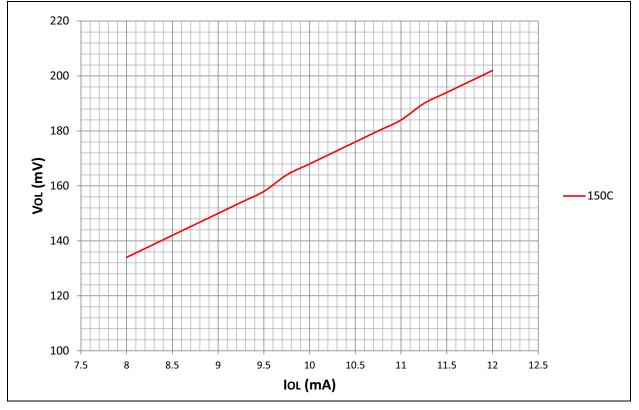



FIGURE 33-27: TYPICAL VOH 4x DRIVER PINS vs. IOH (GENERAL PURPOSE I/Os, TEMPERATURES AS NOTED)

FIGURE 33-28: TYPICAL VOL 8x DRIVER PINS vs. IOL (GENERAL PURPOSE I/Os, TEMPERATURES AS NOTED)

© 2013-2019 Microchip Technology Inc.

Downloaded From Oneyac.com

FIGURE 33-29: TYPICAL Vol 4x DRIVER PINS vs. Iol (GENERAL PURPOSE I/Os, TEMPERATURES AS NOTED)

33.11 VREG

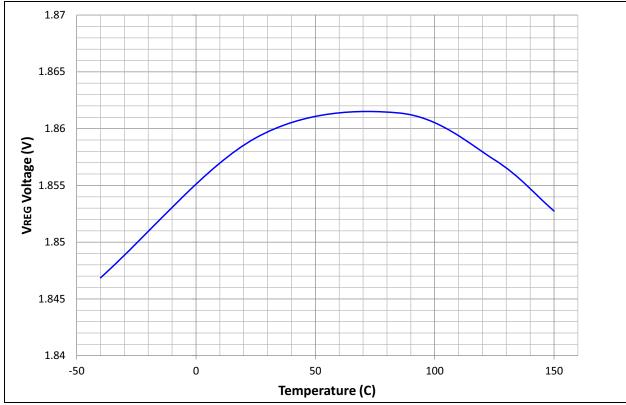
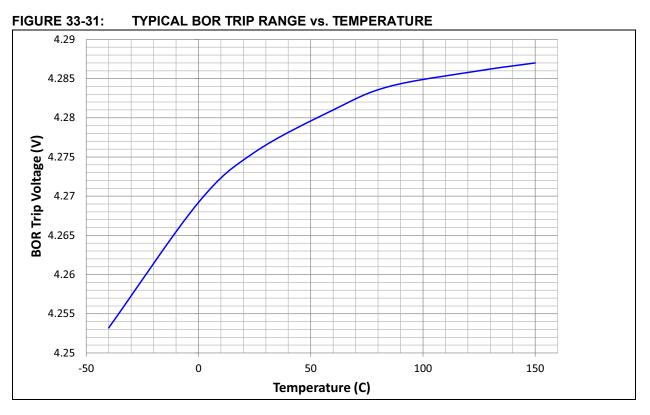
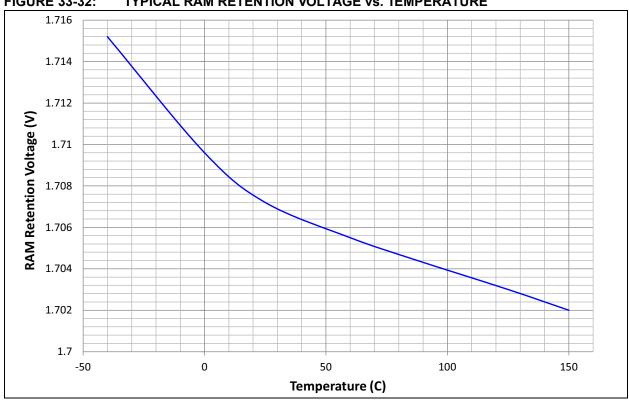
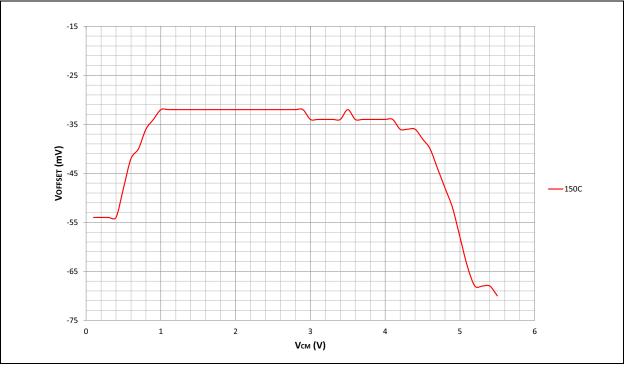
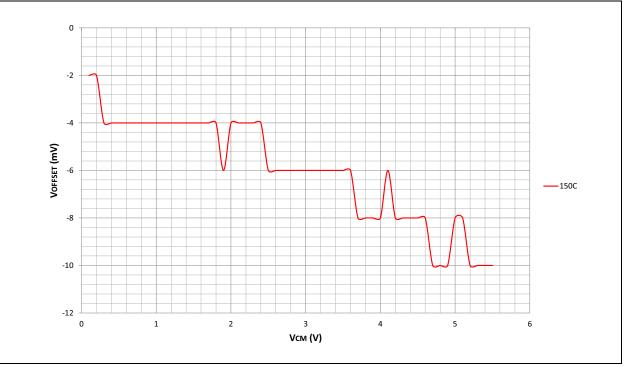
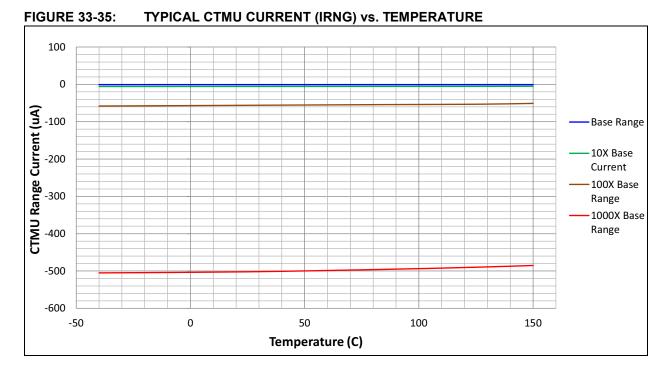




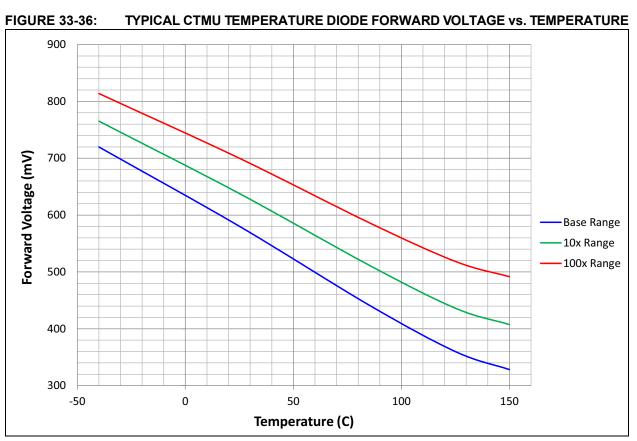
FIGURE 33-30: TYPICAL REGULATOR VOLTAGE vs. TEMPERATURE

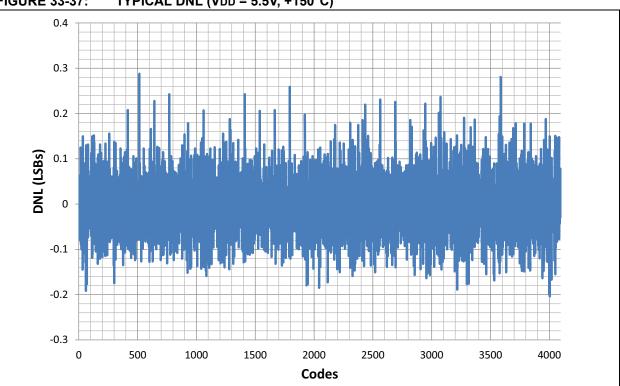
33.12 VBOR


33.13 RAM Retention


TYPICAL RAM RETENTION VOLTAGE vs. TEMPERATURE **FIGURE 33-32:**


33.14 Comparator Op Amp Offset





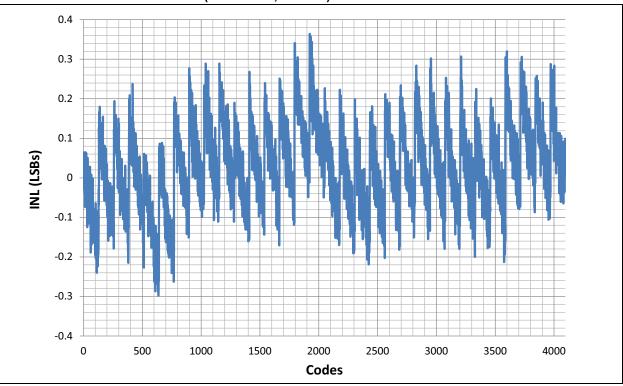
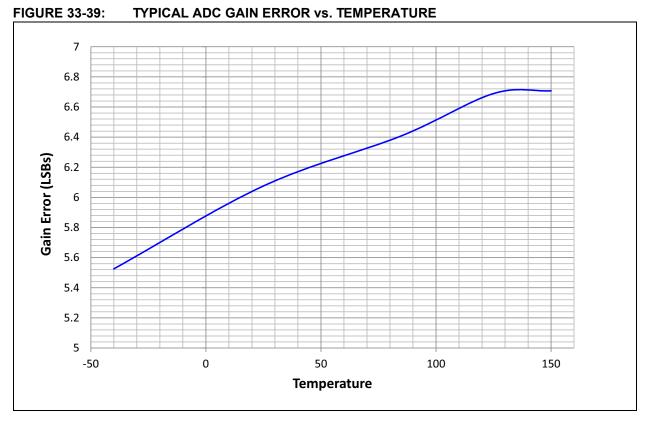
33.15 CTMU Current V/S Temperature

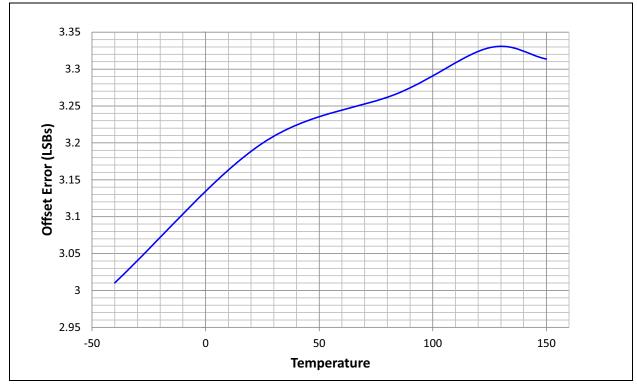
33.16 CTMU Temperature Forward Diode (V)

33.17 ADC DNL

FIGURE 33-37: TYPICAL DNL (VDD = 5.5V, +150°C)

33.18 ADC INL


FIGURE 33-38: TYPICAL INL (VDD = 5.5V, +150°C)

DS70005144H-page 460

33.19 ADC Gain Offset Error

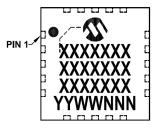
NOTES:

34.0 PACKAGING INFORMATION

34.1 Package Marking Information

28-Lead SPDIP (.300")

28-Lead SOIC (.300")

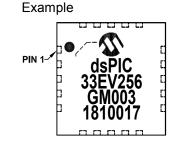

28-Lead SSOP

28-Lead QFN-S (6x6x0.9 mm)

36-Lead UQFN (5x5 mm)

Example

Example



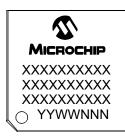
Example

Example

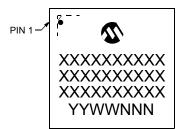
 Legend:
 XX...X
 Customer-specific information

 Y
 Year code (last digit of calendar year)

 YY
 Year code (last 2 digits of calendar year)

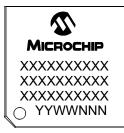

 WW
 Week code (week of January 1 is week '01')

 NNN
 Alphanumeric traceability code


 Note:
 In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

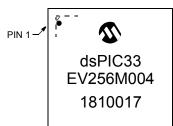
34.1 Package Marking Information (Continued)

44-Lead TQFP (10x10x1 mm)


44-Lead QFN (8x8 mm)

48-Lead TQFP (7x7x1.0 mm)

64-Lead TQFP (10x10x1 mm)


64-Lead QFN (9x9x0.9 mm)

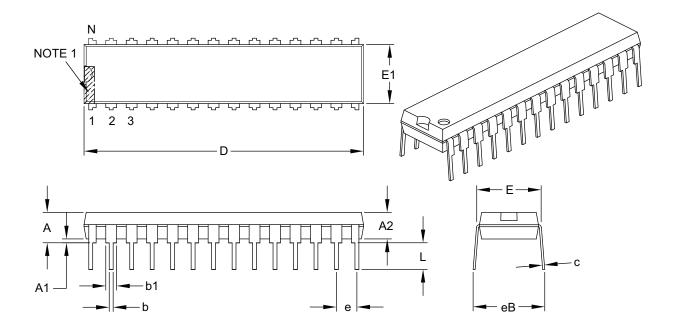
Example

Example

Example

Example

Example



34.2 Package Details

The following sections give the technical details of the packages.

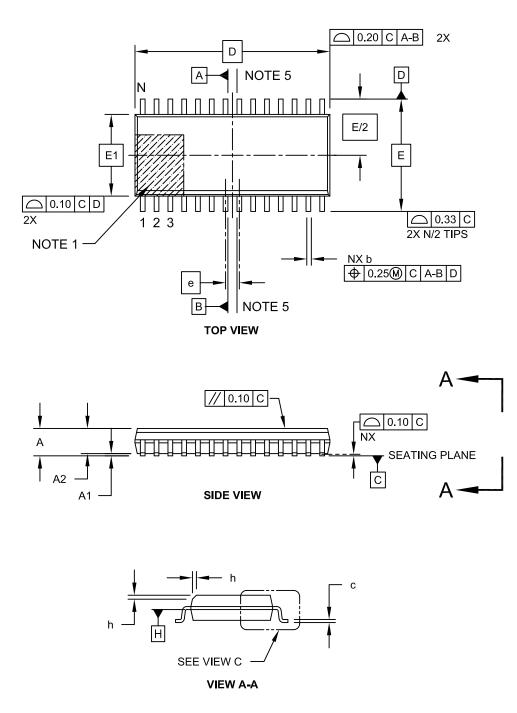
28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES		
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N	28		
Pitch	e	.100 BSC		
Top to Seating Plane	A	-	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	_	-	.430

Notes:

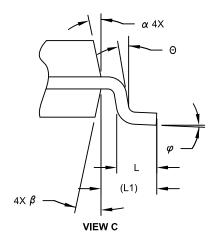
- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

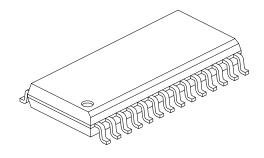

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

^{© 2013-2019} Microchip Technology Inc.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

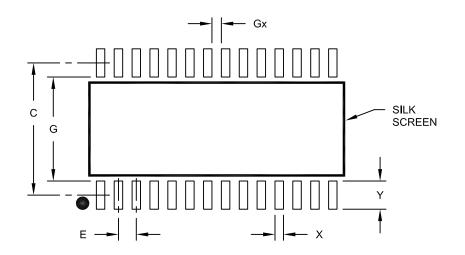


Microchip Technology Drawing C04-052C Sheet 1 of 2

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
Dimension Limit		MIN	NOM	MAX	
Number of Pins	N	28			
Pitch	е	1.27 BSC			
Overall Height	A	-	-	2.65	
Molded Package Thickness	A2	2.05	-	-	
Standoff §	A1	0.10	-	0.30	
Overall Width	E	10.30 BSC			
Molded Package Width	E1	7.50 BSC			
Overall Length	D	17.90 BSC			
Chamfer (Optional)	h	0.25	-	0.75	
Foot Length	L	0.40	-	1.27	
Footprint	L1	1.40 REF			
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.18	-	0.33	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

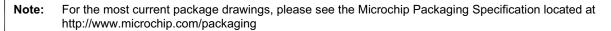
Microchip Technology Drawing C04-052C Sheet 2 of 2

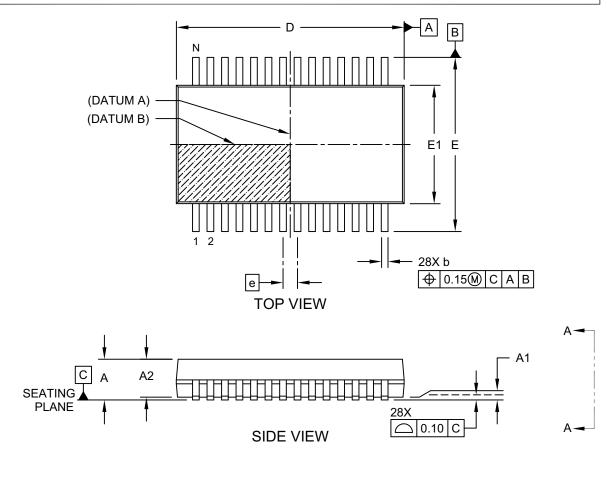
28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

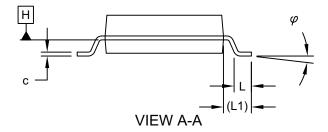
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	Units MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	1.27 BSC		
Contact Pad Spacing	С		9.40	
Contact Pad Width (X28)	Х			0.60
Contact Pad Length (X28)	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

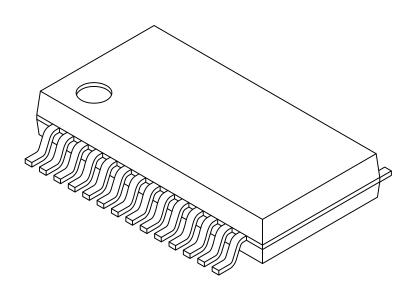

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]



Microchip Technology Drawing C04-073 Rev C Sheet 1 of 2

^{© 2013-2019} Microchip Technology Inc.

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

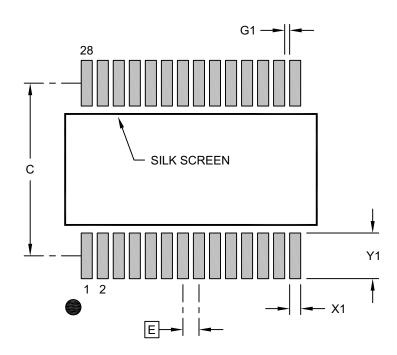
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		Ν	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	Ν		28			
Pitch	е		0.65 BSC			
Overall Height	Α	-	-	2.00		
Molded Package Thickness	A2	1.65	1.75	1.85		
Standoff	A1	0.05	-	-		
Overall Width	E	7.40	7.80	8.20		
Molded Package Width	E1	5.00	5.30	5.60		
Overall Length	D	9.90	10.20	10.50		
Foot Length	L	0.55	0.75	0.95		
Footprint	L1	1.25 REF				
Lead Thickness	С	0.09	-	0.25		
Foot Angle	φ	0°	4°	8°		
Lead Width	b	0.22	-	0.38		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073 Rev C Sheet 2 of 2

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

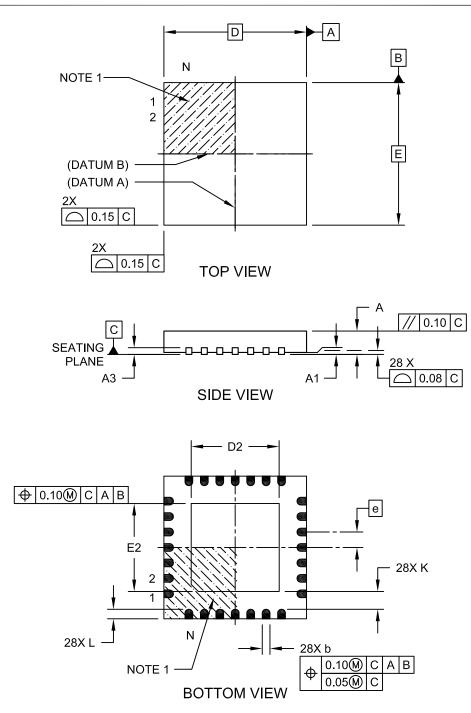
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units		MILLIMETERS		
Dimension	Dimension Limits		NOM	MAX	
Contact Pitch	E		0.65 BSC		
Contact Pad Spacing	С		7.00		
Contact Pad Width (X28)	X1			0.45	
Contact Pad Length (X28)	Y1			1.85	
Contact Pad to Center Pad (X26)	G1	0.20			

Notes:

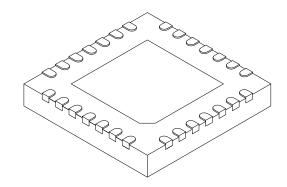
1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2073 Rev B

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-124C Sheet 1 of 2

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

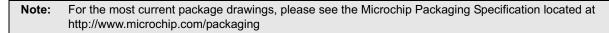
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

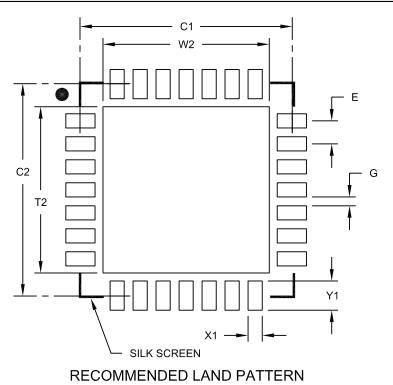
	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	N		28		
Pitch	е		0.65 BSC		
Overall Height	A	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.20 REF			
Overall Width	E		6.00 BSC		
Exposed Pad Width	E2	3.65	3.70	4.70	
Overall Length	D		6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.70	
Terminal Width	b	0.23	0.30	0.35	
Terminal Length	L	0.30	0.40	0.50	
Terminal-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated


3. Dimensioning and tolerancing per ASME Y14.5M

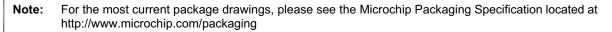

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

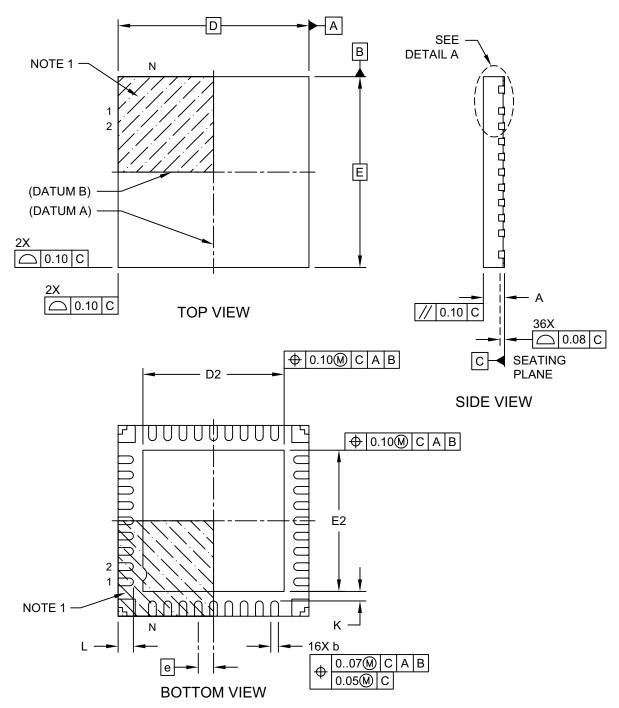
REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-124C Sheet 2 of 2

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е		0.65 BSC	
Optional Center Pad Width	W2			4.70
Optional Center Pad Length	T2			4.70
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.40
Contact Pad Length (X28)	Y1			0.85
Distance Between Pads	G	0.25		

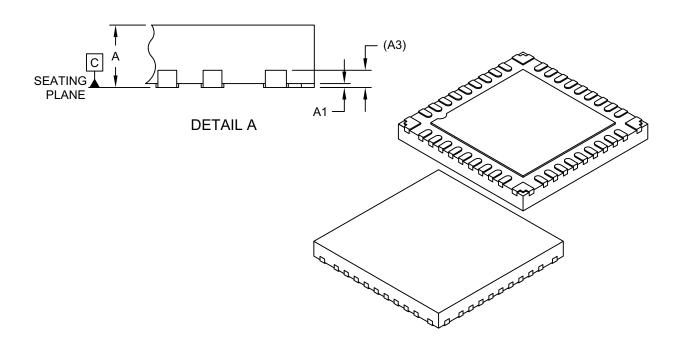

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A

36-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M5) - 5x5 mm Body [UQFN] With Corner Anchors



Microchip Technology Drawing C04-436–M5 Rev B Sheet 1 of 2

36-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M5) - 5x5 mm Body [UQFN] With Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

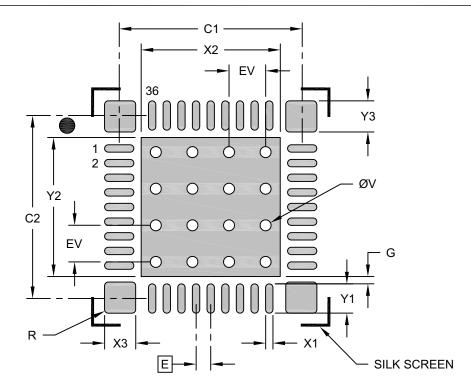
	Units			S
Dimension	Limits	MIN	NOM	MAX
Number of Terminals	N		36	
Pitch	е		0.40 BSC	
Overall Height	Α	0.50	0.55	0.60
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3	0.152 REF		
Overall Length	D	5.00 BSC		
Exposed Pad Length	D2	3.60	3.70	3.80
Overall Width	Е		5.00 BSC	
Exposed Pad Width	E2	3.60	3.70	3.80
Terminal Width	b	0.15	0.20	0.25
Terminal Length	L	0.30	0.40	0.50
Terminal-to-Exposed-Pad	Κ		0.25 REF	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-436–M5 Rev B Sheet 2 of 2

36-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M5) - 5x5 mm Body [UQFN] With Corner Anchors

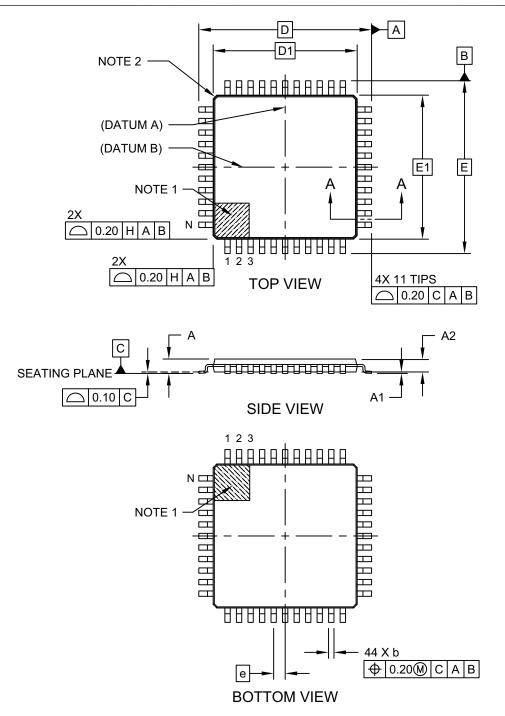
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	Dimension Limits		NOM	MAX
Contact Pitch	E		0.40 BSC	
Center Pad Width	X2			3.80
Center Pad Length	Y2			3.80
Contact Pad Spacing	C1		5.00	
Contact Pad Spacing	C2		5.00	
Contact Pad Width (X36)	X1			0.20
Contact Pad Length (X36	Y1			0.80
Corner Pad Width (X4)	X3			0.85
Corner Pad Length (X4)	Y3			0.85
Corner Pad Radius	R		0.10	
Contact Pad to Center Pad (X36)	G	0.20		
Thermal Via Diameter	V		0.30	
Thermal Via Pitch	EV		1.00	

Notes:

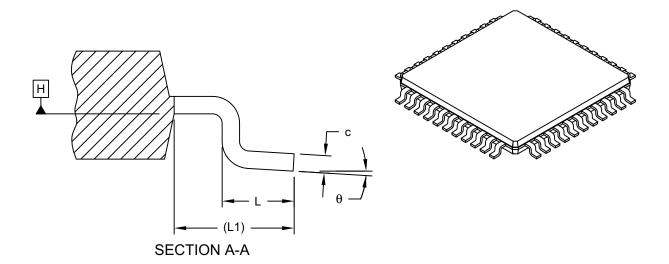
1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2436-M5 Rev B

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-076C Sheet 1 of 2

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

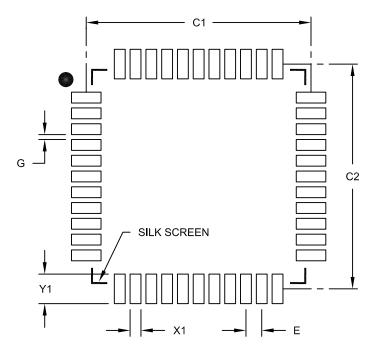
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	ILLIMETER	S	
Dimension	Limits	MIN	NOM	MAX
Number of Leads	Ν		44	
Lead Pitch	е		0.80 BSC	
Overall Height	Α	-	-	1.20
Standoff	A1	0.05	-	0.15
Molded Package Thickness	A2	0.95	1.00	1.05
Overall Width	E	12.00 BSC		
Molded Package Width	E1	10.00 BSC		
Overall Length	D		12.00 BSC	
Molded Package Length	D1		10.00 BSC	
Lead Width	b	0.30	0.37	0.45
Lead Thickness	С	0.09	-	0.20
Lead Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	θ	0°	3.5°	7°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Exact shape of each corner is optional.


3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076C Sheet 2 of 2

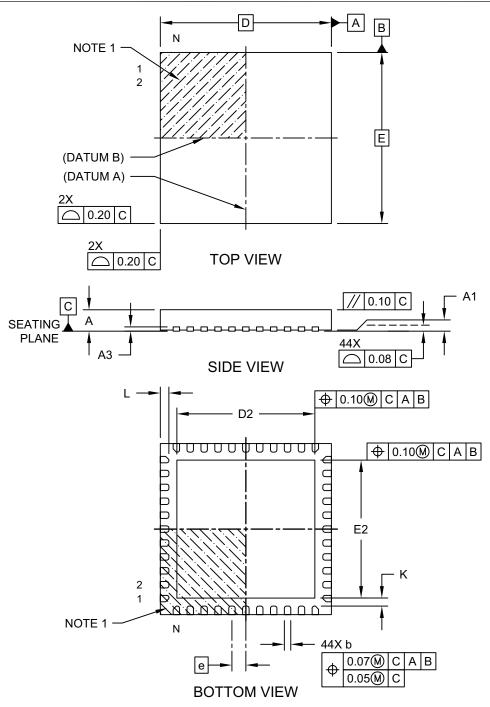
44-Lead Plastic Thin Quad Flatpack (PT) 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

		MILLIMETER	S	
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.80 BSC		
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

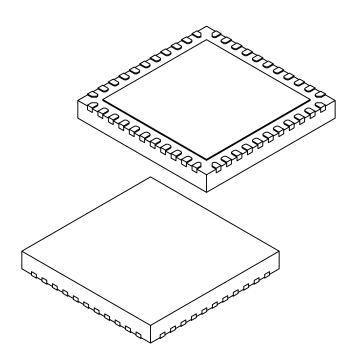
Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

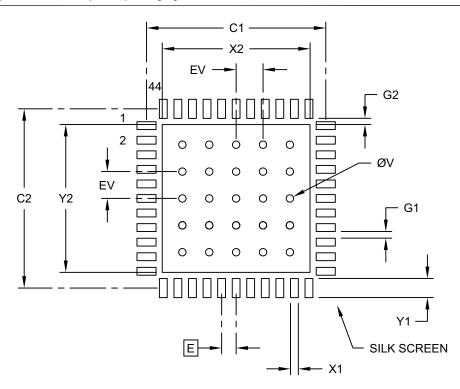
Microchip Technology Drawing C04-103D Sheet 1 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		44	
Pitch	е		0.65 BSC	
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3	0.20 REF		
Overall Width	E	8.00 BSC		
Exposed Pad Width	E2	6.25	6.45	6.60
Overall Length	D		8.00 BSC	
Exposed Pad Length	D2	6.25	6.45	6.60
Terminal Width	b	0.20	0.30	0.35
Terminal Length	L	0.30	0.40	0.50
Terminal-to-Exposed-Pad	K	0.20	-	-

Notes:


- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103D Sheet 2 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

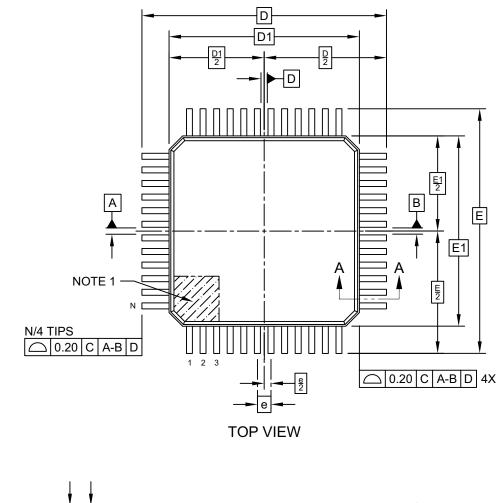
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

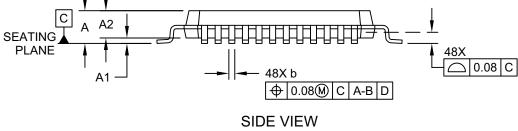
RECOMMENDED LAND PATTERN

	Ν	/ILLIMETER	S	
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	X2			6.60
Optional Center Pad Length	Y2			6.60
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.85
Contact Pad to Contact Pad (X40)	G1	0.30		
Contact Pad to Center Pad (X44)	G2	0.28		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Notes:

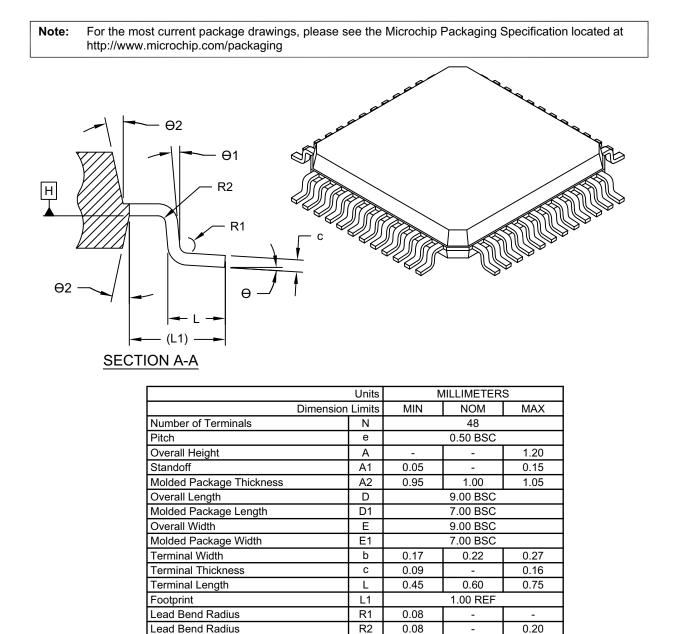
1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.


2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing No. C04-2103C

48-Lead Plastic Thin Quad Flatpack (P8) - 7x7x1.0 mm Body [TQFP]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-300-P8 Rev C Sheet 1 of 2

48-Lead Plastic Thin Quad Flatpack (P8) - 7x7x1.0 mm Body [TQFP]

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensioning and tolerancing per ASME Y14.5M

Mold Draft Angle

Foot Angle

Lead Angle

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-300-P8 Rev C Sheet 2 of 2

3.5°

12°

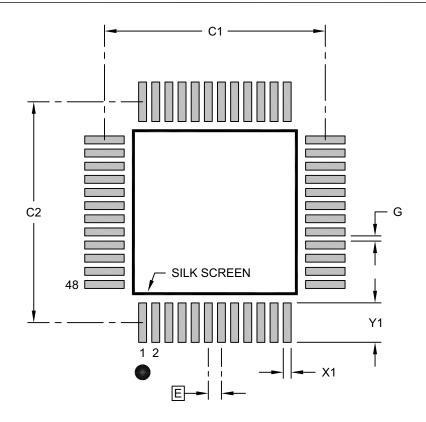
7°

13°

0°

0°

11°


θ

θ1

θ2

48-Lead Plastic Thin Quad Flatpack (P8) - 7x7x1.0 mm Body [TQFP]

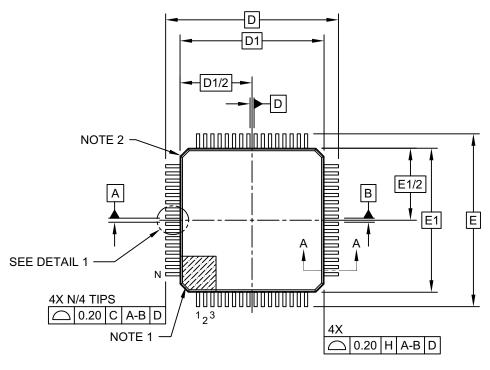
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

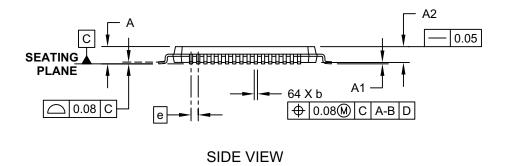
	Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E	0.50 BSC			
Contact Pad Spacing	C1		8.40		
Contact Pad Spacing	C2		8.40		
Contact Pad Width (X48)	X1			0.30	
Contact Pad Length (X48)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

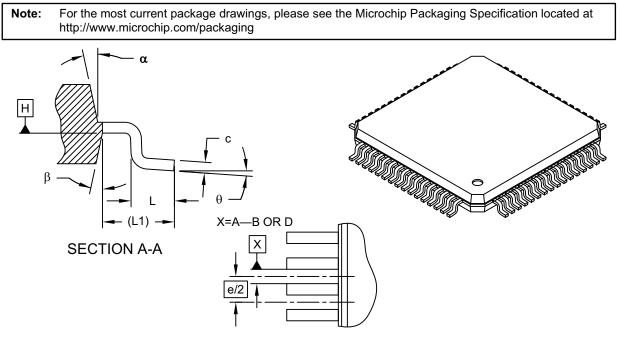

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process


Microchip Technology Drawing C04-2300-P8 Rev B

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-085C Sheet 1 of 2

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

DETAIL 1

Units		MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Number of Leads	Ν		64	
Lead Pitch	е		0.50 BSC	
Overall Height	A	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	¢	0°	3.5°	7°
Overall Width	E		12.00 BSC	
Overall Length	D		12.00 BSC	
Molded Package Width	E1		10.00 BSC	
Molded Package Length	D1		10.00 BSC	
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.17	0.22	0.27
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

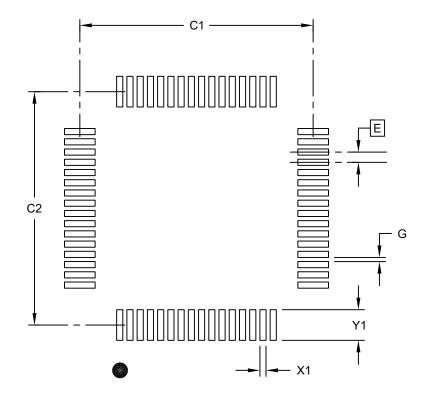
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085C Sheet 2 of 2

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

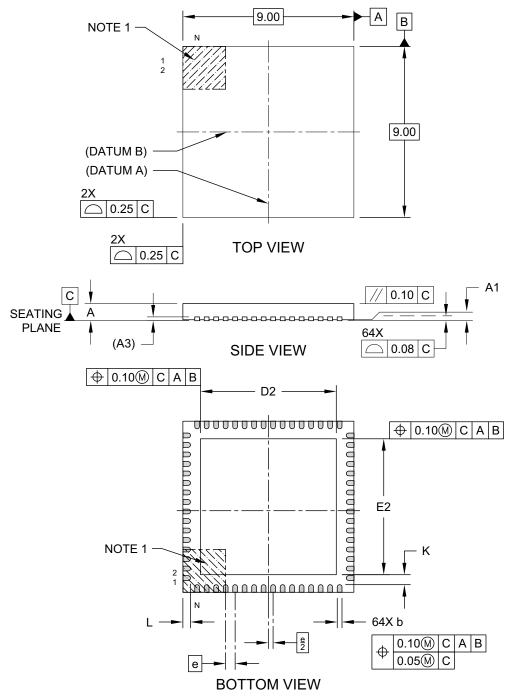
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		S
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X28)	X1			0.30
Contact Pad Length (X28)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

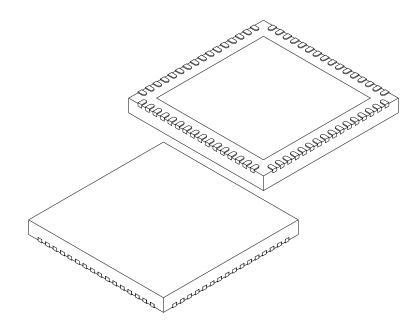
1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2085B Sheet 1 of 1

^{© 2013-2019} Microchip Technology Inc.

64-Lead Very Thin Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [VQFN] With 7.15 x 7.15 Exposed Pad [Also called QFN]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-149D [MR] Sheet 1 of 2

64-Lead Very Thin Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [VQFN] With 7.15 x 7.15 Exposed Pad [Also called QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

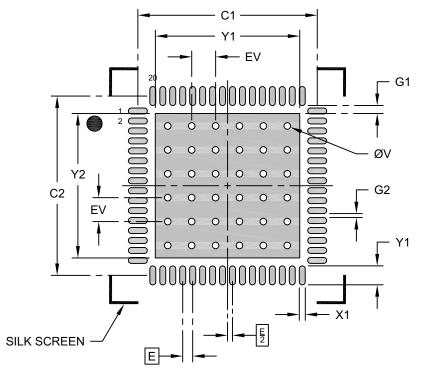
Units		MILLIMETERS		
Dimension	Limits	MIN NOM MAX		MAX
Number of Pins	N	64		
Pitch	е		0.50 BSC	
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3		0.20 REF	
Overall Width	E		9.00 BSC	
Exposed Pad Width	E2	7.05	7.15	7.25
Overall Length	D		9.00 BSC	
Exposed Pad Length	D2	7.05	7.15	7.25
Contact Width	b	0.18	0.25	0.30
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-149D [MR] Sheet 2 of 2

64-Lead Very Thin Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [VQFN] With 7.15 x 7.15 Exposed Pad [Also called QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	Ν	/ILLIMETER	S
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Optional Center Pad Width	X2			7.25
Optional Center Pad Length	Y2			7.25
Contact Pad Spacing	C1		9.00	
Contact Pad Spacing	C2		9.00	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			0.95
Contact Pad to Center Pad (X64)	G1	0.40		
Spacing Between Contact Pads (X60)	G2	0.20		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2149C [MR]

APPENDIX A: REVISION HISTORY

Revision A (December 2013)

This is the initial version of this document.

Revision B (June 2014)

This revision incorporates the following updates:

- Sections:
 - Added Section 31.0 "High-Temperature Electrical Characteristics"
 - Updated the "Power Management"section, the "Input/Output" section, Section 3.3
 "Data Space Addressing", Section 4.2
 "Data Address Space", Section 4.3.2
 "Extended X Data Space", Section 4.6.1
 "Bit-Reversed Addressing Implementation", Section 7.4.1 "INTCON1 through INTCON4", Section 11.7 "I/O Helpful Tips"
 - Updated note in Section 17.0 "High-Speed PWM Module", Section 18.0 "Serial Peripheral Interface (SPI)", Section 27.8 "Code Protection and CodeGuard™ Security"
 - Updated title of Section 20.0 "Single-Edge Nibble Transmission (SENT)"
 - Updated Section 34.0 "Packaging Information". Deleted e3, Pb-free and Industrial (I) temperature range indication throughout the section, and updated the packaging diagrams
 - Updated the "Product Identification System" section
- Registers:
 - Updated Register 3-2, Register 7-2, Register 7-6, Register 9-2, Register 11-3, Register 14-1, Register 14-3, Register 14-11, Register 15-1, Register 22-4
- · Figures:
 - Added Figure 4-6, Figure 4-8, Figure 4-14, Figure 4-15, Figure 14-1, Figure 16-1, Figure 17-2, Figure 23-1, Figure 24-1
- Tables:
 - Updated Table 1, Table 27-1, Table 27-2, Table 30-6, Table 30-7, Table 30-8, Table 30-9, Table 30-10, Table 30-11, Table 30-12, Table 30-38, Table 30-50, Table 30-53 and added Table 31-11
- Changes to text and formatting were incorporated throughout the document

Revision C (November 2014)

This revision incorporates the following updates:

- · Sections:
 - Added note in Section 5.2 "RTSP Operation"
 - Updated "Section 5.4 "Error Correcting Code (ECC)"
 - Deleted 44-Terminal Very Thin Leadless Array Package (TL) - 6x6x0.9 mm Body With Exposed Pad (VTLA).
- Registers
 - Updated Register 7-6
- Figures:
 - Updated Figure 4-1, Figure 4-3, Figure 4-4
- · Tables:
 - Updated Table 27-2, Table 31-13, Table 31-14, Table 31-15
 - Added Table 31-16, Table 31-17

Revision D (April 2015)

This revision incorporates the following updates:

- Sections:
 - Updated the Clock Management, Timers/ Output Compare/Input Capture, Communication Interfaces and Input/Output sections at the beginning of the data sheet (Page 1 and Page 2).
 - Updated all pin diagrams at the beginning of the data sheet (Page 5 through Page 12).
 - Added Section 11.6 "High-Voltage Detect (HVD)"
 - Updated Section 13.0 "Timer2/3 and Timer4/5"
 - Corrects all Buffer heading numbers in Section 22.4 "CAN Message Buffers"
- Registers
 - Updated Register 3-2, Register 25-2, Register 26-2
- Figures
 - Updated Figure 26-1, Figure 30-5, Figure 30-32
- Tables
 - Updated Table 1, Table 4-25, Table 30-10, Table 30-22, Table 30-53 and Table 31-8
- Changes to text and formatting were incorporated throughout the document

Revision E (September 2016)

This revision incorporates the following updates:

- · Sections:
 - Added new Section 32.0 "Characteristics for Industrial/Extended Temperature Devices (-40°C to +125°C)" and Section 33.0 "Characteristics for High-Temperature Devices (+150°C)".
 - Updated the "Qualification and Class B Support" section.
 - Updated Section 27.6 "In-Circuit Serial Programming".
 - Updated Section 34.0 "Packaging Information" with the addition of the 28-Lead SSOP package information and new packaging diagram revisions.
 - Updated the "**Product Identification System**" section with the addition of the 28-Lead SSOP package.
- · Figures:
 - Updated Figure 4-6
- Registers:
 - Updated Register 25-2, Register 25-3, Register 27-1 and Register 27-2
- · Tables:
 - Updated Table 30-7, Table 30-9, Table 30-39, Table 30-40, Table 30-41, Table 30-42, Table 30-43, Table 30-44 and Table 30-45

Revision F (March 2018)

This revision incorporates the following updates:

- · Sections:
 - "Pin Diagrams"
 - Section 16.0 "Output Compare"
 - Section 17.1 "PWM Faults"
 - Section 18.0 "Serial Peripheral Interface (SPI)"
 - Section 23.0 "Charge Time Measurement Unit (CTMU)"
 - Section 31.0 "High-Temperature Electrical Characteristics"
 - Section 34.0 "Packaging Information"
 - "Product Identification System"
- · Figures:
 - Figure 26-1
- · Tables:
 - Table 4-1, Table 4-25, Table 27-2, Table 28-2, Table 30-3, Table 30-8, Table 30-11, Table 31-9
- · Registers:
 - Register 23-2, Register 23-3, Register 24-6, Register 24-7, Register 26-2

Revision G (May 2018)

This revision incorporates the following updates:

- · Sections:
 - "Operating Conditions"
- Tables:
 - Table 30-1

Revision H (May 2019)

This revision incorporates the following updates:

- Sections:
 - Updated Section 17.1 "PWM Faults", Section 34.2 "Package Details" and Section 29.0 "Development Support".
- Registers:
- Updated Register 21-2 and Register 22-10.
- Tables:
 - Updated Table 1, Table 30-3, Table 30-8, Table 30-11, Table 30-22, Table 31-4 and Table 31-9.
- Figures:
 - Updated Figure 26-1.
- Added 48-Pin package marking information.

INDEX

Α	
Absolute Maximum Ratings	343
AC Characteristics	353
10-Bit ADC Conversion Requirements	403
12-Bit ADC Conversion Requirements	
12Cx Bus Data Requirements (Master Mode)	
ADC Module	
ADC Module (10-Bit Mode)	
ADC Module (12-Bit Mode)	
CANx I/O Requirements	393
Capacitive Loading Requirements on Output Pins	252
DMA Module Requirements	
External Clock Requirements	
High Temperature	
ADC Module (10-Bit Mode)	
ADC Module (12-Bit Mode)	
Internal FRC Accuracy	
Internal LPRC Accuracy	
PLL Clock	
High-Speed PWMx Requirements	363
I/O Requirements	356
I2Cx Bus Data Requirements (Slave Mode)	
Input Capture x (ICx) Requirements	
Internal FRC Accuracy	
Internal LPRC Accuracy	
Load Conditions	
OCx/PWMx Mode Requirements	362
Op Amp/Comparator x Voltage Reference Settling Time	205
Output Compare x (OCx) Requirements	
PLL Clock	
Reset, Watchdog Timer, Oscillator Start-up Timer	000
and Power-up Timer Requirements	358
SPI1 Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1) Requirements	380
SPI1 Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1)	378
SPI1 Master Mode (Half-Duplex, Transmit Only)	
Requirements	377
SPI1 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0) Requirements	388
SPI1 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0) Requirements	386
SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements	202
SPI1 Slave Mode (Full-Duplex, CKE = 1,	302
CKP = 1, SMP = 0) Requirements	384
SPI2 Master Mode (Full-Duplex, CKE = 0,	504
CKP = x, SMP = 1) Requirements	367
SPI2 Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1) Requirements	366
SPI2 Master Mode (Half-Duplex, Transmit Only)	
Requirements	365
SPI2 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0) Requirements	375
SPI2 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0) Requirements	373
SPI2 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 0, $SMP = 0$) Requirements	369
SPI2 Slave Mode (Full-Duplex, CKE = 1, $CKE = 1$, $CKE = 1$)	074
CKP = 1, SMP = 0) Requirements	
Timer1 External Clock Requirements	358

Timer2 and Timer4 (Type B) External Clock Requirements	360
Timer3 and Timer5 (Type C) External Clock	
Requirements	360
UARTx I/O Requirements	393
ADC	
10-Bit Configuration	289
12-Bit Configuration	289
Control Registers	293
Helpful Tips	292
Key Features	289
Alternate Interrupt Vector Table (AIVT)	99
Analog-to-Digital Converter. See ADC.	

В

Bit-Reversed Addressing	
Example	82
Implementation	81
Sequence Table (16-Entry)	82
Block Diagrams	
16-Bit Timer1 Module	177
Accessing Program Memory with	
Table Instructions	
ADCx Conversion Clock Period	291
ADCx with Connection Options for ANx Pins and	
Op Amps	
Addressing for Table Registers	
Arbiter Architecture	77
CALL Stack Frame	78
CANx Module	258
Comparator Voltage Reference Module	
Connections for On-Chip Voltage Regulator	328
CPU Core	
CTMU Module	284
Data Access from Program Space	
Address Generation	
Deadman Timer Module	
Digital Filter Interconnect	306
DMA Controller	
dsPIC33EVXXXGM00X/10X Family	
EDS Read Address Generation	
EDS Write Address Generation	73
High-Speed PWMx Architectural Overview	
High-Speed PWMx Register Interconnection	
I2Cx Module	
Input Capture x Module	
MCLR Pin Connections	
Multiplexing Remappable Output for RPn	
Op Amp/Comparator x Module	
Oscillator Circuit Placement	
Oscillator System	
Output Compare x Module	
Paged Data Memory Space	
Peripheral to DMA Controller	113
PLL Module	
Recommended Minimum Connection	22
Remappable Input for U1RX	
Reset System	96
SENTx Module	242
Shared I/O Port Structure	
SPIx Module	
Type B Timer (Timer2 and Timer4)	
Type B/Type C Timer Pair (32-Bit Timer)	181

dsPIC33EVXXXGM00X/10X FAMILY

Type C Timer (Timer3 and Timer5)	180
UARTx Module	251
User-Programmable Blanking Function	306
Watchdog Timer (WDT)	329
Brown-out Reset (BOR)	328

С

CAN Module	
Control Registers	259
Message Buffers	
Word 0	
Word 1	
Word 2	
Word 3	
Word 4	
Word 5	
Word 6	
Word 7	
Modes of Operation	
Overview	
Characteristics for High-Temperature	257
Devices (1150°C)	4 4 4
Devices (+150°C) Characteristics for Industrial/Extended Temperature	441
Devices (-40°C to +125°C)	415
Charge Time Measurement Unit (CTMU)	283
Charge Time Measurement Unit. See CTMU.	
Code Examples	
Port Write/Read	
PORTA Slew Selections	149
PWM1 Write-Protected Register	
Unlock Sequence	
PWRSAV Instruction Syntax	
Code Protection	1, 330
CodeGuard Security	1, 330
Comparator Voltage Reference	
Configuring	
Control Registers	319
Configuration Bits	321
Description	324
Controller Area Network (CAN)	257
Controller Area Network. See CAN.	
CPU	25
Addressing Modes	
Arithmetic Logic Unit (ALU)	34
Control Registers	
Data Space Addressing	
DSP Engine	
Instruction Set	
Programmer's Model	
CTMU	
Control Registers	285
Customer Change Notification Service	
Customer Notification Service	
Customer Support	

D

Data Address Space	40
Alignment	
Memory Map for 256-Kbyte Devices	43
Memory Map for 32-Kbyte Devices	41
Memory Map for 64/128-Kbyte Devices	
Near Data Space	40
SFR Space	
Width	

Data Space	
Extended X	76
Memory Arbitration, Bus Master Priority	77
Paged Memory Scheme	72
DC Characteristics	344
Brown-out Reset (BOR)	. 351
CTMU Current Source	. 396
Doze Current (IDOZE)	
Filter Capacitor (CEFC) Specifications	
High Temperature	
Brown-out Reset (BOR)	
CTMU Current Source	
I/O Pin Input Specifications	
I/O Pin Output Specifications	
Idle Current (IDLE)	
Op Amp/ Comparator x	
Operating Current (IDD)	
Operating MIPS vs. Voltage	
Power-Down Current (IPD)	
Program Memory	
Temperature and Voltage Specifications	400
High-Temperature	407
Doze Current (IDOZE)	
I/O Pin Input Specifications	
I/O Pin Output Specifications	
Idle Current (IIDLE)	
Internal Band Gap Reference Voltage	
Op Amp/Comparator x Specifications	394
Op Amp/Comparator x Voltage Reference	
Specifications	
Operating Current (IDD)	
Operating MIPS vs. Voltage	
Power-Down Current (IPD)	
Program Memory	
Temperature and Voltage Specifications	345
Thermal Operating Conditions	344
Deadman Timer (DMT)	185
Control Registers	186
Deadman Timer. See DMT.	
Development Support	341
Direct Memory Access. See DMA.	
DMA Controller	
Channel to Peripheral Associations	. 114
Control Registers	115
Supported Peripherals	
DMAC Registers	
DMAxCNT	115
DMAxCON	. 115
DMAxPAD	. 115
DMAxREQ	115
DMAxSTAH/L	
DMAxSTBH/L	
Doze Mode	
E	
Electrical Characteristics	343
AC	
	,

dsPIC33EVXXXGM00X/10X FAMILY

Equations	
BRG Formula	233
Device Operating Frequency	128
Fosc Calculation	128
Frame Time Calculations	243
FSCL Frequency	
Fvco Calculation	128
SYNCMIN and SYNCMAX Calculations	
Tick Period Calculation	
Errata	14

F

Flash Program Memory	
Control Registers	
Error Correcting Code (ECC)	89
Operations	
Resources	
RTSP Operation	88
Table Instructions	
Flexible Configuration	

G

Getting Started with 16-Bit DSCs	21
Connection Requirements	
CPU Logic Filter Capacitor Connection (VCAP)	22
Decoupling Capacitors	21
External Oscillator Pins	
ICSP Pins	23
Master Clear (MCLR) Pin	22
Oscillator Value Conditions on Device Start-up	23
Unused I/Os	23

Н

High Temperature	
Thermal Operating Conditions	
High-Speed PWM	203
Control Registers	
Faults	203
Resources	
High-Temperature Electrical Characteristics	405
Absolute Maximum Ratings	405

I

I/O Ports	147
Configuring Analog/Digital Port Pins	148
Helpful Tips	155
High-Voltage Detect (HVD)	155
Open-Drain Configuration	
Parallel I/O (PIO)	
Peripheral Pin Select (PPS)	
Slew Rate Selection	149
Write/Read Timing	148
In-Circuit Debugger	
In-Circuit Emulation	
In-Circuit Serial Programming (ICSP)	321 330
	. 521, 550
Input Capture	
Input Capture	193
	193 194
Input Capture Control Registers	193 194 148
Input Capture Control Registers Input Change Notification (ICN)	193 194 148 78
Input Capture Control Registers Input Change Notification (ICN) Instruction Addressing Modes	193 194 148
Input Capture Control Registers Input Change Notification (ICN) Instruction Addressing Modes File Register Instructions Fundamental Modes Supported	193 194 148
Input Capture Control Registers Input Change Notification (ICN) Instruction Addressing Modes File Register Instructions	
Input Capture Control Registers Input Change Notification (ICN) Instruction Addressing Modes File Register Instructions Fundamental Modes Supported MAC Instructions	193 194 148 78 78 79 79 79 79
Input Capture Control Registers Input Change Notification (ICN) Instruction Addressing Modes File Register Instructions Fundamental Modes Supported MAC Instructions MCU Instructions	193 194 148 78 78 79 79 79 79 79 79 79

Instruction Set	
Overview	334
Summary	331
Symbols Used in Opcode	332
Interfacing Program and Data Memory Spaces	83
Inter-Integrated Circuit (I ² C)	233
Baud Rate Generator	233
Control Registers	235
Inter-Integrated Circuit. See I ² C.	
Internal LPRC Oscillator	
Use with WDT	329
Internet Address	501
Interrupt Controller	
Control and Status Registers	104
IECx	104
IFSx	104
INTCON1	104
INTCON2	104
INTCON3	104
INTCON4	104
INTTREG	104
IPCx	104
Reset Sequence	104
Interrupt Vector Table (IVT)	99
Details	102

Μ

Memory Maps	
EDS	
Memory Organization	35
Microchip Internet Web Site	501
Modulo Addressing	80
Applicability	81
Operation Example	80
Start and End Address	80
W Address Register Selection	80

0

Op Amp/Comparator	305
Control Registers	307
Oscillator Configuration	127
Bit Values for Clock Selection	129
CPU Clocking System	128
Output Compare	197
Control Registers	198

Ρ

Packaging	463
Details	465
Marking	463, 464
Peripheral Module Disable (PMD)	139
Peripheral Pin Select (PPS)	
Control Registers	157
Input Sources, Maps Input to Function	151
Output Selection for Remappable Pins	154
Pinout I/O Descriptions (table)	
Power-Saving Features	137
Clock Frequency and Switching	137
Instruction-Based Modes	
ldle	138
Sleep	138
Interrupts Coincident with Power Save	
Instructions	138

© 2013-2019 Microchip Technology Inc.

Program Address Space	35
Construction	
Data Access from Program Memory Using	
Table Instructions	85
Memory Map for dsPIC33EV128GM00X/10X	
Devices	37
Memory Map for dsPIC33EV256GM00X/10X	
Devices	38
Memory Map for dsPIC33EV32GM00X/10X	
Devices	35
Memory Map for dsPIC33EV64GM00X/10X	
Devices	36
Table Read Instructions	
TBLRDH	85
TBLRDL	85
Program Memory	
Interrupt/Trap Vectors	39
Organization	39
Reset Vector	39
Programmer's Model	
Register Descriptions	27

R

Referenced Sources	15
Register Maps	
ADC1	
CAN1 (WIN (C1CTRL) = 0 or 1)	
CAN1 (WIN (C1CTRL) = 0)	51
CAN1 (WIN (C1CTRL) = 1)	
Configuration Words	
CPU Core	
CTMU	
DMAC	63
DMT	
I2C1	
Input Capture 1 through Input Capture 4	
Interrupt Controller	59
NVM	
Op Amp/Comparator	62
Output Compare	61
Peripheral Input Remap	
PMD	
PORTA for dsPIC33EVXXXGMX02 Devices	67
PORTA for dsPIC33EVXXXGMX04 Devices	66
PORTA for dsPIC33EVXXXGMX06 Devices	66
PORTB for dsPIC33EVXXXGMX02 Devices	
PORTB for dsPIC33EVXXXGMX04 Devices	
PORTB for dsPIC33EVXXXGMX06 Devices	67
PORTC for dsPIC33EVXXXGMX04 Devices	
PORTC for dsPIC33EVXXXGMX06 Devices	
PORTD for dsPIC33EVXXXGMX06 Devices	70
PORTE for dsPIC33EVXXXGMX06 Devices	70
PORTF for dsPIC33EVXXXGMX06 Devices	71
PORTG for dsPIC33EVXXXGMX06 Devices	
PPS Output for dsPIC33EVXXXGM002/102	
Devices	
PPS Output for dsPIC33EVXXXGM004/104	
Devices	
PPS Output for dsPIC33EVXXXGM006/106	
Devices	
PWM	
PWM Generator 1	
PWM Generator 2	
PWM Generator 3	
Reference Clock	
SENT1 Receiver	

SENT2 Receiver	53
SPI1 and SPI2	49
System Control	57
Timers	
UART1 and UART2	49
Registers	
ADxCHS0 (ADCx Input Channel 0 Select)	300
ADxCHS123 (ADCx Input	000
Channels 1, 2, 3 Select)	200
ADxCON1 (ADCx Control 1)	
ADxCON2 (ADCx Control 2)	
ADxCON3 (ADCx Control 3)	
ADxCON4 (ADCx Control 4)	
ADxCSSH (ADCx Input Scan Select High)	
ADxCSSL (ADCx Input Scan Select Low)	
ALTDTRx (PWMx Alternate Dead-Time)	
AUXCONx (PWMx Auxiliary Control)	
CHOP (PWMx Chop Clock Generator)	211
CLKDIV (Clock Divisor)	132
CM4CON (Comparator 4 Control)	
CMSTAT (Op Amp/Comparator Status)	
CMxCON (Comparator x Control,	
x = 1, 2, 3 or 5)	308
CMxFLTR (Comparator x Filter Control)	
CMxMSKCON (Comparator x	510
	214
Mask Gating Control)	314
CMxMSKSRC (Comparator x Mask Source	
Select Control)	
CORCON (Core Control)	
CTMUCON1 (CTMU Control 1)	
CTMUCON2 (CTMU Control 2)	
CTMUICON (CTMU Current Control)	288
CTXTSTAT (CPU W Register Context Status)	33
CVR1CON (Comparator Voltage Reference	
CVR1CON (Comparator Voltage Reference	
CVR1CON (Comparator Voltage Reference Control 1)	
CVR1CON (Comparator Voltage Reference Control 1) CVR2CON (Comparator Voltage Reference	319
CVR1CON (Comparator Voltage Reference Control 1) CVR2CON (Comparator Voltage Reference Control 2)	319 320
CVR1CON (Comparator Voltage Reference Control 1) CVR2CON (Comparator Voltage Reference Control 2) CxBUFPNT1 (CANx Filters 0-3 Buffer Pointer 1)	319 320 268
CVR1CON (Comparator Voltage Reference Control 1) CVR2CON (Comparator Voltage Reference Control 2) CxBUFPNT1 (CANx Filters 0-3 Buffer Pointer 1) CxBUFPNT2 (CANx Filters 4-7 Buffer Pointer 2)	319 320 268
 CVR1CON (Comparator Voltage Reference Control 1) CVR2CON (Comparator Voltage Reference Control 2) CxBUFPNT1 (CANx Filters 0-3 Buffer Pointer 1) CxBUFPNT2 (CANx Filters 4-7 Buffer Pointer 2) CxBUFPNT3 (CANx Filters 8-11 	319 320 268 269
 CVR1CON (Comparator Voltage Reference Control 1) CVR2CON (Comparator Voltage Reference Control 2) CxBUFPNT1 (CANx Filters 0-3 Buffer Pointer 1) CxBUFPNT2 (CANx Filters 4-7 Buffer Pointer 2) CxBUFPNT3 (CANx Filters 8-11 Buffer Pointer 3) 	319 320 268 269
 CVR1CON (Comparator Voltage Reference Control 1) CVR2CON (Comparator Voltage Reference Control 2) CxBUFPNT1 (CANx Filters 0-3 Buffer Pointer 1) CxBUFPNT2 (CANx Filters 4-7 Buffer Pointer 2) CxBUFPNT3 (CANx Filters 8-11 Buffer Pointer 3) CxBUFPNT4 (CANx Filters 12-15 	319 320 268 269 270
 CVR1CON (Comparator Voltage Reference Control 1) CVR2CON (Comparator Voltage Reference Control 2) CxBUFPNT1 (CANx Filters 0-3 Buffer Pointer 1) CxBUFPNT2 (CANx Filters 4-7 Buffer Pointer 2) CxBUFPNT3 (CANx Filters 8-11 Buffer Pointer 3) CxBUFPNT4 (CANx Filters 12-15 Buffer Pointer 4) 	319 268 269 270 271
 CVR1CON (Comparator Voltage Reference Control 1) CVR2CON (Comparator Voltage Reference Control 2) CxBUFPNT1 (CANx Filters 0-3 Buffer Pointer 1) CxBUFPNT2 (CANx Filters 4-7 Buffer Pointer 2) CxBUFPNT3 (CANx Filters 8-11 Buffer Pointer 3) CxBUFPNT4 (CANx Filters 12-15 Buffer Pointer 4) CxCFG1 (CANx Baud Rate Configuration 1) 	319 268 269 270 271 266
 CVR1CON (Comparator Voltage Reference Control 1) CVR2CON (Comparator Voltage Reference Control 2) CxBUFPNT1 (CANx Filters 0-3 Buffer Pointer 1) CxBUFPNT2 (CANx Filters 4-7 Buffer Pointer 2) CxBUFPNT3 (CANx Filters 8-11 Buffer Pointer 3) CxBUFPNT4 (CANx Filters 12-15 Buffer Pointer 4) CxCFG1 (CANx Baud Rate Configuration 1) CxCFG2 (CANx Baud Rate Configuration 2) 	319 268) 269 269 270 271 266 267
 CVR1CON (Comparator Voltage Reference Control 1) CVR2CON (Comparator Voltage Reference Control 2) CxBUFPNT1 (CANx Filters 0-3 Buffer Pointer 1) CxBUFPNT2 (CANx Filters 4-7 Buffer Pointer 2) CxBUFPNT3 (CANx Filters 8-11 Buffer Pointer 3) CxBUFPNT4 (CANx Filters 12-15 Buffer Pointer 4) CxCFG1 (CANx Baud Rate Configuration 1) CxCFG2 (CANx Baud Rate Configuration 2) CxCTRL1 (CANx Control 1) 	319 320 268 269 269 270 271 266 267 259
 CVR1CON (Comparator Voltage Reference Control 1) CVR2CON (Comparator Voltage Reference Control 2) CxBUFPNT1 (CANx Filters 0-3 Buffer Pointer 1) CxBUFPNT2 (CANx Filters 4-7 Buffer Pointer 2) CxBUFPNT3 (CANx Filters 8-11 Buffer Pointer 3) CxBUFPNT4 (CANx Filters 12-15 Buffer Pointer 4) CxCFG1 (CANx Baud Rate Configuration 1) CxCFG2 (CANx Baud Rate Configuration 2) CxCTRL1 (CANx Control 1) CxCTRL2 (CANx Control 2) 	319 320 268 269 269 270 271 266 267 259 260
 CVR1CON (Comparator Voltage Reference Control 1) CVR2CON (Comparator Voltage Reference Control 2) CxBUFPNT1 (CANx Filters 0-3 Buffer Pointer 1) CxBUFPNT2 (CANx Filters 4-7 Buffer Pointer 2) CxBUFPNT3 (CANx Filters 8-11 Buffer Pointer 3) CxBUFPNT4 (CANx Filters 12-15 Buffer Pointer 4) CxCFG1 (CANx Baud Rate Configuration 1) CxCFG2 (CANx Baud Rate Configuration 2) CxCTRL1 (CANx Control 1) CxCTRL2 (CANx Transmit/Receive Error Count) 	319 320 268 269 269 270 271 266 267 259 260 266
 CVR1CON (Comparator Voltage Reference Control 1) CVR2CON (Comparator Voltage Reference Control 2) CxBUFPNT1 (CANx Filters 0-3 Buffer Pointer 1) CxBUFPNT2 (CANx Filters 4-7 Buffer Pointer 2) CxBUFPNT3 (CANx Filters 8-11 Buffer Pointer 3) CxBUFPNT4 (CANx Filters 12-15 Buffer Pointer 4) CxCFG1 (CANx Baud Rate Configuration 1) CxCFG2 (CANx Baud Rate Configuration 2) CxCTRL1 (CANx Control 1) CxCTRL2 (CANx Transmit/Receive Error Count) CxFCTRL (CANx FIFO Control) 	319 268 269 269 270 271 266 267 259 260 266 262
 CVR1CON (Comparator Voltage Reference Control 1) CVR2CON (Comparator Voltage Reference Control 2) CxBUFPNT1 (CANx Filters 0-3 Buffer Pointer 1) CxBUFPNT2 (CANx Filters 4-7 Buffer Pointer 2) CxBUFPNT3 (CANx Filters 8-11 Buffer Pointer 3) CxBUFPNT4 (CANx Filters 12-15 Buffer Pointer 4) CxCFG1 (CANx Baud Rate Configuration 1) CxCFG2 (CANx Baud Rate Configuration 2) CxCTRL1 (CANx Control 1) CxEC (CANx Transmit/Receive Error Count) CxFCTRL (CANx Acceptance Filter Enable 1) 	319 268 269 269 270 270 271 266 267 259 260 266 262 268
 CVR1CON (Comparator Voltage Reference Control 1) CVR2CON (Comparator Voltage Reference Control 2) CxBUFPNT1 (CANx Filters 0-3 Buffer Pointer 1) CxBUFPNT2 (CANx Filters 4-7 Buffer Pointer 2) CxBUFPNT3 (CANx Filters 8-11 Buffer Pointer 3) CxBUFPNT4 (CANx Filters 12-15 Buffer Pointer 4) CxCFG1 (CANx Baud Rate Configuration 1) CxCFG2 (CANx Baud Rate Configuration 2) CxCTRL1 (CANx Control 1) CxCTRL2 (CANx Transmit/Receive Error Count) CxFCTRL (CANx Acceptance Filter Enable 1) CxFIFO (CANx FIFO Status) 	319 268 269 269 270 270 271 266 267 259 260 266 262 268
 CVR1CON (Comparator Voltage Reference Control 1) CVR2CON (Comparator Voltage Reference Control 2) CxBUFPNT1 (CANx Filters 0-3 Buffer Pointer 1) CxBUFPNT2 (CANx Filters 4-7 Buffer Pointer 2) CxBUFPNT3 (CANx Filters 8-11 Buffer Pointer 3) CxBUFPNT4 (CANx Filters 12-15 Buffer Pointer 4) CxCFG1 (CANx Baud Rate Configuration 1) CxCFG2 (CANx Baud Rate Configuration 2) CxCTRL1 (CANx Control 1) CxEC (CANx Transmit/Receive Error Count) CxFCTRL (CANx Acceptance Filter Enable 1) 	319 268 269 269 270 270 271 266 267 259 260 266 262 268
 CVR1CON (Comparator Voltage Reference Control 1) CVR2CON (Comparator Voltage Reference Control 2) CxBUFPNT1 (CANx Filters 0-3 Buffer Pointer 1) CxBUFPNT2 (CANx Filters 4-7 Buffer Pointer 2) CxBUFPNT3 (CANx Filters 8-11 Buffer Pointer 3) CxBUFPNT4 (CANx Filters 12-15 Buffer Pointer 4) CxCFG1 (CANx Baud Rate Configuration 1) CxCFG2 (CANx Baud Rate Configuration 2) CxCTRL1 (CANx Control 1) CxEC (CANx Transmit/Receive Error Count) CxFCTRL (CANx Acceptance Filter Enable 1) CxFIFO (CANx FIFO Status) 	319 268 269 269 270 271 266 267 259 260 266 262 268 263
 CVR1CON (Comparator Voltage Reference Control 1) CVR2CON (Comparator Voltage Reference Control 2) CxBUFPNT1 (CANx Filters 0-3 Buffer Pointer 1) CxBUFPNT2 (CANx Filters 4-7 Buffer Pointer 2) CxBUFPNT3 (CANx Filters 8-11 Buffer Pointer 3) CxBUFPNT4 (CANx Filters 12-15 Buffer Pointer 4) CxCFG1 (CANx Baud Rate Configuration 1) CxCFG2 (CANx Baud Rate Configuration 2) CxCTRL1 (CANx Control 1) CxCTRL2 (CANx Transmit/Receive Error Count) CxFCTRL (CANx FIFO Control) CxFEN1 (CANx Acceptance Filter Enable 1) CxFIFO (CANx FIFO Status) CxFMSKSEL1 (CANx Filters 7-0 Mask Selection 1) 	319 268 269 269 270 271 266 267 259 260 266 262 268 263
 CVR1CON (Comparator Voltage Reference Control 1) CVR2CON (Comparator Voltage Reference Control 2) CxBUFPNT1 (CANx Filters 0-3 Buffer Pointer 1) CxBUFPNT2 (CANx Filters 4-7 Buffer Pointer 2) CxBUFPNT3 (CANx Filters 8-11 Buffer Pointer 3) CxBUFPNT4 (CANx Filters 12-15 Buffer Pointer 4) CxCFG1 (CANx Baud Rate Configuration 1) CxCFG2 (CANx Baud Rate Configuration 2) CxCTRL1 (CANx Control 1) CxCTRL2 (CANx Control 2) CxEC (CANx Transmit/Receive Error Count) CxFCTRL (CANx FIFO Control) CxFEN1 (CANx Acceptance Filter Enable 1) CxFIFO (CANx FIFO Status) CxFMSKSEL1 (CANx Filters 15-8 	319 268 269 269 270 270 271 266 267 267 268 268 263 263 273
 CVR1CON (Comparator Voltage Reference Control 1) CVR2CON (Comparator Voltage Reference Control 2) CxBUFPNT1 (CANx Filters 0-3 Buffer Pointer 1) CxBUFPNT2 (CANx Filters 4-7 Buffer Pointer 2) CxBUFPNT3 (CANx Filters 8-11 Buffer Pointer 3) CxBUFPNT4 (CANx Filters 12-15 Buffer Pointer 4) CxCFG1 (CANx Baud Rate Configuration 1) CxCFG2 (CANx Baud Rate Configuration 2) CxCTRL1 (CANx Control 1) CxCTRL2 (CANx Control 2) CxEC (CANx Transmit/Receive Error Count) CxFCTRL (CANx FIFO Control) CxFEN1 (CANx Acceptance Filter Enable 1) CxFIFO (CANx FIFO Status) CxFMSKSEL1 (CANx Filters 15-8 Mask Selection 2) 	319 268 269 269 269 270 270 271 266 267 266 268 263 263 273 274
 CVR1CON (Comparator Voltage Reference Control 1) CVR2CON (Comparator Voltage Reference Control 2) CxBUFPNT1 (CANx Filters 0-3 Buffer Pointer 1) CxBUFPNT2 (CANx Filters 4-7 Buffer Pointer 2) CxBUFPNT3 (CANx Filters 8-11 Buffer Pointer 3) CxBUFPNT4 (CANx Filters 12-15 Buffer Pointer 4) CxCFG1 (CANx Baud Rate Configuration 1) CxCFG2 (CANx Baud Rate Configuration 2) CxCTRL1 (CANx Control 1) CxCTRL2 (CANx Control 2) CxEC (CANx Transmit/Receive Error Count) CxFCTRL (CANx FIFO Control) CxFEN1 (CANx Acceptance Filter Enable 1) CxFIFO (CANx FIFO Status) CxFMSKSEL1 (CANx Filters 15-8 Mask Selection 1) CxINTE (CANx Interrupt Enable)	319 320 268 269 269 270 271 266 267 266 266 268 263 273 274 265
 CVR1CON (Comparator Voltage Reference Control 1) CVR2CON (Comparator Voltage Reference Control 2) CxBUFPNT1 (CANx Filters 0-3 Buffer Pointer 1) CxBUFPNT2 (CANx Filters 4-7 Buffer Pointer 2) CxBUFPNT3 (CANx Filters 8-11 Buffer Pointer 3) CxBUFPNT4 (CANx Filters 12-15 Buffer Pointer 4) CxCFG1 (CANx Baud Rate Configuration 1) CxCFG2 (CANx Baud Rate Configuration 2) CxCTRL1 (CANx Control 1) CxCTRL2 (CANx Control 2) CxEC (CANx Transmit/Receive Error Count) CxFEN1 (CANx FIFO Control) CxFEN1 (CANx FIFO Status) CxFMSKSEL1 (CANx Filters 15-8 Mask Selection 1) CxFMSKSEL2 (CANx Filters 15-8 Mask Selection 2) CxINTE (CANx Interrupt Enable) CxINTF (CANx Interrupt Flag) 	319 320 268 269 269 270 271 266 267 266 266 268 263 273 274 265
 CVR1CON (Comparator Voltage Reference Control 1) CVR2CON (Comparator Voltage Reference Control 2) CxBUFPNT1 (CANx Filters 0-3 Buffer Pointer 1) CxBUFPNT2 (CANx Filters 4-7 Buffer Pointer 2) CxBUFPNT3 (CANx Filters 8-11 Buffer Pointer 3) CxBUFPNT4 (CANx Filters 12-15 Buffer Pointer 4) CxCFG1 (CANx Baud Rate Configuration 1) CxCFG2 (CANx Baud Rate Configuration 2) CxCTRL1 (CANx Control 1) CxCTRL2 (CANx Control 2) CxEC (CANx Transmit/Receive Error Count) CxFEN1 (CANx FIFO Control) CxFEN1 (CANx FIFO Status) CxFISKSEL1 (CANx Filters 15-8 Mask Selection 1) CxFMSKSEL2 (CANx Interrupt Enable) CxINTF (CANx Interrupt Flag) CxRXFnEID (CANx Acceptance Filter n 	319 268 269 270 271 266 267 266 266 263 263 273 274 265 264
 CVR1CON (Comparator Voltage Reference Control 1) CVR2CON (Comparator Voltage Reference Control 2) CxBUFPNT1 (CANx Filters 0-3 Buffer Pointer 1) CxBUFPNT2 (CANx Filters 4-7 Buffer Pointer 2) CxBUFPNT3 (CANx Filters 8-11 Buffer Pointer 3) CxBUFPNT4 (CANx Filters 12-15 Buffer Pointer 4) CxCFG1 (CANx Baud Rate Configuration 1) CxCFG2 (CANx Baud Rate Configuration 2) CxCTRL1 (CANx Control 1) CxCTRL2 (CANx Control 2) CxFCTRL (CANx FIFO Control) CxFEN1 (CANx FIFO Status)	319 268 269 270 271 266 267 266 266 263 263 273 274 265 264
 CVR1CON (Comparator Voltage Reference Control 1) CVR2CON (Comparator Voltage Reference Control 2) CxBUFPNT1 (CANx Filters 0-3 Buffer Pointer 1) CxBUFPNT2 (CANx Filters 4-7 Buffer Pointer 2) CxBUFPNT3 (CANx Filters 8-11 Buffer Pointer 3) CxBUFPNT4 (CANx Filters 12-15 Buffer Pointer 4) CxCFG1 (CANx Baud Rate Configuration 1) CxCFG2 (CANx Baud Rate Configuration 2) CxCTRL1 (CANx Control 1) CxCTRL2 (CANx Control 2) CxFCTRL (CANx FIFO Control) CxFEN1 (CANx Acceptance Filter Enable 1) CxFIFO (CANx FIFO Status) CxFMSKSEL2 (CANx Filters 15-8 Mask Selection 1) CxRXFnEID (CANx Acceptance Filter n Extended Identifier) CxRXFnSID (CANx Acceptance Filter n 	
 CVR1CON (Comparator Voltage Reference Control 1) CVR2CON (Comparator Voltage Reference Control 2) CxBUFPNT1 (CANx Filters 0-3 Buffer Pointer 1) CxBUFPNT2 (CANx Filters 4-7 Buffer Pointer 2) CxBUFPNT3 (CANx Filters 8-11 Buffer Pointer 3) CxBUFPNT4 (CANx Filters 12-15 Buffer Pointer 4) CxCFG1 (CANx Baud Rate Configuration 1) CxCFG2 (CANx Baud Rate Configuration 2) CxCTRL1 (CANx Control 1) CxCTRL2 (CANx Control 2) CxEC (CANx Transmit/Receive Error Count) CxFEN1 (CANx Acceptance Filter Enable 1) CxFIFO (CANx FIFO Status) CxFMSKSEL1 (CANx Filters 15-8 Mask Selection 1) CxRXFnEID (CANx Acceptance Filter n Extended Identifier) CxRXFnSID (CANx Acceptance Filter n Standard Identifier)	
 CVR1CON (Comparator Voltage Reference Control 1) CVR2CON (Comparator Voltage Reference Control 2) CxBUFPNT1 (CANx Filters 0-3 Buffer Pointer 1) CxBUFPNT2 (CANx Filters 4-7 Buffer Pointer 2) CxBUFPNT3 (CANx Filters 8-11 Buffer Pointer 3) CxBUFPNT4 (CANx Filters 12-15 Buffer Pointer 4) CxCFG1 (CANx Baud Rate Configuration 1) CxCFG2 (CANx Baud Rate Configuration 2) CxCTRL1 (CANx Control 1) CxCTRL2 (CANx Control 2) CxEC (CANx Transmit/Receive Error Count) CxFEN1 (CANx Acceptance Filter Enable 1) CxFIFO (CANx FIFO Status) CxFMSKSEL1 (CANx Filters 15-8 Mask Selection 1) CxRXFnEID (CANx Acceptance Filter n Extended Identifier) CxRXFNSID (CANx Acceptance Filter n Standard Identifier) CxRXFUL1 (CANx Receive Buffer Full 1) 	
 CVR1CON (Comparator Voltage Reference Control 1) CVR2CON (Comparator Voltage Reference Control 2) CxBUFPNT1 (CANx Filters 0-3 Buffer Pointer 1) CxBUFPNT2 (CANx Filters 4-7 Buffer Pointer 2) CxBUFPNT3 (CANx Filters 8-11 Buffer Pointer 3). CxBUFPNT4 (CANx Filters 12-15 Buffer Pointer 4) CxCFG1 (CANx Baud Rate Configuration 1) CxCFG2 (CANx Baud Rate Configuration 2) CxCTRL1 (CANx Control 1) CxCTRL2 (CANx Control 2) CxEC (CANx Transmit/Receive Error Count) CxFEN1 (CANx Acceptance Filter Enable 1) CxFIFO (CANx FIFO Status) CxFMSKSEL1 (CANx Filters 15-8 Mask Selection 1) CxRXFnEID (CANx Acceptance Filter n Extended Identifier) CxRXFNSID (CANx Acceptance Filter n Standard Identifier) CxRXFUL1 (CANx Receive Buffer Full 1) CxRXFUL2 (CANx Receive Buffer Full 1) 	
 CVR1CON (Comparator Voltage Reference Control 1) CVR2CON (Comparator Voltage Reference Control 2) CxBUFPNT1 (CANx Filters 0-3 Buffer Pointer 1) CxBUFPNT2 (CANx Filters 4-7 Buffer Pointer 2) CxBUFPNT3 (CANx Filters 8-11 Buffer Pointer 3) CxBUFPNT4 (CANx Filters 12-15 Buffer Pointer 4) CxCFG1 (CANx Baud Rate Configuration 1) CxCFG2 (CANx Baud Rate Configuration 2) CxCTRL1 (CANx Control 1) CxCTRL2 (CANx Control 2) CxEC (CANx Transmit/Receive Error Count) CxFEN1 (CANx Acceptance Filter Enable 1) CxFIFO (CANx FIFO Status) CxFMSKSEL1 (CANx Filters 15-8 Mask Selection 1) CxRXFnEID (CANx Acceptance Filter n Extended Identifier) CxRXFNSID (CANx Acceptance Filter n Standard Identifier) CxRXFUL1 (CANx Receive Buffer Full 1) 	

CxRXMnSID (CANx Acceptance Filter Mask n
Standard Identifier)275
CxRXOVF1 (CANx Receive Buffer Overflow 1) 277
CxRXOVF2 (CANx Receive Buffer Overflow 2) 277
CxTRmnCON (CANx TX/RX Buffer mn Control) 278
CxVEC (CANx Interrupt Code)261
DEVID (Device ID)
DEVREV (Device Revision) 327
DMALCA (DMA Last Channel Active Status) 124
DMAPPS (DMA Ping-Pong Status) 125
DMAPWC (DMA Peripheral Write
Collision Status)122
DMARQC (DMA Request Collision Status)
DMAxCNT (DMA Channel x Transfer Count)
DMAXON (DMA Channel x Control)
DMAXCON (DMA Channel x Control)110 DMAxPAD (DMA Channel x Peripheral Address)120
DMAxREQ (DMA Channel x IRQ Select) 117
DMAxSTAH (DMA Channel x
Start Address A, High) 118
DMAxSTAL (DMA Channel x
Start Address A, Low) 118
DMAxSTBH (DMA Channel x
Start Address B, High) 119
DMAxSTBL (DMA Channel x
Start Address B, Low) 119
DMTCLR (Deadman Timer Clear) 187
DMTCNTH (Deadman Timer Count High) 189
DMTCNTL (Deadman Timer Count Low)
DMTCON (Deadman Timer Control)
DMTHOLDREG (DMT Hold)
DMTPRECLR (Deadman Timer Preclear)
DMTPSCNTH (DMT Post-Configure Count
Status High)
DMTPSCNTL (DMT Post-Configure Count
Status Low)190
Status Low)
Status Low)
Status Low)
Status Low)
Status Low) 190 DMTPSINTVH (DMT Post-Configure Interval 191 Status High) 191 DMTPSINTVL (DMT Post-Configure Interval 191 Status Low) 191 DMTSTAT (Deadman Timer Status) 188
Status Low) 190 DMTPSINTVH (DMT Post-Configure Interval Status High) 191 DMTPSINTVL (DMT Post-Configure Interval Status Low) 191 DMTSTAT (Deadman Timer Status) 188 DSADRH (DMA Most Recent RAM 184
Status Low) 190 DMTPSINTVH (DMT Post-Configure Interval Status High) 191 DMTPSINTVL (DMT Post-Configure Interval Status Low) 191 DMTSTAT (Deadman Timer Status) 188 DSADRH (DMA Most Recent RAM High Address) 121
Status Low) 190 DMTPSINTVH (DMT Post-Configure Interval Status High) 191 DMTPSINTVL (DMT Post-Configure Interval Status Low) 191 DMTSTAT (Deadman Timer Status) 188 DSADRH (DMA Most Recent RAM High Address) 121 DSADRL (DMA Most Recent RAM
Status Low) 190 DMTPSINTVH (DMT Post-Configure Interval Status High) 191 DMTPSINTVL (DMT Post-Configure Interval Status Low) 191 DMTSTAT (Deadman Timer Status) 188 DSADRH (DMA Most Recent RAM High Address) 121 DSADRL (DMA Most Recent RAM Low Address) 121
Status Low) 190 DMTPSINTVH (DMT Post-Configure Interval Status High) 191 DMTPSINTVL (DMT Post-Configure Interval Status Low) 191 DMTSTAT (Deadman Timer Status) 188 DSADRH (DMA Most Recent RAM High Address) 121 DSADRL (DMA Most Recent RAM Low Address) 121 DTRx (PWMx Dead-Time) 215
Status Low) 190 DMTPSINTVH (DMT Post-Configure Interval Status High) 191 DMTPSINTVL (DMT Post-Configure Interval Status Low) 191 DMTSTAT (Deadman Timer Status) 188 DSADRH (DMA Most Recent RAM High Address) 121 DSADRL (DMA Most Recent RAM Low Address) 121 DTRx (PWMx Dead-Time) 215 FCLCONx (PWMx Fault Current-Limit Control) 219
Status Low) 190 DMTPSINTVH (DMT Post-Configure Interval Status High) 191 DMTPSINTVL (DMT Post-Configure Interval Status Low) 191 DMTSTAT (Deadman Timer Status) 188 DSADRH (DMA Most Recent RAM High Address) 121 DSADRL (DMA Most Recent RAM Low Address) 121 DTRx (PWMx Dead-Time) 215 FCLCONx (PWMx Fault Current-Limit Control) 219 I2CxCON1 (I2Cx Control 1) 235
Status Low) 190 DMTPSINTVH (DMT Post-Configure Interval Status High) 191 DMTPSINTVL (DMT Post-Configure Interval Status Low) 191 DMTSTAT (Deadman Timer Status) 188 DSADRH (DMA Most Recent RAM High Address) 121 DSADRL (DMA Most Recent RAM Low Address) 121 DTRx (PWMx Dead-Time) 215 FCLCONx (PWMx Fault Current-Limit Control) 219 I2CxCON1 (I2Cx Control 1) 235 I2CxCON2 (I2Cx Control 2) 237
Status Low) 190 DMTPSINTVH (DMT Post-Configure Interval Status High) 191 DMTPSINTVL (DMT Post-Configure Interval Status Low) 191 DMTSTAT (Deadman Timer Status) 188 DSADRH (DMA Most Recent RAM High Address) 121 DSADRL (DMA Most Recent RAM Low Address) 121 DTRx (PWMx Dead-Time) 215 FCLCONx (PWMx Fault Current-Limit Control) 219 I2CxCON1 (I2Cx Control 1) 235
Status Low) 190 DMTPSINTVH (DMT Post-Configure Interval Status High) 191 DMTPSINTVL (DMT Post-Configure Interval Status Low) 191 DMTSTAT (Deadman Timer Status) 188 DSADRH (DMA Most Recent RAM High Address) 121 DSADRL (DMA Most Recent RAM Low Address) 121 DTRx (PWMx Dead-Time) 215 FCLCONx (PWMx Fault Current-Limit Control) 219 I2CxCON1 (I2Cx Control 1) 235 I2CxCON2 (I2Cx Control 2) 237
Status Low) 190 DMTPSINTVH (DMT Post-Configure Interval Status High) 191 DMTPSINTVL (DMT Post-Configure Interval Status Low) 191 DMTSTAT (Deadman Timer Status) 188 DSADRH (DMA Most Recent RAM High Address) 121 DSADRL (DMA Most Recent RAM Low Address) 121 DTRx (PWMx Dead-Time) 215 FCLCONx (PWMx Fault Current-Limit Control) 219 I2CxCON1 (I2Cx Control 1) 235 I2CxMSK (I2Cx Slave Mode Address Mask) 239 I2CxSTAT (I2Cx Status) 238
Status Low)190DMTPSINTVH (DMT Post-Configure Interval Status High)191DMTPSINTVL (DMT Post-Configure Interval Status Low)191DMTSTAT (Deadman Timer Status)188DSADRH (DMA Most Recent RAM High Address)121DSADRL (DMA Most Recent RAM Low Address)121DTRx (PWMx Dead-Time)215FCLCONx (PWMx Fault Current-Limit Control)219I2CxCON1 (I2Cx Control 1)235I2CxCON2 (I2Cx Control 2)237I2CxSTAT (I2Cx Status)238ICxCON1 (Input Capture x Control 1)194
Status Low)190DMTPSINTVH (DMT Post-Configure Interval Status High)191DMTPSINTVL (DMT Post-Configure Interval Status Low)191DMTSTAT (Deadman Timer Status)188DSADRH (DMA Most Recent RAM High Address)121DSADRL (DMA Most Recent RAM Low Address)121DTRx (PWMx Dead-Time)215FCLCONx (PWMx Fault Current-Limit Control)219I2CxCON1 (I2Cx Control 1)235I2CxCON2 (I2Cx Control 2)237I2CxSTAT (I2Cx Status)238ICxCON1 (Input Capture x Control 1)194ICxCON2 (Input Capture x Control 2)195
Status Low)190DMTPSINTVH (DMT Post-Configure Interval Status High)191DMTPSINTVL (DMT Post-Configure Interval Status Low)191DMTPSINTVL (DMT Post-Configure Interval Status Low)191DMTSTAT (Deadman Timer Status)188DSADRH (DMA Most Recent RAM High Address)121DSADRL (DMA Most Recent RAM Low Address)121DTRx (PWMx Dead-Time)215FCLCONx (PWMx Fault Current-Limit Control)219I2CxCON1 (I2Cx Control 1)235I2CxCON2 (I2Cx Control 2)237I2CxMSK (I2Cx Slave Mode Address Mask)238ICxCON1 (Input Capture x Control 1)194ICxCON2 (Input Capture x Control 2)195INTCON1 (Interrupt Control 1)107
Status Low)190DMTPSINTVH (DMT Post-Configure Interval Status High)191DMTPSINTVL (DMT Post-Configure Interval Status Low)191DMTSTAT (Deadman Timer Status)188DSADRH (DMA Most Recent RAM High Address)121DSADRL (DMA Most Recent RAM Low Address)121DTRx (PWMx Dead-Time)215FCLCONx (PWMx Fault Current-Limit Control)219I2CxCON1 (I2Cx Control 1)235I2CxCON2 (I2Cx Control 2)237I2CxMSK (I2Cx Slave Mode Address Mask)238ICxCON1 (Input Capture x Control 1)194ICxCON2 (Input Capture x Control 2)195INTCON1 (Interrupt Control 1)107INTCON2 (Interrupt Control 2)109
Status Low)190DMTPSINTVH (DMT Post-Configure Interval Status High)191DMTPSINTVL (DMT Post-Configure Interval Status Low)191DMTSTAT (Deadman Timer Status)188DSADRH (DMA Most Recent RAM High Address)121DSADRL (DMA Most Recent RAM Low Address)121DTRx (PWMx Dead-Time)215FCLCONx (PWMx Fault Current-Limit Control)219I2CxCON1 (I2Cx Control 1)235I2CxCON2 (I2Cx Control 2)237I2CxSTAT (I2Cx Status)238ICxCON1 (Input Capture x Control 1)194ICxCON2 (Input Capture x Control 2)195INTCON1 (Interrupt Control 2)109INTCON3 (Interrupt Control 3)110
Status Low)190DMTPSINTVH (DMT Post-Configure Interval Status High)191DMTPSINTVL (DMT Post-Configure Interval Status Low)191DMTSTAT (Deadman Timer Status)188DSADRH (DMA Most Recent RAM High Address)121DSADRL (DMA Most Recent RAM Low Address)121DTRx (PWMx Dead-Time)215FCLCONx (PWMx Fault Current-Limit Control)219I2CxCON1 (I2Cx Control 1)235I2CxCON2 (I2Cx Control 2)237I2CxMSK (I2Cx Slave Mode Address Mask)238ICxCON1 (Input Capture x Control 1)194ICxCON2 (Input Capture x Control 2)195INTCON1 (Interrupt Control 1)107INTCON3 (Interrupt Control 3)110INTCON4 (Interrupt Control 4)111
Status Low)190DMTPSINTVH (DMT Post-Configure Interval Status High)191DMTPSINTVL (DMT Post-Configure Interval Status Low)191DMTSTAT (Deadman Timer Status)188DSADRH (DMA Most Recent RAM High Address)121DSADRL (DMA Most Recent RAM Low Address)121DTRx (PWMx Dead-Time)215FCLCONx (PWMx Fault Current-Limit Control)219I2CxCON1 (I2Cx Control 1)235I2CxCON2 (I2Cx Control 2)237I2CxMSK (I2Cx Slave Mode Address Mask)238ICxCON1 (Input Capture x Control 1)194ICxCON2 (Input Capture x Control 2)195INTCON1 (Interrupt Control 2)109INTCON3 (Interrupt Control 3)110INTCON4 (Interrupt Control 4)111INTTREG (Interrupt Control 4)112
Status Low)190DMTPSINTVH (DMT Post-Configure Interval Status High)191DMTPSINTVL (DMT Post-Configure Interval Status Low)191DMTSTAT (Deadman Timer Status)188DSADRH (DMA Most Recent RAM High Address)121DSADRL (DMA Most Recent RAM Low Address)121DTRx (PWMx Dead-Time)215FCLCONx (PWMx Fault Current-Limit Control)219I2CxCON1 (I2Cx Control 1)235I2CxCON2 (I2Cx Control 2)237I2CxMSK (I2Cx Slave Mode Address Mask)239I2CxSTAT (I2Cx Status)238ICxCON1 (Input Capture x Control 1)107INTCON2 (Interrupt Control 2)109INTCON3 (Interrupt Control 3)110INTCON4 (Interrupt Control 4)111INTTREG (Interrupt Control 4)112IOCONx (PWMx I/O Control)217
Status Low)190DMTPSINTVH (DMT Post-Configure Interval Status High)191DMTPSINTVL (DMT Post-Configure Interval Status Low)191DMTSTAT (Deadman Timer Status)188DSADRH (DMA Most Recent RAM High Address)121DSADRL (DMA Most Recent RAM Low Address)121DTRx (PWMx Dead-Time)215FCLCONx (PWMx Fault Current-Limit Control)219I2CxCON1 (I2Cx Control 1)235I2CxCON2 (I2Cx Control 2)237I2CxMSK (I2Cx Slave Mode Address Mask)239I2CxCON2 (Input Capture x Control 1)194ICxCON1 (Input Capture x Control 2)195INTCON1 (Interrupt Control 3)110INTCON3 (Interrupt Control 4)111INTCON4 (Interrupt Control 4)111INTTREG (Interrupt Control 4)112IOCONx (PWMx I/O Control)217LEBCONx (PWMx Leading-Edge
Status Low)190DMTPSINTVH (DMT Post-Configure Interval Status High)191DMTPSINTVL (DMT Post-Configure Interval Status Low)191DMTSTAT (Deadman Timer Status)188DSADRH (DMA Most Recent RAM High Address)121DSADRL (DMA Most Recent RAM Low Address)121DTRx (PWMx Dead-Time)215FCLCONx (PWMx Fault Current-Limit Control)219I2CxCON1 (I2Cx Control 1)235I2CxCON2 (I2Cx Control 2)237I2CxMSK (I2Cx Slave Mode Address Mask)239I2CxCON2 (Input Capture x Control 1)194ICxCON1 (Input Capture x Control 2)195INTCON1 (Interrupt Control 3)110INTCON3 (Interrupt Control 4)111INTCON4 (Interrupt Control 4)111INTTREG (Interrupt Control 4)112IOCONx (PWMx I/O Control)217LEBCONx (PWMx Leading-Edge Blanking Control)221
Status Low)190DMTPSINTVH (DMT Post-Configure Interval Status High)191DMTPSINTVL (DMT Post-Configure Interval Status Low)191DMTSTAT (Deadman Timer Status)188DSADRH (DMA Most Recent RAM High Address)121DSADRL (DMA Most Recent RAM Low Address)121DTRx (PWMx Dead-Time)215FCLCONx (PWMx Fault Current-Limit Control)219I2CxCON1 (I2Cx Control 1)235I2CxCON2 (I2Cx Control 2)237I2CxMSK (I2Cx Slave Mode Address Mask)238ICxCON1 (Input Capture x Control 1)194ICxCON2 (Input Capture x Control 2)195INTCON1 (Interrupt Control 2)100INTCON3 (Interrupt Control 3)110INTCON4 (Interrupt Control 4)111INTTREG (Interrupt Control 4)111INTTREG (Interrupt Control 4)217LEBCONx (PWMx I/O Control)217LEBCONx (PWMx Leading-Edge Blanking Control)221LEBDLYx (PWMx Leading-Edge Blanking Delay)222
Status Low)190DMTPSINTVH (DMT Post-Configure Interval Status High)191DMTPSINTVL (DMT Post-Configure Interval Status Low)191DMTSTAT (Deadman Timer Status)188DSADRH (DMA Most Recent RAM High Address)121DSADRL (DMA Most Recent RAM Low Address)121DTRx (PWMx Dead-Time)215FCLCONx (PWMx Fault Current-Limit Control)219I2CxCON1 (I2Cx Control 1)235I2CxCON2 (I2Cx Control 2)237I2CxMSK (I2Cx Slave Mode Address Mask)238ICxCON1 (Input Capture x Control 1)194ICxCON2 (Input Capture x Control 2)195INTCON1 (Interrupt Control 2)100INTCON3 (Interrupt Control 3)110INTCON4 (Interrupt Control 4)111INTTREG (Interrupt Control 4)111INTTREG (Interrupt Control 4)217LEBCONx (PWMx Leading-Edge Blanking Control)221LEBDLYx (PWMx Leading-Edge Blanking Control)221
Status Low)190DMTPSINTVH (DMT Post-Configure Interval Status High)191DMTPSINTVL (DMT Post-Configure Interval Status Low)191DMTSTAT (Deadman Timer Status)188DSADRH (DMA Most Recent RAM High Address)121DSADRL (DMA Most Recent RAM Low Address)121DTRx (PWMx Dead-Time)215FCLCONx (PWMx Fault Current-Limit Control)219I2CxCON1 (I2Cx Control 1)235I2CxCON2 (I2Cx Control 2)237I2CxSTAT (I2Cx Status)238ICxCON1 (Input Capture x Control 1)194ICxCON2 (Input Capture x Control 1)195INTCON1 (Interrupt Control 2)100INTCON3 (Interrupt Control 3)110INTCON4 (Interrupt Control 4)111INTCON4 (Interrupt Control 4)111INTCON4 (PWMx Leading-Edge Blanking Control)221LEBDLYx (PWMx Leading-Edge Blanking Control)221NVMADR (NVM Lower Address)92
Status Low)190DMTPSINTVH (DMT Post-Configure Interval Status High)191DMTPSINTVL (DMT Post-Configure Interval Status Low)191DMTSTAT (Deadman Timer Status)188DSADRH (DMA Most Recent RAM High Address)121DSADRL (DMA Most Recent RAM Low Address)121DTRx (PWMx Dead-Time)215FCLCONx (PWMx Fault Current-Limit Control)219I2CxCON1 (I2Cx Control 1)235I2CxCON2 (I2Cx Control 2)237I2CxMSK (I2Cx Slave Mode Address Mask)238ICxCON1 (Input Capture x Control 1)194ICxCON2 (Input Capture x Control 2)195INTCON1 (Interrupt Control 2)100INTCON3 (Interrupt Control 3)110INTCON4 (Interrupt Control 4)111INTTREG (Interrupt Control 4)111INTTREG (Interrupt Control 4)217LEBCONx (PWMx Leading-Edge Blanking Control)221LEBDLYx (PWMx Leading-Edge Blanking Control)221

NVMKEY (NVM Key) NVMSRCADRH (NVM Data Memory	93
Upper Address)	94
NVMSRCADRL (NVM Data Memory Lower Address)	0 4
OCxCON1 (Output Compare x Control 1) 1	
OCxCON2 (Output Compare x Control 2) 2	
OSCCON (Oscillator Control)	
OSCTUN (FRC Oscillator Tuning) 1	
PDCx (PWMx Generator Duty Cycle)	
PHASEx (PWMx Primary Phase-Shift) 2	
PLLFBD (PLL Feedback Divisor) 1	
PMD1 (Peripheral Module Disable Control 1) 1	
PMD2 (Peripheral Module Disable Control 2) 1	
PMD3 (Peripheral Module Disable Control 3) 1	
PMD4 (Peripheral Module Disable Control 4) 1	
PMD6 (Peripheral Module Disable Control 6) 1	
PMD7 (Peripheral Module Disable Control 7) 1	
PMD8 (Peripheral Module Disable Control 8)	
PTCON (PWMx Time Base Control)	80
PTCON2 (PWMx Primary Master Clock	
Divider Select)	:09
PTPER (PWMx Primary Master Time Base Period)2	10
PWMCONx (PWMx Control)	
RCON (Reset Control)	
REFOCON (Reference Oscillator Control)	
RPINR0 (Peripheral Pin Select Input 0)	
RPINR1 (Peripheral Pin Select Input 1)	
RPINR11 (Peripheral Pin Select Input 1)	
RPINR12 (Peripheral Pin Select Input 12)	
RPINR18 (Peripheral Pin Select Input 18) 1	
RPINR19 (Peripheral Pin Select Input 19) 1	
RPINR22 (Peripheral Pin Select Input 22) 1	
RPINR23 (Peripheral Pin Select Input 23) 1	
RPINR26 (Peripheral Pin Select Input 26) 1	65
RPINR3 (Peripheral Pin Select Input 3) 1	
RPINR37 (Peripheral Pin Select Input 37) 1	
RPINR38 (Peripheral Pin Select Input 38) 1	
RPINR39 (Peripheral Pin Select Input 39) 1	
RPINR44 (Peripheral Pin Select Input 44)1	
RPINR45 (Peripheral Pin Select Input 45)	
RPINR7 (Peripheral Pin Select Input 7) 1	
RPINR8 (Peripheral Pin Select Input 8)1 RPOR0 (Peripheral Pin Select Output 0)1	
RPOR1 (Peripheral Pin Select Output 0) 1 RPOR1 (Peripheral Pin Select Output 1)	
RPOR10 (Peripheral Pin Select Output 10)	
RPOR11 (Peripheral Pin Select Output 11)	
RPOR12 (Peripheral Pin Select Output 12)	
RPOR13 (Peripheral Pin Select Output 13) 1	
RPOR2 (Peripheral Pin Select Output 2) 1	
RPOR3 (Peripheral Pin Select Output 3) 1	
RPOR4 (Peripheral Pin Select Output 4) 1	
RPOR5 (Peripheral Pin Select Output 5) 1	71
RPOR6 (Peripheral Pin Select Output 6) 1	
RPOR7 (Peripheral Pin Select Output 7) 1	
RPOR8 (Peripheral Pin Select Output 8) 1	
RPOR9 (Peripheral Pin Select Output 9) 1	
SENTxCON1 (SENTx Control 1)	
SENTxDATH (SENTx Receive Data High)	
SENTxDATL (SENTx Receive Data Low)	
SENTxSTAT (SENTx Status)2 SEVTCMP (PWMx Primary Special Event	.47
Compare)	10
SPIxCON1 (SPIx Control 1)	

© 2013-2019 Microchip Technology Inc.

SPIxCON2 (SPIx Control 2)	232
SPIxSTAT (SPIx Status and Control)	228
SR (CPU STATUS)	
T1CON (Timer1 Control)	178
TRGCONx (PWMx Trigger Control)	216
TRIGx (PWMx Primary Trigger Compare Value)	218
TxCON (Timer2 and Timer4 Control)	182
TyCON (Timer3 and Timer5 Control)	183
UxMODE (UARTx Mode)	253
UxSTA (UARTx Status and Control)	255
Resets	
Brown-out Reset (BOR)	
Configuration Mismatch Reset (CM)	
Illegal Condition Reset (IOPUWR)	95
Illegal Address Mode	
Illegal Opcode	95
Security	
Uninitialized W Register	
Master Clear Pin Res <u>et (MCLR</u>)	
Master Reset Signal (SYSRST)	
Power-on Reset (POR)	
RESET Instruction (SWR)	
Trap Conflict Reset (TRAPR)	
Watchdog Timer Time-out Reset (WDTO)	95
Revision History	493

S

SENTx Protocol Data Frames	
Serial Peripheral Interface (SPI)	
Serial Peripheral Interface. See SPI.	
Single-Edge Nibble Transmission (SENT)	
Receive Mode	
Transmit Mode	
Single-Edge Nibble Transmission for	
Automotive Applications	
Single-Edge Nibble Transmission. See SENT.	
Software Stack Pointer (SSP)	78
Special Features of the CPU	
SPI	
Control Registers	
Helpful Tips	

Т

Temperature and Voltage Specifications

remperature and voltage opecifications	
AC	53
High Temperature	
AC4	10
Thermal Packaging Characteristics	44
Timer11	77
Control Register1	78
Timer2/3 and Timer4/51	79
Control Registers18	82
Timing Diagrams	
10-Bit ADC Conversion (CHPS<1:0> = 01, SIMSAM =	0,
ASAM = 0, SSRC<2:0> = 000, SSRCG = 0) 40)2
10-Bit ADC Conversion (CHPS<1:0> = 01, SIMSAM =	0,
ASAM = 1, SSRC<2:0> = 111, SSRCG = 0,	
SAMC<4:0> = 00010)40)2
12-Bit ADC Conversion (ASAM = 0, SSRC<2:0> = 000),
SSRCG = 0)	00
BOR and Master Clear Reset	56
CANx I/O	93
External Clock	54

High-Speed PWMx Characteristics	363
High-Speed PWMx Fault	363
I/O Characteristics	356
I2Cx Bus Data (Master Mode)	
I2Cx Bus Data (Slave Mode)	
I2Cx Bus Start/Stop Bits (Master Mode)	
I2Cx Bus Start/Stop Bits (Slave Mode)	391
Input Capture x (ICx)	
OCx/PWMx Characteristics	362
Output Compare x (OCx) Characteristics	
Power-on Reset Characteristics	
SPI1 Master Mode (Full-Duplex, CKE = 0,	557
CKP = x, SMP = 1)	270
	379
SPI1 Master Mode (Full-Duplex, CKE = 1,	070
CKP = x, SMP = 1)	378
SPI1 Master Mode (Half-Duplex, Transmit Only,	
CKE = 0)	376
SPI1 Master Mode (Half-Duplex, Transmit Only,	
CKE = 1)	377
SPI1 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0)	387
SPI1 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0)	385
SPI1 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 0, SMP = 0)	381
SPI1 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 1, SMP = 0)	383
SPI2 Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1)	367
SPI2 Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1)	366
SPI2 Master Mode (Half-Duplex,	
Transmit Only, CKE = 0)	364
SPI2 Master Mode (Half-Duplex,	004
Transmit Only, CKE = 1)	365
SPI2 Slave Mode (Full-Duplex, CKE = 0,	505
CKP = 0, SMP = 0	274
CRP = 0, SIVIP = 0)	374
SPI2 Slave Mode (Full-Duplex, CKE = 0,	070
CKP = 1, SMP = 0)	372
SPI2 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 0, SMP = 0)	368
SPI2 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 1, SMP = 0)	
Timer1-Timer5 External Clock	
UARTx I/O	393

U

UART	
Control Registers	253
Helpful Tips	252
Universal Asynchronous Receiver	
Transmitter (UART)	251
Universal Asynchronous Receiver Transmitter. See UART	
User OTP Memory	328
v	

Voltage Regulator (On-Chip)	32	8
----------------------------	---	----	---

W

Watchdog Timer (WDT)	. 321,	329
Programming Considerations		329
WWW Address		501
WWW, On-Line Support		14

THE MICROCHIP WEBSITE

Microchip provides online support via our WWW site at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://microchip.com/support

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Architecture – Core Family – Program Mem Product Group Pin Count – Tape and Reel Package –	demark demark demark demark femark femark femark femark flag (if applicable) flag (if app	Example: dsPIC33EV256GM006-I/PT: dsPIC33, Enhanced Voltage, 256-Kbyte Program Memory, 64-Pin, Industrial Temperature, TQFP Package.
Architecture:	33 = 16-Bit Digital Signal Controller	
Family:	EV = Enhanced Voltage	
Product Group:	GM = General Purpose plus Motor Control Family	
Pin Count:	02 = 28-Pin 03 = 36-Pin 04 = 44-Pin or 48-Pin 06 = 64-Pin	
Temperature Range:	$I = -40^{\circ}C \text{ to } +85^{\circ}C \text{ (Industrial)}$ $E = -40^{\circ}C \text{ to } +125^{\circ}C \text{ (Extended)}$ $H = -40^{\circ}C \text{ to } +150^{\circ}C \text{ (High)}$	
Package:	 MM = Plastic Quad Flat, No Lead Package – (28-pin) 6x6x0.9 mm body (QFN-S) SO = Plastic Small Outline – (28-pin) 7.50 mm body (SOIC) SS = Plastic Shrink Small Outline – (28-pin) 5.30 mm body (SSOP) SP = Skinny Plastic Dual In-Line – (28-pin) 300 mil body (SPDIP) M5 = Ultra Thin Plastic Quad Flat, No Lead Package - (36-pin) 5x5 mm body (UQFN) ML = Plastic Quad Flat, No Lead Package – (44-pin) 8x8 mm body (QFN) PT = Plastic Thin Quad Flatpack – (44-pin) 10x10x1 mm body (TQFP) P8 = Plastic Thin Quad Flatpack – (48-pin) 7x7x1 mm body (TQFP) PT = Plastic Thin Quad Flatpack – (64-pin) 10x10x1 mm body (TQFP) PT = Plastic Quad Flat, No Lead Package – (64-pin) 9x9x0.9 mm body (QFN) 	

NOTES:

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A. Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM, net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2019, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-4488-6

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138 China - Zhuhai

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141 Japan - Osaka

Tel: 81-6-6152-7160 Japan - Tokyo

Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301 Korea - Seoul

Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

Tel: 31-416-690399 Fax: 31-416-690340

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Tel: 45-4450-2828

Fax: 45-4485-2829

Tel: 358-9-4520-820

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching

Tel: 49-2129-3766400

Germany - Heilbronn

Germany - Karlsruhe

Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Germany - Rosenheim

Tel: 49-8031-354-560

Israel - Ra'anana

Italy - Milan

Italy - Padova

Tel: 972-9-744-7705

Tel: 39-0331-742611

Fax: 39-0331-466781

Tel: 39-049-7625286

Netherlands - Drunen

Tel: 49-7131-67-3636

Tel: 49-8931-9700

Germany - Haan

Finland - Espoo

France - Paris

Fax: 43-7242-2244-393

Denmark - Copenhagen

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

© 2013-2019 Microchip Technology Inc. 08/15/18 单击下面可查看定价,库存,交付和生命周期等信息

>>Microchip Technology