

16-Bit Microcontrollers with Large, Dual Partition Flash Program Memory and USB On-The-Go (OTG)

High-Performance CPU

- Modified Harvard Architecture
- Largest Program Memory Available for PIC24 (1024 Kbytes) for the Most Complex Applications
- 32 Kbytes SRAM for All Part Variants
- Up to 16 MIPS Operation @ 32 MHz
- 8 MHz Fast RC Internal Oscillator:
 - 96 MHz PLL option
 - Multiple clock divide options
 - Run-time self-calibration capability for maintaining better than ±0.20% accuracy
 - Fast start-up
- 17-Bit x 17-Bit Single-Cycle Hardware Fractional/Integer Multiplier
- 32-Bit by 16-Bit Hardware Divider
- 16-Bit x 16-Bit Working Register Array
- C Compiler Optimized Instruction Set Architecture
- Two Address Generation Units for Separate Read and Write Addressing of Data Memory

Universal Serial Bus Features

- · USB v2.0 On-The-Go (OTG) Compliant
- Dual Role Capable Can Act as Either Host or Peripheral
- Low-Speed (1.5 Mb/s) and Full-Speed (12 Mb/s) USB Operation in Host mode
- Full-Speed USB Operation in Device mode
- High-Precision PLL for USB
- USB Device mode Operation from FRC Oscillator No Crystal Oscillator Required
- Supports up to 32 Endpoints (16 bidirectional):
- USB module can use any RAM location on the device as USB endpoint buffers
- On-Chip USB Transceiver with Interface for Off-Chip USB Transceiver
- Supports Control, Interrupt, Isochronous and Bulk Transfers
- On-Chip Pull-up and Pull-Down Resistors

Analog Features

- 10/12-Bit, up to 24-Channel Analog-to-Digital (A/D) Converter:
 - 12-bit conversion rate of 200 ksps
 - Auto-scan and threshold compare features
 - Conversion available during Sleep
- Three Rail-to-Rail, Enhanced Analog Comparators
 with Programmable Input/Output Configuration
- · Charge Time Measurement Unit (CTMU):
 - Used for capacitive touch sensing, up to 24 channels
 - Time measurement down to 100 ps resolution

Low-Power Features

- Sleep and Idle modes Selectively Shut Down Peripherals and/or Core for Substantial Power Reduction and Fast Wake-up
- Doze mode Allows CPU to Run at a Lower Clock Speed than Peripherals
- Alternate Clock modes Allow On-the-Fly Switching to a Lower Clock Speed for Selective Power Reduction
- Wide Range Digitally Controlled Oscillator (DCO) for Fast Start-up and Low-Power Operation

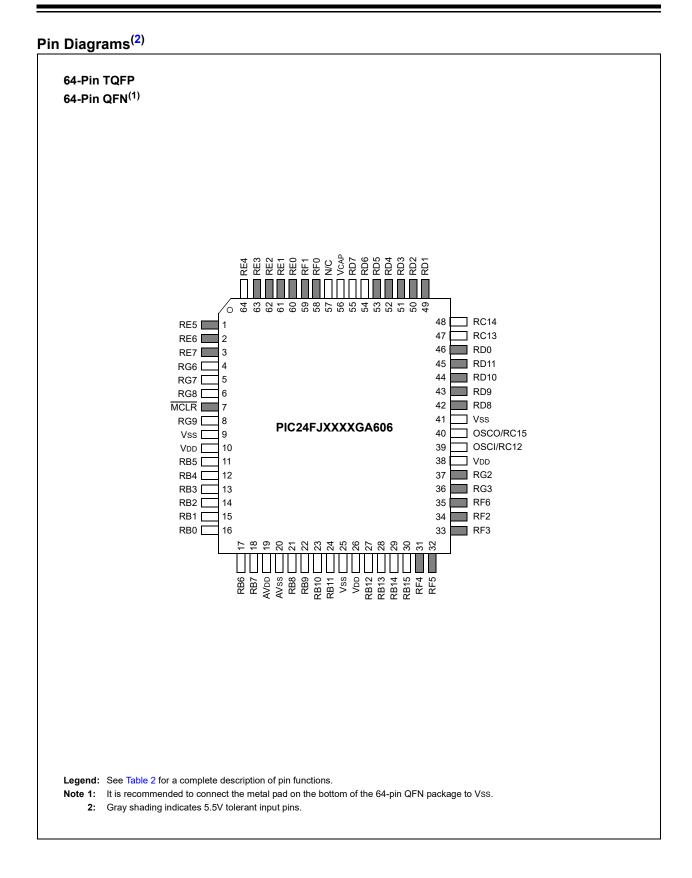
Special Microcontroller Features

- Large, Dual Partition Flash Program Array:
 Capable of holding two independent software applications, including bootloader
 - Permits simultaneous programming of one partition while executing application code from the other
 - Allows run-time switching between Active Partitions
- 10,000 Erase/Write Cycle Endurance, Typical
- Data Retention: 20 Years Minimum
- Self-Programmable under Software Control
- Supply Voltage Range of 2.0V to 3.6V
- Operating Ambient Temperature from -40°C to +85°C for Industrial and from -40°C to +125°C for Extended Temperature Range Devices
- On-Chip Voltage Regulators (1.8V) for Low-Power Operation
- Programmable Reference Clock Output
- In-Circuit Serial Programming™ (ICSP™) and In-Circuit Emulation (ICE) via Two Pins
- JTAG Boundary Scan Support
- Fail-Safe Clock Monitor Operation:
 Detects clock failure and switches to on-chip, low-power RC Oscillator
- Power-on Reset (POR), Brown-out Reset (BOR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Programmable High/Low-Voltage Detect (HLVD)
- Flexible Watchdog Timer (WDT) with its Own RC Oscillator for Reliable Operation

Peripheral Features

- Peripheral Pin Select (PPS) Allows Independent I/O Mapping of Many Peripherals
- Up to Five External Interrupt Sources
- Configurable Interrupt-on-Change on All I/O Pins:
 - Each pin is independently configurable for rising edge or falling edge change detection
- Eight-Channel DMA Supports All Peripheral modules:
 - Minimizes CPU overhead and increases data throughput
- Five 16-Bit Timers/Counters with Prescalers:
 Can be paired as 32-bit timers/counters
- Six Input Capture modules, Each with a Dedicated 16-Bit Timer
- Six Output Compare/PWM modules, Each with a Dedicated 16-Bit Timer
- Four Single Output CCPs (SCCPs) and Three Multiple Output CCPs (MCCPs):
 - Independent 16/32-bit time base for each module
 - Internal time base and period registers
 - Legacy PIC24F Capture and Compare modes (16 and 32-bit)
 - Special Variable Frequency Pulse and Brushless DC Motor Output modes

- Enhanced Parallel Master/Slave Port (EPMP/EPSP)
- Hardware Real-Time Clock/Calendar (RTCC) with Timestamping
- Three 3-Wire/4-Wire SPI modules:
 - Support four Frame modes
 - Eight-level FIFO buffer
 - Support I²S operation
- Three I²C modules Support Multi-Master/Slave mode and 7-Bit/10-Bit Addressing
- Six UART modules:
 - Support RS-485, RS-232 and LIN/J2602
 - On-chip hardware encoder/decoder for IrDA®
 - Auto-wake-up on Auto-Baud Detect (ABD)
 - Four-level deep FIFO buffer
- Programmable 32-Bit Cyclic Redundancy Check (CRC) Generator
- Four Configurable Logic Cells (CLCs):
 - Two inputs and one output, all mappable to peripherals or I/O pins
- AND/OR/XOR logic and D/JK flip-flop functions
- High-Current Sink/Source (18 mA/18 mA) on All I/O Pins
- Configurable Open-Drain Outputs on Digital I/O Pins
- 5.5V Tolerant Inputs on Multiple I/O Pins

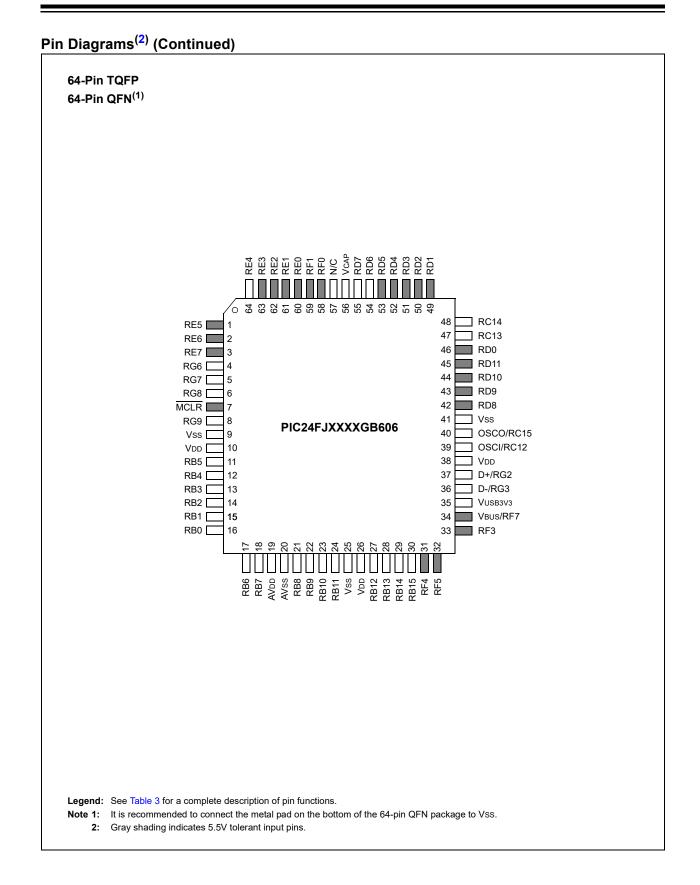

PIC24FJ1024GA610/GB610 FAMILY PRODUCT FAMILIES

The device names, pin counts, memory sizes and peripheral availability of each device are listed in Table 1. Their pinout diagrams appear on the following pages.

	Mem	ory	Pi	ns	A	nalo	g				Dig	ital					
Device	Program (bytes)	Data (bytes)	Total	0/1	10/12-Bit A/D (ch)	Comparator	CTMU	16/32-Bit Timer	IC/OC/PWM	MCCP/SCCP	I ² C	IdS	UART w/IrDA [®]	EPMP/EPSP	CLC	RTCC	USB OTG
PIC24FJ128GA606	128K	32K	64	53	16	3	Y	5/2	6/6	3/4	3	3	6/2	Y	4	Y	Ν
PIC24FJ256GA606	256K	32K	64	53	16	3	Υ	5/2	6/6	3/4	3	3	6/2	Υ	4	Υ	Ν
PIC24FJ512GA606	512K	32K	64	53	16	3	Υ	5/2	6/6	3/4	3	3	6/2	Y	4	Y	Ν
PIC24FJ1024GA606	1024K	32K	64	53	16	3	Υ	5/2	6/6	3/4	3	3	6/2	Υ	4	Υ	Ν
PIC24FJ128GA610	128K	32K	100	85	24	3	Υ	5/2	6/6	3/4	3	3	6/2	Υ	4	Υ	Ν
PIC24FJ256GA610	256K	32K	100	85	24	3	Υ	5/2	6/6	3/4	3	3	6/2	Υ	4	Υ	Ν
PIC24FJ512GA610	512K	32K	100	85	24	3	Υ	5/2	6/6	3/4	3	3	6/2	Υ	4	Υ	Ν
PIC24FJ1024GA610	1024K	32K	100	85	24	3	Υ	5/2	6/6	3/4	3	3	6/2	Υ	4	Υ	Ν
PIC24FJ128GB606	128K	32K	64	53	16	3	Υ	5/2	6/6	3/4	3	3	6/2	Υ	4	Y	Y
PIC24FJ256GB606	256K	32K	64	53	16	3	Υ	5/2	6/6	3/4	3	3	6/2	Υ	4	Υ	Υ
PIC24FJ512GB606	512K	32K	64	53	16	3	Υ	5/2	6/6	3/4	3	3	6/2	Υ	4	Υ	Υ
PIC24FJ1024GB606	1024K	32K	64	53	16	3	Υ	5/2	6/6	3/4	3	3	6/2	Υ	4	Y	Y
PIC24FJ128GB610	128K	32K	100	85	24	3	Y	5/2	6/6	3/4	3	3	6/2	Υ	4	Y	Y
PIC24FJ256GB610	256K	32K	100	85	24	3	Υ	5/2	6/6	3/4	3	3	6/2	Υ	4	Υ	Y
PIC24FJ512GB610	512K	32K	100	85	24	3	Y	5/2	6/6	3/4	3	3	6/2	Υ	4	Y	Y
PIC24FJ1024GB610	1024K	32K	100	85	24	3	Υ	5/2	6/6	3/4	3	3	6/2	Υ	4	Υ	Y

TABLE 1: PIC24FJ1024GA610/GB610 GENERAL PURPOSE FAMILIES

PIC24FJ1024GA610/GB610 FAMILY



Pin	Function	Pin	Function
1	IC4/CTED4/PMD5/RE5	33	RP16/RF3
2	SCL3/IC5/PMD6/RE6	34	RP30/RF2
3	SDA3/IC6/PMD7/RE7	35	INT0/RF6
4	C1IND/RP21/ICM1/OCM1A/PMA5/RG6	36	SDA1/RG3
5	C1INC/RP26/OCM1B/PMA4/RG7	37	SCL1/RG2
6	C2IND/RP19/ICM2/OCM2A/PMA3/RG8	38	VDD
7	MCLR	39	OSCI/CLKI/RC12
8	C1INC/C2INC/C3INC/RP27/OCM2B/PMA2/PMALU/RG9	40	OSCO/CLKO/RC15
9	Vss	41	Vss
10	Vdd	42	CLC4OUT/RP2/U6RTS/U6BCLK/ICM5/RD8
11	PGEC3/AN5/C1INA/RP18/ICM3/OCM3A/RB5	43	RP4/PMACK2/RD9
12	PGED3/AN4/C1INB/RP28/OCM3B/RB4	44	RP3/PMA15/PMCS2/RD10
13	AN3/C2INA/RB3	45	RP12/PMA14/PMCS1/RD11
14	AN2/CTCMP/C2INB/RP13/CTED13/RB2	46	CLC3OUT/RP11/U6CTS/ICM6/RD0
15	PGEC1/ALTCVREF-/ALTVREF-/AN1/RP1/CTED12/RB1	47	SOSCI/C3IND/RC13
16	PGED1/ALTCVREF+/ALTVREF+/AN0/ RP0 /PMA6/RB0	48	SOSCO/C3INC/RPI37/PWRLCLK/RC14
17	PGEC2/AN6/ RP6 /RB6	49	RP24/U5TX/ICM4/RD1
18	PGED2/AN7/ RP7 /U6TX/RB7	50	RP23/PMACK1/RD2
19	AVdd	51	RP22/ICM7/PMBE0/RD3
20	AVss	52	RP25/PMWR/PMENB/RD4
21	AN8/ RP8 /PWRGT/RB8	53	RP20/PMRD/PMWR/RD5
22	AN9/TMPR/RP9/T1CK/PMA7/RB9	54	C3INB/U5RX/OC4/RD6
23	TMS/CVREF/AN10/PMA13/RB10	55	C3INA/U5RTS/U5BCLK/OC5/RD7
24	TDO/AN11/REFI/PMA12/RB11	56	VCAP
25	Vss	57	N/C
26	Vdd	58	U5CTS/OC6/RF0
27	TCK/AN12/U6RX/CTED2/PMA11/RB12	59	RF1
28	TDI/AN13/CTED1/PMA10/RB13	60	PMD0/RE0
29	AN14/RP14/CTED5/CTPLS/PMA1/PMALH/RB14	61	PMD1/RE1
30	AN15/RP29/CTED6/PMA0/PMALL/RB15	62	PMD2/RE2
31	RP10/SDA2/PMA9/RF4	63	CTED9/PMD3/RE3
32	RP17/SCL2/PMA8/RF5	64	HLVDIN/CTED8/PMD4/RE4

TABLE 2: COMPLETE PIN FUNCTION DESCRIPTIONS (PIC24FJXXXGA606 TQFP/QFN)

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select (PPS) functions.

© 2015-2019 Microchip Technology Inc.

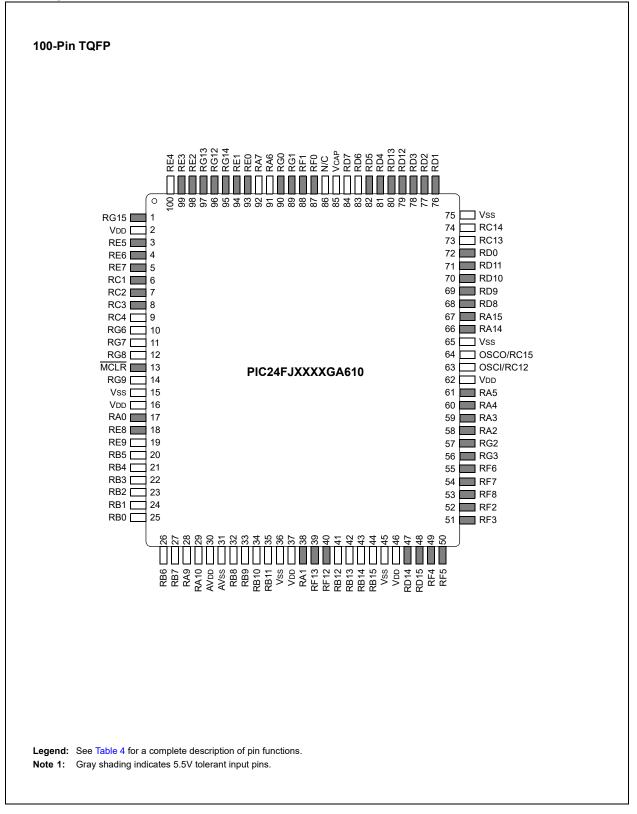
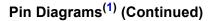

Pin	Function	Pin	Function
1	IC4/CTED4/PMD5/RE5	33	RP16/USBID/RF3
2	SCL3/IC5/PMD6/RE6	34	VBUS/RF7
3	SDA3/IC6/PMD7/RE7	35	VUSB3V3
4	C1IND/RP21/ICM1/OCM1A/PMA5/RG6	36	D-/RG3
5	C1INC/RP26/OCM1B/PMA4/RG7	37	D+/RG2
6	C2IND/RP19/ICM2/OCM2A/PMA3/RG8	38	VDD
7	MCLR	39	OSCI/CLKI/RC12
8	C1INC/C2INC/C3INC/RP27/OCM2B/PMA2/PMALU/RG9	40	OSCO/CLKO/RC15
9	Vss	41	Vss
10	Vdd	42	CLC4OUT/RP2/U6RTS/U6BCLK/ICM5/RD8
11	PGEC3/AN5/C1INA/RP18/ICM3/OCM3A/RB5	43	RP4/SDA1/PMACK2/RD9
12	PGED3/AN4/C1INB/RP28/USBOEN/OCM3B/RB4	44	RP3/SCL1/PMA15/PMCS2/RD10
13	AN3/C2INA/RB3	45	RP12/PMA14/PMCS1/RD11
14	AN2/CTCMP/C2INB/RP13/CTED13/RB2	46	CLC3OUT/RP11/U6CTS/ICM6/INT0/RD0
15	PGEC1/ALTCVREF-/ALTVREF-/AN1/RP1/CTED12/RB1	47	SOSCI/C3IND/RC13
16	PGED1/ALTCVREF+/ALTVREF+/AN0/ RP0 /PMA6/RB0	48	SOSCO/C3INC/RPI37/PWRLCLK/RC14
17	PGEC2/AN6/ RP6 /RB6	49	RP24/U5TX/ICM4/RD1
18	PGED2/AN7/ RP7 /U6TX/RB7	50	RP23/PMACK1/RD2
19	AVDD	51	RP22/ICM7/PMBE0/RD3
20	AVss	52	RP25/PMWR/PMENB/RD4
21	AN8/ RP8 /PWRGT/RB8	53	RP20/PMRD/PMWR/RD5
22	AN9/TMPR/RP9/T1CK/PMA7/RB9	54	C3INB/U5RX/OC4/RD6
23	TMS/CVREF/AN10/PMA13/RB10	55	C3INA/U5RTS/U5BCLK/OC5/RD7
24	TDO/AN11/REFI/PMA12/RB11	56	VCAP
25	Vss	57	N/C
26	VDD	58	U5CTS/OC6/RF0
27	TCK/AN12/U6RX/CTED2/PMA11/RB12	59	RF1
28	TDI/AN13/CTED1/PMA10/RB13	60	PMD0/RE0
29	AN14/RP14/CTED5/CTPLS/PMA1/PMALH/RB14	61	PMD1/RE1
30	AN15/RP29/CTED6/PMA0/PMALL/RB15	62	PMD2/RE2
31	RP10/SDA2/PMA9/RF4	63	CTED9/PMD3/RE3
32	RP17/SCL2/PMA8/RF5	64	HLVDIN/CTED8/PMD4/RE4

TABLE 3: COMPLETE PIN FUNCTION DESCRIPTIONS (PIC24FJXXXGB606 TQFP/QFN)

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select (PPS) functions.

 $\ensuremath{\textcircled{}^{\odot}}$ 2015-2019 Microchip Technology Inc.

Pin Diagrams⁽¹⁾ (Continued)


DS30010074G-page 8

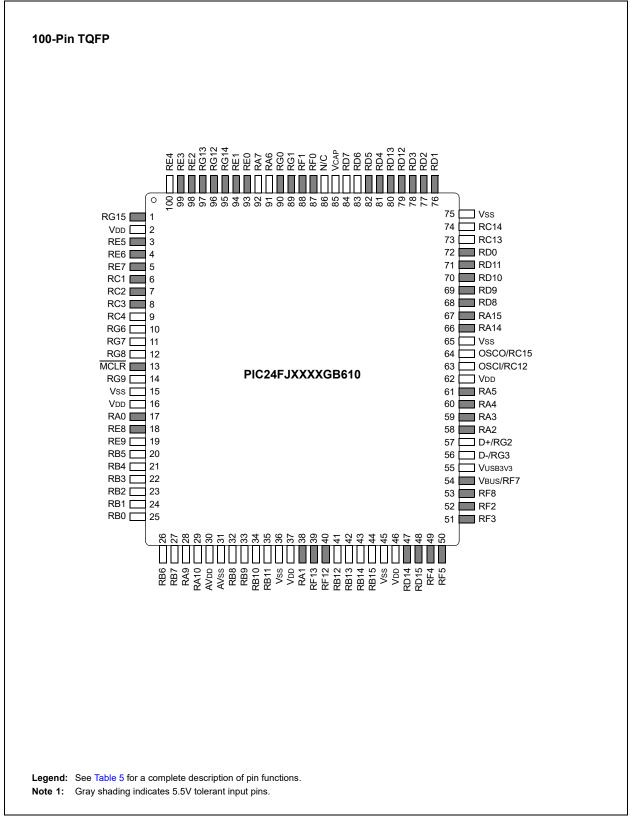

Pin	Function	Pin	Function
1	OCM1C/CTED3/RG15	51	RP16/RF3
2	VDD	52	RP30/RF2
3	IC4/CTED4/PMD5/RE5	53	RP15/RF8
4	SCL3/IC5/PMD6/RE6	54	RF7
5	SDA3/IC6/PMD7/RE7	55	INT0/RF6
6	RPI38/OCM1D/RC1	56	SDA1/RG3
7	RPI39/OCM2C/RC2	57	SCL1/RG2
8	RPI40/OCM2D/RC3	58	PMPCS1/SCL2/RA2
9	AN16/RPI41/OCM3C/PMCS2/RC4	59	SDA2/PMA20/RA3
10	AN17/C1IND/RP21/ICM1/OCM1A/PMA5/RG6	60	TDI/PMA21/RA4
11	AN18/C1INC/RP26/OCM1B/PMA4/RG7	61	TDO/RA5
12	AN19/C2IND/RP19/ICM2/OCM2A/PMA3/RG8	62	VDD
13	MCLR	63	OSCI/CLKI/RC12
14	AN20/C1INC/C2INC/C3INC/RP27/OCM2B/PMA2/PMALU/RG9	64	OSCO/CLKO/RC15
15	Vss	65	Vss
16	Vdd	66	RPI36/PMA22/RA14
17	TMS/OCM3D/RA0	67	RPI35 /PMBE1/RA15
18	RPI33 /PMCS1/RE8	68	CLC4OUT/RP2/U6RTS/U6BCLK/ICM5/RD8
19	AN21/ RPI34 /PMA19/RE9	69	RP4 /PMACK2/RD9
20	PGEC3/AN5/C1INA/ RP18 /ICM3/OCM3A/RB5	70	RP3 /PMA15/PMCS2/RD10
21	PGED3/AN4/C1INB/ RP28 /OCM3B/RB4	71	RP12/PMA14/PMCS1/RD11
22	AN3/C2INA/RB3	72	CLC3OUT/ RP11 /U6CTS/ICM6/RD0
23	AN2/CTCMP/C2INB/ RP13 /CTED13/RB2	73	SOSCI/C3IND/RC13
24	PGEC1/ALTCVREF-/ALTVREF-/AN1/ RP1 /CTED12/RB1	74	SOSCO/C3INC/RPI37/PWRLCLK/RC14
25	PGED1/ALTCVREF+/ALTVREF+/AN0/ RP0 /RB0	75	Vss
26	PGEC2/AN6/RP6/RB6	76	RP24/U5TX/ICM4/RD1
27	PGED2/AN7/ RP7 /U6TX/RB7	77	RP23/PMACK1/RD2
28	CVREF-/VREF-/PMA7/RA9	78	RP22/ICM7/PMBE0/RD3
29	CVREF+/VREF+/PMA6/RA10	79	RPI42/OCM3E/PMD12/RD12
30	AVDD	80	OCM3F/PMD13/RD13
31	AVss	81	RP25/PMWR/PMENB/RD4
32	AN8/ RP8 /PWRGT/RB8	82	RP20/PMRD/PMWR/RD5
33	AN9/TMPR/ RP9 /T1CK/RB9	83	C3INB/U5RX/OC4/PMD14/RD6
34	CVREF/AN10/PMA13/RB10	84	C3INA/U5RTS/U5BCLK/OC5/PMD15/RD7
35	AN11/REFI/PMA12/RB11	85	VCAP
36	Vss	86	N/C
30			
-	VDD	87	U5CTS/OC6/PMD11/RF0
38	TCK/RA1	88	PMD10/RF1
39	RP31 /RF13	89	PMD9/RG1
40	RPI32/CTED7/PMA18/RF12	90	PMD8/RG0
41	AN12/U6RX/CTED2/PMA11/RB12	91	
42		92	AN22/OCM1F/PMA17/RA7
43	AN14/RP14/CTED5/CTPLS/PMA1/PMALH/RB14	93	PMD0/RE0
44	AN15/RP29/CTED6/PMA0/PMALL/RB15	94	PMD1/RE1
45	Vss	95	CTED11/PMA16/RG14
46	VDD	96	OCM2E/RG12
47	RPI43/RD14	97	OCM2F/CTED10/RG13
48	RP5/RD15	98	PMD2/RE2
49	RP10/PMA9/RF4	99	CTED9/PMD3/RE3
50	RP17 /PMA8/RF5	100	HLVDIN/CTED8/PMD4/RE4

TABLE 4: COMPLETE PIN FUNCTION DESCRIPTIONS (PIC24FJXXXGA610 TQFP)

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select (PPS) functions.

 $[\]ensuremath{\textcircled{}^{\odot}}$ 2015-2019 Microchip Technology Inc.

Pin	Function	Pin	Function
1	OCM1C/CTED3/RG15	51	RP16/USBID/RF3
2	Vdd	52	RP30 /RF2
3	IC4/CTED4/PMD5/RE5	53	RP15 /RF8
4	SCL3/IC5/PMD6/RE6	54	VBUS/RF7
5	SDA3/IC6/PMD7/RE7	55	VUSB3V3
6	RPI38 /OCM1D/RC1	56	D-/RG3
7	RPI39/OCM2C/RC2	57	D+/RG2
8	RPI40/OCM2D/RC3	58	PMPCS1/SCL2/RA2
9	AN16/ RPI41 /OCM3C/PMCS2/RC4	59	SDA2/PMA20/RA3
10	AN17/C1IND/RP21/ICM1/OCM1A/PMA5/RG6	60	TDI/PMA21/RA4
11	AN18/C1INC/ RP26 /OCM1B/PMA4/RG7	61	TDO/RA5
12	AN19/C2IND/ RP19 /ICM2/OCM2A/PMA3/RG8	62	VDD
13	MCLR	63	OSCI/CLKI/RC12
14	AN20/C1INC/C2INC/C3INC/ RP27 /OCM2B/PMA2/PMALU/RG9	64	OSCO/CLKO/RC15
15	Vss	65	Vss
16	VDD	66	RPI36/SCL1/PMA22/RA14
17	TMS/OCM3D/RA0	67	RPI35 /SDA1/PMBE1/RA15
18	RPI33/PMCS1/RE8	68	CLC4OUT/ RP2 /U6RTS/U6BCLK/ICM5/RD8
19	AN21/ RPI34 /PMA19/RE9	69	RP4/PMACK2/RD9
20	PGEC3/AN5/C1INA/ RP18 /ICM3/OCM3A/RB5	70	RP3 /PMA15/PMCS2/RD10
20	PGED3/AN4/C1INB/ RP28 /USBOEN/OCM3B/RB4	70	RP12 /PMA14/PMCS1/RD11
22		72	CLC3OUT/RP11/U6CTS/ICM6/INT0/RD0
23		73	
24	PGEC1/ALTCVREF-/ALTVREF-/AN1/ RP1 /CTED12/RB1	74	SOSCO/C3INC/RPI37/PWRLCLK/RC14
25	PGED1/ALTCVREF+/ALTVREF+/AN0/ RP0 /RB0	75	Vss
26	PGEC2/AN6/ RP6 /RB6	76	RP24/U5TX/ICM4/RD1
27	PGED2/AN7/ RP7 /U6TX/RB7	77	RP23/PMACK1/RD2
28	CVREF-/VREF-/PMA7/RA9	78	RP22/ICM7/PMBE0/RD3
29	CVREF+/VREF+/PMA6/RA10	79	RPI42/OCM3E/PMD12/RD12
30	AVDD	80	OCM3F/PMD13/RD13
31	AVss	81	RP25/PMWR/PMENB/RD4
32	AN8/ RP8 /PWRGT/RB8	82	RP20/PMRD/PMWR/RD5
33	AN9/TMPR/ RP9 /T1CK/RB9	83	C3INB/U5RX/OC4/PMD14/RD6
34	CVREF/AN10/PMA13/RB10	84	C3INA/U5RTS/U5BCLK/OC5/PMD15/RD7
35	AN11/REFI/PMA12/RB11	85	VCAP
36	Vss	86	N/C
37	VDD	87	U5CTS/OC6/PMD11/RF0
38	TCK/RA1	88	PMD10/RF1
39	RP31 /RF13	89	PMD9/RG1
40	RPI32/CTED7/PMA18/RF12	90	PMD8/RG0
41	AN12/U6RX/CTED2/PMA11/RB12	91	AN23/OCM1E/RA6
42	AN13/CTED1/PMA10/RB13	92	AN22/OCM1F/PMA17/RA7
43	AN14/RP14/CTED5/CTPLS/PMA1/PMALH/RB14	93	PMD0/RE0
44	AN15/RP29/CTED6/PMA0/PMALL/RB15	94	PMD1/RE1
45	Vss	95	CTED11/PMA16/RG14
46	VDD	96	OCM2E/RG12
47	RPI43/RD14	97	OCM2F/CTED10/RG13
48	RP5 /RD15	98	PMD2/RE2
49	RP10/PMA9/RF4	99	CTED9/PMD3/RE3
	RP17 /PMA8/RF5	100	HLVDIN/CTED8/PMD4/RE4

TABLE 5: COMPLETE PIN FUNCTION DESCRIPTIONS (PIC24FJXXXGB610 TQFP)

^{© 2015-2019} Microchip Technology Inc.

PIC24FJ1024GA610/GB610 FAMILY

Pin Diagrams⁽¹⁾ (Continued)

PIC24FJXXXGA610 121-Pin BGA

	1	2	3	4	5	6	7	8	9	10	11	
A	O RE4	RE3	RG13	RE0	RG0	RF1	O N/C	O N/C	RD12	RD2	RD1	
В	O N/C	RG15	RE2	RE1	O RA7	RF0	O VCAP	RD5	RD3	O Vss	O RC14	
С	RE6	O Vdd	RG12	RG14	O RA6	⊖ N/C	O RD7	RD4	⊖ N/C	O RC13	RD11	
D	RC1	RE7	RE5	⊖ N/C	⊖ N/C	⊖ N/C	O RD6	RD13	RD0	∩ N/C	RD10	
Е	O RC4	RC3	O RG6	RC2	⊖ N/C	RG1	⊖ N/C	RA15	RD8	RD9	RA14	
F	MCLR	O RG8	O RG9	O RG7	O Vss	⊖ N/C	∩ N/C		O RC12	O Vss	O RC15	
G	RE8	O RE9	RA0	∩ N/C		⊖ Vss	⊖ Vss	⊖ N/C	RA5	RA3	RA4	
н	O RB5	O RB4	⊖ N/C	⊖ N/C	⊖ N/C		⊖ N/C	RF7	RF6	RG2	RA2	
J	O RB3	O RB2	O RB7		O RB11	RA1	O RB12	O N/C	⊖ N/C	RF8	RG3	
К	O RB1	O RB0	O RA10	O RB8	⊖ N/C	RF12	O RB14		RD15	RF3	RF2	
L	O RB6	O RA9	O AVss	O RB9	O RB10	RF13	O RB13	O RB15	RD14	RF4	RF5	

Legend: See Table 6 for a complete description of pin functions. Note 1: Gray shading indicates 5.5V tolerant input pins.

Pin	Full Pin Name	Pin	Full Pin Name
A1	HLVDIN/CTED8/PMD4/RE4	E1	AN16/RPI41/OCM3C/PMCS2/RC4
A2	CTED9/PMD3/RE3	E2	RPI40/OCM2D/RC3
A3	OCM2F/CTED10/RG13	E3	AN17/C1IND/RP21/ICM1/OCM1A/PMA5/RG6
A4	PMD0/RE0	E4	RPI39/OCM2C/RC2
A5	PMD8/RG0	E5	N/C
A6	PMD10/RF1	E6	PMD9/RG1
A7	N/C	E7	N/C
A8	N/C	E8	RPI35/PMBE1/RA15
A9	RPI42/OCM3E/PMD12/RD12	E9	CLC4OUT/RP2/U6RTS/U6BCLK/ICM5/RD8
A10	RP23/PMACK1/RD2	E10	RP4/PMACK2/RD9
A11	RP24/U5TX/ICM4/RD1	E11	RPI36/PMA22/RA14
B1	N/C	F1	MCLR
B2	OCM1C/CTED3/RG15	F2	AN19/C2IND/RP19/ICM2/OCM2A/PMA3/RG8
B3	PMD2/RE2	F3	AN20/C1INC/C2INC/C3INC/ RP27 /OCM2B/PMA2/PMALU/ RG9
B4	PMD1/RE1	F4	AN18/C1INC/RP26/OCM1B/PMA4/RG7
B5	AN22/OCM1F/PMA17/RA7	F5	Vss
B6	U5CTS/OC6/PMD11/RF0	F6	N/C
B7	VCAP	F7	N/C
B8	RP20/PMRD/PMWR/RD5	F8	VDD
B9	RP22/ICM7/PMBE0/RD3	F9	OSCI/CLKI/RC12
B10	Vss	F10	Vss
B11	SOSCO/C3INC/RPI37/PWRLCLK/RC14	F11	OSCO/CLKO/RC15
C1	SCL3/IC5/PMD6/RE6	G1	RPI33/PMCS1/RE8
C2	VDD	G2	AN21/RPI34/PMA19/RE9
C3	OCM2E/RG12	G3	TMS/OCM3D/RA0
C4	CTED11/PMA16/RG14	G4	N/C
C5	AN23/OCM1E/RA6	G5	VDD
C6	N/C	G6	Vss
C7	C3INA/U5RTS/U5BCLK/OC5/PMD15/RD7	G7	Vss
C8	RP25/PMWR/PMENB/RD4	G8	N/C
C9	N/C	G9	TDO/RA5
C10	SOSCI/C3IND/RC13	G10	SDA2/PMA20/RA3
C11	RP12/PMA14/PMCS1/RD11	G11	TDI/PMA21/RA4
D1	RPI38/OCM1D/RC1	H1	PGEC3/AN5/C1INA/RP18/ICM3/OCM3A/RB5
D2	SDA3/IC6/PMD7/RE7	H2	PGED3/AN4/C1INB/RP28/OCM3B/RB4
D3	IC4/CTED4/PMD5/RE5	H3	N/C
D4	N/C	H4	N/C
D5	N/C	H5	N/C
D6	N/C	H6	VDD
D7	C3INB/U5RX/OC4/PMD14/RD6	H7	N/C
D8	OCM3F/PMD13/RD13	H8	RF7
D9	CLC3OUT/RP11/U6CTS/ICM6/RD0	H9	INT0/RF6
D10	N/C	H10	SCL1/RG2
D11	RP3/PMA15/PMCS2/RD10	H11	PMPCS1/SCL2/RA2

TABLE 6:	COMPLETE PIN FUNCTION DESCRIPTIONS (PIC24FJXXXGA610 BGA)

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select (PPS) functions.

Pin	Full Pin Name	Pin	Full Pin Name
J1	AN3/C2INA/RB3	K7	AN14/RP14/CTED5/CTPLS/PMA1/PMALH/RB14
J2	AN2/CTCMP/C2INB/RP13/CTED13/RB2	K8	VDD
J3	PGED2/AN7/ RP7 /U6TX/RB7	K9	RP5 /RD15
J4	AVDD	K10	RP16/RF3
J5	AN11/REFI/PMA12/RB11	K11	RP30/RF2
J6	TCK/RA1	L1	PGEC2/AN6/ RP6 /RB6
J7	AN12/U6RX/CTED2/PMA11/RB12	L2	CVREF-/VREF-/PMA7/RA9
J8	N/C	L3	AVss
J9	N/C	L4	AN9/TMPR/RP9/T1CK/RB9
J10	RP15/RF8	L5	CVREF/AN10/PMA13/RB10
J11	SDA1/RG3	L6	RP31/RF13
K1	PGEC1/ALTCVREF-/ALTVREF-/AN1/RP1/CTED12/RB1	L7	AN13/CTED1/PMA10/RB13
K2	PGED1/ALTCVREF+/ALTVREF+/AN0/ RP0 /RB0	L8	AN15/RP29/CTED6/PMA0/PMALL/RB15
K3	CVREF+/VREF+/PMA6/RA10	L9	RPI43/RD14
K4	AN8/ RP8 /PWRGT/RB8	L10	RP10/PMA9/RF4
K5	N/C	L11	RP17 /PMA8/RF5
K6	RPI32/CTED7/PMA18/RF12		

TABLE 6: COMPLETE PIN FUNCTION DESCRIPTIONS (PIC24FJXXXGA610 BGA) (CONTINUED)

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select (PPS) functions.

Pin Diagrams⁽¹⁾ (Continued)

_	1	2	3	4	5	6	7	8	9	10	11
A	O RE4	RE3	RG13	RE0	RG0	RF1	O N/C	⊖ N/C	RD12	RD2	RD1
в	∩ N/C	RG15	RE2	RE1	O RA7	RF0	O Vcap	RD5	RD3	O Vss	O RC14
с	RE6	O Vdd	RG12	RG14	O RA6	O N/C	O RD7	RD4	O N/C	O RC13	RD11
D	RC1	RE7	RE5	⊖ N/C	⊖ N/C	⊖ N/C	O RD6	RD13	RD0	O N/C	RD10
E	O RC4	RC3	O RG6	RC2	⊖ N/C	RG1	O N/C	RA15	RD8	RD9	RA14
F	MCLR	O RG8	O RG9	O RG7	O Vss	∩ N/C	∩ N/C		O RC12	O Vss	O RC15
G	RE8	O RE9	RA0	O N/C		O Vss	O Vss	O N/C	RA5	RA3	RA4
н	O RB5	O RB4	O N/C	O N/C	O N/C		O N/C	UBUS/RF7	VUSB3V3	O D+/RG2	RA2
J	O RB3	O RB2	O RB7		O RB11	RA1	O RB12	O N/C	O N/C	RF8	O D-/RG3
к	O RB1	O RB0	O RA10	O RB8	O N/C	RF12	O RB14		RD15	RF3	RF2
L	O RB6	O RA9	O AVss	O RB9	O RB10	RF13	O RB13	O RB15	RD14	RF4	RF5
	e 7 for a co ading indica										

© 2015-2019 Microchip Technology Inc.

Pin	Full Pin Name	Pin	Full Pin Name
A1	HLVDIN/CTED8/PMD4/RE4	E1	AN16/RPI41/OCM3C/PMCS2/RC4
A2	CTED9/PMD3/RE3	E2	RPI40/OCM2D/RC3
A3	OCM2F/CTED10/RG13	E3	AN17/C1IND/RP21/ICM1/OCM1A/PMA5/RG6
A4	PMD0/RE0	E4	RPI39/OCM2C/RC2
A5	PMD8/RG0	E5	N/C
A6	PMD10/RF1	E6	PMD9/RG1
A7	N/C	E7	N/C
A8	N/C	E8	RPI35/SDA1/PMBE1/RA15
A9	RPI42/OCM3E/PMD12/RD12	E9	CLC4OUT/RP2/U6RTS/U6BCLK/ICM5/RD8
A10	RP23/PMACK1/RD2	E10	RP4/PMACK2/RD9
A11	RP24/U5TX/ICM4/RD1	E11	RPI36/SCL1/PMA22/RA14
B1	N/C	F1	MCLR
B2	OCM1C/CTED3/RG15	F2	AN19/C2IND/RP19/ICM2/OCM2A/PMA3/RG8
B3	PMD2/RE2	F3	AN20/C1INC/C2INC/C3INC/ RP27 /OCM2B/PMA2/PMALU/ RG9
B4	PMD1/RE1	F4	AN18/C1INC/RP26/OCM1B/PMA4/RG7
B5	AN22/OCM1F/PMA17/RA7	F5	Vss
B6	U5CTS/OC6/PMD11/RF0	F6	N/C
B7	VCAP	F7	N/C
B8	RP20/PMRD/PMWR/RD5	F8	VDD
B9	RP22/ICM7/PMBE0/RD3	F9	OSCI/CLKI/RC12
B10	Vss	F10	Vss
B11	SOSCO/C3INC/RPI37/PWRLCLK/RC14	F11	OSCO/CLKO/RC15
C1	SCL3/IC5/PMD6/RE6	G1	RPI33/PMCS1/RE8
C2	VDD	G2	AN21/ RPI34 /PMA19/RE9
C3	OCM2E/RG12	G3	TMS/OCM3D/RA0
C4	CTED11/PMA16/RG14	G4	N/C
C5	AN23/OCM1E/RA6	G5	VDD
C6	N/C	G6	Vss
C7	C3INA/U5RTS/U5BCLK/OC5/PMD15/RD7	G7	Vss
C8	RP25/PMWR/PMENB/RD4	G8	N/C
C9	N/C	G9	TDO/RA5
C10	SOSCI/C3IND/RC13	G10	SDA2/PMA20/RA3
C11	RP12/PMA14/PMCS1/RD11	G11	TDI/PMA21/RA4
D1	RPI38/OCM1D/RC1	H1	PGEC3/AN5/C1INA/RP18/ICM3/OCM3A/RB5
D2	SDA3/IC6/PMD7/RE7	H2	PGED3/AN4/C1INB/RP28/USBOEN/OCM3B/RB4
D3	IC4/CTED4/PMD5/RE5	H3	N/C
D4	N/C	H4	N/C
D5	N/C	H5	N/C
D6	N/C	H6	VDD
D7	C3INB/U5RX/OC4/PMD14/RD6	H7	N/C
D8	OCM3F/PMD13/RD13	H8	VBUS/RF7
D9	CLC3OUT/RP11/U6CTS/ICM6/INT0/RD0	H9	VUSB3V3
D10	N/C	H10	D+/RG2
D11	RP3/PMA15/PMCS2/RD10	H11	PMPCS1/SCL2/RA2
Legend:	RPn and RPIn represent remappable pins for Peripheral Pin S	Select (PPS)	functions

TABLE 7: COMPLETE PIN FUNCTION DESCRIPTIONS (PIC24FJXXXGB610 BGA)

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select (PPS) functions.

Pin	Full Pin Name	Pin	Full Pin Name
J1	AN3/C2INA/RB3	K7	AN14/RP14/CTED5/CTPLS/PMA1/PMALH/RB14
J2	AN2/CTCMP/C2INB/RP13/CTED13/RB2	K8	VDD
J3	PGED2/AN7/ RP7 /U6TX/RB7	K9	RP5 /RD15
J4	AVDD	K10	RP16/USBID/RF3
J5	AN11/REFI/PMA12/RB11	K11	RP30/RF2
J6	TCK/RA1	L1	PGEC2/AN6/ RP6 /RB6
J7	AN12/U6RX/CTED2/PMA11/RB12	L2	CVREF-/VREF-/PMA7/RA9
J8	N/C	L3	AVss
J9	N/C	L4	AN9/TMPR/RP9/T1CK/RB9
J10	RP15 /RF8	L5	CVREF/AN10/PMA13/RB10
J11	D-/RG3	L6	RP31/RF13
K1	PGEC1/ALTCVREF-/ALTVREF-/AN1/RP1/CTED12/RB1	L7	AN13/CTED1/PMA10/RB13
K2	PGED1/ALTCVREF+/ALTVREF+/AN0/ RP0 /RB0	L8	AN15/RP29/CTED6/PMA0/PMALL/RB15
K3	CVREF+/VREF+/PMA6/RA10	L9	RPI43/RD14
K4	AN8/ RP8 /PWRGT/RB8	L10	RP10/PMA9/RF4
K5	N/C	L11	RP17 /PMA8/RF5
K6	RPI32/CTED7/PMA18/RF12		

TABLE 7: COMPLETE PIN FUNCTION DESCRIPTIONS (PIC24FJXXXGB610 BGA) (CONTINUED)

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select (PPS) functions.

^{© 2015-2019} Microchip Technology Inc.

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-Bit Microcontrollers	41
3.0	CPU	
4.0	Memory Organization	
5.0	Direct Memory Access Controller (DMA)	
6.0	Flash Program Memory	89
7.0	Resets	97
8.0	Interrupt Controller	. 105
9.0	Oscillator Configuration	. 117
10.0	Power-Saving Features	. 137
11.0	I/O Ports	. 149
12.0	Timer1	. 185
13.0	Timer2/3 and Timer4/5	. 187
	Input Capture with Dedicated Timers	
	Output Compare with Dedicated Timers	
	Capture/Compare/PWM/Timer Modules (MCCP and SCCP)	
	Serial Peripheral Interface (SPI)	
	Inter-Integrated Circuit (I ² C)	
19.0	Universal Asynchronous Receiver Transmitter (UART)	. 255
	Universal Serial Bus with On-The-Go Support (USB OTG)	
	Enhanced Parallel Master Port (EPMP)	
	Real-Time Clock and Calendar with Timestamp	
	32-Bit Programmable Cyclic Redundancy Check (CRC) Generator	
	Configurable Logic Cell (CLC)	
	12-Bit A/D Converter with Threshold Detect	
	Triple Comparator Module	
	Comparator Voltage Reference	
	Charge Time Measurement Unit (CTMU)	
29.0	High/Low-Voltage Detect (HLVD)	
30.0	Special Features	
31.0		
	Instruction Set Summary	
	Electrical Characteristics	
	Packaging Information	
	ndix A: Revision History	
	, 	
	Aicrochip Website	
	omer Change Notification Service	
	omer Support	
PLOQ	uct Identification System	. 407

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

^{© 2015-2019} Microchip Technology Inc.

Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPIC33/PIC24 Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note 1: To access the documents listed below, browse to the documentation section of the PIC24FJ1024GA610/GB610 product page of the Microchip website (www.microchip.com) or select a family reference manual section from the following list. In addition to parameters, features and

other documentation, the resulting page provides links to the related family reference manual sections.

- "CPU with Extended Data Space (EDS)" (www.microchip.com/DS39732)
- "Data Memory with Extended Data Space (EDS)" (www.microchip.com/DS39733)
- "Direct Memory Access Controller (DMA)" (www.microchip.com/DS30009742)
- "PIC24F Flash Program Memory" (www.microchip.com/DS30009715)
- "Reset" (www.microchip.com/DS39712)
- "Interrupts" (www.microchip.com/DS70000600)
- "Oscillator" (www.microchip.com/DS39700)
- "Power-Saving Features" (www.microchip.com/DS39698)
- "I/O Ports with Interrupt-on-Change (IOC)" (www.microchip.com/DS70005186)
- "Timers" (www.microchip.com/DS39704)
- "Input Capture with Dedicated Timer" (www.microchip.com/DS70000352)
- "Output Compare with Dedicated Timer" (www.microchip.com/DS70005159)
- "Capture/Compare/PWM/Timer (MCCP and SCCP)" (www.microchip.com/DS30003035A)
- "Serial Peripheral Interface (SPI) with Audio Codec Support" (www.microchip.com/DS70005136)
- "Inter-Integrated Circuit (I²C)" (www.microchip.com/DS70000195)
- "UART" (www.microchip.com/DS39708)
- "USB On-The-Go (OTG)" (www.microchip.com/DS39721)
- "Enhanced Parallel Master Port (EPMP)" (www.microchip.com/DS39730)
- "RTCC with Timestamp" (www.microchip.com/DS70005193)
- "RTCC with External Power Control" (www.microchip.com/DS39745)
- "32-Bit Programmable Cyclic Redundancy Check (CRC)" (www.microchip.com/DS30009729)
- "12-Bit A/D Converter with Threshold Detect" (www.microchip.com/DS39739)
- "Scalable Comparator Module" (www.microchip.com/DS39734)
- "Dual Comparator Module" (www.microchip.com/DS39710)
- "Charge Time Measurement Unit (CTMU) and CTMU Operation with Threshold Detect" (www.microchip.com/DS30009743)
- "High-Level Integration with Programmable High/Low-Voltage Detect (HLVD)" (www.microchip.com/DS39725)
- "Watchdog Timer (WDT)" (www.microchip.com/DS39697)
- "CodeGuard™ Intermediate Security" (www.microchip.com/DS70005182)
- "High-Level Device Integration" (www.microchip.com/DS39719)
- "Programming and Diagnostics" (www.microchip.com/DS39716)
- "Dual Partition Flash Program Memory" (www.microchip.com/DS70005156)
- "Configurable Logic Cell (CLC)" (www.microchip.com/DS70005298)

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

- PIC24FJ1024GB610 PIC24FJ1024GA610
- PIC24FJ512GB610
 - PIC24FJ512GA610
- PIC24FJ256GB610 PIC24FJ256GA610
- PIC24FJ128GB610 PIC24FJ128GA610
- PIC24FJ1024GB606 PIC24FJ1024GA606
- PIC24FJ512GB606 PIC24FJ512GA606
- PIC24FJ256GB606
- PIC24FJ256GA606
- PIC24FJ128GB606 PIC24FJ128GA606

The PIC24FJ1024GA610/GB610 family introduces many new analog features to the extreme low-power Microchip devices. This is a 16-bit microcontroller family with a broad peripheral feature set and enhanced computational performance. This family also offers a new migration option for those high-performance applications which may be outgrowing their 8-bit platforms, but do not require the numerical processing power of a Digital Signal Processor (DSP).

 Table 1-3 lists the functions of the various pins shown in the pinout diagrams.

1.1 Core Features

1.1.1 16-BIT ARCHITECTURE

Central to all PIC24F devices is the 16-bit modified Harvard architecture, first introduced with Microchip's dsPIC[®] Digital Signal Controllers (DSCs). The PIC24F CPU core offers a wide range of enhancements, such as:

- 16-bit data and 24-bit address paths with the ability to move information between data and memory spaces
- Linear addressing of up to 12 Mbytes (program space) and 32 Kbytes (data)
- A 16-element Working register array with built-in software stack support
- A 17 x 17 hardware multiplier with support for integer math
- · Hardware support for 32 by 16-bit division
- An instruction set that supports multiple addressing modes and is optimized for high-level languages, such as 'C'
- Operational performance up to 16 MIPS

1.1.2 POWER-SAVING TECHNOLOGY

The PIC24FJ1024GA610/GB610 family of devices includes Retention Sleep, a low-power mode with essential circuits being powered from a separate low-voltage regulator.

This new low-power mode also supports the continuous operation of the low-power, on-chip Real-Time Clock/ Calendar (RTCC), making it possible for an application to keep time while the device is otherwise asleep.

Aside from this new feature, PIC24FJ1024GA610/GB610 family devices also include all of the legacy power-saving features of previous PIC24F microcontrollers, such as:

- On-the-Fly Clock Switching, allowing the selection of a lower power clock during run time
- Doze Mode Operation, for maintaining peripheral clock speed while slowing the CPU clock
- Instruction-Based Power-Saving Modes, for quick invocation of the Idle and the Sleep modes

1.1.3 OSCILLATOR OPTIONS AND FEATURES

All of the devices in the PIC24FJ1024GA610/GB610 family offer six different oscillator options, allowing users a range of choices in developing application hardware. These include:

- Two Crystal modes
- Two External Clock (EC) modes
- A Phase-Locked Loop (PLL) frequency multiplier, which allows clock speeds of up to 32 MHz
- A Digitally Controlled Oscillator (DCO) with multiple frequencies and fast wake-up time
- A Fast Internal Oscillator (FRC), a nominal 8 MHz output, with multiple frequency divider options
- A separate Low-Power Internal RC Oscillator (LPRC), 31 kHz nominal, for low-power, timing-insensitive applications.

The internal oscillator block also provides a stable reference source for the Fail-Safe Clock Monitor (FSCM). This option constantly monitors the main clock source against a reference signal provided by the internal oscillator and enables the controller to switch to the internal oscillator, allowing for continued low-speed operation or a safe application shutdown.

1.1.4 EASY MIGRATION

Regardless of the memory size, all devices share the same rich set of peripherals, allowing for a smooth migration path as applications grow and evolve. The consistent pinout scheme used throughout the entire family also aids in migrating from one device to the next larger device, or even in jumping from 64-pin to 100-pin devices.

The PIC24F family is pin-compatible with devices in the dsPIC33 family, and shares some compatibility with the pinout schema for PIC18 and dsPIC30. This extends the ability of applications to grow from the relatively simple, to the powerful and complex, yet still selecting a Microchip device.

1.2 DMA Controller

PIC24FJ1024GA610/GB610 family devices have a Direct Memory Access (DMA) Controller. This module acts in concert with the CPU, allowing data to move between data memory and peripherals without the intervention of the CPU, increasing data throughput and decreasing execution time overhead. Eight independently programmable channels make it possible to service multiple peripherals at virtually the same time, with each channel peripheral performing a different operation. Many types of data transfer operations are supported.

1.3 Other Special Features

- Peripheral Pin Select: The Peripheral Pin Select (PPS) feature allows most digital peripherals to be mapped over a fixed set of digital I/O pins. Users may independently map the input and/or output of any one of the many digital peripherals to any one of the I/O pins.
- **Configurable Logic Cell:** The Configurable Logic Cell (CLC) module allows the user to specify combinations of signals as inputs to a logic function and to use the logic output to control other peripherals or I/O pins.
- Timing Modules: The PIC24FJ1024GA610/GB610 family provides five independent, general purpose, 16-bit timers (four of which can be combined into two 32-bit timers). The devices also include three multiple output and four single output advanced Capture/Compare/PWM/Timer peripherals, and six independent legacy Input Capture and six independent legacy Output Compare modules.
- **Communications:** The PIC24FJ1024GA610/GB610 family incorporates a range of serial communication peripherals to handle a range of application requirements. There are three independent I²C modules that support both Master and Slave modes of operation. Devices also have, through the PPS feature, six independent UARTs with built-in IrDA[®] encoders/decoders and three SPI modules.
- Analog Features: All members of the PIC24FJ1024GA610/GB610 family include the new 12-bit A/D Converter (A/D) module and a triple comparator module. The A/D module incorporates a range of new features that allow the converter to assess and make decisions on incoming data, reducing CPU overhead for routine A/D conversions. The comparator module includes three analog comparators that are configurable for a wide range of operations.
- **CTMU Interface:** In addition to their other analog features, members of the PIC24FJ1024GA610/ GB610 family include the CTMU interface module. This provides a convenient method for precision time measurement and pulse generation, and can serve as an interface for capacitive sensors.

- Enhanced Parallel Master/Parallel Slave Port: This module allows rapid and transparent access to the microcontroller data bus, and enables the CPU to directly address external data memory. The parallel port can function in Master or Slave mode, accommodating data widths of 4, 8 or 16 bits and address widths of up to 23 bits in Master modes.
- Real-Time Clock and Calendar (RTCC): This module implements a full-featured clock and calendar with alarm functions in hardware, freeing up timer resources and program memory space for use of the core application.

1.4 Details on Individual Family Members

Devices in the PIC24FJ1024GA610/GB610 family are available in 64-pin, 100-pin and 121-pin packages. The general block diagram for all devices is shown in Figure 1-1.

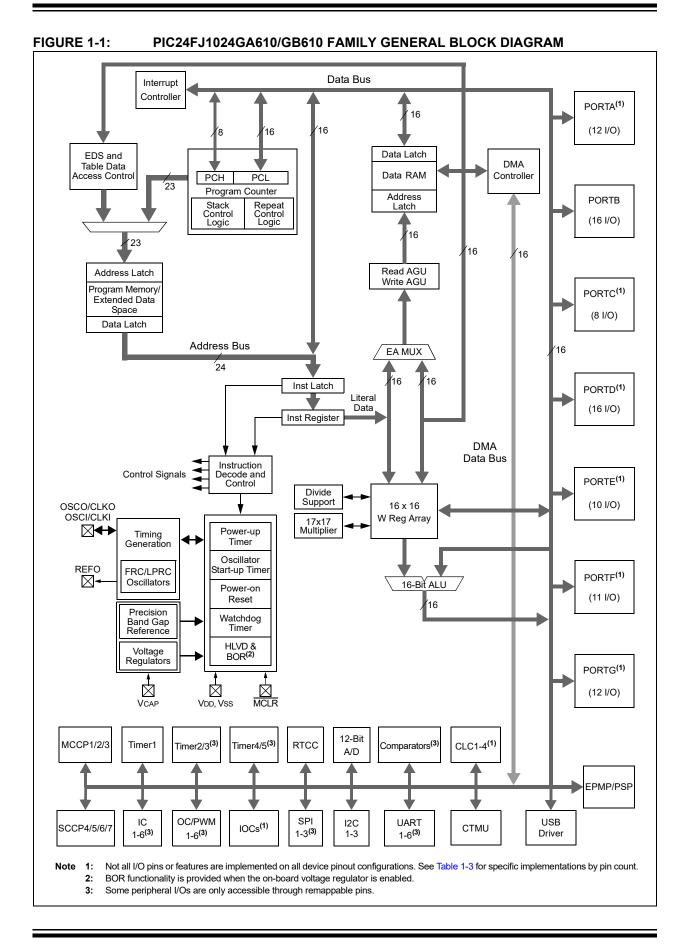
The devices are differentiated from each other in six ways:

- Flash program memory (128 Kbytes for PIC24FJ128GX6XX devices, 256 Kbytes for PIC24FJ256GX6XX devices, 512 Kbytes for PIC24FJ512GX6XX devices and 1024 Kbytes for PIC24FJ1024GX6XX devices).
- 2. Available I/O pins and ports (53 pins on six ports for 64-pin devices and 85 pins on seven ports for 100-pin and 121-pin devices).
- Available interrupt-on-change (IOC) notification inputs (53 on 64-pin devices and 85 on 100-pin and 121-pin devices).
- 4. Available remappable pins (29 pins on 64-pin devices, 44 pins on 100-pin and 121-pin devices).
- Available USB peripheral (available on PIC24FJXXXGB6XX devices; not available on PIC24FJXXXGA6XX devices).
- 6. Analog input channels (16 channels for 64-pin devices and 24 channels for 100-pin and 121-pin devices).

All other features for devices in this family are identical. These are summarized in Table 1-1, Table 1-2 and Table 1-3.

A list of the pin features available on the PIC24FJ1024GA610/GB610 family devices, sorted by function, is shown in Table 1-3. Note that this table shows the pin location of individual peripheral features and not how they are multiplexed on the same pin. This information is provided in the pinout diagrams in the beginning of this data sheet. Multiplexed features are sorted by the priority given to a feature, with the highest priority peripheral being listed first.

Features	PIC24FJ128GX606	PIC24FJ256GX606	PIC24FJ512GX606	PIC24FJ1024GX606							
Operating Frequency		DC –	32 MHz								
Program Memory (bytes)	128K	256K	512K	1024K							
Program Memory (instructions)	44,032	88,064	176,128	352,256							
Data Memory (bytes)		3	2K								
Interrupt Sources (soft vectors/ NMI traps)		103 (97/6)									
I/O Ports											
Total I/O Pins 53											
Remappable Pins	le Pins 29 (28 I/O, 1 input only)										
Timers:											
Total Number (16-bit)		5	(1)								
32-Bit (from paired 16-bit timers)			2								
Input Capture Channels		6	(1)								
Output Compare/PWM Channels		6	(1)								
Input Change Notification Interrupt		Ę	53								
Serial Communications:											
UART		6	.(1)								
SPI (3-wire/4-wire)	3 ⁽¹⁾										
I ² C		3									
Configurable Logic Cell (CLC)		4	(1)								
Parallel Communications (EPMP/PSP)		Y	<i>ï</i> es								
Capture/Compare/PWM/Timer Modules		3 Multiple Outputs	and 4 Single Outputs								
JTAG Boundary Scan		Y	′es								
12/10-Bit Analog-to-Digital Converter (A/D) Module (input channels)			16								
Analog Comparators			3								
CTMU Interface		Ŷ	′es								
Universal Serial Bus Controller		Yes (PIC24FJ1024	GB606 devices only)								
Resets (and Delays)	M	ore POR, VDD POR, CLR, WDT, Illegal Opd lardware Traps, Confi (OST, F	ode, REPEAT Instruc	tion,							
Instruction Set	76 Bas	e Instructions, Multipl	e Addressing Mode V	ariations							
Packages		64-Pin TQI	FP and QFN								


TABLE 1-1:DEVICE FEATURES FOR THE PIC24FJ1024GA606/GB606: 64-PIN DEVICES

Note 1: Some peripherals are accessible through remappable pins.

TABLE 1-2: DEVICE FEATURES FOR THE PIC24FJ1024GX610: 100-PIN AND 121-PIN DEVICES

Features	PIC24FJ128GX610	PIC24FJ256GX610	PIC24FJ512GX610	PIC24FJ1024GX610					
Operating Frequency		DC –	32 MHz						
Program Memory (bytes)	128K	256K	512K	1024K					
Program Memory (instructions)	44,032	88,064	176,128	352,256					
Data Memory (bytes)		3	2K						
Interrupt Sources (soft vectors/NMI traps)	(soft vectors/NMI traps)								
I/O Ports		Ports A, B,	C, D, E, F, G						
Total I/O Pins	85								
Remappable Pins		44 (32 I/O,	12 input only)						
Timers: Total Number (16-bit)		Ę	5 (1)						
32-Bit (from paired 16-bit timers)			2						
Capture/Compare/PWM/Timer Modules		3 Multiple Outputs	and 4 Single Outputs	5					
Input Capture Channels		6	₃ (1)						
Output Compare/PWM Channels		6	₃ (1)						
Input Change Notification Interrupt									
Serial Communications: UART		6 ⁽¹⁾							
SPI (3-wire/4-wire)		3	3 (1)						
l ² C			3						
Configurable Logic Cell (CLC			4						
Parallel Communications (EPMP/PSP)		٢	⁄es						
JTAG Boundary Scan		١	⁄es						
12/10-Bit Analog-to-Digital Converter (A/D) Module (input channels)			24						
Analog Comparators			3						
CTMU Interface		١	⁄es						
Universal Serial Bus Controller		Yes (PIC14FJ1024	GB610 devices only)					
Resets (and delays) Core POR, VDD POR, BOR, RESET Instruction, MCLR, WDT, Illegal Opcode, REPEAT Instruction, Hardware Traps, Configuration Word Mismatch (OST, PLL Lock)									
Instruction Set 76 Base Instructions, Multiple Addressing Mode Variations									
Packages		100-Pin TQFP	and 121-Pin BGA						

Note 1: Some peripherals are accessible through remappable pins.

		Pin N	umber/Gri	d Locator					
Pin Function	GA606 64-Pin QFN/TQFP/ QFP	GB606 64-Pin QFN/ TQFP/QFP	GA610 100-Pin TQFP/ QFP	GB610 100-Pin TQFP/ QFP	GA612 121-Pin BGA	GB612 121-Pin BGA	I/O	Input Buffer	Description
AN0	16	16	25	25	K2	K2	I	ANA	A/D Analog Inputs
AN1	15	15	24	24	K1	K1	I	ANA	
AN2	14	14	23	23	J2	J2	I	ANA	
AN3	13	13	22	22	J1	J1	I	ANA	
AN4	12	12	21	21	H2	H2	I	ANA	
AN5	11	11	20	20	H1	H1	I	ANA	
AN6	17	17	26	26	L1	L1	Ι	ANA	
AN7	18	18	27	27	J3	J3	Ι	ANA	
AN8	21	21	32	32	K4	K4	I	ANA	
AN9	22	22	33	33	L4	L4	Ι	ANA	
AN10	23	23	34	34	L5	L5	Ι	ANA	
AN11	24	24	35	35	J5	J5	Ι	ANA	
AN12	27	27	41	41	J7	J7	I	ANA	-
AN13	28	28	42	42	L7	L7	I	ANA	
AN14	29	29	43	43	K7	K7	I	ANA	-
AN15	30	30	44	44	L8	L8	I	ANA	-
AN16	_	_	9	9	E1	E1	I	ANA	
AN17	_	_	10	10	E3	E3	Ι	ANA	
AN18	_	_	11	11	F4	F4	I	ANA	
AN19	_	—	12	12	F2	F2	I	ANA	
AN20	_	_	14	14	F3	F3	I	ANA	
AN21	_	_	19	19	G2	G2	Ι	ANA	
AN22	_	—	92	92	B5	B5	I	ANA	
AN23	_	_	91	91	C5	C5	I	ANA	
AVdd	19	19	30	30	J4	J4	Р	—	Positive Supply for Analog modules
AVss	20	20	31	31	L3	L3	Р	—	Ground Reference for Analog modules
C1INA	11	11	20	20	H1	H1	Ι	ANA	Comparator 1 Input A
C1INB	12	12	21	21	H2	H2	I	ANA	Comparator 1 Input B
C1INC	5,8	5,8	11,14	11,14	F4,F3	F4,F3	I	ANA	Comparator 1 Input C
C1IND	4	4	10	10	E3	E3	Ι	ANA	Comparator 1 Input D
C2INA	13	13	22	22	J1	J1	I	ANA	Comparator 2 Input A
C2INB	14	14	23	23	J2	J2	I	ANA	Comparator 2 Input B
C2INC	8	8	14	14	F3	F3	I	ANA	Comparator 2 Input C
C2IND	6	6	12	12	F2	F2	I	ANA	Comparator 2 Input D
C3INA	55	55	84	84	C7	C7	Ι	ANA	Comparator 3 Input A

Legend: TTL = TTL input buffer ANA = Analog level input/output DIG = Digital input/output ST = Schmitt Trigger input buffer

 $I^2C = I^2C/SMBus$ input buffer

		Pin N	umber/Gri	d Locator					
Pin Function	GA606 64-Pin QFN/TQFP/ QFP	GB606 64-Pin QFN/ TQFP/QFP	GA610 100-Pin TQFP/ QFP	GB610 100-Pin TQFP/ QFP	GA612 121-Pin BGA	GB612 121-Pin BGA	I/O	Input Buffer	Description
C3INB	54	54	83	83	D7	D7	I	ANA	Comparator 3 Input B
C3INC	8,48	8,48	14,74	14,74	F3,B11	F3,B11	Ι	ANA	Comparator 3 Input C
C3IND	47	47	73	73	C10	C10	Ι	ANA	Comparator 3 Input D
CLC3OUT	46	46	72	72	D9	D9	0	DIG	CLC3 Output
CLC4OUT	42	42	68	68	E9	E9	0	DIG	CLC4 Output
CLKI	39	39	63	63	F9	F9	—		Main Clock Input Connection
CLKO	40	40	64	64	F11	F11	0	DIG	System Clock Output
CTCMP	14	14	23	23	J2	J2	0	ANA	CTMU Comparator 2 Input (Pulse mode)
CTED1	28	28	42	42	L7	L7	Ι	ST	CTMU External Edge Inputs
CTED2	27	27	41	41	J7	J7	Ι	ST	
CTED3	_	_	1	1	B2	B2	Ι	ST	
CTED4	1	1	3	3	D3	D3	Ι	ST	
CTED5	29	29	43	43	K7	K7	Ι	ST	
CTED6	30	30	44	44	L8	L8	Ι	ST	
CTED7	_	_	40	40	K6	K6	Ι	ST	
CTED8	64	64	100	100	A1	A1	Ι	ST	
CTED9	63	63	99	99	A2	A2	Ι	ST	
CTED10	_	_	97	97	A3	A3	Ι	ST	
CTED11	—	—	95	95	C4	C4	Ι	ST	
CTED12	15	15	24	24	K1	K1	Ι	ST	
CTED13	14	14	23	23	J2	J2	Ι	ST	
CTPLS	29	29	43	43	K7	K7	0	DIG	CTMU Pulse Output
CVREF	23	23	34	34	L5	L5	0	ANA	Comparator Voltage Reference Output
CVREF+	16	16	25,29	25,29	K2,K3	K2,K3	I	ANA	Comparator Voltage Reference (high) Input
CVREF-	15	15	24,28	24,28	K1,L2	K1,L2	I	ANA	Comparator Voltage Reference (low) Input
D+	_	37	_	57	—	H10	I/O	XCVR	USB Signaling
D-	_	36	_	56	_	J11	I/O	XCVR	1

TABLE 1-3: PIC24FJ1024GA610/GB610 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL input buffer ANA = Analog level input/output DIG = Digital input/output

ST = Schmitt Trigger input buffer

 $I^2C = I^2C/SMBus$ input buffer

		Pin N	umber/Gri	d Locator					
Pin Function	GA606 64-Pin QFN/TQFP/ QFP	GB606 64-Pin QFN/ TQFP/QFP	GA610 100-Pin TQFP/ QFP	GB610 100-Pin TQFP/ QFP	GA612 121-Pin BGA	GB612 121-Pin BGA	I/O	Input Buffer	Description
IC4	1	1	3	3	D3	D3	Ι	ST	Input Capture
IC5	2	2	4	4	C1	C1	Ι	ST	
IC6	3	3	5	5	D2	D2	Ι	ST	
ICM1	4	4	10	10	12	12	Ι	ST	MCCP1 Input Capture
ICM2	6	6	12	12	14	14	Ι	ST	MCCP2 Input Capture
ICM3	11	11	20	20	23	23	Ι	ST	MCCP3 Input Capture
ICM4	49	49	76	76	91	91	Ι	ST	SCCP4 Input Capture
ICM5	42	42	68	68	80	80	Ι	ST	SCCP5 Input Capture
ICM6	46	46	72	72	86	86	Ι	ST	SCCP6 Input Capture
ICM7	51	51	78	78	93	93	Ι	ST	SCCP7 Input Capture
INT0	35	46	55	72	H9	D9	Ι	ST	External Interrupt Input 0
IOCA0	_	—	17	17	G3	G3	Ι	ST	PORTA Interrupt-on-Change
IOCA1	_	_	38	38	J6	J6	Ι	ST	
IOCA2	—	_	58	58	H11	H11	Ι	ST	
IOCA3	_	—	59	59	G10	G10	Ι	ST	
IOCA4	_	_	60	60	G11	G11	Ι	ST	
IOCA5	—	_	61	61	G9	G9	Ι	ST	
IOCA6	_	_	91	91	C5	C5	Ι	ST	
IOCA7	_	—	92	92	B5	B5	Ι	ST	
IOCA9	_	_	28	28	L2	L2	Ι	ST	
IOCA10	_	_	29	29	K3	K3	I	ST	
IOCA14	_	_	66	66	E11	E11	I	ST	
IOCA15	_	_	67	67	E8	E8	Ι	ST	

Legend: TTL = TTL input buffer

ANA = Analog level input/output DIG = Digital input/output ST = Schmitt Trigger input buffer

 $I^2C = I^2C/SMBus$ input buffer XCVR = Dedicated Transceiver

		Pin N	umber/Gri	d Locator					
Pin Function	GA606 64-Pin QFN/TQFP/ QFP	GB606 64-Pin QFN/ TQFP/QFP	GA610 100-Pin TQFP/ QFP	GB610 100-Pin TQFP/ QFP	GA612 121-Pin BGA	GB612 121-Pin BGA	I/O	Input Buffer	Description
IOCB0	16	16	25	25	K2	K2	Ι	ST	PORTB Interrupt-on-Change
IOCB1	15	15	24	24	K1	K1	Ι	ST	
IOCB2	14	14	23	23	J2	J2	Ι	ST	
IOCB3	13	13	22	22	J1	J1	Ι	ST	
IOCB4	12	12	21	21	H2	H2	Ι	ST	
IOCB5	11	11	20	20	H1	H1	Ι	ST	
IOCB6	17	17	26	26	L1	L1	Ι	ST	
IOCB7	18	18	27	27	J3	J3	Ι	ST	
IOCB8	21	21	32	32	K4	K4	Ι	ST	
IOCB9	22	22	33	33	L4	L4	Ι	ST	
IOCB10	23	23	34	34	L5	L5	Ι	ST	
IOCB11	24	24	35	35	J5	J5	Ι	ST	
IOCB12	27	27	41	41	J7	J7	Ι	ST	
IOCB13	28	28	42	42	L7	L7	Ι	ST	
IOCB14	29	29	43	43	K7	K7	Ι	ST	
IOCB15	30	30	44	44	L8	L8	Ι	ST	
IOCC1	—	—	6	6	D1	D1	Ι	ST	PORTC Interrupt-on-Change
IOCC2	_	_	7	7	E4	E4	I	ST	
IOCC3	—	—	8	8	E2	E2	I	ST	
IOCC4	—	_	9	9	E1	E1	Ι	ST	
IOCC12	39	39	63	63	F9	F9	I	ST	
IOCC13	47	47	73	73	C10	C10	Ι	ST	
IOCC14	48	48	74	74	B11	B11	I	ST	
IOCC15	40	40	64	64	F11	F11	I	ST	1

Legend: TTL = TTL input buffer ANA = Analog level input/output DIG = Digital input/output

ST = Schmitt Trigger input buffer

 $I^2C = I^2C/SMBus$ input buffer

		Pin N	umber/Gri	d Locator					
Pin Function	GA606 64-Pin QFN/TQFP/ QFP	GB606 64-Pin QFN/ TQFP/QFP	GA610 100-Pin TQFP/ QFP	GB610 100-Pin TQFP/ QFP	GA612 121-Pin BGA	GB612 121-Pin BGA	I/O	Input Buffer	Description
IOCD0	46	46	72	72	D9	D9	Ι	ST	PORTD Interrupt-on-Change
IOCD1	49	49	76	76	A11	A11	Ι	ST	
IOCD2	50	50	77	77	A10	A10	Ι	ST	
IOCD3	51	51	78	78	B9	B9	Ι	ST	
IOCD4	52	52	81	81	C8	C8	Ι	ST	
IOCD5	53	53	82	82	B8	B8	Ι	ST	
IOCD6	54	54	83	83	D7	D7	Ι	ST	
IOCD7	55	55	84	84	C7	C7	Ι	ST	
IOCD8	42	42	68	68	E9	E9	Ι	ST	
IOCD9	43	43	69	69	E10	E10	Ι	ST	
IOCD10	44	44	70	70	D11	D11	Ι	ST	
IOCD11	45	45	71	71	C11	C11	Ι	ST	
IOCD12	_	—	79	79	A9	A9	Ι	ST	
IOCD13	_	—	80	80	D8	D8	Ι	ST	
IOCD14	_	—	47	47	L9	L9	Ι	ST	
IOCD15	_	—	48	48	K9	K9	Ι	ST	
IOCE0	60	60	93	93	A4	A4	Ι	ST	PORTE Interrupt-on-Change
IOCE1	61	61	94	94	B4	B4	Ι	ST	
IOCE2	62	62	98	98	B3	B3	Ι	ST	
IOCE3	63	63	99	99	A2	A2	Ι	ST	
IOCE4	64	64	100	100	A1	A1	Ι	ST	
IOCE5	1	1	3	3	D3	D3	Ι	ST	
IOCE6	2	2	4	4	C1	C1	Ι	ST	
IOCE7	3	3	5	5	D2	D2	Ι	ST	
IOCE8	_	_	18	18	G1	G1	Ι	ST	
IOCE9	_	—	19	19	G2	G2	Ι	ST	

Legend: TTL = TTL input buffer ANA = Analog level input/output DIG = Digital input/output ST = Schmitt Trigger input buffer

 $I^2C = I^2C/SMBus$ input buffer XCVR = Dedicated Transceiver

		Pin N	umber/Gri	d Locator					
Pin Function	GA606 64-Pin QFN/TQFP/ QFP	GB606 64-Pin QFN/ TQFP/QFP	GA610 100-Pin TQFP/ QFP	GB610 100-Pin TQFP/ QFP	GA612 121-Pin BGA	GB612 121-Pin BGA	I/O	Input Buffer	Description
IOCF0	58	58	87	87	B6	B6	Ι	ST	PORTF Interrupt-on-Change
IOCF1	59	59	88	88	A6	A6	Ι	ST	
IOCF2	34	_	52	52	K11	K11	Ι	ST	
IOCF3	33	33	51	51	K10	K10	Ι	ST	
IOCF4	31	31	49	49	L10	L10	Ι	ST	
IOCF5	32	32	50	50	L11	L11	Ι	ST	
IOCF6	35	_	55		H9		Ι	ST	
IOCF7	—	34	54	54	H8	H8	Ι	ST	
IOCF8	_		53	53	J10	J10	I	ST	
IOCF12	_	_	40	40	K6	K6	Ι	ST	
IOCF13	_	_	39	39	L6	L6	Ι	ST	
IOCG0	_	_	90	90	A5	A5	Ι	ST	PORTG Interrupt-on-Change
IOCG1	_	_	89	89	E6	E6	Ι	ST	
IOCG2	37	37	57	57	H10	H10	Ι	ST	
IOCG3	36	36	56	56	J11	J11	Ι	ST	
IOCG6	4	4	10	10	E3	E3	Ι	ST	
IOCG7	5	5	11	11	F4	F4	Ι	ST	
IOCG8	6	6	12	12	F2	F2	Ι	ST	
IOCG9	8	8	14	14	F3	F3	Ι	ST	
IOCG12	—	_	96	96	C3	C3	Ι	ST	
IOCG13	_		97	97	A3	A3	Ι	ST	
IOCG14	_		95	95	C4	C4	Ι	ST	
IOCG15	_	_	1	1	B2	B2	Ι	ST	
HLVDIN	64	64	100	100	A1	A1	Ι	ANA	High/Low-Voltage Detect Input
MCLR	7	7	13	13	F1	F1	Ι	ST	Master Clear (device Reset) Input. This line is brought low to cause a Reset.
OC4	54	54	83	83	D7	D7	0	DIG	Output Compare Outputs
OC5	55	55	84	84	C7	C7	0	DIG	
OC6	58	58	87	87	B6	B6	0	DIG	
OCM1A	4	4	10	10	E3	E3	0	DIG	MCCP1 Outputs
OCM1B	5	5	11	11	F4	F4	0	DIG	
OCM1C	—	_	1	1	B2	B2	0	DIG	
OCM1D	—	_	6	6	D1	D1	0	DIG	
OCM1E	—	_	91	91	C5	C5	0	DIG	
OCM1F	_	_	92	92	B5	B5	0	DIG	1

Legend: TTL = TTL input buffer ANA = Analog level input/output DIG = Digital input/output ST = Schmitt Trigger input buffer

 $I^2C = I^2C/SMBus input buffer$

		Pin N	umber/Gri	d Locator					
Pin Function	GA606 64-Pin QFN/TQFP/ QFP	GB606 64-Pin QFN/ TQFP/QFP	GA610 100-Pin TQFP/ QFP	GB610 100-Pin TQFP/ QFP	GA612 121-Pin BGA	GB612 121-Pin BGA	I/O	Input Buffer	Description
OCM2A	6	6	12	12	F2	F2	0	DIG	MCCP2 Outputs
OCM2B	8	8	14	14	F3	F3	0	DIG	
OCM2C	_	_	7	7	E4	E4	0	DIG	
OCM2D	_	_	8	8	E2	E2	0	DIG	
OCM2E	_	_	96	96	C3	C3	0	DIG	
OCM2F	_	_	97	97	A3	A3	0	DIG	
OCM3A	11	11	20	20	H1	H1	0	DIG	MCCP3 Outputs
OCM3B	12	12	21	21	H2	H2	0	DIG	
OCM3C	_	—	9	9	E1	E1	0	DIG	
OCM3D	_	_	17	17	G3	G3	0	DIG	
OCM3E	_	_	79	79	A9	A9	0	DIG	
OCM3F	_	_	80	80	D8	D8	0	DIG	
OSCI	39	39	63	63	F9	F9	I	ANA/ ST	Main Oscillator Input Connection
OSCO	40	40	64	64	F11	F11	0	ANA	Main Oscillator Output Connection
PGEC1	15	15	24	24	K1	K1	Ι	ST	ICSP™ Programming Clock
PGEC2	17	17	26	26	L1	L1	Ι	ST	
PGEC3	11	11	20	20	H1	H1	Ι	ST	
PGED1	16	16	25	25	K2	K2	I/O	DIG/ST	ICSP Programming Data
PGED2	18	18	27	27	J3	J3	I/O	DIG/ST	
PGED3	12	12	21	21	H2	H2	I/O	DIG/ST	
PMA0/ PMALL	30	30	44	44	L8	L8	I/O	DIG/ ST/TTL	Parallel Master Port Address[0]/ Address Latch Low
PMA1/ PMALH	29	29	43	43	K7	K7	I/O	DIG/ ST/TTL	Parallel Master Port Address[1]/ Address Latch High
PMA14/ PMCS1	45	45	71	71	C11	C11	I/O	DIG/ ST/TTL	Parallel Master Port Address[14]/ Slave Chip Select/Chip Select 1 Strobe
PMA15/ PMCS2	44	44	70	70	D11	D11	I/O	DIG/ ST/TTL	Parallel Master Port Address[15]/ Chip Select 2 Strobe
PMA6	16	16	29	29	K3	K3	0	DIG	Parallel Master Port Address
PMA7	22	22	28	28	L2	L2	0	DIG	

Legend: TTL = TTL input buffer ANA = Analog level input/output DIG = Digital input/output ST = Schmitt Trigger input buffer $I^2C = I^2C/SMB$ us input buffer

		Pin N	umber/Gri	d Locator					
Pin Function	GA606 64-Pin QFN/TQFP/ QFP	GB606 64-Pin QFN/ TQFP/QFP	GA610 100-Pin TQFP/ QFP	GB610 100-Pin TQFP/ QFP	GA612 121-Pin BGA	GB612 121-Pin BGA	I/O	Input Buffer	Description Parallel Master Port Address (Demultiplexed Master mode) or Address/Data (Multiplexed Master modes) Master modes) Parallel Master Port Address[2]/ Address Latch Upper Parallel Master Port Address Perallel Master Port Address Parallel Master Port Bater Parallel Master Port Byte Parallel Master Po
PMA8	32	32	50	50	L11	L11	I/O	DIG/ ST/TTL	
PMA9	31	31	49	49	L10	L10	I/O	DIG/ ST/TTL	· ·
PMA10	28	28	42	42	L7	L7	I/O	DIG/ ST/TTL	
PMA11	27	27	41	41	J7	J7	I/O	DIG/ ST/TTL	
PMA12	24	24	35	35	J5	J5	I/O	DIG/ ST/TTL	
PMA13	23	23	34	34	L5	L5	I/O	DIG/ ST/TTL	
PMA16	_	_	95	95	C4	C4	0	DIG	
PMA17	_		92	92	B5	B5	0	DIG	
PMA18	_		40	40	K6	K6	0	DIG	
PMA19	_		19	19	G2	G2	0	DIG	-
PMA2/ PMALU	8	8	14	14	F3	F3	0	DIG	
PMA3	6	6	12	12	F2	F2	0	DIG	Parallel Master Port Address
PMA4	5	5	11	11	F4	F4	0	DIG	
PMA5	4	4	10	10	E3	E3	0	DIG	
PMA20	_	_	59	59	G10	G10	0	DIG	
PMA21	—	—	60	60	G11	G11	0	DIG	· · /
PMA22	—	—	66	66	E11	E11	0	DIG	· ·
PMACK1	50	50	77	77	A10	A10	I	ST/TTL	Parallel Master Port
PMACK2	43	43	69	69	E10	E10	I	ST/TTL	Parallel Master Port
PMBE0	51	51	78	78	B9	B9	0	DIG	5
PMBE1	_	—	67	67	E8	E8	0	DIG	Parallel Master Port Byte Enable 1 Strobe
PMCS1	_	—	18	18	G1	G1	0	DIG	Parallel Master Port Chip Select 1 Strobe
PMCS2	_	—	9	9	E1	E1	0	DIG	Parallel Master Port Chip Select 2 Strobe
PMPCS1	-	—	58	58	H11	H11	0	DIG	Parallel Master Port Chip Select 1

Legend:

TTL = TTL input buffer ANA = Analog level input/output DIG = Digital input/output ST = Schmitt Trigger input buffer

 $I^2C = I^2C/SMBus$ input buffer

		Pin N	umber/Gri	d Locator					
Pin Function	GA606 64-Pin QFN/TQFP/ QFP	GB606 64-Pin QFN/ TQFP/QFP	GA610 100-Pin TQFP/ QFP	GB610 100-Pin TQFP/ QFP	GA612 121-Pin BGA	GB612 121-Pin BGA	I/O	Input Buffer	Description
PMD0	60	60	93	93	A4	A4	I/O	DIG/ ST/TTL	Parallel Master Port Data (Demultiplexed Master mode) or
PMD1	61	61	94	94	B4	B4	I/O	DIG/ ST/TTL	Address/Data (Multiplexed Master modes)
PMD2	62	62	98	98	B3	B3	I/O	DIG/ ST/TTL	
PMD3	63	63	99	99	A2	A2	I/O	DIG/ ST/TTL	
PMD4	64	64	100	100	A1	A1	I/O	DIG/ ST/TTL	
PMD5	1	1	3	3	D3	D3	I/O	DIG/ ST/TTL	
PMD6	2	2	4	4	C1	C1	I/O	DIG/ ST/TTL	
PMD7	3	3	5	5	D2	D2	I/O	DIG/ ST/TTL	
PMD8	_	—	90	90	A5	A5	I/O	DIG/ ST/TTL	
PMD9	_	—	89	89	E6	E6	I/O	DIG/ ST/TTL	
PMD10	_	_	88	88	A6	A6	I/O	DIG/ ST/TTL	
PMD11	—	—	87	87	B6	B6	I/O	DIG/ ST/TTL	
PMD12	_	_	79	79	A9	A9	I/O	DIG/ ST/TTL	
PMD13	_	_	80	80	D8	D8	I/O	DIG/ ST/TTL	
PMD14	—	—	83	83	D7	D7	I/O	DIG/ ST/TTL	
PMD15	_	—	84	84	C7	C7	I/O	DIG/ ST/TTL	
PMRD/ PMWR	53	53	82	82	B8	B8	I/O	DIG/ ST/TTL	Parallel Master Port Read Strobe/Write Strobe
PMWR/ PMENB	52	52	81	81	C8	C8	I/O	DIG/ ST/TTL	Parallel Master Port Write Strobe/Enable Strobe
PWRGT	21	21	32	32	K4	K4	0	DIG	Real-Time Clock Power Control Output
PWRLCLK	48	48	74	74	B11	B11	I	ST	Real-Time Clock 50/60 Hz Clock Input

Legend: TTL = TTL input buffer ANA = Analog level input/output DIG = Digital input/output

ST = Schmitt Trigger input buffer

 $I^2C = I^2C/SMBus$ input buffer

		Pin Number/Grid Locator							
Pin Function	GA606 64-Pin QFN/TQFP/ QFP	GB606 64-Pin QFN/ TQFP/QFP	GA610 100-Pin TQFP/ QFP	GB610 100-Pin TQFP/ QFP	GA612 121-Pin BGA	GB612 121-Pin BGA	I/O	Input Buffer	Description
RA0	_	_	17	17	G3	G3	I/O	DIG/ST	PORTA Digital I/Os
RA1	_	_	38	38	J6	J6	I/O	DIG/ST	_
RA2	_	_	58	58	H11	H11	I/O	DIG/ST	
RA3	_	_	59	59	G10	G10	I/O	DIG/ST	
RA4	_	—	60	60	G11	G11	I/O	DIG/ST	
RA5	_	_	61	61	G9	G9	I/O	DIG/ST	
RA6	_	_	91	91	C5	C5	I/O	DIG/ST	
RA7	_	—	92	92	B5	B5	I/O	DIG/ST	
RA9	_	_	28	28	L2	L2	I/O	DIG/ST	
RA10	_		29	29	K3	K3	I/O	DIG/ST	
RA14	_		66	66	E11	E11	I/O	DIG/ST	
RA15	_	_	67	67	E8	E8	I/O	DIG/ST	
RB0	16	16	25	25	K2	K2	I/O	DIG/ST	PORTB Digital I/Os
RB1	15	15	24	24	K1	K1	I/O	DIG/ST	
RB2	14	14	23	23	J2	J2	I/O	DIG/ST	
RB3	13	13	22	22	J1	J1	I/O	DIG/ST	
RB4	12	12	21	21	H2	H2	I/O	DIG/ST	
RB5	11	11	20	20	H1	H1	I/O	DIG/ST	
RB6	17	17	26	26	L1	L1	I/O	DIG/ST	
RB7	18	18	27	27	J3	J3	I/O	DIG/ST	
RB8	21	21	32	32	K4	K4	I/O	DIG/ST	
RB9	22	22	33	33	L4	L4	I/O	DIG/ST	
RB10	23	23	34	34	L5	L5	I/O	DIG/ST	
RB11	24	24	35	35	J5	J5	I/O	DIG/ST	
RB12	27	27	41	41	J7	J7	I/O	DIG/ST	
RB13	28	28	42	42	L7	L7	I/O	DIG/ST	
RB14	29	29	43	43	K7	K7	I/O	DIG/ST	
RB15	30	30	44	44	L8	L8	I/O	DIG/ST	
RC1	—	_	6	6	D1	D1	I/O	DIG/ST	PORTC Digital I/Os
RC2	—	_	7	7	E4	E4	I/O	DIG/ST	
RC3	_	_	8	8	E2	E2	I/O	DIG/ST	
RC4	—	_	9	9	E1	E1	I/O	DIG/ST	
RC12	39	39	63	63	F9	F9	I/O	DIG/ST	
RC13	47	47	73	73	C10	C10	I/O	DIG/ST	
RC14	48	48	74	74	B11	B11	I/O	DIG/ST	
RC15	40	40	64	64	F11	F11	I/O	DIG/ST	

Legend: TTL = TTL input buffer ANA = Analog level input/output DIG = Digital input/output ST = Schmitt Trigger input buffer

 $I^2C = I^2C/SMBus$ input buffer XCVR = Dedicated Transceiver

	Pin Number/Grid Locator								
Pin Function	GA606 64-Pin QFN/TQFP/ QFP	GB606 64-Pin QFN/ TQFP/QFP	GA610 100-Pin TQFP/ QFP	GB610 100-Pin TQFP/ QFP	GA612 121-Pin BGA	GB612 121-Pin BGA	I/O	Input Buffer	Description
RD0	46	46	72	72	D9	D9	I/O	DIG/ST	PORTD Digital I/Os
RD1	49	49	76	76	A11	A11	I/O	DIG/ST	
RD2	50	50	77	77	A10	A10	I/O	DIG/ST	
RD3	51	51	78	78	B9	B9	I/O	DIG/ST	
RD4	52	52	81	81	C8	C8	I/O	DIG/ST	
RD5	53	53	82	82	B8	B8	I/O	DIG/ST	
RD6	54	54	83	83	D7	D7	I/O	DIG/ST	
RD7	55	55	84	84	C7	C7	I/O	DIG/ST	
RD8	42	42	68	68	E9	E9	I/O	DIG/ST	
RD9	43	43	69	69	E10	E10	I/O	DIG/ST	
RD10	44	44	70	70	D11	D11	I/O	DIG/ST	
RD11	45	45	71	71	C11	C11	I/O	DIG/ST	
RD12	_	_	79	79	A9	A9	I/O	DIG/ST	
RD13	_	_	80	80	D8	D8	I/O	DIG/ST	
RD14	_	_	47	47	L9	L9	I/O	DIG/ST	
RD15	_	_	48	48	K9	K9	I/O	DIG/ST	
RE0	60	60	93	93	A4	A4	I/O	DIG/ST	PORTE Digital I/Os
RE1	61	61	94	94	B4	B4	I/O	DIG/ST	
RE2	62	62	98	98	B3	B3	I/O	DIG/ST	
RE3	63	63	99	99	A2	A2	I/O	DIG/ST	
RE4	64	64	100	100	A1	A1	I/O	DIG/ST	
RE5	1	1	3	3	D3	D3	I/O	DIG/ST	
RE6	2	2	4	4	C1	C1	I/O	DIG/ST	
RE7	3	3	5	5	D2	D2	I/O	DIG/ST	
RE8	_	—	18	18	G1	G1	I/O	DIG/ST	
RE9	—	—	19	19	G2	G2	I/O	DIG/ST	
REFI	24	24	35	35	J5	J5	Ι	ST	Reference Clock Input

Legend: TTL = TTL input buffer ANA = Analog level input/output DIG = Digital input/output ST = Schmitt Trigger input buffer

 $I^2C = I^2C/SMBus$ input buffer

		Pin N	umber/Gri	d Locator					
Pin Function	GA606 64-Pin QFN/TQFP/ QFP	GB606 64-Pin QFN/ TQFP/QFP	GA610 100-Pin TQFP/ QFP	GB610 100-Pin TQFP/ QFP	GA612 121-Pin BGA	GB612 121-Pin BGA	I/O	Input Buffer	Description
RF0	58	58	87	87	B6	B6	I/O	DIG/ST	PORTF Digital I/Os
RF1	59	59	88	88	A6	A6	I/O	DIG/ST	
RF2	34	_	52	52	K11	K11	I/O	DIG/ST	
RF3	33	33	51	51	K10	K10	I/O	DIG/ST	
RF4	31	31	49	49	L10	L10	I/O	DIG/ST	
RF5	32	32	50	50	L11	L11	I/O	DIG/ST	
RF6	35	_	55	_	H9	_	I/O	DIG/ST	
RF7	_	34	54	54	H8	H8	I/O	DIG/ST	
RF8	_	—	53	53	J10	J10	I/O	DIG/ST	
RF12	—	_	40	40	K6	K6	I/O	DIG/ST	
RF13	_	—	39	39	L6	L6	I/O	DIG/ST	
RG0	_	—	90	90	A5	A5	I/O	DIG/ST	PORTG Digital I/Os
RG1	_	—	89	89	E6	E6	I/O	DIG/ST	
RG2	37	37	57	57	H10	H10	I/O	DIG/ST	
RG3	36	36	56	56	J11	J11	I/O	DIG/ST	
RG6	4	4	10	10	E3	E3	I/O	DIG/ST	
RG7	5	5	11	11	F4	F4	I/O	DIG/ST	
RG8	6	6	12	12	F2	F2	I/O	DIG/ST	
RG9	8	8	14	14	F3	F3	I/O	DIG/ST	
RG12	—	—	96	96	C3	C3	I/O	DIG/ST	
RG13	_	_	97	97	A3	A3	I/O	DIG/ST	
RG14	_	_	95	95	C4	C4	I/O	DIG/ST	
RG15	_	_	1	1	B2	B2	I/O	DIG/ST	

TABLE 1-3: PIC24FJ1024GA610/GB610 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL input buffer

ANA = Analog level input/output DIG = Digital input/output ST = Schmitt Trigger input buffer

 $I^2C = I^2C/SMBus$ input buffer XCVR = Dedicated Transceiver

		Pin N	umber/Gri	d Locator					
Pin Function	GA606 64-Pin QFN/TQFP/ QFP	GB606 64-Pin QFN/ TQFP/QFP	GA610 100-Pin TQFP/ QFP	GB610 100-Pin TQFP/ QFP	GA612 121-Pin BGA	GB612 121-Pin BGA	I/O	Input Buffer	Description
RP0	16	16	25	25	K2	K2	I/O	DIG/ST	Remappable Peripherals
RP1	15	15	24	24	K1	K1	I/O	DIG/ST	(input or output)
RP2	42	42	68	68	E9	E9	I/O	DIG/ST	
RP3	44	44	70	70	D11	D11	I/O	DIG/ST	
RP4	43	43	69	69	E10	E10	I/O	DIG/ST	
RP5	_	_	48	48	K9	K9	I/O	DIG/ST	
RP6	17	17	26	26	L1	L1	I/O	DIG/ST	
RP7	18	18	27	27	J3	J3	I/O	DIG/ST	
RP8	21	21	32	32	K4	K4	I/O	DIG/ST	
RP9	22	22	33	33	L4	L4	I/O	DIG/ST	
RP10	31	31	49	49	L10	L10	I/O	DIG/ST	
RP11	46	46	72	72	D9	D9	I/O	DIG/ST	
RP12	45	45	71	71	C11	C11	I/O	DIG/ST	
RP13	14	14	23	23	J2	J2	I/O	DIG/ST	
RP14	29	29	43	43	K7	K7	I/O	DIG/ST	
RP15	_	_	53	53	J10	J10	I/O	DIG/ST	
RP16	33	33	51	51	K10	K10	I/O	DIG/ST	
RP17	32	32	50	50	L11	L11	I/O	DIG/ST	
RP18	11	11	20	20	H1	H1	I/O	DIG/ST	
RP19	6	6	12	12	F2	F2	I/O	DIG/ST	
RP20	53	53	82	82	B8	B8	I/O	DIG/ST	
RP21	4	4	10	10	E3	E3	I/O	DIG/ST	
RP22	51	51	78	78	B9	B9	I/O	DIG/ST	
RP23	50	50	77	77	A10	A10	I/O	DIG/ST	
RP24	49	49	76	76	A11	A11	I/O	DIG/ST	
RP25	52	52	81	81	C8	C8	I/O	DIG/ST	
RP26	5	5	11	11	F4	F4	I/O	DIG/ST	
RP27	8	8	14	14	F3	F3	I/O	DIG/ST	
RP28	12	12	21	21	H2	H2	I/O	DIG/ST	
RP29	30	30	44	44	L8	L8	I/O	DIG/ST	
RP30	34	—	52	52	K11	K11	I/O	DIG/ST	
RP31	_	—	39	39	L6	L6	I/O	DIG/ST	

TABLE 1-3: PIC24FJ1024GA610/GB610 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL input buffer ANA = Analog level input/output DIG = Digital input/output ST = Schmitt Trigger input buffer

 $I^2C = I^2C/SMBus$ input buffer XCVR = Dedicated Transceiver

		Pin N	umber/Gri	d Locator					
Pin Function	GA606 64-Pin QFN/TQFP/ QFP	GB606 64-Pin QFN/ TQFP/QFP	GA610 100-Pin TQFP/ QFP	GB610 100-Pin TQFP/ QFP	GA612 121-Pin BGA	GB612 121-Pin BGA	I/O	Input Buffer	Description
RPI32	—	_	40	40	K6	K6	I	DIG/ST	Remappable Peripherals
RPI33	_	—	18	18	G1	G1	I	DIG/ST	(input only)
RPI34	_	—	19	19	G2	G2	I	DIG/ST	
RPI35	—	—	67	67	E8	E8	Ι	DIG/ST	
RPI36	_	_	66	66	E11	E11	Ι	DIG/ST	
RPI37	48	48	74	74	B11	B11	I	DIG/ST	
RPI38	_	—	6	6	D1	D1	I	DIG/ST	
RPI39	_	_	7	7	E4	E4	I	DIG/ST	
RPI40	_	_	8	8	E2	E2	I	DIG/ST	
RPI41	_		9	9	E1	E1	I	DIG/ST	
RPI42	_	_	79	79	A9	A9	I	DIG/ST	
RPI43	_	_	47	47	L9	L9	I	DIG/ST	
SCL1	37	44	57	66	H10	E11	I/O	l ² C	I2C1 Synchronous Serial Clock Input/Output
SCL2	32	32	58	58	H11	H11	I/O	l ² C	I2C2 Synchronous Serial Cloc Input/Output
SCL3	2	2	4	4	C1	C1	I/O	l ² C	I2C3 Synchronous Serial Cloc Input/Output
SDA1	36	43	56	67	J11	E8	I/O	l ² C	I2C1 Data Input/Output
SDA2	31	31	59	59	G10	G10	I/O	l ² C	I2C2 Data Input/Output
SDA3	3	3	5	5	D2	D2	I/O	l ² C	I2C3 Data Input/Output
SOSCI	47	47	73	73	C10	C10	I	ANA/ ST	Secondary Oscillator/Timer1 Clock Input
SOSCO	48	48	74	74	B11	B11	0	ANA	Secondary Oscillator/Timer1 Clock Output
T1CK	22	22	33	33	L4	L4	Ι	ST	Timer1 Clock
ТСК	27	27	38	38	J6	J6	I	ST	JTAG Test Clock/Programming Clock Input
TDI	28	28	60	60	G11	G11	I	ST	JTAG Test Data/Programming Data Input
TDO	24	24	61	61	G9	G9	0	DIG	JTAG Test Data Output
TMPR	22	22	33	33	L4	L4	I	ST	Tamper Detect Input
TMS	23	23	17	17	G3	G3	I	ST	JTAG Test Mode Select Input
U5CTS	58	58	87	87	B6	B6	I	ST	UART5 CTS Output
U5RTS/ U5BCLK	55	55	84	84	C7	C7	0	DIG	UART5 RTS Input
U5RX	54	54	83	83	D7	D7	I	ST	UART5 Receive Input
U5TX	49	49	76	76	A11	A11	0	DIG	UART5 Transmit Output
U6CTS	46	46	72	72	D9	D9	1	ST	UART6 CTS Output
U6RTS/ U6BCLK	42	42	68	68	E9	E9	0	DIG	UART6 RTS Input

TABLE 1-3: PIC24FJ1024GA610/GB610 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL input buffer

ANA = Analog level input/output DIG = Digital input/output ST = Schmitt Trigger input buffer

 $I^2C = I^2C/SMBus$ input buffer

XCVR = Dedicated Transceiver

		Pin N	umber/Gri	d Locator					
Pin Function	GA606 64-Pin QFN/TQFP/ QFP	GB606 64-Pin QFN/ TQFP/QFP	GA610 100-Pin TQFP/ QFP	GB610 100-Pin TQFP/ QFP	GA612 121-Pin BGA	GB612 121-Pin BGA	I/O	Input Buffer	Description
U6RX	27	27	41	41	J7	J7	Ι	ST	UART6 Receive Input
U6TX	18	18	27	27	J3	J3	0	DIG	UART6 Transmit Output
USBID	—	33	_	51	_	K10	Ι	ST	USB OTG ID Input
USBOEN	—	12	_	21	_	H2	0	DIG	USB Output Enable (active-low)
VBUS	—	34	—	54	_	H8	Ι	_	VBUS Supply Detect
VCAP	56	56	85	85	B7	B7	Ρ	—	External Filter Capacitor Connection (regulator enabled)
Vdd	10,26,38	10,26,38	2,16,37, 46,62	2,16,37, 46,62	C2,F8, G5,H6, K8	C2,F8, G5,H6, K8	Ρ	—	Positive Supply for Peripheral Digital Logic and I/O Pins
VREF+	16	16	25,29	25,29	K2,K3	K2,K3	I	ANA	Comparator and A/D Reference Voltage (high) Input
VREF-	15	15	24,28	24,28	K1,L2	K1,L2	I	ANA	Comparator and A/D Reference Voltage (low) Input
Vss	9,25,41	9,25,41	15,36,45, 65,75	15,36,45, 65,75	B10,F5, F10,G6, G7	B10,F5, F10,G6, G7	Ρ	_	Ground Reference for Peripheral Digital Logic and I/O Pins
VUSB3V3	_	35	_	55	_	H9	Р	_	3.3V VUSB

TABLE 1-3: PIC24FJ1024GA610/GB610 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TTL = 1

TTL = TTL input buffer

ANA = Analog level input/output DIG = Digital input/output ST = Schmitt Trigger input buffer $I^2C = I^2C/SMBus$ input buffer

XCVR = Dedicated Transceiver

DS30010074G-page 40

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT MICROCONTROLLERS

2.1 Basic Connection Requirements

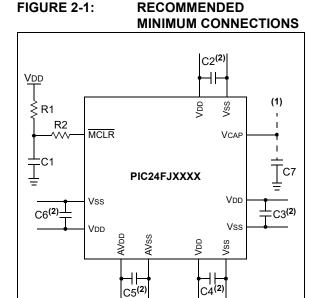
Getting started with the PIC24FJ1024GA610/GB610 family of 16-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

- All VDD and VSS pins (see Section 2.2 "Power Supply Pins")
- The USB transceiver supply, VUSB3V3, regardless of whether or not the USB module is used (see Section 2.2 "Power Supply Pins")
- All AVDD and AVss pins, regardless of whether or not the analog device features are used (see Section 2.2 "Power Supply Pins")
- MCLR pin (see Section 2.3 "Master Clear (MCLR) Pin")
- VCAP pin (PIC24F J devices only) (see Section 2.4 "Voltage Regulator Pin (VCAP)")

These pins must also be connected if they are being used in the end application:

- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSCI and OSCO pins when an external oscillator source is used


(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins used when external voltage reference for analog modules is implemented

Note: The AVDD and AVss pins must always be connected, regardless of whether any of the analog modules are being used.

The minimum mandatory connections are shown in Figure 2-1.

Key (all values are recommendations):

C1 through C6: 0.1 $\mu\text{F},$ 50V ceramic

C7: 10 µF, 16V or greater, ceramic

R1: 10 kΩ

R2: 100Ω to 470Ω

- Note 1: See Section 2.4 "Voltage Regulator Pin (VCAP)" for an explanation of voltage regulator pin connections.
 - 2: The example shown is for a PIC24F device with five VDD/Vss and AVDD/AVss pairs. Other devices may have more or less pairs, adjust the number of decoupling capacitors appropriately.

© 2015-2019 Microchip Technology Inc.

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

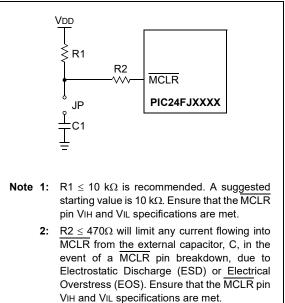
The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS, is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μ F (100 nF), 16V-50V capacitor is recommended. The capacitor should be a low-ESR device with a self-resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1 μ F in parallel with 0.001 μ F).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including microcontrollers to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.


2.3 Master Clear (MCLR) Pin

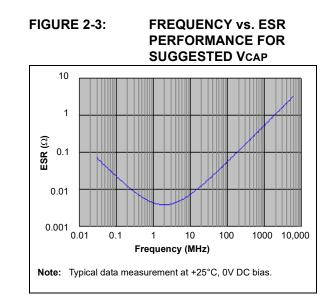
The MCLR pin provides two specific device functions: device Reset, and device programming and debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented depending on the application's requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the MCLR pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the $\overline{\text{MCLR}}$ pin should be placed within 0.25 inch (6 mm) of the pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

2.4 Voltage Regulator Pin (VCAP)


Note: This section applies only to PIC24FJ devices with an on-chip voltage regulator.

Refer to **Section 30.3 "On-Chip Voltage Regulator"** for details on connecting and using the on-chip regulator.

A low-ESR (< 5 Ω) capacitor is required on the VCAP pin to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD and must use a capacitor of 10 μ F connected to ground. The type can be ceramic or tantalum. Suitable examples of capacitors are shown in Table 2-1. Capacitors with equivalent specifications can be used.

Designers may use Figure 2-3 to evaluate the ESR equivalence of candidate devices.

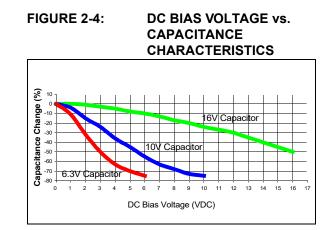
The placement of this capacitor should be close to VCAP. It is recommended that the trace length not exceed 0.25 inch (6 mm). Refer to **Section 33.0** "**Electrical Characteristics**" for additional information.

TABLE 2-1: SUITABLE CAPACITOR EQUIVALENTS (0805 CASE SIZE)

Make	Part #	Nominal Capacitance	Base Tolerance	Rated Voltage
TDK	C2012X5R1E106K085AC	10 µF	±10%	25V
TDK	C2012X5R1C106K085AC	10 µF	±10%	16V
Kemet	C0805C106M4PACTU	10 µF	±10%	16V
Murata	GRM21BR61E106KA3L	10 µF	±10%	25V
Murata	GRM21BR61C106KE15	10 µF	±10%	16V

2.4.1 CONSIDERATIONS FOR CERAMIC CAPACITORS

In recent years, large value, low-voltage, surface-mount ceramic capacitors have become very cost effective in sizes up to a few tens of microfarad. The low-ESR, small physical size and other properties make ceramic capacitors very attractive in many types of applications.


Ceramic capacitors are suitable for use with the internal voltage regulator of this microcontroller. However, some care is needed in selecting the capacitor to ensure that it maintains sufficient capacitance over the intended operating range of the application.

Typical low-cost, 10 μ F ceramic capacitors are available in X5R, X7R and Y5V dielectric ratings (other types are also available, but are less common). The initial tolerance specifications for these types of capacitors are often specified as ±10% to ±20% (X5R and X7R) or -20%/ +80% (Y5V). However, the effective capacitance that these capacitors provide in an application circuit will also vary based on additional factors, such as the applied DC bias voltage and the temperature. The total in-circuit tolerance is, therefore, much wider than the initial tolerance specification.

The X5R and X7R capacitors typically exhibit satisfactory temperature stability (ex: $\pm 15\%$ over a wide temperature range, but consult the manufacturer's data sheets for exact specifications). However, Y5V capacitors typically have extreme temperature tolerance specifications of $\pm 22\%/-82\%$. Due to the extreme temperature tolerance, a 10 µF nominal rated Y5V type capacitor may not deliver enough total capacitance to meet minimum internal voltage regulator stability and transient response requirements. Therefore, Y5V capacitors are not recommended for use with the internal regulator if the application must operate over a wide temperature range.

In addition to temperature tolerance, the effective capacitance of large value ceramic capacitors can vary substantially, based on the amount of DC voltage applied to the capacitor. This effect can be very significant, but is often overlooked or is not always documented.

A typical DC bias voltage vs. capacitance graph for X7R type capacitors is shown in Figure 2-4.

When selecting a ceramic capacitor to be used with the internal voltage regulator, it is suggested to select a high-voltage rating so that the operating voltage is a small percentage of the maximum rated capacitor voltage. For example, choose a ceramic capacitor rated at a minimum of 16V for the 1.8V core voltage. Suggested capacitors are shown in Table 2-1.

2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial Programming (ICSP) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100Ω .

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits, and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" pins (i.e., PGECx/PGEDx), programmed into the device, match the physical connections for the ICSP to the Microchip debugger/ emulator tool.

For more information on available Microchip development tools connection requirements, refer to **Section 31.0 "Development Support"**.

2.6 External Oscillator Pins

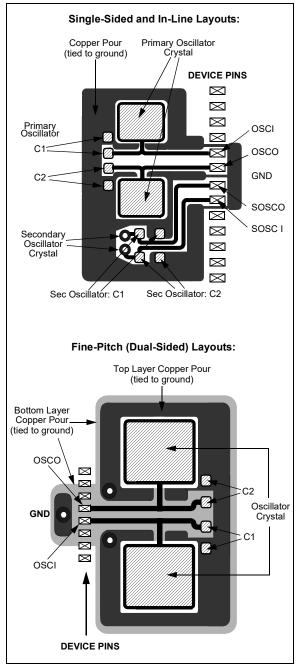
Many microcontrollers have options for at least two oscillators: a high-frequency Primary Oscillator and a low-frequency Secondary Oscillator (refer to **Section 9.0 "Oscillator Configuration"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in Figure 2-5. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.

In planning the application's routing and I/O assignments, ensure that adjacent port pins, and other signals in close proximity to the oscillator, are benign (i.e., free of high frequencies, short rise and fall times and other similar noise).


For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the corporate website (www.microchip.com):

- AN943, "Practical PICmicro[®] Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"
- AN1798, "Crystal Selection for Low-Power Secondary Oscillator"

FIGURE 2-5:

PLACEMENT OF THE OSCILLATOR CIRCUIT

SUGGESTED

2.7 Configuration of Analog and Digital Pins During ICSP Operations

If an ICSP compliant emulator is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins. Depending on the particular device, this is done by setting all bits in the ADxPCFG register(s) or clearing all bits in the ANSx registers.

All PIC24F devices will have either one or more ADxPCFG registers, or several ANSx registers (one for each port); no device will have both. Refer to Section 11.2 "Configuring Analog Port Pins (ANSx)" for more specific information.

The bits in these registers that correspond to the A/D pins that initialized the emulator must not be changed by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must modify the appropriate bits during initialization of the A/D module, as follows:

- For devices with an ADxPCFG register, clear the bits corresponding to the pin(s) to be configured as analog. Do not change any other bits, particularly those corresponding to the PGECx/PGEDx pair, at any time.
- For devices with ANSx registers, set the bits corresponding to the pin(s) to be configured as analog. Do not change any other bits, particularly those corresponding to the PGECx/PGEDx pair, at any time.

When a Microchip debugger/emulator is used as a programmer, the user application firmware must correctly configure the ADxPCFG or ANSx registers. Automatic initialization of these registers is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k Ω to 10 k Ω resistor to Vss on unused pins and drive the output to logic low.

3.0 CPU

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the CPU, refer to "CPU with Extended Data Space (EDS)" (www.microchip.com/ DS39732) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The PIC24F CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set and a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M instructions of user program memory space. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the REPEAT instructions, which are interruptible at any point.

PIC24F devices have sixteen, 16-bit Working registers in the programmer's model. Each of the Working registers can act as a Data, Address or Address Offset register. The 16th Working register (W15) operates as a Software Stack Pointer (SSP) for interrupts and calls.

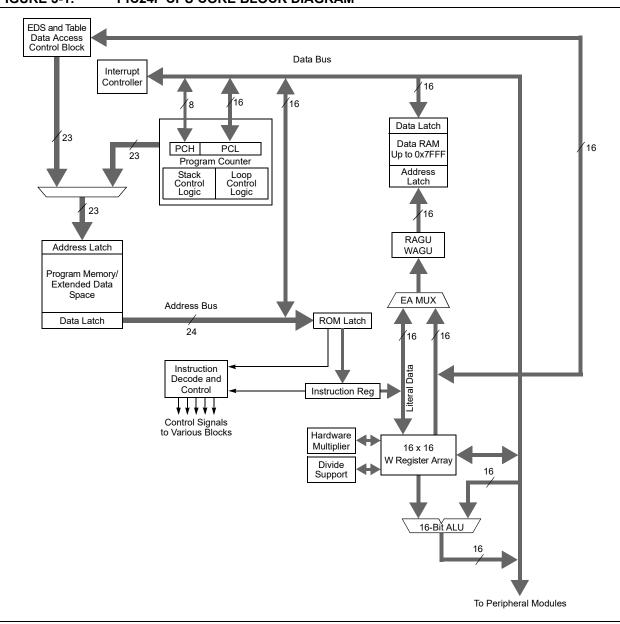
The lower 32 Kbytes of the Data Space (DS) can be accessed linearly. The upper 32 Kbytes of the Data Space are referred to as Extended Data Space (EDS), to which the extended data RAM, EPMP memory space or program memory can be mapped.

The Instruction Set Architecture (ISA) has been significantly enhanced beyond that of the PIC18, but maintains an acceptable level of backward compatibility. All PIC18 instructions and addressing modes are supported, either directly, or through simple macros. Many of the ISA enhancements have been driven by compiler efficiency needs. The core supports Inherent (no operand), Relative, Literal, Memory Direct Addressing modes along with three groups of addressing modes. All modes support Register Direct and various Register Indirect modes. Each group offers up to seven addressing modes. Instructions are associated with predefined addressing modes depending upon their functional requirements.

For most instructions, the core is capable of executing a data (or program data) memory read, a Working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing trinary operations (that is, A + B = C) to be executed in a single cycle.

A high-speed, 17-bit x 17-bit multiplier has been included to significantly enhance the core arithmetic capability and throughput. The multiplier supports Signed, Unsigned and Mixed mode, 16-bit x 16-bit or 8-bit x 8-bit, integer multiplication. All multiply instructions execute in a single cycle.

The 16-bit ALU has been enhanced with integer divide assist hardware that supports an iterative non-restoring divide algorithm. It operates in conjunction with the REPEAT instruction looping mechanism and a selection of iterative divide instructions to support 32-bit (or 16-bit), divided by 16-bit, integer signed and unsigned division. All divide operations require 19 cycles to complete but are interruptible at any cycle boundary.


The PIC24F has a vectored exception scheme with up to eight sources of non-maskable traps and up to 118 interrupt sources. Each interrupt source can be assigned to one of seven priority levels.

A block diagram of the CPU is shown in Figure 3-1.

3.1 Programmer's Model

The programmer's model for the PIC24F is shown in Figure 3-2. All registers in the programmer's model are memory-mapped and can be manipulated directly by instructions.

A description of each register is provided in Table 3-1. All registers associated with the programmer's model are memory-mapped.

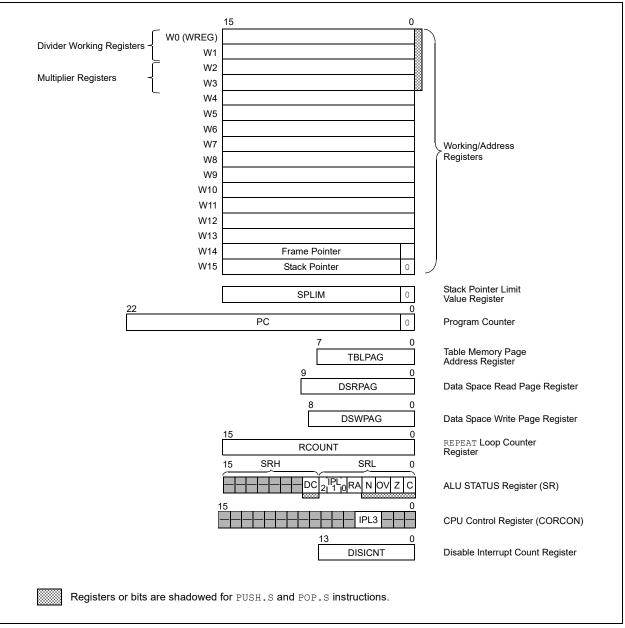


FIGURE 3-1: PIC24F CPU CORE BLOCK DIAGRAM

TABLE 3-1. CFU CORE REGISTERS	TABLE 3-1:	CPU CORE REGISTERS
-------------------------------	------------	--------------------

Register(s) Name	Description	
W0 through W15	Working Register Array	
PC	23-Bit Program Counter	
SR	ALU STATUS Register	
SPLIM	Stack Pointer Limit Value Register	
TBLPAG	Table Memory Page Address Register	
RCOUNT	REPEAT Loop Counter Register	
CORCON	CPU Control Register	
DISICNT	Disable Interrupt Count Register	
DSRPAG	Data Space Read Page Register	
DSWPAG	Data Space Write Page Register	

© 2015-2019 Microchip Technology Inc.

3.2 CPU Control/Status Registers

REGISTER 3-1: SR: ALU STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
	—	_	—	_			DC
bit 15							bit
R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾		DAMA	DAMO	DANO	DAMO
IPL2 ⁽²⁾				R/W-0 R/W-0		R/W-0	R/W-0
	IPL1	IPL0 ⁽²⁾	RA	N	OV	Z	C
bit 7						bit	
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimplem	nented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
	-	ted: Read as '0					
bit 8		f Carry/Borrow b					
		out from the 4 th lo	ow-order bit (for byte-sized da	ata) or 8 th low-o	order bit (for wo	ord-sized data
	of the res	sult occurred out from the 4 th	an oth Law			1	
	-				suit nas occurre	ea	
oit 7-5	IPL[2:0]: CPU Interrupt Priority Level Status bits ^(1,2) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled						
					s are disabled		
		nterrupt Priority I					
		nterrupt Priority I					
		nterrupt Priority I nterrupt Priority I					
		nterrupt Priority I					
		nterrupt Priority I)			
		nterrupt Priority I					
		Loop Active bit	. ,				
	1 = REPEAT	oop in progress					
	0 = REPEAT	oop not in progr	ess				
bit 3	N: ALU Nega						
	1 = Result wa	as negative as not negative (zero or positi	ve)			
bit 2	OV: ALU Ove						
	1 = Overflow occurred for signed (two's complement) arithmetic in this arithmetic operation					tion	
		ow has occurred		. ,			
bit 1	Z: ALU Zero I	bit					
	1 = An operat	tion, which affec	ts the Z bit, h	as set it at some	e time in the pa	ist	
		recent operatio					sult)
bit 0	C: ALU Carry	/Borrow bit					
	1 = A carry ou	ut from the Most	Significant b	it (MSb) of the r	esult occurred		
	•	out from the Mos	•	· · ·			
Noto 1. The	IDI v Statua k	nite are read and	when NET		(51) - 1		
		oits are read-only				to form the OF) n+c

2: The IPLx Status bits are concatenated with the IPL3 Status bit (CORCON[3]) to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15	·				•	•	bit 8
U-0	U-0	U-0	U-0	R/C-0	R/W-1	U-0	U-0
—	—	—	—	IPL3 ⁽¹⁾	PSV ⁽²⁾	—	—
bit 7	·				•	•	bit 0
Lawards		0 01	1.9				

	REGISTER 3-2:	CORCON: CPU CORE CONTROL REGISTER
--	---------------	-----------------------------------

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4	Unimplemented: Read as '0'
bit 3	IPL3: CPU Interrupt Priority Level Status bit ⁽¹⁾
	 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less
bit 2	PSV: Program Space Visibility (PSV) in Data Space Enable
	1 = Program space is visible in Data Space0 = Program space is not visible in Data Space
bit 1-0	Unimplemented: Read as '0'

- **Note 1:** The IPL3 bit is concatenated with the IPL[2:0] bits (SR[7:5]) to form the CPU Interrupt Priority Level; see Register 3-1 for bit description.
 - 2: If PSV = 0, any reads from data memory at 0x8000 and above will cause an address trap error instead of reading from the PSV section of program memory. This bit is not individually addressable.

 $[\]circledcirc$ 2015-2019 Microchip Technology Inc.

3.3 Arithmetic Logic Unit (ALU)

The PIC24F ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array, or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

The PIC24F CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.3.1 MULTIPLIER

The ALU contains a high-speed, 17-bit x 17-bit multiplier. It supports unsigned, signed or mixed sign operation in several multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.3.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. The 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn), and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.3.3 MULTIBIT SHIFT SUPPORT

The PIC24F ALU supports both single bit and singlecycle, multibit arithmetic and logic shifts. Multibit shifts are implemented using a shifter block, capable of performing up to a 15-bit arithmetic right shift, or up to a 15-bit left shift, in a single cycle. All multibit shift instructions only support Register Direct Addressing for both the operand source and result destination.

A full summary of instructions that use the shift operation is provided in Table 3-2.

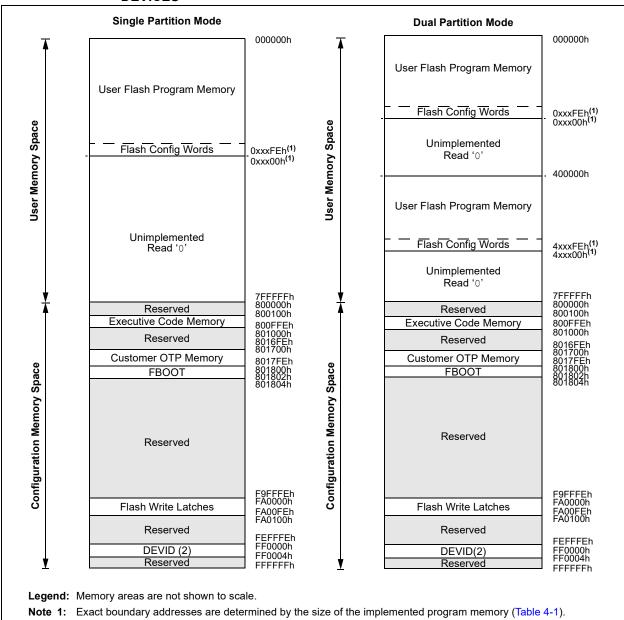
TABLE 3-2: INSTRUCTIONS THAT USE THE SINGLE BIT AND MULTIBIT SHIFT OPERATION

Instruction	Description
ASR	Arithmetic Shift Right Source register by one or more bits.
SL	Shift Left Source register by one or more bits.
LSR	Logical Shift Right Source register by one or more bits.

4.0 MEMORY ORGANIZATION

As Harvard architecture devices, PIC24F microcontrollers feature separate program and data memory spaces and buses. This architecture also allows direct access of program memory from the Data Space during code execution.

4.1 **Program Memory Space**


The program address memory space of the PIC24FJ1024GA610/GB610 family devices is 4M instructions. The space is addressable by a 24-bit value derived from either the 23-bit Program Counter (PC) during program execution, or from table operation or Data Space remapping, as described in Section 4.3 "Interfacing Program and Data Memory Spaces".

User access to the program memory space is restricted to the lower half of the address range (000000h to 7FFFFFh). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG[7] to permit access to the Configuration bits and customer OTP sections of the configuration memory space.

The PIC24FJ1024GA610/GB610 family of devices supports a Single Partition mode and two Dual Partition modes. The Dual Partition modes allow the device to be programmed with two separate applications to facilitate bootloading or to allow an application to be programmed at run time without stalling the CPU.

Memory maps for the PIC24FJ1024GA610/GB610 family of devices are shown in Figure 4-1.

^{© 2015-2019} Microchip Technology Inc.

FIGURE 4-1: PROGRAM SPACE MEMORY MAP FOR PIC24FJ1024GA610/GB610 FAMILY DEVICES

TABLE 4-1: PROGRAM MEMORY SIZES AND BOUNDARIES⁽¹⁾

	Program Memory	y Upper Boundary (Instruction Words)		
Device	Single Partition	Dual Partition Mode		Write Blocks ⁽²⁾	Erase Blocks ⁽²⁾
	Mode	Active Partition	Inactive Partition		
PIC24FJ1024GX6XX	0ABFFEh (352K)	055FFEh (176K)	455FFEh (176K)	2752	344
PIC24FJ512GX6XX	055FFEh (176K)	02AFFEh (88k)	42AFFEh (88k)	1376	172
PIC24FJ256GX6XX	02AFFEh (88K)	0157FEh (44k)	4157FEh (44k)	688	86
PIC24FJ128GX6XX	015FFEh (44K)	00AFFEh (22k)	40AFFEh (22k)	352	44

Note 1: Includes Flash Configuration Words.

2: 1 Write Block = 128 Instruction Words; 1 Erase Block = 1024 Instruction Words.

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-3).

Program memory addresses are always word-aligned on the lower word and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.

In Single Partition mode, user program memory is arranged in a contiguous block starting at address, 000000h.

4.1.2 DUAL PARTITION FLASH PROGRAM MEMORY ORGANIZATION

In the Dual Partition modes, the device's memory is divided evenly into two physical sections, known as Partition 1 and Partition 2. Each of these partitions contains its own program memory and Configuration Words. During program execution, the code on only one of these panels is executed; this is the Active Partition. The other partition, or the Inactive Partition, is not used, but can be programmed.

The Active Partition is always mapped to logical address, 000000h, while the Inactive Partition will always be mapped to logical address, 400000h. Note that even when the code partitions are switched between Active and Inactive by the user, the address of the Active Partition will still be at 000000h and the address of the Inactive Partition will still be at 400000h.

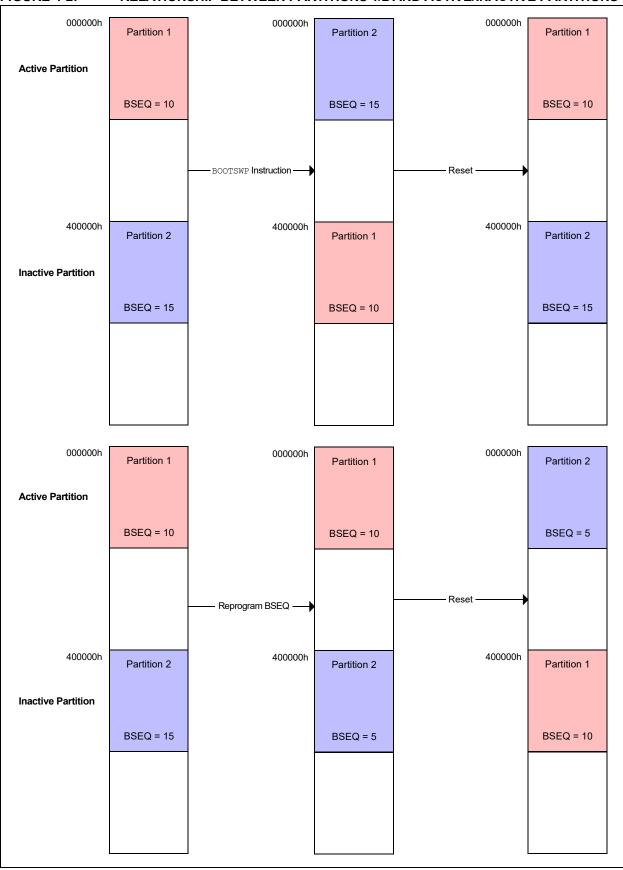
The Boot Sequence Configuration Word (FBTSEQ) determines whether Partition 1 or Partition 2 will be active after Reset. If the part is operating in Dual Partition mode, the partition with the lower Boot Sequence Number will operate as the Active Partition (FBTSEQ is unused in Single Partition mode). The partitions can be switched between Active and Inactive by reprogramming their Boot Sequence Numbers, but the Active Partition will not change until a device Reset is performed. If both Boot Sequence Numbers are the same, or if both are corrupted, the part will use Partition 1 as the Active Partition. If only one Boot Sequence Number is corrupted, the device will use the partition without a corrupted Boot Sequence Number as the Active Partition.

Should a Boot Sequence Number be invalid (or unprogrammed), it will be overridden to value, 0x000FFF (i.e., the highest possible Boot Sequence Number).

The user can also change which partition is active at run time using the BOOTSWP instruction. Issuing a BOOTSWP instruction does not affect which partition will be the Active Partition after a Reset. Figure 4-2 demonstrates how the relationship between Partitions 1 and 2, shown in red and blue respectively, and the Active and Inactive Partitions are affected by reprogramming the Boot Sequence Number or issuing a BOOTSWP instruction.

The P2ACTIV bit (NVMCON[10]) can be used to determine which physical partition is the Active Partition. If P2ACTIV = 1, Partition 2 is active; if P2ACTIV = 0, Partition 1 is active.

4.1.3 HARD MEMORY VECTORS


All PIC24F devices reserve the addresses between 000000h and 000200h for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on a device Reset to the actual start of code. A GOTO instruction is programmed by the user at 000000h, with the actual address for the start of code at 000002h.

The PIC24FJ1024GA610/GB610 devices can have up to two Interrupt Vector Tables (IVT). The first is located from addresses, 000004h to 0000FFh. The Alternate Interrupt Vector Table (AIVT) can be enabled by the AIVTDIS Configuration bit if the Boot Segment (BS) is present. If the user has configured a <u>Boot Segment</u>, the AIVT will be located at the address, (BSLIM[12:0] – 1) x 0x800. These vector tables allow each of the many device interrupt sources to be handled by separate ISRs. A more detailed discussion of the Interrupt Vector Tables is provided in **Section 8.1 "Interrupt Vector Tables**".

4.1.4 CONFIGURATION BITS OVERVIEW

The Configuration bits are stored in the last page location of implemented program memory. These bits can be set or cleared to select various device configurations. There are two types of Configuration bits: system operation bits and code-protect bits. The system operation bits determine the power-on settings for system-level components, such as the oscillator and the Watchdog Timer. The code-protect bits prevent program memory from being read and written.

Table 4-2 lists the Configuration register address range for each device in Single and Dual Partition modes. Table 4-2 lists all of the Configuration bits found in the PIC24FJ1024GA610/GB610 family devices, as well as their Configuration register locations. Refer to **Section 30.0 "Special Features"** in this data sheet for the full Configuration register description for each specific device.

TADLE 4-2.	CONFIGURATION WORD ADDRESSES						
Configuration		Single Par	tition Mode				
Register	PIC24FJ1024GX6XX	PIC24FJ512GX6XX	PIC24FJ256GX6XX	PIC24FJ128GX6XX			
FSEC	0ABF00h	055F00h	02AF00h	015F00h			
FBSLIM	0ABF10h	055F10h	02AF10h	015F10h			
FSIGN	0ABF14h	055F14h	02AF14h	015F14h			
FOSCSEL	0ABF18h	055F18h	02AF18h	015F18h			
FOSC	0ABF1Ch	055F1Ch	02AF1Ch	015F1Ch			
FWDT	0ABF20h	055F20h	02AF20h	015F20h			
FPOR	0ABF24h	055F24h	02AF24h	015F24h			
FICD	0ABF28h	055F28h	02AF28h	015F28h			
FDEVOPT1	0ABF2Ch	055F2Ch	02AF2Ch	015F2Ch			
FBOOT		8018	800h	·			
		Dual Partiti	on Modes ⁽¹⁾				
FSEC ⁽²⁾	055F00h/455F00h	02AF00h/42AF00h	015700h/415700h	00AF00h/40AF00h			
FBSLIM ⁽²⁾	055F10h/455F10h	02AF10h/42AF10h	015710h/415710h	00AF10h/40AF10h			
FSIGN ⁽²⁾	055F14h/455F14h	02AF14h/42AF14h	015714h/415714h	00AF14h/40AF14h			
FOSCSEL	055F18h/455F18h	02AF18h/42AF18h	015718h/415718h	00AF18h/40AF18h			
FOSC	055F1Ch/455F1Ch	02AF1Ch/42AF1Ch	01571Ch/41571Ch	00AF1Ch/40AF1Ch			
FWDT	055F20h/455F20h	02AF20h/42AF20h	015720h/415720h	00AF20h/40AF20h			
FPOR	055F24h/455F24h	02AF24h/42AF24h	015724h/415724h	00AF24h/40AF24h			
FICD	055F28h/455F28h	02AF28h/42AF28h	015728h/415728h	00AF28h/40AF28h			
FDEVOPT1	055F2Ch/455F2Ch	02AF2Ch/42AF2Ch	01572Ch/41572Ch	00AF2Ch/40AF2Ch			
FBTSEQ ⁽³⁾	055FFCh/455FFCh	02AFFCh/42AFFCh	0157FCh/4157FCh	00AFFCh/40AFFCh			
FBOOT		8018	300h				

TABLE 4-2: CONFIGURATION WORD ADDRESSES

Note 1: Addresses shown for Dual Partition modes are for the Active/Inactive Partitions, respectively.

2: Changes to these Inactive Partition Configuration Words affect how the Active Partition accesses the Inactive Partition.

3: FBTSEQ is a 24-bit Configuration Word, using all three bytes of the program memory width.

^{© 2015-2019} Microchip Technology Inc.

4.1.5 CODE-PROTECT CONFIGURATION BITS

The device implements intermediate security features defined by the FSEC register. The Boot Segment (BS) is the higher privilege segment and the General Segment (GS) is the lower privilege segment. The total user code memory can be split into BS or GS. The size of the segments is determined by the BSLIM[12:0] bits. The relative location of the segments within user space does not change, such that BS (if present) occupies the memory area just after the Interrupt Vector Table (IVT) and the GS occupies the space just after the BS.

The Configuration Segment (CS) is a small segment (less than a page, typically just one row) within user Flash address space. It contains all user configuration data that are loaded by the NVM Controller during the Reset sequence.

4.1.6 CUSTOMER OTP MEMORY

PIC24FJ1024GA610/GB610 family devices provide 256 bytes of One-Time-Programmable (OTP) memory, located at addresses, 801700h through 8017FEh. This memory can be used for persistent storage of application-specific information that will not be erased by reprogramming the device. This includes many types of information, such as (but not limited to):

- · Application Checksums
- Code Revision Information
- Product Information
- Serial Numbers
- · System Manufacturing Dates
- · Manufacturing Lot Numbers

Customer OTP memory may be programmed in any mode, including user RTSP mode, but it cannot be erased. Data are not cleared by a chip erase.

Do not write the OTP memory more than one time. Writing to the OTP memory more than once may result in a permanent ECC Double-Bit Error (ECCDBE) trap.

Therefore, writing to OTP memory should only be done after the firmware is debugged and the part is programmed in a production environment.

4.1.7 DUAL PARTITION CONFIGURATION WORDS

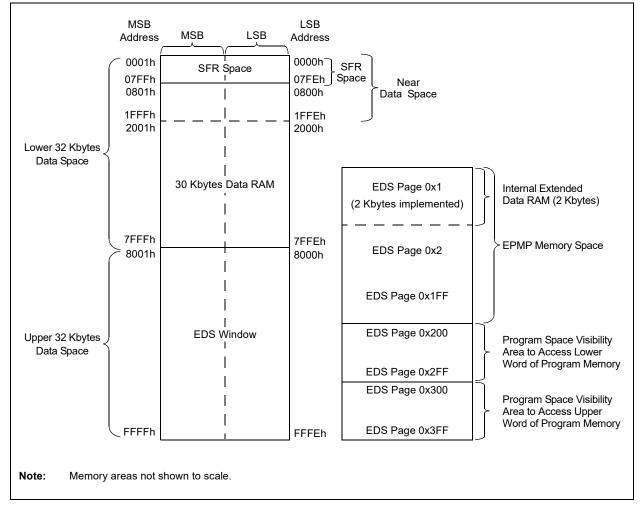
In Dual Partition modes, each partition has its own set of Flash Configuration Words. The full set of Configuration registers in the Active Partition is used to determine the device's configuration; the Configuration Words in the Inactive Partition are used to determine the device's configuration when that partition becomes active. However, some of the Configuration registers in the Inactive Partition (FSEC, FBSLIM and FSIGN) may be used to determine how the Active Partition is able or allowed to access the Inactive Partition.

4.2 Data Memory Space

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "Data Memory with Extended Data Space (EDS)" (www.microchip.com/ DS39733) in the "dsPIC33/PIC24 Family Reference Manual". The information in this data sheet supersedes the information in the FRM.

The PIC24F core has a 16-bit wide data memory space, addressable as a single linear range. The Data Space is accessed using two Address Generation Units (AGUs), one each for read and write operations. The Data Space memory map is shown in Figure 4-3.

The 16-bit wide data addresses in the data memory space point to bytes within the Data Space (DS). This gives a DS address range of 32 Kbytes or 16K words. The lower half (0000h to 7FFFh) is used for implemented (on-chip) memory addresses.


The upper half of data memory address space (8000h to FFFFh) is used as a window into the Extended Data Space (EDS). This allows the microcontroller to directly access a greater range of data beyond the standard 16-bit address range. EDS is discussed in detail in **Section 4.2.5 "Extended Data Space (EDS)**".

The lower half of DS is compatible with previous PIC24F microcontrollers without EDS. All PIC24FJ1024GA610/ GB610 family devices implement 30 Kbytes of data RAM in the lower half of DS, from 0800h to 7FFF.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byteaddressable, 16-bit wide blocks. Data are aligned in data memory and registers as 16-bit words, but all Data Space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

FIGURE 4-3: DATA SPACE MEMORY MAP FOR PIC24FJ1024GA610/GB610 FAMILY DEVICES

© 2015-2019 Microchip Technology Inc.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC^{\otimes} MCUs and improve Data Space memory usage efficiency, the PIC24F instruction set supports both word and byte operations. As a consequence of byte accessibility, all EA calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode, [Ws++], will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word, which contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode, but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address.

All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap will be generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed but the write will not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB. The Most Significant Byte (MSB) is not modified.

A Sign-Extend (SE) instruction is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

Although most instructions are capable of operating on word or byte data sizes, it should be noted that some instructions operate only on words.

4.2.3 NEAR DATA SPACE

The 8-Kbyte area between 0000h and 1FFFh is referred to as the Near Data Space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. The remainder of the Data Space is addressable indirectly. Additionally, the whole Data Space is addressable using MOV instructions, which support Memory Direct Addressing with a 16-bit address field.

4.2.4 SPECIAL FUNCTION REGISTER (SFR) SPACE

The first 2 Kbytes of the Near Data Space, from 0000h to 07FFh, are primarily occupied with Special Function Registers (SFRs). These are used by the PIC24F core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'. A diagram of the SFR space, showing where the SFRs are actually implemented, is shown in Table 4-3. Each implemented area indicates a 32-byte region where at least one address is implemented as an SFR. A complete list of implemented SFRs, including their addresses, is shown in Tables 4-3 through 4-11.

	_						SFR S	pace Ad	Idress							
	xx00	xx10	xx20	xx30	xx40	xx50	xx60	xx70	xx80	xx90	xxA0	xxB0	xxC0	xxD0	xxE0	xxF0
000h	000h Core															
100h	OSC	Reset ⁽¹⁾		EPMP		CRC	REFO	PN	ИD		Timers		СТМ		RTCC	
200h		Capture			Compar	e				MC	CP				Comp	ANCFG
300h					SCCP							ι	JART			SPI
400h			SPI			_		CLC			I	² C			DMA	
500h	D	MA	_	_	_			US	\$B				-	_	_	_
600h	-	_								I/C)					_
700h	_			A/D			_	_	_				PPS			

TABLE 4-3: IMPLEMENTED REGIONS OF SFR DATA SPACE

Legend: - = No implemented SFRs in this block

Note 1: Includes HLVD control.

File Name	Address	All Resets	File Name	Address	All Resets		
CPU CORE			INTERRUPT CONTROLLER (CONTINUED)				
WREG0	0000	0000	IEC1	009A	0000		
WREG1	0002	0000	IEC2	009C	0000		
WREG2	0004	0000	IEC3	009E	0000		
WREG3	0006	0000	IEC4	00A0	0000		
WREG4	0008	0000	IEC5	00A2	0000		
WREG5	000A	0000	IEC6	00A4	0000		
WREG6	000C	0000	IEC7	00A6	0000		
WREG7	000E	0000	IPC0	00A8	4444		
WREG8	0010	0000	IPC1	00AA	4444		
WREG9	0012	0000	IPC2	00AC	4444		
WREG10	0014	0000	IPC3	00AE	4444		
WREG11	0016	0000	IPC4	00B0	4444		
WREG12	0018	0000	IPC5	00B2	4404		
WREG13	001A	0000	IPC6	00B4	4444		
WREG14	001C	0000	IPC7	00B6	4444		
WREG15	001E	0800	IPC8	00B8	0044		
SPLIM	0020	XXXX	IPC9	00BA	4444		
PCL	002E	0000	IPC10	00BC	4444		
РСН	0030	0000	IPC11	00BE	4444		
DSRPAG	0032	0000	IPC12	00C0	4444		
DSWPAG	0034	0000	IPC13	00C2	0440		
RCOUNT	0036	XXXX	IPC14	00C4	4400		
SR	0042	0000	IPC15	00C6	4444		
CORCON	0044	0004	IPC16	00C8	4444		
DISICNT	0052	XXXX	IPC17	00CA	4444		
TBLPAG	0054	0000	IPC18	00CC	0044		
INTERRUPT CONT	ROLLER		IPC19	00CE	0040		
INTCON1	0080	0000	IPC20	00D0	4440		
INTCON2	0082	8000	IPC21	00D2	4444		
INTCON4	0086	0000	IPC22	00D4	4444		
IFS0	0088	0000	IPC23	00D6	4400		
IFS1	008A	0000	IPC24	00D8	4444		
IFS2	008C	0000	IPC25	00DA	0440		
IFS3	008E	0000	IPC26	00DC	0400		
IFS4	0090	0000	IPC27	00DE	4440		
IFS5	0092	0000	IPC28	00E0	4444		
IFS6	0094	0000	IPC29	00E2	0044		
IFS7	0096	0000	INTTREG	00E4	0000		
IEC0	0098	0000					

TABLE 4-4:SFR MAP: 0000h BLOCK

File Name	Address	All Resets	File Name	Address	All Resets
OSCILLATOR			PMD (CONTINUED)		
OSCCON	0100	xxx0	PMD6	0182	0000
CLKDIV	0102	30x0	PMD7	0184	0000
OSCTUN	0106	XXXX	PMD8	0186	0000
DCOTUN	0108	0000	TIMER	1	
DCOCON	010A	0x00	TMR1	0190	0000
OSCDIV	010C	0001	PR1	0192	FFFF
OSCFDIV	010E	0000	T1CON	0194	0000
RESET			TMR2	0196	0000
RCON	0110	0003	TMR3HLD	0198	0000
HLVD			TMR3	019A	0000
HLVDCON	0114	0600	PR2	019C	FFFF
PMP			PR3	019E	FFFF
PMCON1	0128	0000	T2CON	01A0	0x00
PMCON2	012A	0000	T3CON	01A2	0x00
PMCON3	012C	0000	TMR4	01A4	0000
PMCON4	012E	0000	TMR5HLD	01A6	0000
PMCS1CF	0130	0000	TMR5	01A8	0000
PMCS1BS	0132	0000	PR4	01AA	FFFF
PMCS1MD	0134	0000	PR5	01AC	FFFF
PMCS2CF	0136	0000	T4CON	01AE	0x00
PMCS2BS	0138	0000	T5CON	01B0	0x00
PMCS2MD	013A	0000	СТМИ	1	
PMDOUT1	013C	XXXX	CTMUCON1L	01C0	0000
PMDOUT2	013E	XXXX	CTMUCON1H	01C2	0000
PMDIN1	0140	XXXX	CTMUCON2L	01C4	0000
PMDIN2	0142	XXXX	REAL-TIME CLOCK	AND CALENDAR (RT	CC)
PMSTAT	0144	008F	RTCCON1L	01CC	XXXX
CRC			RTCCON1H	01CE	XXXX
CRCCON1	0158	00x0	RTCCON2L	01D0	XXXX
CRCCON2	015A	0000	RTCCON2H	01D2	XXXX
CRCXORL	015C	0000	RTCCON3L	01D4	XXXX
CRCXORH	015E	0000	RTCSTATL	01D8	00xx
CRCDATL	0160	XXXX	TIMEL	01DC	xx00
CRCDATH	0162	XXXX	TIMEH	01DE	XXXX
CRCWDATL	0164	XXXX	DATEL	01E0	xx0x
CRCWDATH	0166	XXXX	DATEH	01E2	XXXX
REFO			ALMTIMEL	01E4	xx00
REFOCONL	0168	0000	ALMTIMEH	01E6	XXXX
REFOCONH	016A	0000	ALMDATEL	01E8	xx0x
PMD			ALMDATEH	01EA	XXXX
PMD1	0178	0000	TSATIMEL	01EC	xx00
PMD2	017A	0000	TSATIMEH	01EE	XXXX
PMD3	017C	0000	TSADATEL	01F0	xx0x
PMD4	017E	0000	TSADATEH	01F2	XXXX
PMD5	0180	0000		•	•

TABLE 4-5:SFR MAP: 0100h BLOCK

File Name	Address	All Resets	File Name	Address	All Resets
INPUT CAPTURE			OUTPUT CAPTURE	(CONTINUED)	•
IC1CON1	0200	0000	OC4R	0254	XXXX
IC1CON2	0202	000D	OC4TMR	0256	XXXX
IC1BUF	0204	0000	OC5CON1	0258	0000
IC1TMR	0206	0000	OC5CON2	025A	000C
IC2CON1	0208	0000	OC5RS	025C	XXXX
IC2CON2	020A	000D	OC5R	025E	XXXX
IC2BUF	020C	0000	OC5TMR	0260	XXXX
IC2TMR	020E	0000	OC6CON1	0262	0000
IC3CON1	0210	0000	OC6CON2	0264	000C
IC3CON2	0212	000D	OC6RS	0266	XXXX
IC3BUF	0214	0000	OC6R	0268	XXXX
IC3TMR	0216	0000	OC6TMR	026A	XXXX
IC4CON1	0218	0000	MULTIPLE OUTPUT	CAPTURE/COMPARE	1
IC4CON2	021A	000D	CCP1CON1L	026C	0000
IC4BUF	021C	0000	CCP1CON1H	026E	0000
IC4TMR	021E	0000	CCP1CON2L	0270	0000
IC5CON1	0220	0000	CCP1CON2H	0272	0100
IC5CON2	0222	000D	CCP1CON3L	0274	0000
IC5BUF	0224	0000	CCP1CON3H	0276	0000
IC5TMR	0226	0000	CCP1STATL	0278	00x0
IC6CON1	0228	0000	CCP1STATH	027A	0000
IC6CON2	022A	000D	CCP1TMRL	027C	0000
IC6BUF	022C	0000	CCP1TMRH	027E	0000
IC6TMR	022E	0000	CCP1PRL	0280	FFFF
OUTPUT COMPAR	RE		CCP1PRH	0282	FFFF
OC1CON1	0230	0000	CCP1RAL	0284	0000
OC1CON2	0232	0000	CCP1RAH	0286	0000
OC1RS	0234	xxxx	CCP1RBL	0288	0000
OC1R	0236	 XXXX	CCP1RBH	028A	0000
OC1TMR	0238	 	CCP1BUFL	028C	0000
OC2CON1	023A	0000	CCP1BUFH	028E	0000
OC2CON2	023C	0000	CCP2CON1L	0290	0000
OC2RS	023E	xxxx	CCP2CON1H	0292	0000
OC2R	0240	XXXX	CCP2CON2L	0294	0000
OC2TMR	0240	XXXX	CCP2CON2H	0296	0100
OC3CON1	0242	0000	CCP2CON3L	0298	0000
	0246	0000	CCP2CON3H	029A	0000
OC3RS	0248	xxxx	CCP2STATL	029C	00000 00x0
OC3R	0240 024A	XXXX	CCP2STATH	029E	0000
OC3TMR	024C	XXXX	CCP2TMRL	023L	0000
OC4CON1	0240 024E	0000	CCP2TMRH	02A2	0000
0C4CON2	0250	0000	CCP2PRL	02A2	FFFF
0.0100112	0200	0000			LLLL

TABLE 4-6: SFR MAP: 0200h BLOCK

^{© 2015-2019} Microchip Technology Inc.

File Name	Address	All Resets	File Name	Address	All Resets		
MULTIPLE OUTPUT C (CONTINUED)	CAPTURE/COMPARE	/PWM	MULTIPLE OUTPUT CAPTURE/COMPARE/PWM (CONTINUED)				
CCP2RAL	02A8	0000	CCP3PRL	02C8	FFFF		
CCP2RAH	02AA	0000	CCP3PRH	02CA	FFFF		
CCP2RBL	02AC	0000	CCP3RAL	02CC	0000		
CCP2RBH	02AE	0000	CCP3RAH	02CE	0000		
CCP2BUFL	02B0	0000	CCP3RBL	02D0	0000		
CCP2BUFH	02B2	0000	CCP3RBH	02D2	0000		
CCP3CON1L	02B4	0000	CCP3BUFL	02D4	0000		
CCP3CON1H	02B6	0000	CCP3BUFH	02D6	0000		
CCP3CON2L	02B8	0000	COMPARATORS				
CCP3CON2H	02BA	0100	CMSTAT	02E6	0000		
CCP3CON3L	02BC	0000	CVRCON	02E8	00xx		
CCP3CON3H	02BE	0000	CM1CON	02EA	0000		
CCP3STATL	02C0	00x0	CM2CON	02EC	0000		
CCP3STATH	02C2	0000	CM3CON	02EE	0000		
CCP3TMRL	O2C4	0000	ANALOG CONFIGURATION				
CCP3TMRH	02C6	0000	ANCFG	02F4	0000		

TABLE 4-6: SFR MAP: 0200h BLOCK (CONTINUED)

File Name	Address	All Resets	File Name	Address	All Resets
SINGLE OUTPUT	CAPTURE/COMPARE/F	wM	SINGLE OUTPUT CA	PTURE/COMPARE/P	WM (CONTINUED)
CCP4CON1L	0300	0000	CCP6STATH	0356	0000
CCP4CON1H	0302	0000	CCP6TMRL	0358	0000
CCP4CON2L	0304	0000	CCP6TMRH	035A	0000
CCP4CON2H	0306	0100	CCP6PRL	035C	FFFF
CCP4CON3L	0308	0000	CCP6PRH	035E	FFFF
CCP4CON3H	030A	0000	CCP6RAL	0360	0000
CCP4STATL	030C	00x0	CCP6RAH	0362	0000
CCP4STATH	030E	0000	CCP6RBL	0364	0000
CCP4TMRL	0310	0000	CCP6RBH	0366	0000
CCP4TMRH	0312	0000	CCP6BUFL	0368	0000
CCP4PRL	0314	FFFF	CCP6BUFH	036A	0000
CCP4PRH	0316	FFFF	CCP7CON1L	036C	0000
CCP4RAL	0318	0000	CCP7CON1H	036E	0000
CCP4RAH	031A	0000	CCP7CON2L	0370	0000
CCP4RBL	031C	0000	CCP7CON2H	0372	0100
CCP4RBH	031E	0000	CCP7CON3L	0374	0000
CCP4BUFL	0320	0000	CCP7CON3H	0376	0000
CCP4BUFH	0322	0000	CCP7STATL	0378	00x0
CCP5CON1L	0324	0000	CCP7STATH	037A	0000
CCP5CON1H	0326	0000	CCP7TMRL	037C	0000
CCP5CON2L	0328	0000	CCP7TMRH	037E	0000
CCP5CON2H	032A	0100	CCP7PRL	0380	FFFF
CCP5CON3L	032C	0000	CCP7PRH	0382	FFFF
CCP5CON3H	032E	0000	CCP7RAL	0384	0000
CCP5STATL	0330	00x0	CCP7RAH	0386	0000
CCP5STATH	0332	0000	CCP7RBL	0388	0000
CCP5TMRL	0334	0000	CCP7RBH	038A	0000
CCP5TMRH	0336	0000	CCP7BUFL	038C	0000
CCP5PRL	0338	FFFF	CCP7BUFH	038E	0000
CCP5PRH	033A	FFFF	UART		
CCP5RAL	033C	0000	U1MODE	0398	0000
CCP5RAH	033E	0000	U1STA	039A	0110
CCP5RBL	0340	0000	U1TXREG	039C	x0xx
CCP5RBH	0342	0000	U1RXREG	039E	0000
CCP5BUFL	0344	0000	U1BRG	03A0	0000
CCP5BUFH	0346	0000	U1ADMD	03A2	0000
CCP6CON1L	0348	0000	U2MODE	03AE	0000
CCP6CON1H	034A	0000	U2STA	03B0	0110
CCP6CON2L	034C	0000	U2TXREG	03B2	XXXX
CCP6CON2H	034E	0100	U2RXREG	03B4	0000
CCP6CON3L	0350	0000	U2BRG	03B6	0000
CCP6CON3H	0352	0000	U2ADMD	03B8	0000
CCP6STATL	0354	00x0	U3MODE	03C4	0000

TABLE 4-7:SFR MAP: 0300h BLOCK

^{© 2015-2019} Microchip Technology Inc.

File Name	Address	All Resets	File Name	Address	All Resets	
UART (CONTINUED)		•	UART (CONTINUED)	UART (CONTINUED)		
U3STA	03C6	0110	U5BRG	03E4	0000	
U3TXREG	03C8	XXXX	U5ADMD	03E6	0000	
U3RXREG	03CA	0000	U6MODE	03E8	0000	
U3BRG	03CC	0000	U6STA	03EA	0110	
U3ADMD	03CE	0000	U6TXREG	03EC	XXXX	
U4MODE	03D0	0000	U6RXREG	03EE	0000	
U4STA	03D2	0110	U6BRG	03F0	0000	
U4TXREG	03D4	XXXX	U6ADMD	03F2	0000	
U4RXREG	03D6	0000	SPI			
U4BRG	03D8	0000	SPI1CON1L	03F4	0x00	
U4ADMD	03DA	0000	SPI1CON1H	03F6	0000	
U5MODE	03DC	0000	SPI1CON2L	03F8	0000	
U5STA	03DE	0110	SPI1STATL	03FC	0028	
U5TXREG	03E0	XXXX	SPI1STATH	03FE	0000	
U5RXREG	03E2	0000				

TABLE 4-7: SFR MAP: 0300h BLOCK (CONTINUED)

File Name	Address	All Resets	File Name	Address	All Resets
SPI (CONTINUED))		CONFIGURABLE LC	OGIC CELL (CLC) (C	ONTINUED)
SPI1BUFL	0400	0000	CLC3CONL	047C	0000
SPI1BUFH	0402	0000	CLC3CONH	047E	0000
SPI1BRGL	0404	XXXX	CLC3SEL	0480	0000
SPI1IMSK1	0408	0000	CLC3GLSL	0484	0000
SPI1IMSK2	040A	0000	CLC3GLSH	0486	0000
SPI1URDTL	040C	0000	CLC4CONL	0488	0000
SPI1URDTH	040E	0000	CLC4CONH	048A	0000
SPI2CON1L	0410	0x00	CLC4SEL	048C	0000
SPI2CON1H	0412	0000	CLC4GLSL	0490	0000
SPI2CON2L	0414	0000	CLC4GLSH	0492	0000
SPI2STATL	0418	0028	l ² C		
SPI2STATH	041A	0000	I2C1RCV	0494	0000
SPI2BUFL	041C	0000	I2C1TRN	0496	OOFF
SPI2BUFH	041E	0000	I2C1BRG	0498	0000
SPI2BRGL	0420	XXXX	I2C1CON1	049A	1000
SPI2IMSK1	0424	0000	I2C1CON2	049C	0000
SPI2IMSK2	0426	0000	I2C1STAT	049E	0000
SPI2URDTL	0428	0000	I2C1ADD	04A0	0000
SPI2URDTH	042A	0000	I2C1MSK	04A2	0000
SPI3CON1L	042C	0x00	I2C2RCV	04A4	0000
SPI3CON1H	042E	0000	I2C2TRN	04A6	OOFF
SPI3CON2L	0430	0000	I2C2BRG	04A8	0000
SPI3STATL	0434	0028	I2C2CON1	04AA	1000
SPI3STATH	0436	0000	I2C2CON2	04AC	0000
SPI3BUFL	0438	0000	I2C2STAT	04AE	0000
SPI3BUFH	043A	0000	I2C2ADD	04B0	0000
SPI3BRGL	043C	XXXX	I2C2MSK	04B2	0000
SPI3IMSK1	0440	0000	I2C3RCV	04B4	0000
SPI3IMSK2	0442	0000	I2C3TRN	04B6	OOFF
SPI3URDTL	0444	0000	I2C3BRG	04B8	0000
SPI3URDTH	0446	0000	I2C3CON1	04BA	1000
CONFIGURABLE	LOGIC CELL (CLC)		I2C3CON2	04BC	0000
CLC1CONL	0464	0000	I2C3STAT	04BE	0000
CLC1CONH	0466	0000	I2C3ADD	04C0	0000
CLC1SEL	0468	0000	I2C3MSK	04C2	0000
CLC1GLSL	046C	0000	DMA	-	•
CLC1GLSH	046E	0000	DMACON	04C4	0000
CLC2CONL	0470	0000	DMABUF	04C6	0000
CLC2CONH	0472	0000	DMAL	04C8	0000
CLC2SEL	0474	0000	DMAH	04CA	0000
CLC2GLSL	0478	0000	DMACH0	04CC	0000
CLC2GLSH	047A	0000	DMAINT0	04CE	0000

TABLE 4-8:SFR MAP: 0400h BLOCK

^{© 2015-2019} Microchip Technology Inc.

File Name	Address	All Resets	File Name	Address	All Resets		
DMA (CONTINUED)	DMA (CONTINUED)			DMA (CONTINUED)			
DMASRC0	04D0	0000	DMACNT2	04E8	0001		
DMADST0	04D2	0000	DMACH3	04EA	0000		
DMACNT0	04D4	0001	DMAINT3	04EC	0000		
DMACH1	04D6	0000	DMASRC3	04EE	0000		
DMAINT1	04D8	0000	DMADST3	04F0	0000		
DMASRC1	04DA	0000	DMACNT3	04F2	0001		
DMADST1	04DC	0000	DMACH4	04F4	0000		
DMACNT1	04DE	0001	DMAINT4	04F6	0000		
DMACH2	04E0	0000	DMASRC4	04F8	0000		
DMAINT2	04E2	0000	DMADST4	04FA	0000		
DMASRC2	04E4	0000	DMACNT4	04FC	0001		
DMADST2	04E6	0000	DMACH5	04FE	0000		

TABLE 4-8: SFR MAP: 0400h BLOCK (CONTINUED)

File Name	Address	All Resets	File Name	Address	All Resets
DMA (CONTINUED)			USB OTG (CONTINUED)		
DMAINT5	0500	0000	U1ADDR	056E	00xx
DMASRC5	0502	0000	U1BDTP1	0570	0000
DMADST5	0504	0000	U1FRML	0572	0000
DMACNT5	0506	0001	U1FRMH	0574	0000
DMACH6	0508	0000	U1TOK	0576	0000
DMAINT6	050A	0000	U1SOF	0578	0000
DMASRC6	050C	0000	U1BDTP2	057A	0000
DMADST6	050E	0000	U1BDTP3	057C	0000
DMACNT6	0510	0001	U1CNFG1	057E	0000
DMACH7	0512	0000	U1CNFG2	0580	0000
DMAINT7	0514	0000	U1EP0	0582	0000
DMASRC7	0516	0000	U1EP1	0584	0000
DMADST7	0518	0000	U1EP2	0586	0000
DMACNT7	051A	0001	U1EP3	0588	0000
USB OTG			U1EP4	058A	0000
U10TGIR	0558	0000	U1EP5	058C	0000
U1OTGIE	055A	0000	U1EP6	058E	0000
U1OTGSTAT	055C	0000	U1EP7	0590	0000
U10TGCON	055E	0000	U1EP8	0592	0000
U1PWRC	0560	00x0	U1EP9	0594	0000
U1IR	0562	0000	U1EP10	0596	0000
U1IE	0564	0000	U1EP11	0598	0000
U1EIR	0566	0000	U1EP12	059A	0000
U1EIE	0568	0000	U1EP13	059C	0000
U1STAT	056A	0000	U1EP14	059E	0000
U1CON	056C	00x0	U1EP15	05A0	0000

TABLE 4-9:SFR MAP: 0500h BLOCK

File Name	Address	All Resets	File Name	Address	All Resets
I/O	·		PORTD (CONTINUE	D)	
PADCON	065E	0000	ANSD	06A6	FFFF
IOCSTAT	0660	0000	IOCPD	06A8	0000
PORTA ⁽¹⁾			IOCND	06AA	0000
TRISA	0662	FFFF	IOCFD	06AC	0000
PORTA	0664	0000	IOCPUD	06AE	0000
LATA	0666	0000	IOCPDD	06B0	0000
ODCA	0668	0000	PORTE		
ANSA	066A	FFFF	TRISE	06B2	FFFF
IOCPA	066C	0000	PORTE	06B4	0000
IOCNA	066E	0000	LATE	06B6	0000
IOCFA	0670	0000	ODCE	06B8	0000
IOCPUA	0672	0000	ANSE	06BA	FFFF
IOCPDA	0674	0000	IOCPE	06BC	0000
PORTB	·	-	IOCNE	06BE	0000
TRISB	0676	FFFF	IOCFE	06C0	0000
PORTB	0678	0000	IOCPUE	06C2	0000
LATB	067A	0000	IOCPDE	06C4	0000
ODCB	067C	0000	PORTF		-
ANSB	067E	FFFF	TRISF	06C6	FFFF
IOCPB	0680	0000	PORTF	06C8	0000
IOCNB	0682	0000	LATF	06CA	0000
IOCFB	0684	0000	ODCF	06CC	0000
IOCPUB	0686	0000	IOCPF	06D0	0000
IOCPDB	0688	0000	IOCNF	06D2	0000
PORTC		IOCFF	06D4	0000	
TRISC	068A	FFFF	IOCPUF	06D6	0000
PORTC	068C	0000	IOCPDF	06D8	0000
LATC	068E	0000	PORTG		
ODCC	0690	0000	TRISG	06DA	FFFF
ANSC	0692	FFFF	PORTG	06DC	0000
IOCPC	0694	0000	LATG	06DE	0000
IOCNC	0696	0000	ODCG	06E0	0000
IOCFC	0698	0000	ANSG	06E2	FFFF
IOCPUC	069A	0000	IOCPG	06E4	0000
IOCPDC	069C	0000	IOCNG	06E6	0000
PORTD		IOCFG	06E8	0000	
TRISD	069E	FFFF	IOCPUG	06EA	0000
PORTD	06A0	0000	IOCPDG	06EC	0000
LATD	06A2	0000			
ODCD	06A4	0000			

TABLE 4-10: SFR MAP: 0600h BLOCK

 $\label{eq:legend: Legend: Legend: Legend: Legend: Legend: Constant of the set of the s$

Note 1: PORTA and all associated bits are unimplemented in 64-pin devices and read as '0'.

File Name	Address	All Resets	File Name	Address	All Resets
A/D	•	•	PERIPHERAL PIN SELECT		
ADC1BUF0	0712	XXXX	RPINR0	0790	3F3F
ADC1BUF1	0714	XXXX	RPINR1	0792	3F3F
ADC1BUF2	0716	XXXX	RPINR2	0794	3F3F
ADC1BUF3	0718	XXXX	RPINR3	0796	3F3F
ADC1BUF4	071A	XXXX	RPINR4	0798	3F3F
ADC1BUF5	071C	XXXX	RPINR5	079A	3F3F
ADC1BUF6	071E	XXXX	RPINR6	079C	3F3F
ADC1BUF7	0720	XXXX	RPINR7	079E	3F3F
ADC1BUF8	0722	XXXX	RPINR8	07A0	003F
ADC1BUF9	0724	XXXX	RPINR11	07A6	3F3F
ADC1BUF10	0726	XXXX	RPINR12	07A8	3F3F
ADC1BUF11	0728	XXXX	RPINR14	07AC	3F3F
ADC1BUF12	072A	XXXX	RPINR15	07AE	003F
ADC1BUF13	072C	XXXX	RPINR17	07B2	3F00
ADC1BUF14	072E	XXXX	RPINR18	07B4	3F3F
ADC1BUF15	0730	XXXX	RPINR19	07B6	3F3F
ADC1BUF16	0732	XXXX	RPINR20	07B8	3F3F
ADC1BUF17	0734	XXXX	RPINR21	07BA	3F3F
ADC1BUF18	0736	XXXX	RPINR22	07BC	3F3F
ADC1BUF19	0738	XXXX	RPINR23	07BE	3F3F
ADC1BUF20	073A	XXXX	RPINR25	07C2	3F3F
ADC1BUF21	073C	XXXX	RPINR27	07C6	3F3F
ADC1BUF22	073E	XXXX	RPINR28	07C8	3F3F
ADC1BUF23	0740	XXXX	RPINR29	07CA	003F
ADC1BUF24	0742	XXXX	RPOR0	07D4	0000
ADC1BUF25	0744	XXXX	RPOR1	07D6	0000
AD1CON1	0746	0000	RPOR2	07D8	0000
AD1CON2	0748	0000	RPOR3	07DA	0000
AD1CON3	074A	0000	RPOR4	07DC	0000
AD1CHS	074C	0000	RPOR5	07DE	0000
AD1CSSH	074E	0000	RPOR6	07E0	0000
AD1CSSL	0750	0000	RPOR7	07E2	0000
AD1CON4	0752	0000	RPOR8	07E4	0000
AD1CON5	0754	0000	RPOR9	07E6	0000
AD1CHITH	0756	0000	RPOR10	07E8	0000
AD1CHITL	0758	0000	RPOR11	07EA	0000
AD1CTMENH	075A	0000	RPOR12	07EC	0000
AD1CTMENL	075C	0000	RPOR13	07EE	0000
AD1RESDMA	075E	0000	RPOR14	07F0	0000
NVM			RPOR15	07F2	0000
NVMCON	0760	0000			
NVMADR	0762	XXXX			
NVMADRU	0764	00xx			
NVMKEY	0766	0000			

TABLE 4-11: SFR MAP: 0700h BLOCK

 $[\]ensuremath{\textcircled{}^{\odot}}$ 2015-2019 Microchip Technology Inc.

4.2.5 EXTENDED DATA SPACE (EDS)

The Extended Data Space (EDS) allows PIC24F devices to address a much larger range of data than would otherwise be possible with a 16-bit address range. EDS includes any additional internal data memory not directly accessible by the lower 32-Kbyte data address space and any external memory through EPMP.

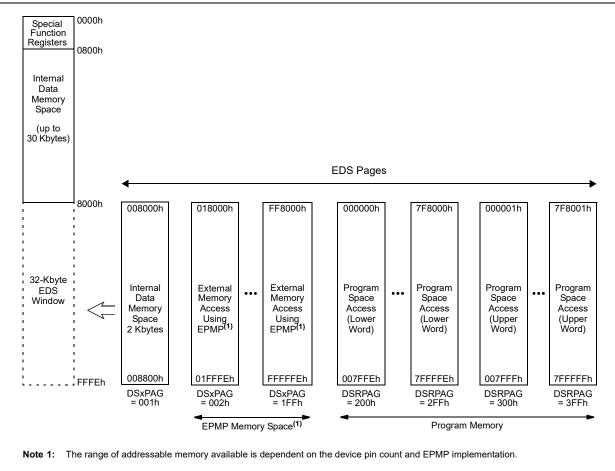

In addition, EDS also allows read access to the program memory space. This feature is called Program Space Visibility (PSV) and is discussed in detail in Section 4.3.3 "Reading Data from Program Memory Using EDS".

Figure 4-4 displays the entire EDS space. The EDS is organized as pages, called EDS pages, with one page equal to the size of the EDS window (32 Kbytes). A particular EDS page is selected through the Data Space Read Page register (DSRPAG) or the Data Space Write Page register (DSWPAG). For PSV, only the DSRPAG register is used. The combination of the DSRPAG register value and the 16-bit wide data address forms a 24-bit Effective Address (EA). The data addressing range of the PIC24FJ1024GA610/ GB610 family devices depends on the version of the Enhanced Parallel Master Port implemented on a particular device; this is, in turn, a function of device pin count. Table 4-12 lists the total memory accessible by each of the devices in this family. For more details on accessing external memory using EPMP, refer to **"Enhanced Parallel Master Port (EPMP)"** (www.microchip.com/ DS39730) in the *"dsPIC33/PIC24 Family Reference Manual"*.

TABLE 4-12:	TOTAL ACCESSIBLE DATA
	MEMORY

Family	Internal RAM	External RAM Access Using EPMP	
PIC24FJXXXGX610	32K	Up to 16 Mbytes	
PIC24FJXXXGX606	32K	Up to 64K	

Note: Accessing Page 0 in the EDS window will generate an address error trap as Page 0 is the base data memory (data locations, 0800h to 7FFFh, in the lower Data Space).

FIGURE 4-4: EXTENDED DATA SPACE

4.2.5.1 Data Read from EDS

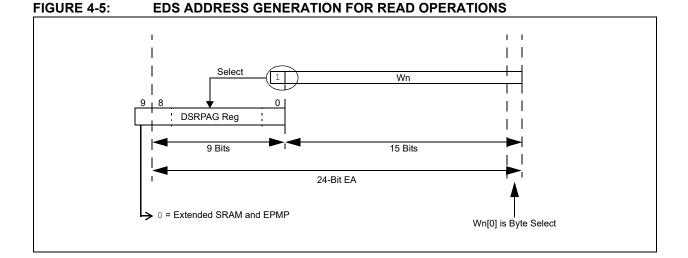

In order to read the data from the EDS space, first, an Address Pointer is set up by loading the required EDS page number into the DSRPAG register and assigning the offset address to one of the W registers. Once the above assignment is done, the EDS window is enabled by setting bit 15 of the Working register which is assigned with the offset address; then, the contents of the pointed EDS location can be read.

Figure 4-5 illustrates how the EDS space address is generated for read operations.

When the Most Significant bit (MSb) of EA is '1' and DSRPAG[9] = 0, the lower 9 bits of DSRPAG are concatenated to the lower 15 bits of EA to form a 24-bit EDS space address for read operations.

Example 4-1 shows how to read a byte, word and double word from EDS.

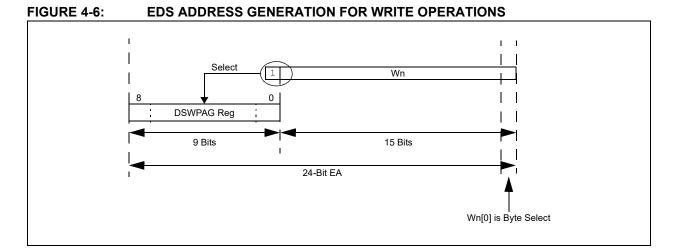
Note: All read operations from EDS space have an overhead of one instruction cycle. Therefore, a minimum of two instruction cycles are required to complete an EDS read. For EDS reads under the REPEAT instruction; the first two accesses take three cycles and the subsequent accesses take one cycle.

EXAMPLE 4-1: EDS READ CODE IN ASSEMBLY

; Set the EDS page from where the data to be read #0x0002, w0 mov w0, DSRPAG mov ;page 2 is selected for read #0x0800, w1 ;select the location (0x800) to be read mov ;set the MSB of the base address, enable EDS mode bset w1, #15 ;Read a byte from the selected location mov.b [w1++], w2 ;read Low byte mov.b [w1++], w3 ;read High byte ;Read a word from the selected location [w1], w2 mov ; ;Read Double - word from the selected location mov.d [w1], w2 ;two word read, stored in w2 and w3

4.2.5.2 Data Write into EDS

In order to write data to EDS, such as in EDS reads, an Address Pointer is set up by loading the required EDS page number into the DSWPAG register and assigning the offset address to one of the W registers. Once the above assignment is done, then the EDS window is enabled by setting bit 15 of the Working register, assigned with the offset address and the accessed location can be written.


Figure 4-2 illustrates how the EDS address is generated for write operations.

When the MSbs of EA are '1', the lower 9 bits of DSWPAG are concatenated to the lower 15 bits of EA to form a 24-bit EDS address for write operations. Example 4-2 shows how to write a byte, word and double word to EDS.

The Data Space Page registers (DSRPAG/DSWPAG) do not update automatically while crossing a page boundary when the rollover happens from 0xFFFF to

0x8000. While developing code in assembly, care must be taken to update the Data Space Page registers when an Address Pointer crosses the page boundary. The 'C' compiler keeps track of the addressing, and increments or decrements the Page registers accordingly, while accessing contiguous data memory locations.

- **Note 1:** All write operations to EDS are executed in a single cycle.
 - 2: Use of Read/Modify/Write operation on any EDS location under a REPEAT instruction is not supported. For example, BCLR, BSW, BTG, RLC f, RLNC f, RRC f, RRNC f, ADD f, SUB f, SUBR f, AND f, IOR f, XOR f, ASR f, ASL f.
 - **3:** Use the DSRPAG register while performing Read/Modify/Write operations.

EXAMPLE 4-2: EDS WRITE CODE IN ASSEMBLY

```
; Set the EDS page where the data to be written
        #0x0002, w0
   mov
          w0, DSWPAG
                       ;page 2 is selected for write
   mov
   mov
          \#0x0800, w1 ;select the location (0x800) to be written
         w1, #15
                        ;set the MSB of the base address, enable EDS mode
   bset
;Write a byte to the selected location
   mov #0x00A5, w2
   mov
          #0x003C, w3
   mov.b w2, [w1++]
                       ;write Low byte
   mov.b w3, [w1++]
                        ;write High byte
;Write a word to the selected location
          #0x1234, w2
   mov
                       ;
          w2, [w1]
   mov
;Write a Double - word to the selected location
   mov
          #0x1122, w2
   mov
          #0x4455, w3
   mov.d w2, [w1]
                         ;2 EDS writes
```

DSRPAG (Data Space Read Register)	DSWPAG (Data Space Write Register)	Source/Destination Address while Indirect Addressing	24-Bit EA Pointing to EDS	Comment
x ⁽¹⁾	x ⁽¹⁾	0000h to 1FFFh	000000h to 001FFFh	Near Data Space ⁽²⁾
		2000h to 7FFFh	002000h to 007FFFh	
001h	001h		008000h to 00FFFEh	
002h	002h		010000h to 017FFEh	
003h	003h		018000h to	
•	•		0187FEh	EPMP Memory Space
•	•	8000h to FFFFh	•	
•	•		•	
•	•		•	
•	•		•	
1FFh	1FFh		FF8000h to FFFFFEh	
000h	000h		Invalid Address	Address Error Trap ⁽³⁾

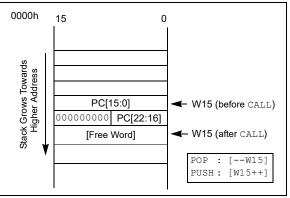
TABLE 4-13: EDS MEMORY ADDRESS WITH DIFFERENT PAGES AND ADDRESSES

Note 1: If the source/destination address is below 8000h, the DSRPAG and DSWPAG registers are not considered.

- 2: This Data Space can also be accessed by Direct Addressing.
- **3:** When the source/destination address is above 8000h and DSRPAG/DSWPAG are '0', an address error trap will occur.

4.2.6 SOFTWARE STACK

Apart from its use as a Working register, the W15 register in PIC24F devices is also used as a Software Stack Pointer (SSP). The pointer always points to the first available free word and grows from lower to higher addresses. It pre-decrements for stack pops and post-increments for stack pushes, as shown in Figure 4-7. Note that for a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, ensuring that the MSB is always clear.


Note:	A PC push during exception processing
	will concatenate the SRL register to the
	MSB of the PC prior to the push.

The Stack Pointer Limit Value register (SPLIM), associated with the Stack Pointer, sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM[0] is forced to '0' as all stack operations must be word-aligned. Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal, and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address 2000h in RAM, initialize the SPLIM with the value, 1FFEh.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0800h. This prevents the stack from interfering with the SFR space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

FIGURE 4-7: CALL STACK FRAME

^{© 2015-2019} Microchip Technology Inc.

4.3 Interfacing Program and Data Memory Spaces

The PIC24F architecture uses a 24-bit wide program space and 16-bit wide Data Space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use these data successfully, they must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the PIC24F architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the Data Space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This makes the method ideal for accessing data tables that need to be updated from time to time. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. It can only access the least significant word of the program word.

4.3.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Memory Page Address register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the MSBs of TBLPAG are used to determine if the operation occurs in the user memory (TBLPAG[7] = 0) or the configuration memory (TBLPAG[7] = 1).

For remapping operations, the 10-bit Extended Data Space Read register (DSRPAG) is used to define a 16K word page in the program space. When the Most Significant bit (MSb) of the EA is '1', and the MSb (bit 9) of DSRPAG is '1', the lower 8 bits of DSRPAG are concatenated with the lower 15 bits of the EA to form a 23-bit program space address. The DSRPAG[8] bit decides whether the lower word (when bit is '0') or the higher word (when bit is '1') of program memory is mapped. Unlike table operations, this strictly limits remapping operations to the user memory area.

Table 4-14 and Figure 4-8 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P[23:0] refers to a program space word, whereas D[15:0] refers to a Data Space word.

	Access	Program Space Address					
Access Type	Space	[23] [22:16] [15]		[14:1]	[0]		
Instruction Access	User	0		PC[22:1]		0	
(Code Execution)		0xx xxxx xxxx xxxx xxxx xxxx					
TBLRD/TBLWT	User	TE	TBLPAG[7:0] Data EA[15:0]				
(Byte/Word Read/Write)		02	XXX XXXX	XXXX XXXX XXXX XXXX			
	Configuration TBLPAG[7:0]		BLPAG[7:0]	Data EA[15:0]			
		1xxx xxxx		XXXX XXXX XXXX XXXX		XXX	
Program Space Visibility	User	0	DSRPAG[7:	0] ⁽²⁾	Data EA[14	:0] ⁽¹⁾	
(Block Remap/Read)		0 xxxx xxxx		XXX XXXX XXXX XXXX			

TABLE 4-14: PROGRAM SPACE ADDRESS CONSTRUCTION

Note 1: Data EA[15] is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is DSRPAG[0].

2: DSRPAG[9] is always '1' in this case. DSRPAG[8] decides whether the lower word or higher word of program memory is read. When DSRPAG[8] is '0', the lower word is read, and when it is '1', the higher word is read.

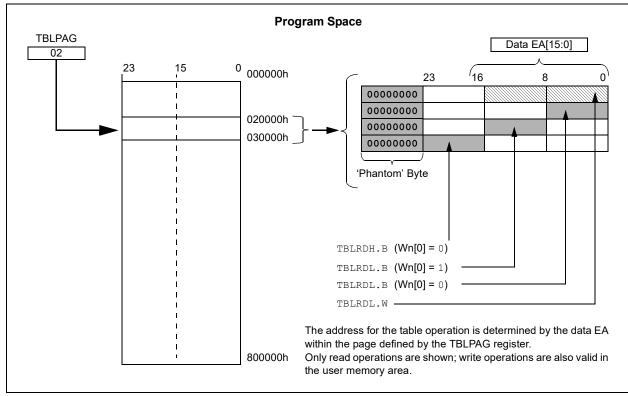
© 2015-2019 Microchip Technology Inc.

4.3.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through Data Space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper eight bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to Data Space addresses. Program memory can thus be regarded as two, 16-bit word-wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word, and TBLRDH and TBLWTH access the space which contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.


 TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P[15:0]) to a data address (D[15:0]). In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when byte select is '1'; the lower byte is selected when it is '0'. TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P[23:16]) to a data address. Note that D[15:8], the 'phantom' byte, will always be '0'.

In Byte mode, it maps the upper or lower byte of the program word to D[7:0] of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (byte select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are described in Section 6.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Memory Page Address register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG[7] = 0, the table page is located in the user memory space. When TBLPAG[7] = 1, the page is located in configuration space.

Note: Only Table Read operations will execute in the configuration memory space where Device IDs are located. Table Write operations are not allowed.

FIGURE 4-9: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

4.3.3 READING DATA FROM PROGRAM MEMORY USING EDS

The upper 32 Kbytes of Data Space may optionally be mapped into any 16K word page of the program space. This provides transparent access of stored constant data from the Data Space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the Data Space occurs when the MSb of EA is '1' and the DSRPAG[9] is also '1'. The lower eight bits of DSRPAG are concatenated to the Wn[14:0] bits to form a 23-bit EA to access program memory. The DSRPAG[8] decides which word should be addressed; when the bit is '0', the lower word, and when '1', the upper word of the program memory is accessed.

The entire program memory is divided into 512 EDS pages, from 200h to 3FFh, each consisting of 16K words of data. Pages, 200h to 2FFh, correspond to the lower words of the program memory, while 300h to 3FFh correspond to the upper words of the program memory.

Using this EDS technique, the entire program memory can be accessed. Previously, the access to the upper word of the program memory was not supported. Table 4-15 provides the corresponding 23-bit EDS address for program memory with EDS page and source addresses.

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV. D instructions will require one instruction cycle in addition to the specified execution time. All other instructions will require two instruction cycles in addition to the specified execution time.

For operations that use PSV, which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.

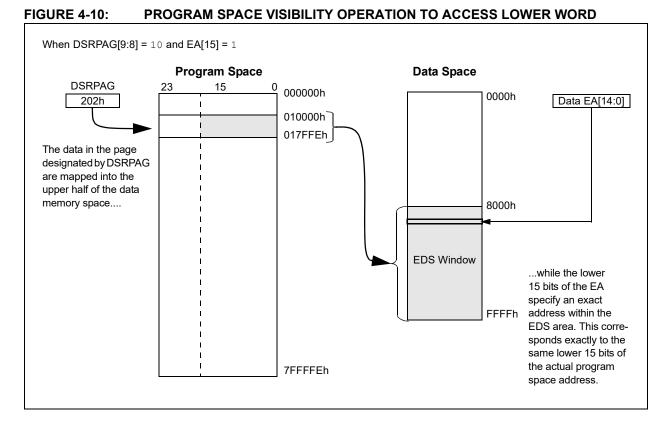
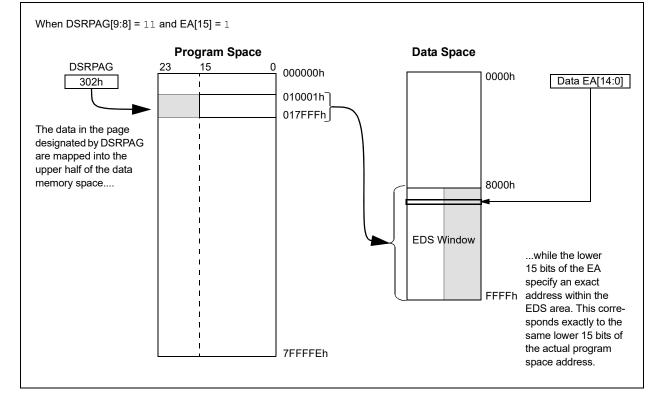

DSRPAG (Data Space Read Register)	Source Address while Indirect Addressing	23-Bit EA Pointing to EDS	Comment
200h		000000h to 007FFEh	Lower words of 4M program
•		•	instructions; (8 Mbytes) for
•		•	read operations only.
•		•	
2FFh		7F8000h to 7FFFFEh	
300h	8000h to FFFFh	000001h to 007FFFh	Upper words of 4M program
•		•	instructions (4 Mbytes remaining;
•		•	4 Mbytes are phantom bytes) for
•		•	read operations only.
3FFh		7F8001h to 7FFFFFh	
000h		Invalid Address	Address error trap. ⁽¹⁾

TABLE 4-15: EDS PROGRAM ADDRESS WITH DIFFERENT PAGES AND ADDRESSES


Note 1: When the source/destination address is above 8000h and DSRPAG/DSWPAG is '0', an address error trap will occur.

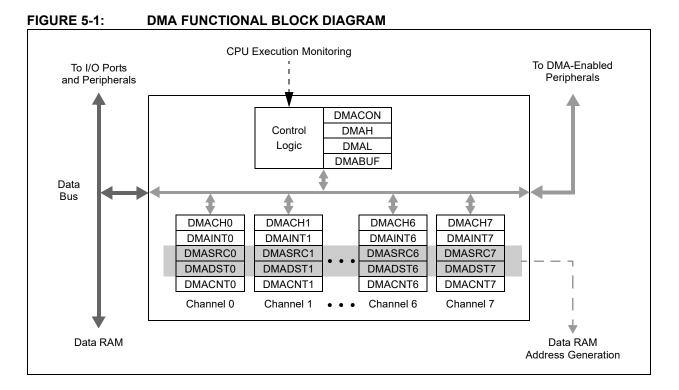
EXAMPLE 4-3: EDS READ CODE FROM PROGRAM MEMORY IN ASSEMBLY

; Set the	EDS page from where the dat	a to be read
mov	#0x0202, w0	
mov	w0, DSRPAG	;page 0x202, consisting lower words, is selected for read
mov	#0x000A, w1	;select the location (0x0A) to be read
bset	w1, #15	;set the MSB of the base address, enable EDS mode
;Read a by	te from the selected locati	on
mov.b	[w1++], w2	;read Low byte
mov.b	[w1++], w3	;read High byte
;Read a wo	rd from the selected locati	on
mov	[w1], w2	;
;Read Doub	le - word from the selected	l location
mov.d	[w1], w2	;two word read, stored in w2 and w3

FIGURE 4-11: PROGRAM SPACE VISIBILITY OPERATION TO ACCESS UPPER WORD

5.0 DIRECT MEMORY ACCESS CONTROLLER (DMA)

Note: This data sheet summarizes the features of the PIC24FJ1024GA610/GB610 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Direct Memory Access Controller (DMA)" (www.microchip.com/ DS30009742) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.


The Direct Memory Access Controller (DMA) is designed to service high-throughput data peripherals operating on the SFR bus, allowing them to access data memory directly and alleviating the need for CPU-intensive management. By allowing these data-intensive peripherals to share their own data path, the main data bus is also deloaded, resulting in additional power savings.

The DMA Controller functions both as a peripheral and a direct extension of the CPU. It is located on the microcontroller data bus between the CPU and DMAenabled peripherals, with direct access to SRAM. This partitions the SFR bus into two buses, allowing the DMA Controller access to the DMA capable peripherals located on the new DMA SFR bus. The controller serves as a master device on the DMA SFR bus, controlling data flow from DMA capable peripherals. The controller also monitors CPU instruction processing directly, allowing it to be aware of when the CPU requires access to peripherals on the DMA bus and automatically relinquishing control to the CPU as needed. This increases the effective bandwidth for handling data without DMA operations causing a processor Stall. This makes the controller essentially transparent to the user.

The DMA Controller has these features:

- Eight Multiple Independent and Independently Programmable Channels
- Concurrent Operation with the CPU (no DMA caused Wait states)
- DMA Bus Arbitration
- Five Programmable Address modes
- Four Programmable Transfer modes
- Four Flexible Internal Data Transfer modes
- · Byte or Word Support for Data Transfer
- 16-Bit Source and Destination Address Register for Each Channel, Dynamically Updated and Reloadable
- 16-Bit Transaction Count Register, Dynamically Updated and Reloadable
- Upper and Lower Address Limit Registers
- Counter Half-Full Level Interrupt
- · Software Triggered Transfer
- Null Write mode for Symmetric Buffer Operations

A simplified block diagram of the DMA Controller is shown in Figure 5-1.

© 2015-2019 Microchip Technology Inc.

5.1 Summary of DMA Operations

The DMA Controller is capable of moving data between addresses according to a number of different parameters. Each of these parameters can be independently configured for any transaction; in addition, any or all of the DMA channels can independently perform a different transaction at the same time. Transactions are classified by these parameters:

- Source and destination (SFRs and data RAM)
- Data size (byte or word)
- Trigger source
- Transfer mode (One-Shot, Repeated or Continuous)
- Addressing modes (fixed address or address blocks, with or without address increment/ decrement)

In addition, the DMA Controller provides channel priority arbitration for all channels.

5.1.1 SOURCE AND DESTINATION

Using the DMA Controller, data may be moved between any two addresses in the Data Space. The SFR space (0000h to 07FFh), or the data RAM space (0800h to FFFFh), can serve as either the source or the destination. Data can be moved between these areas in either direction or between addresses in either area. The four different combinations are shown in Figure 5-2.

If it is necessary to protect areas of data RAM, the DMA Controller allows the user to set upper and lower address boundaries for operations in the Data Space above the SFR space. The boundaries are set by the DMAH and DMAL Limit registers. If a DMA channel attempts an operation outside of the address boundaries, the transaction is terminated and an interrupt is generated.

5.1.2 DATA SIZE

The DMA Controller can handle both 8-bit and 16-bit transactions. Size is user-selectable using the SIZE bit (DMACHn[1]). By default, each channel is configured for word-sized transactions. When byte-sized transactions are chosen, the LSb of the source and/or destination address determines if the data represent the upper or lower byte of the data RAM location.

5.1.3 TRIGGER SOURCE

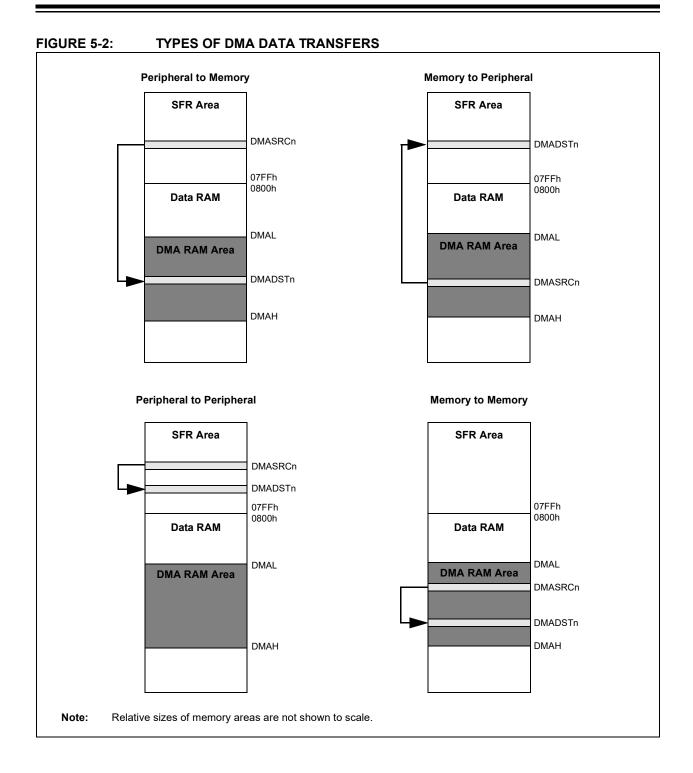
The DMA Controller can use any one of the device's interrupt sources to initiate a transaction. The DMA Trigger sources are listed in reverse order of their natural interrupt priority and are shown in Table 5-1.

Since the source and destination addresses for any transaction can be programmed independently of the Trigger source, the DMA Controller can use any Trigger to perform an operation on any peripheral. This also allows DMA channels to be cascaded to perform more complex transfer operations.

5.1.4 TRANSFER MODE

The DMA Controller supports four types of data transfers, based on the volume of data to be moved for each Trigger.

- One-Shot: A single transaction occurs for each Trigger.
- Continuous: A series of back-to-back transactions occur for each Trigger; the number of transactions is determined by the DMACNTn transaction counter.
- Repeated One-Shot: A single transaction is performed repeatedly, once per Trigger, until the DMA channel is disabled.
- Repeated Continuous: A series of transactions are performed repeatedly, one cycle per Trigger, until the DMA channel is disabled.


All transfer modes allow the option to have the source and destination addresses, and counter value automatically reloaded after the completion of a transaction. Repeated mode transfers do this automatically.

5.1.5 ADDRESSING MODES

The DMA Controller also supports transfers between single addresses or address ranges. The four basic options are:

- · Fixed-to-Fixed: Between two constant addresses
- Fixed-to-Block: From a constant source address to a range of destination addresses
- Block-to-Fixed: From a range of source addresses to a single, constant destination address
- Block-to-Block: From a range to source addresses to a range of destination addresses

The option to select auto-increment or auto-decrement of source and/or destination addresses is available for Block Addressing modes.

5.1.6 CHANNEL PRIORITY

Each DMA channel functions independently of the others, but also competes with the others for access to the data and DMA buses. When access collisions occur, the DMA Controller arbitrates between the channels using a user-selectable priority scheme. Two schemes are available:

- Round-Robin: When two or more channels collide, the lower numbered channel receives priority on the first collision. On subsequent collisions, the higher numbered channels each receive priority, based on their channel number.
- Fixed: When two or more channels collide, the lowest numbered channel always receives priority, regardless of past history; however, any channel being actively processed is not available for an immediate retrigger. If a higher priority channel is continually requesting service, it will be scheduled for service after the next lower priority channel with a pending request.

5.2 Typical Setup

To set up a DMA channel for a basic data transfer:

- Enable the DMA Controller (DMAEN = 1) and select an appropriate channel priority scheme by setting or clearing PRSSEL.
- 2. Program DMAH and DMAL with the appropriate upper and lower address boundaries for data RAM operations.
- 3. Select the DMA channel to be used and disable its operation (CHEN = 0).
- 4. Program the appropriate source and destination addresses for the transaction into the channel's DMASRCn and DMADSTn registers.
- 5. Program the DMACNTn register for the number of Triggers per transfer (One-Shot or Continuous modes) or the number of words (bytes) to be transferred (Repeated modes).
- 6. Set or clear the SIZE bit to select the data size.
- 7. Program the TRMODE[1:0] bits to select the Data Transfer mode.
- 8. Program the SAMODE[1:0] and DAMODE[1:0] bits to select the addressing mode.
- 9. Enable the DMA channel by setting CHEN.
- 10. Enable the Trigger source interrupt.

5.3 Peripheral Module Disable

Unlike other peripheral modules, the channels of the DMA Controller cannot be individually powered down using the Peripheral Module Disable (PMD) registers. Instead, the channels are controlled as two groups. The DMA0MD bit (PMD7[4]) selectively controls DMACH0 through DMACH3. The DMA1MD bit (PMD7[5]) controls DMACH4 through DMACH7. Setting both bits effectively disables the DMA Controller.

5.4 Registers

The DMA Controller uses a number of registers to control its operation. The number of registers depends on the number of channels implemented for a particular device.

There are always four module-level registers (one control and three buffer/address):

- DMACON: DMA Engine Control Register (Register 5-1)
- DMAH and DMAL: DMA High and Low Address Limit Registers
- · DMABUF: DMA Data Buffer

Each of the DMA channels implements five registers (two control and three buffer/address):

- DMACHn: DMA Channel n Control Register (Register 5-2)
- DMAINTn: DMA Channel n Interrupt Register (Register 5-3)
- DMASRCn: DMA Data Source Address Pointer for Channel n
- DMADSTn: DMA Data Destination Source for Channel n
- DMACNTn: DMA Transaction Counter for Channel n

For PIC24FJ1024GA610/GB610 family devices, there are a total of 44 registers.

	REGISTER 5-1:	DMACON: DMA ENGINE CONTROL REGISTER
--	---------------	-------------------------------------

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
DMAEN		—	—	—	—	—	—	
bit 15		·			•	•	bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
—	—	—	—	—	—	—	PRSSEL	
bit 7	bit 7 bit 0							
Legend:								
R = Readable	bit	W = Writable I	bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at I	-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown				
bit 15	DMAEN: DM	A Module Enab	le bit					
	1 = Enables							
	0 = Disables module and terminates all active DMA operation(s)							

bit 14-1 Unimplemented: Read as '0'

bit 0 PRSSEL: Channel Priority Scheme Selection bit

1 = Round-robin scheme

0 = Fixed priority scheme

^{© 2015-2019} Microchip Technology Inc.

U-0	U-0	U-0	r-0	U-0	R/W-0	R/W-0	R/W-0	
_	_			_	NULLW	RELOAD ⁽¹⁾	CHREQ ⁽³⁾	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SAMODE	1 SAMODE0	DAMODE1	DAMODE0	TRMODE1	TRMODE0	SIZE	CHEN	
bit 7							bit	
Legend:		r = Reserved	bit					
R = Readal	ble bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own	
bit 15-13	-	ted: Read as '	כ'					
bit 12	Reserved: M							
bit 11	•	ted: Read as '						
bit 10		Write Mode bit						
		y write is initiate ny write is initia		in for every write	te to DMADSTr	1		
bit 9		Idress and Cou)				
					reloaded to th	eir previous va	lues upon th	
	start of th	ne next operatio	on	-		-	-	
					ded on the start	of the next ope	eration ⁽²⁾	
bit 8		A Channel Soft	-					
		equest is initiati request is peni		; automatically	cleared upon c	ompletion of a	DMA transfe	
bit 7-6]: Source Add	-	ection bits				
	11 = Reserve	-						
		-	nted based on	the SIZE bit af	ter a transfer co	ompletion		
					er a transfer co	mpletion		
hit E 1		Cn remains un	-	-	pletion			
bit 5-4	-	DAMODE[1:0]: Destination Address Mode Selection bits 11 = Reserved						
			nted based on	the SIZE bit aff	ter a transfer co	ompletion		
	01 = DMADS	Tn is incremen	ted based on t	he SIZE bit afte	er a transfer co			
		Tn remains un	•		oletion			
bit 3-2	-]: Transfer Mo		its				
	11 = Repeate 10 = Continue	ed Continuous i	node					
		ed One-Shot m	ode					
	00 = One-Sh							
bit 1	SIZE: Data S	SIZE: Data Size Selection bit						
	1 = Byte (8-bi							
	0 = Word (16-	,						
bit 0		Channel Enabl						
		sponding chan sponding chan						
Note 1:	Only the original l	DMACNTn is re	equired to be s	tored to recove	r the original D	MASRCn and [DMADSTn.	
2:	DMASRCn, DMA (DMACHn[2] = 1)	DSTn and DM	ACNTn are alw	ays reloaded i	-			
		. .						

REGISTER 5-2: DMACHn: DMA CHANNEL n CONTROL REGISTER

3: The number of transfers executed while CHREQ is set depends on the configuration of TRMODE[1:0].

REGISTER 5-3:	DMAINTn: DMA CHANNEL n INTERRUPT REGISTER

REGISTER 8	5-3: DMAI	NTn: DMA CI	HANNEL n I		REGISTER		
R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DBUFWF ⁽¹⁾	CHSEL6	CHSEL5	CHSEL4	CHSEL3	CHSEL2	CHSEL1	CHSEL0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
HIGHIF ^(1,2)	LOWIF ^(1,2)	DONEIF ⁽¹⁾	HALFIF ⁽¹⁾	OVRUNIF ⁽¹⁾	_	_	HALFEN
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplerr	nented bit. read	d as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
bit 15	1 = The cont DMASRO	Cn in Null Write ent of the DMA I	A buffer has r mode	bit ⁽¹⁾ not been writter n written to the le		·	
bit 14-8		DMA Channel		ion bits			
		for a complete					
bit 7	1 = The DMA data RAN	/I space	ttempted to ac	: Flag bit ^(1,2) cess an addres high address li	-	DMAH or the up	oper limit of the
bit 6		Low Address L		-	nin interrupt		
bit 0	1 = The DMA the SFR	A channel has a range (07FFh)	ittempted to a	ccess the DMA low address lin		lower than DM	IAL, but above
bit 5		A Complete Op			·		
	0 = The current <u>If CHEN = 0:</u> 1 = The previous	ent DMA sessio ious DMA sess	n has not yet ion has ended	with completion completed with completion without complet	n		
bit 4	HALFIF: DMA 1 = DMACNT	A 50% Waterma īn has reached	ark Level Inter the halfway p	rupt Flag bit ⁽¹⁾ oint to 0000h			
bit 3	OVRUNIF: DI 1 = The DMA	n has not reac MA Channel Ov channel is trigg run condition ha	verrun Flag bit gered while it is	(1) s still completing	the operation	based on the p	revious Triggel
bit 2-1		ted: Read as '(u			
bit 0	-	lfway Completio		hit			
Dit O	1 = Interrupts	are invoked w	hen DMACNT	in has reached in has reached in the transmission of trans		nt and at compl	letion
			-	ate an interrupt. or DMADSTn is	s either greate	r than DM∆H o	r less than
		s infill violation			s chiner yreale		

DMAL) is NOT done before the actual access.

© 2015-2019 Microchip Technology Inc.

CHSEL[6:0]	Trigger (Interrupt)	CHSEL[6:0]	Trigger (Interrupt)
0000000	Off	0110111	UART6 Error Interrupt
0000001	SCCP7 IC/OC Interrupt	0111000	UART5 TX Interrupt
0000010	SCCP7 Timer Interrupt	0111001	UART5 RX Interrupt
0000011	SCCP6 IC/OC Interrupt	0111010	UART5 Error Interrupt
0000100	SCCP6 Timer Interrupt	0111011	UART4 TX Interrupt
0000101	SCCP5 IC/OC Interrupt	0111100	UART4 RX Interrupt
0000110	SCCP5 Timer Interrupt	0111101	UART4 Error Interrupt
0000111	SCCP4 IC/OC Interrupt	0111110	UART3 TX Interrupt
0001000	SCCP4 Timer Interrupt	0111111	UART3 RX Interrupt
0001011	MCCP3 IC/OC Interrupt	100000	UART3 Error Interrupt
0001100	MCCP3 Timer Interrupt	1000001	UART2 TX Interrupt
0001101	MCCP2 IC/OC Interrupt	1000010	UART2 RX Interrupt
0001110	MCCP2 Timer Interrupt	1000011	UART2 Error Interrupt
0001111	MCCP1 IC/OC Interrupt	1000100	UART1 TX Interrupt
0010000	MCCP1 Timer Interrupt	1000101	UART1 RX Interrupt
0010001	OC6 Interrupt	1000110	UART1 Error Interrupt
0010010	OC5 Interrupt	1001001	DMA Channel 7 Interrupt
0010011	OC4 Interrupt	1001010	DMA Channel 6 Interrupt
0010100	OC3 Interrupt	1001011	DMA Channel 5 Interrupt
0010101	OC2 Interrupt	1001100	DMA Channel 4 Interrupt
0010110	OC1 Interrupt	1001101	DMA Channel 3 Interrupt
0010111	IC6 Interrupt	1001110	DMA Channel 2 Interrupt
0011000	IC5 Interrupt	1001111	DMA Channel 1 Interrupt
0011001	IC4 Interrupt	1010000	DMA Channel 0 Interrupt
0011010	IC3 Interrupt	1010001	A/D Interrupt
0011011	IC2 Interrupt	1010010	USB Interrupt
0011100	IC1 Interrupt	1010011	PMP Interrupt
0100000	SPI3 Receive Interrupt	1010100	HLVD Interrupt
0100001	SPI3 Transmit Interrupt	1010101	CRC Interrupt
0100010	SPI3 General Interrupt	1011001	CLC4 Out
0100011	SPI2 Receive Interrupt	1011010	CLC3 Out
0100100	SPI2 Transmit Interrupt	1011011	CLC2 Out
0100101	SPI2 General Interrupt	1011100	CLC1 Out
0100110	SPI1 Receive Interrupt	1011110	RTCC Alarm Interrupt
0100111	SPI1 Transmit Interrupt	1011111	TMR5 Interrupt
0101000	SPI1 General Interrupt	1100000	TMR4 Interrupt
0101100	I2C3 Slave Interrupt	1100001	TMR3 Interrupt
0101101	I2C3 Master Interrupt	1100010	TMR2 Interrupt
0101110	I2C3 Bus Collision Interrupt	1100011	TMR1 Interrupt
0101111	I2C2 Slave Interrupt	1100110	CTMU Trigger
0110000	I2C2 Master Interrupt	1100111	Comparator Interrupt
0110001	I2C2 Bus Collision Interrupt	1101000	INT4 Interrupt
0110010	I2C1 Slave Interrupt	1101001	INT3 Interrupt
0110011	I2C1 Master Interrupt	1101010	INT2 Interrupt
0110100	I2C1 Bus Collision Interrupt	1101011	INT1 Interrupt
0110101	UART6 TX Interrupt	1101100	INT0 Interrupt
0110110	UART6 RX Interrupt	1101101	Interrupt-on-Change (IOC) Interrup

TABLE 5-1: DMA TRIGGER SOURCES

6.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "PIC24F Flash Program Memory" (www.microchip.com/DS30009715) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

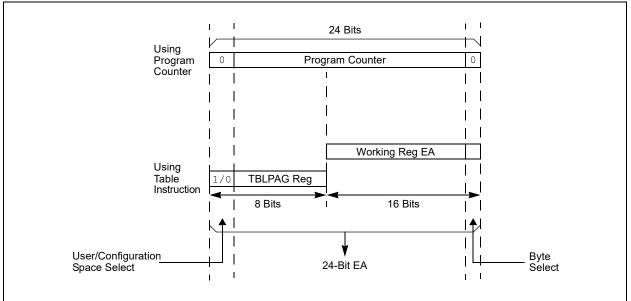
The PIC24FJ1024GA610/GB610 family of devices contains internal Flash program memory for storing and executing application code. The program memory is readable, writable and erasable. The Flash memory can be programmed in four ways:

- In-Circuit Serial Programming[™] (ICSP[™])
- Run-Time Self-Programming (RTSP)
- JTAG
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)

ICSP allows a PIC24FJ1024GA610/GB610 family device to be serially programmed while in the end application circuit. This is simply done with two lines for the programming clock and programming data (named PGECx and PGEDx, respectively), and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user may write program memory data in blocks of 128 instructions (384 bytes) at a time and erase program memory in blocks of 1024 instructions (3072 bytes) at a time.

The device implements a 7-bit Error Correcting Code (ECC). The NVM block contains a logic to write and read ECC bits to and from the Flash memory. The Flash is programmed at the same time as the corresponding ECC parity bits. The ECC provides improved resistance to Flash errors. ECC single bit errors can be transparently corrected. ECC Double-Bit Errors (ECCDBE) result in a trap.


6.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the Table Read and Table Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using the TBLPAG[7:0] bits and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 6-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits[15:0] of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits[23:16] of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 6-1: ADDRESSING FOR TABLE REGISTERS

© 2015-2019 Microchip Technology Inc.

6.2 RTSP Operation

The PIC24F Flash program memory array is organized into rows of 128 instructions or 384 bytes. RTSP allows the user to erase blocks of eight rows (1024 instructions) at a time and to program one row at a time. It is also possible to program two instruction word blocks.

The 8-row erase blocks and single row write blocks are edge-aligned, from the beginning of program memory, on boundaries of 3072 bytes and 384 bytes, respectively.

When data are written to program memory using TBLWT instructions, the data are not written directly to memory. Instead, data written using Table Writes are stored in holding latches until the programming sequence is executed.

Any number of TBLWT instructions can be executed and a write will be successfully performed. However, 128 TBLWT instructions are required to write the full row of memory.

To ensure that no data are corrupted during a write, any unused address should be programmed with FFFFFh. This is because the holding latches reset to an unknown state, so if the addresses are left in the Reset state, they may overwrite the locations on rows which were not rewritten.

The basic sequence for RTSP programming is to set the Table Pointer to point to the programming latches, do a series of TBLWT instructions to load the buffers and set the NVMADRU/NVMADR registers to point to the destination. Programming is performed by setting the control bits in the NVMCON register.

Data can be loaded in any order and the holding registers can be written to multiple times before performing a write operation. Subsequent writes, however, will wipe out any previous writes.

Note: Writing to a location multiple times without erasing is *not* recommended.

All of the Table Write operations are single-word writes (two instruction cycles), because only the buffers are written. A programming cycle is required for programming each row.

6.3 JTAG Operation

The PIC24F family supports JTAG boundary scan. Boundary scan can improve the manufacturing process by verifying pin to PCB connectivity.

6.4 Enhanced In-Circuit Serial Programming

Enhanced In-Circuit Serial Programming uses an onboard bootloader, known as the Program Executive (PE), to manage the programming process. Using an SPI data frame format, the Program Executive can erase, program and verify program memory. For more information on Enhanced ICSP, see the device programming specification.

6.5 Control Registers

There are four SFRs used to read and write the program Flash memory: NVMCON, NVMADRU, NVMADR and NVMKEY.

The NVMCON register (Register 6-1) controls which blocks are to be erased, which memory type is to be programmed and when the programming cycle starts.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 55h and AAh to the NVMKEY register. Refer to **Section 6.6 "Programming Operations"** for further details.

The NVMADRU/NVMADR registers contain the upper byte and lower word of the destination of the NVM write or erase operation. Some operations (chip erase, Inactive Partition erase) operate on fixed locations and do not require an address value.

6.6 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. During a programming or erase operation, the processor stalls (waits) until the operation is finished. Setting the WR bit (NVMCON[15]) starts the operation and the WR bit is automatically cleared when the operation is finished.

In Dual Partition mode, programming or erasing the Inactive Partition will not stall the processor; the code in the Active Partition will still execute during the programming operation.

It is important to mask interrupts for a minimum of five instruction cycles during Flash programming. This can be done in Assembly using the DISI instruction (see Example 6-1).

HC/R/S-0 ⁽¹) R/W-0 ⁽¹⁾	HSC/R-0 ⁽¹⁾	r-0	HSC/R-0 ^(1,3)	R-0 ⁽¹⁾	U-0	U-0
WR	WREN	WRERR	_	SFTSWP	P2ACTIV		_
bit 15		· · ·					bit 8
							(1)
U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
_	—	—	_		NVMOP[3:0] ⁽²	.)	
bit 7							bit 0
Legend:		S = Settable	oit	HC = Hardware Cle	arable bit	r = Reserve	d bit
R = Readat	ole bit	W = Writable			ettable/Clearable bit		
-n = Value a	at POR	'1' = Bit is set		U = Unimplemente		•	
				• • • • • • • • • • • • • • • • • • •			
bit 15	WR: Write C	Control bit ^(1,4)					
	1 = Initiates	a Flash memo	ry program o	or erase operation; th	e operation is self-ti	med and the l	oit is cleared
		ware once the					
			ation is con	nplete and inactive			
bit 14		e Enable bit ⁽¹⁾	,	<i></i>			
		s Flash progran Flash program					
bit 13		rite Sequence	-				
		•	-	uence attempt, or terr	mination has occurre	ed (bit is set a	utomatically
		set attempt of t					atomatioany
	0 = The pro	gram or erase	operation c	ompleted normally			
bit 12	Reserved: N	Maintain as '0'					
bit 11	SFTSWP: S	oft Swap Statu	s bit ^(1,3)				
		rtition Mode:					
	Read as '0'.						
	<u>In Dual Parti</u>		uccessfully	swapped using the B	OOTSWP instruction		
				sing the BOOTSWP ins			
bit 10	P2ACTIV: D	ual Partition Ac	tive Status	bit ⁽¹⁾			
		rtition Mode:					
	Read as '0'.						
	In Dual Parti		to the estiv	o rogion			
		2 is mapped ir 1 is mapped ir		-			
bit 9-4		nted: Read as					
Note 1:	These bits can	only be reset o	n a Power-o	on Reset.			
		•		e unimplemented.			
		cleared by sof		-			
	-	-	-	dicate completion dur	ing any Flash mem	ory program	or erase
		veration while in Single Dertition Mode					

operation while in Single Partition Mode.

REGISTER 6-1: NVMCON: FLASH MEMORY CONTROL REGISTER (CONTINUED)

- bit 3-0 NVMOP[3:0]: NVM Operation Select bits^(1,2)
 - 1110 = Chip erase user memory (does not erase Device ID, customer OTP or executive memory)
 - 1000 = The next WR command will program FBOOT with the data held in the first 48 bits of the write latch and then will program the Dual Partition Signature (SIGN) bit in Flash. The device must be reset before the newly programmed mode can take effect.
 - 0100 = Erase user memory and Configuration Words in the Inactive Partition (Dual Partition modes only)
 - 0011 = Erase a page of program or executive memory
 - 0010 = Row programming operation
 - 0001 = Double-word programming operation
- Note 1: These bits can only be reset on a Power-on Reset.
 - 2: All other combinations of NVMOP[3:0] are unimplemented.
 - 3: This bit may be cleared by software or by any Reset.
 - 4: The WR bit should always be polled to indicate completion during any Flash memory program or erase operation while in Single Partition Mode.

6.6.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of Flash program memory at a time. To do this, it is necessary to erase the 8-row erase block containing the desired row. The general process is:

- 1. Read eight rows of program memory (1024 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 6-1):
 - a) Set the NVMOP[3:0] bits (NVMCON[3:0]) to '0011' to configure for block erase. Set the WREN (NVMCON[14]) bit.
 - b) Write the starting address of the block to be erased into the NVMADRU/NVMADR registers.
 - c) Write 55h to NVMKEY.
 - d) Write AAh to NVMKEY.
 - e) Set the WR bit (NVMCON[15]). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.
- 4. Update the TBLPAG register to point to the programming latches on the device. Update the NVMADRU/NVMADR registers to point to the destination in the program memory.

TABLE 6-1: EXAMPLE PAGE ERASE

- 5. Write the first 128 instructions from data RAM into the program memory buffers (see Table 6-1).
- 6. Write the program block to Flash memory:
 - a) Set the NVMOPx bits to '0010' to configure for row programming. Set the WREN bit.
 - b) Write 55h to NVMKEY.
 - c) Write AAh to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- Repeat Steps 4 through 6 using the next available 128 instructions from the block in data RAM, by incrementing the value in NVMADRU/NVMADR, until all 1024 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 6-2.

Step 1:	Set the NVMCON register to erase a page.
MOV MOV	#0x4003, W0 W0, NVMCON
Step 2:	Load the address of the page to be erased into the NVMADR register pair.
MOV MOV MOV MOV	<pre>#PAGE_ADDR_LO, W0 W0, NVMADR #PAGE_ADDR_HI, W0 W0, NVMADRU</pre>
Step 3:	Set the WR bit.
MOV MOV MOV BSET NOP NOP NOP	#0x55, W0 W0, NVMKEY #0xAA, W0 W0, NVMKEY NVMCON, #WR

EXAMPLE 6-1: ERASING A PROGRAM MEMORY BLOCK ('C' LANGUAGE CODE)

<pre>// C example using MPLAB XC16 unsigned long progAddr = 0xXXXXXX; wrained int affect;</pre>	// Address of row to write
unsigned int offset; //Set up pointer to the first memory location	to be written
NVMADRU = progAddr>>16;	// Initialize PM Page Boundary SFR
NVMADR = progAddr & 0xFFFF;	<pre>// Initialize lower word of address</pre>
NVMCON = 0×4003 ;	// Initialize NVMCON
asm("DISI #5");	<pre>// Block all interrupts with priority <7</pre>
	// for next 5 instructions
builtin_write_NVM();	<pre>// check function to perform unlock</pre>
	// sequence and set WR

EXAMPLE 6-2: INITIATING A PROGRAMMING SEQUENCE

DISI	#5	; Block all interrupts with priority <7 ; for next 5 instructions
MOV.B MOV MOV.B MOV BSET NOP NOP	#0x55, W0 W0, NVMKEY #0xAA, W1 W1, NVMKEY NVMCON, #WR	; Write the 0x55 key ; ; Write the 0xAA key ; Start the programming sequence ; Required delays
BTSC BRA	NVMCON, #15 \$-2	; and wait for it to be ; completed

6.6.2 PROGRAMMING A DOUBLE WORD OF FLASH PROGRAM MEMORY

If a Flash location has been erased, it can be programmed using Table Write instructions to write two instruction words (2 x 24-bit) into the write latch. The TBLPAG register is loaded with the address of the write latches and the NVMADRU/NVMADR registers are loaded with the address of the first of the two instruction words to be programmed. The TBLWTL and TBLWTH

instructions write the desired data into the write latches. To configure the NVMCON register for a two-word write, set the NVMOPx bits (NVMCON[3:0]) to '0001'. The write is performed by executing the unlock sequence and setting the WR bit. An equivalent procedure in 'C', using the MPLAB[®] XC16 compiler and built-in hardware functions, is shown in Example 6-3.

TABLE 6-2: PROGRAMMING A DOUBLE WORD OF FLASH PROGRAM MEMORY

Step 1: Init	tialize the TBLPAG register for writing to the latches.
MOV	#0xFA, W12
MOV	W12, TBLPAG
Step 2: Lo	ad W0:W2 with the next two packed instruction words to program.
MOV	# <lsw0>, W0</lsw0>
MOV	# <msb1:msb0>, W1</msb1:msb0>
MOV	# <lsw1>, W2</lsw1>
Step 3: Se	t the Read Pointer (W6) and Write Pointer (W7), and load the (next set of) write latches.
CLR	W6
CLR	W7
TBLWTL	[W6++], [W7]
	[W6++], [W7++]
	[W6++], [++W7]
TBLWTL.W	[W6++], [W7++]
Step 4: Se	t the NVMADRU/NVMADR register pair to point to the correct address.
MOV	<pre>#DestinationAddress<15:0>, W3</pre>
MOV	<pre>#DestinationAddress<23:16>, W4</pre>
MOV	W3, NVMADR
MOV	W4, NVMADRU
Step 5: Se	t the NVMCON register to program two instruction words.
MOV	#0x4001, W10
MOV	W10, NVMCON
NOP	
Step 6: Init	tiate the write cycle.
MOV	#0x55, W1
MOV	W1, NVMKEY
MOV	#OXAA, W1
MOV	W1, NVMKEY
BSET	NVMCON, #WR
NOP	
NOP	
NOP	

EXAMPLE 6-3: PROGRAMMING A DOUBLE WORD OF FLASH PROGRAM MEMORY ('C' LANGUAGE CODE)

```
// C example using MPLAB XC16
unsigned long progAddr = 0xXXXXXX;
                                           // Address of word to program
unsigned int progData1L = 0xXXXX;
                                           // Data to program lower word of word 1
                                           // Data to program upper byte of word 1
unsigned char progDatalH = 0xXX;
                                           // Data to program lower word of word 2
unsigned int progData2L = 0xXXXX;
unsigned char progData2H = 0xXX;
                                            // Data to program upper byte of word 2
//Set up NVMCON for word programming
NVMCON = 0 \times 4001;
                                             // Initialize NVMCON
TBLPAG = 0xFA;
                                             // Point TBLPAG to the write latches
//Set up pointer to the first memory location to be written
NVMADRU = progAddr>>16;
                                            // Initialize PM Page Boundary SFR
NVMADR = progAddr & 0xFFFF;
                                             // Initialize lower word of address
//Perform TBLWT instructions to write latches
 _builtin_tblwtl(0, progDatalL); // Write word 1 to address low word
 builtin tblwth(0, progData1H);
                                            // Write word 1 to upper byte
__builtin_tblwth(0, progData1H);
__builtin_tblwtl(2, progData2L);
                                           // Write word 2 to address low word
                                            // Write word 2 to upper byte
builtin tblwth(2, progData2H);
asm("DISI #5");
                                            // Block interrupts with priority <7 for next 5
                                            // instructions
                                             // XC16 function to perform unlock sequence and set WR \,
 builtin write NVM();
```

7.0 RESETS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "Reset" (www.microchip.com/ DS39712) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Reset module combines all Reset <u>sources</u> and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

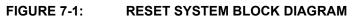
- POR: Power-on Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDT: Watchdog Timer Reset
- BOR: Brown-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Opcode Reset
- UWR: Uninitialized W Register Reset

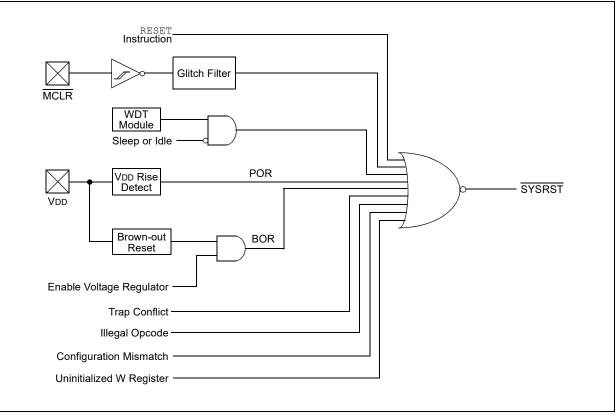
A simplified block diagram of the Reset module is shown in Figure 7-1.

Any active source of Reset will make the SYSRST signal active. Many registers associated with the CPU and peripherals are forced to a known Reset state. Most registers are unaffected by a Reset; their status is unknown on POR and unchanged by all other Resets.

Note:	Refer to the specific peripheral or CPU
	section of this manual for register Reset
	states.

All types of device Reset will set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 7-1). A POR will clear all bits, except for the BOR and POR (RCON[1:0]) bits, which are set. The user may set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software will not cause a device Reset to occur.


There is a special case when the device enters the Retention Sleep mode. RCON flags will be reset and indicate the POR event if the device wakes up from the Retention Sleep mode or if any Reset occurs when the device is in the Retention Sleep mode.


The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this data sheet.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register values after a device Reset will be meaningful.

^{© 2015-2019} Microchip Technology Inc.

PIC24FJ1024GA610/GB610 FAMILY

R/W-0	R/W-0	R/W-1	R/W-0	U-0	U-0	R/W-0	R/W-0
TRAPR ⁽¹⁾	IOPUWR ⁽¹⁾	SBOREN	RETEN ⁽²⁾			CM ⁽¹⁾	VREGS ⁽³⁾
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR ⁽¹⁾	SWR ⁽¹⁾	SWDTEN ⁽⁴⁾	WDTO ⁽¹⁾	SLEEP ⁽¹⁾	IDLE ⁽¹⁾	BOR ⁽¹⁾	POR ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable b	bit	U = Unimplem	ented bit, read	as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	iown
bit 15	TRAPR: Trap	Reset Flag bit ⁽	1)				
	1 = A Trap Co	onflict Reset has	s occurred				
	•	nflict Reset has					
bit 14		gal Opcode or l			0		
	•	opcode detec Pointer and cau	•	address mode	e or Uninitializ	ed W register	is used as an
		opcode or Unir		gister Reset has	s not occurred		
bit 13	C C	ftware Enable/[-				
	1 = BOR is tur	rned on in softw	/are				
		rned off in softw					
bit 12		ntion Mode Ena					
		mode is enable mode is disable		e is in Sleep mo	odes (1.2V regu	lator enabled)	
bit 11-10	Unimplemented: Read as '0'						
bit 9	CM: Configura	ation Word Misi	natch Reset F	lag bit ⁽¹⁾			
	•	ration Word Mis					
1.11.0	•	ration Word Mis		has not occurre	d		
bit 8		Wake-up from -up is enabled	•	ower)			
		-up is disabled		wer)			
bit 7		al Reset (MCLI	,	_			
		Clear (pin) Res Clear (pin) Res					
bit 6		e Reset (Instru					
		nstruction has l	, 0				
	0 = A reset i	nstruction has	not been exec	uted			
	ll of the Reset sta ause a device Re	•	e set or cleare	d in software. S	etting one of th	iese bits in soft	ware does not
2: If	the LPCFG Con	the A device Reset. the LPCFG Configuration bit is '1' (unprogrammed), the retention regulator is disabled and the RETEN t has no effect. Retention mode preserves the SRAM contents during Sleep.					
	e-enabling the re		-				a up from
S	leep. Application						
4: If	the FWDTEN[1: he SWDTEN bit s		n bits are '11' (unprogrammed), the WDT is a	lways enabled	, regardless of
		ON flags are set to the default state (POR) when the device wakes up from the Retention Sleep mode f any Reset occurs when the device is in the Retention Sleep mode.					

REGISTER 7-1: RCON: RESET CONTROL REGISTER⁽⁵⁾

 $\ensuremath{\textcircled{}^{\odot}}$ 2015-2019 Microchip Technology Inc.

REGISTER 7-1: RCON: RESET CONTROL REGISTER⁽⁵⁾ (CONTINUED)

bit 5	SWDTEN: Software Enable/Disable of WDT bit ⁽⁴⁾
	1 = WDT is enabled
	0 = WDT is disabled
bit 4	WDTO: Watchdog Timer Time-out Flag bit ⁽¹⁾
	1 = WDT time-out has occurred
	0 = WDT time-out has not occurred
bit 3	SLEEP: Wake from Sleep Flag bit ⁽¹⁾
	1 = Device has been in Sleep mode
	0 = Device has not been in Sleep mode
bit 2	IDLE: Wake-up from Idle Flag bit ⁽¹⁾
	1 = Device has been in Idle mode
	0 = Device has not been in Idle mode
bit 1	BOR: Brown-out Reset Flag bit ⁽¹⁾
	1 = A Brown-out Reset has occurred (also set after a Power-on Reset)
	0 = A Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit ⁽¹⁾
	1 = A Power-on Reset has occurred
	0 = A Power-on Reset has not occurred
Note 1:	All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not

cause a device Reset.

- 2: If the LPCFG Configuration bit is '1' (unprogrammed), the retention regulator is disabled and the RETEN bit has no effect. Retention mode preserves the SRAM contents during Sleep.
- **3:** Re-enabling the regulator after it enters Standby mode will add a delay, TVREG, when waking up from Sleep. Applications that do not use the voltage regulator should set this bit to prevent this delay from occurring.
- 4: If the FWDTEN[1:0] Configuration bits are '11' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.
- **5:** RCON flags are set to the default state (POR) when the device wakes up from the Retention Sleep mode or if any Reset occurs when the device is in the Retention Sleep mode.

Flag Bit	Setting Event	Clearing Event	
TRAPR (RCON[15])	Trap Conflict Event	POR	
IOPUWR (RCON[14])	Illegal Opcode or Uninitialized W Register Access	POR	
CM (RCON[9])	Configuration Mismatch Reset	POR	
EXTR (RCON[7])	MCLR Reset	POR	
SWR (RCON[6])	RESET Instruction	POR	
WDTO (RCON[4])	WDT Time-out	CLRWDT, PWRSAV Instruction, POR	
SLEEP (RCON[3])	PWRSAV #0 Instruction	POR	
IDLE (RCON[2])	PWRSAV #1 Instruction	POR	
BOR (RCON[1])	POR, BOR		
POR (RCON[0])	POR		

TABLE 7-1: RESET FLAG BIT OPERATION

Note: All Reset flag bits may be set or cleared by the user software.

7.1 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the PIC24F CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of four registers. The Reset value for the Reset Control register, RCON, will depend on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, will depend on the type of Reset and the programmed values of the FNOSC[2:0] bits in the FOSCSEL Flash Configuration Word (see Table 7-2). The NVMCON register is only affected by a POR.

7.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 7-3. Note that the Master Reset Signal, SYSRST, is released after the POR delay time expires.

The time at which the device actually begins to execute code will also depend on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The Fail-Safe Clock Monitor (FSCM) delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

7.3 Brown-out Reset (BOR)

PIC24FJ1024GA610/GB610 family devices implement a BOR circuit that provides the user with several configuration and power-saving options. The BOR is controlled by the BOREN[1:0] (FPOR[1:0]) Configuration bits.

When BOR is enabled, any drop of VDD below the BOR threshold results in a device BOR. Threshold levels are described in Section 33.1 "DC Characteristics".

7.4 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 7-2. If clock switching is disabled, the system clock source is always selected according to the Oscillator Configuration bits. For more information, refer to **"Oscillator"** (www.microchip.com/DS39700) in the *"dsPIC33/PIC24 Family Reference Manual"*.

TABLE 7-2: OSCILLATOR SELECTION vs. TYPE OF RESET (CLOCK SWITCHING ENABLED)

Reset Type	Clock Source Determinant		
POR	FNOSC[2:0] Configuration bits		
BOR	(FOSCSEL[2:0])		
MCLR			
WDTO	COSC[2:0] Control bits (OSCCON[14:12])		
SWR			

^{© 2015-2019} Microchip Technology Inc.

Reset Type Clock Source		SYSRST Delay	System Clock Delay	Notes
POR	EC	TPOR + TSTARTUP + TRST		1, 2, 3
	ECPLL	TPOR + TSTARTUP + TRST	Тьоск	1, 2, 3, 5
	XT, HS, SOSC	TPOR + TSTARTUP + TRST	Тоѕт	1, 2, 3, 4
	XTPLL, HSPLL	TPOR + TSTARTUP + TRST	Tost + Tlock	1, 2, 3, 4, 5
	FRC, OSCFDIV	TPOR + TSTARTUP + TRST	TFRC	1, 2, 3, 6, 7
	FRCPLL	TPOR + TSTARTUP + TRST	TFRC + TLOCK	1, 2, 3, 5, 6
	LPRC	TPOR + TSTARTUP + TRST	TLPRC	1, 2, 3, 6
	DCO	TPOR + TSTARTUP + TRST	TDCO	1, 2, 3, 8
BOR	EC	TSTARTUP + TRST	—	2, 3
	ECPLL	TSTARTUP + TRST	Тьоск	2, 3, 5
	XT, HS, SOSC	TSTARTUP + TRST	Тоѕт	2, 3, 4
	XTPLL, HSPLL	TSTARTUP + TRST	Tost + Tlock	2, 3, 4, 5
	FRC, OSCFDIV	TSTARTUP + TRST	TFRC	2, 3, 6, 7
	FRCPLL	TSTARTUP + TRST	TFRC + TLOCK	2, 3, 5, 6
	LPRC	TSTARTUP + TRST	TLPRC	2, 3, 6
	DCO	TPOR + TSTARTUP + TRST	TDCO	1, 2, 3, 8
MCLR	Any Clock	Trst		3
WDT	Any Clock	Trst		3
Software	Any clock	Trst	—	3
Illegal Opcode	Any Clock	Trst	—	3
Uninitialized W	Any Clock	Trst	—	3
Trap Conflict	Any Clock	Trst	_	3

TABLE 7-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

Note 1: TPOR = Power-on Reset Delay (10 μ s nominal).

- **2:** TSTARTUP = TVREG.
- 3: TRST = Internal State Reset Time (2 µs nominal).
- **4:** TOST = Oscillator Start-up Timer (OST). A 10-bit counter counts 1024 oscillator periods before releasing the oscillator clock to the system.
- 5: TLOCK = PLL Lock Time.
- **6**: TFRC and TLPRC = RC Oscillator Start-up Times.
- 7: If Two-Speed Start-up is enabled, regardless of the Primary Oscillator selected, the device starts with FRC so the system clock delay is just TFRC, and in such cases, FRC start-up time is valid; it switches to the Primary Oscillator after its respective clock delay.
- 8: TDCO = DCO Start-up and Stabilization Times.

7.4.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) will have a relatively long start-up time. Therefore, one or more of the following conditions is possible after SYSRST is released:

- The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

7.4.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it will begin to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device will automatically switch to the FRC Oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine (TSR).

 $[\]ensuremath{\textcircled{}^\circ}$ 2015-2019 Microchip Technology Inc.

NOTES:

8.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the PIC24FJ1024GA610/GB610 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Interrupts" (www.microchip.com/ DS70000600) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24FJ1024GA610/GB610 family interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the PIC24FJ1024GA610/GB610 family CPU.

The interrupt controller has the following features:

- Up to Eight Processor Exceptions and Software
 Traps
- Seven User-Selectable Priority Levels
- Interrupt Vector Table (IVT) with a Unique Vector for Each Interrupt or Exception Source
- Fixed Priority within a Specified User Priority Level
- Fixed Interrupt Entry and Return Latencies

8.1 Interrupt Vector Table

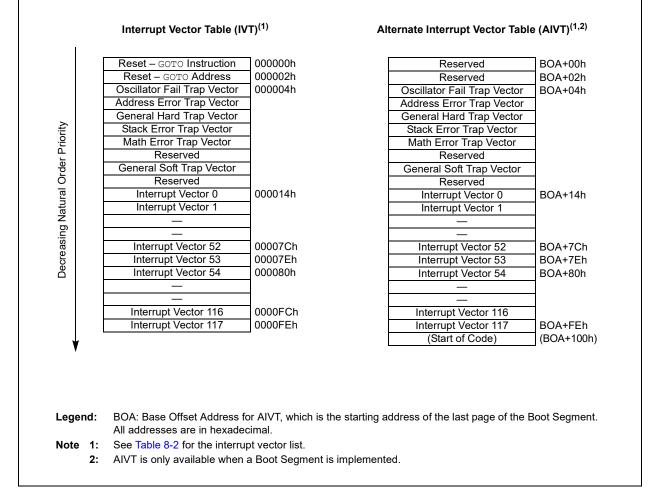
The PIC24FJ1024GA610/GB610 family Interrupt Vector Table (IVT), shown in Figure 8-1, resides in program memory starting at location, 000004h. The IVT contains six non-maskable trap vectors and up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with Vector 0 takes priority over interrupts at any other vector address.

8.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 8-1. The AIVTEN (INTCON2[8]) control bit provides access to the AIVT. If the AIVTEN bit is set, all interrupt and exception processes will use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT is available only if the Boot Segment has been defined and the AIVT has been enabled. To enable the AIVT, both the Configuration bit, AIVTDIS (FSEC[15]), and the AIVTEN bit (INTCON2[8] in the SFR), have to be set. When the AIVT is enabled, all interrupts and exception processes use the alternate vectors instead of the default vectors. The AIVT begins at the start of the last page of the Boot Segment (BS) defined by the BSLIM[12:0] bits. The AIVT address is: (BSLIM[12:0] – 1) x 0x800.


8.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The PIC24FJ1024GA610/GB610 family devices clear their registers in response to a Reset, which forces the PC to zero. The device then begins program execution at location, 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

^{© 2015-2019} Microchip Technology Inc.

FIGURE 8-1: PIC24FJ1024GA610/GB610 FAMILY INTERRUPT VECTOR TABLES

TABLE 8-1: TRAP VECTOR DETAILS

Vector Number	IVT Address	AIVT Address	Trap Source
0	000004h	BOA+04h	Oscillator Failure
1	000006h	BOA+06h	Address Error
2	000008h	BOA+08h	General Hardware Error
3	00000Ah	BOA+0Ah	Stack Error
4	00000Ch	BOA+0Ch	Math Error
5	00000Eh	BOA+0Eh	Reserved
6	000010h	BOA+10h	General Software Error
7	000012h	BOA+12h	Reserved

Legend: BOA = Base Offset Address for the AIVT segment, which is the starting address of the last page of the Boot Segment.

The BOA depends on the size of the Boot Segment defined by $\overline{BSLIM[12:0]}$: [($\overline{BSLIM[12:0]} - 1$) x 0x800]

TABLE 8-2:INTERRUPT VECTOR DETAILS

Interrupt Source	IRQ #	IVT Address	Interrupt Bit Location		
			Flag	Enable	Priority
	Highest Na	atural Order Priorit	ty		
INT0 – External Interrupt 0	0	000014h	IFS0[0]	IEC0[0]	IPC0[2:0]
IC1 – Input Capture 1	1	000016h	IFS0[1]	IEC0[1]	IPC0[6:4]
OC1 – Output Compare 1	2	000018h	IFS0[2]	IEC0[2]	IPC0[10:8]
T1 – Timer1	3	00001Ah	IFS0[3]	IEC0[3]	IPC0[14:12]
DMA0 – Direct Memory Access 0	4	00001Ch	IFS0[4]	IEC0[4]	IPC1[2:0]
IC2 – Input Capture 2	5	00001Eh	IFS0[5]	IEC0[5]	IPC1[6:4]
OC2 – Output Compare 2	6	000020h	IFS0[6]	IEC0[6]	IPC1[10:8]
T2 – Timer2	7	000022h	IFS0[7]	IEC0[7]	IPC1[14:12]
T3 – Timer3	8	000024h	IFS0[8]	IEC0[8]	IPC2[2:0]
SPI1 – SPI1 General	9	000026h	IFS0[9]	IEC0[9]	IPC2[6:4]
SPI1TX – SPI1 Transfer Done	10	000028h	IFS0[10]	IEC0[10]	IPC2[10:8]
U1RX – UART1 Receiver	11	00002Ah	IFS0[11]	IEC0[11]	IPC2[14:12]
U1TX – UART1 Transmitter	12	00002Ch	IFS0[12]	IEC0[12]	IPC3[2:0]
ADC1 – A/D Converter 1	13	00002Eh	IFS0[13]	IEC0[13]	IPC3[6:4]
DMA1 – Direct Memory Access 1	14	000030h	IFS0[14]	IEC0[14]	IPC3[10:8]
NVM – NVM Program/Erase Complete	15	000032h	IFS0[15]	IEC0[15]	IPC3[14:12]
SI2C1 – I2C1 Slave Events	16	000034h	IFS1[0]	IEC1[0]	IPC4[2:0]
MI2C1 – I2C1 Master Events	17	000036h	IFS1[1]	IEC1[1]	IPC4[6:4]
Comp – Comparator	18	000038h	IFS1[2]	IEC1[2]	IPC4[10:8]
IOC – Interrupt-on-Change Interrupt	19	00003Ah	IFS1[3]	IEC1[3]	IPC4[14:12]
INT1 – External Interrupt 1	20	00003Ch	IFS1[4]	IEC1[4]	IPC5[2:0]
_	21		_	_	
CCP5 – Capture/Compare 5	22	000040h	IFS1[6]	IEC1[6]	IPC5[6:4]
CCP6 – Capture/Compare 6	23	000042h	IFS1[7]	IEC1[7]	IPC5[14:12]
DMA2 – Direct Memory Access 2	24	000044h	IFS1[8]	IEC1[8]	IPC6[2:0]
OC3 – Output Compare 3	25	000046h	IFS1[9]	IEC1[9]	IPC6[6:4]
OC4 – Output Compare 4	26	000048h	IFS1[10]	IEC1[10]	IPC6[10:8]
T4 – Timer4	27	00004Ah	IFS1[11]	IEC1[11]	IPC6[14:12]
T5 – Timer5	28	00004Ch	IFS1[12]	IEC1[12]	IPC7[2:0]
INT2 – External Interrupt 2	29	00004Eh	IFS1[13]	IEC1[13]	IPC7[6:4]
U2RX – UART2 Receiver	30	000050h	IFS1[14]	IEC1[14]	IPC7[10:8]
U2TX – UART2 Transmitter	31	000052h	IFS1[15]	IEC1[15]	IPC7[14:12]
SPI2 – SPI2 General	32	000054h	IFS2[0]	IEC2[0]	IPC8[2:0]
SPI2TX – SPI2 Transfer Done	33	000056h	IFS2[1]	IEC2[1]	IPC8[6:4]
	34	_	—		_
_	35	_	—		_
DMA3 – Direct Memory Access 3	36	00005Ch	IFS2[4]	IEC2[4]	IPC9[2:0]
IC3 – Input Capture 3	37	00005Eh	IFS2[5]	IEC2[5]	IPC9[6:4]
IC4 – Input Capture 4	38	000060h	IFS2[6]	IEC2[6]	IPC9[10:8]
IC5 – Input Capture 5	39	000062h	IFS2[7]	IEC2[7]	IPC9[14:12]
IC6 – Input Capture 6	40	000064h	IFS2[8]	IEC2[8]	IPC10[2:0]

© 2015-2019 Microchip Technology Inc.

TABLE 8-2: INTERRUPT VECTOR DETAILS (CONTINUED)

Interrupt Source	IRQ #	IVT Address	Int	errupt Bit Lo	ocation
Interrupt Source		IVI Address	Flag	Enable	Priority
OC5 – Output Compare 5	41	000066h	IFS2[9]	IEC2[9]	IPC10[6:4]
OC6 – Output Compare 6	42	000068h	IFS2[10]	IEC2[10]	IPC10[10:8]
CCT3 – Capture/Compare Timer3	43	00006Ah	IFS2[11]	IEC2[11]	IPC10[14:12]
CCT4 – Capture/Compare Timer4	44	00006Ch	IFS2[12]	IEC2[12]	IPC11[2:0]
PMP – Parallel Master Port	45	00006Eh	IFS2[13]	IEC2[13]	IPC11[6:4]
DMA4 – Direct Memory Access 4	46	000070h	IFS2[14]	IEC2[14]	IPC11[10:8]
CCT5 – Capture/Compare Timer5	47	000072h	IFS2[15]	IEC2[15]	IPC11[14:12]
CCT6 – Capture/Compare Timer6	48	000074h	IFS3[0]	IEC3[0]	IPC12[2:0]
SI2C2 – I2C2 Slave Events	49	000076h	IFS3[1]	IEC3[1]	IPC12[6:4]
MI2C2 – I2C2 Master Events	50	000078h	IFS3[2]	IEC3[2]	IPC12[10:8]
CCT7 – Capture/Compare Timer7	51	00007Ah	IFS3[3]	IEC3[3]	IPC12[14:12]
	52	—	—	—	_
INT3 – External Interrupt 3	53	00007Eh	IFS3[5]	IEC3[5]	IPC13[6:4]
INT4 – External Interrupt 4	54	000080h	IFS3[6]	IEC3[6]	IPC13[10:8]
—	55	—	—	—	—
—	56	—	—	—	—
—	57	—	—	—	
SPI1RX – SPI1 Receive Done	58	000088h	IFS3[10]	IEC3[10]	IPC14[10:8]
SPI2RX – SPI2 Receive Done	59	00008Ah	IFS3[11]	IEC3[11]	IPC14[14:12]
SPI3RX – SPI3 Receive Done	60	00008Ch	IFS3[12]	IEC3[12]	IPC15[2:0]
DMA5 – Direct Memory Access 5	61	00008Eh	IFS3[13]	IEC3[13]	IPC15[6:4]
RTCC – Real-Time Clock and Calendar	62	000090h	IFS3[14]	IEC3[14]	IPC15[10:8]
CCP1 – Capture/Compare 1	63	000092h	IFS3[15]	IEC3[15]	IPC15[14:12]
CCP2 – Capture/Compare 2	64	000094h	IFS4[0]	IEC4[0]	IPC16[2:0]
U1E – UART1 Error	65	000096h	IFS4[1]	IEC4[1]	IPC16[6:4]
U2E – UART2 Error	66	000098h	IFS4[2]	IEC4[2]	IPC16[10:8]
CRC – Cyclic Redundancy Check	67	00009Ah	IFS4[3]	IEC4[3]	IPC16[14:12]
DMA6 – Direct Memory Access 6	68	00009Ch	IFS4[4]	IEC4[4]	IPC17[2:0]
DMA7 – Direct Memory Access 7	69	00009Eh	IFS4[5]	IEC4[5]	IPC17[6:4]
SI2C3 – I2C3 Slave Events	70	0000A0h	IFS4[6]	IEC4[6]	IPC17[10:8]
MI2C3 – I2C3 Master Events	71	0000A2h	IFS4[7]	IEC4[7]	IPC17[14:12]
HLVD – High/Low-Voltage Detect	72	0000A4h	IFS4[8]	IEC4[8]	IPC18[2:0]
CCP7 – Capture/Compare 7	73	0000A6h	IFS4[9]	IEC4[9]	IPC18[6:4]
—	74	74	_	—	
_	75	75	_	—	
—	76	76	—	—	
CTMU – Interrupt	77	0000AEh	IFS4[13]	IEC4[13]	IPC19[6:4]
	78	78		_	
	79	79		_	
_	80	80	_	_	
U3E – UART3 Error	81	0000B6h	IFS5[1]	IEC5[1]	IPC20[6:4]
U3RX – UART3 Receiver	82	0000B8h	IFS5[2]	IEC5[2]	IPC20[10:8]
U3TX – UART3 Transmitter	83	0000BAh	IFS5[3]	IEC5[3]	IPC20[14:12]

later and Decime	IRQ	N/T Address	Int	errupt Bit Lo	ocation
Interrupt Source	#	IVT Address	Flag	Enable	Priority
I2C1BC – I2C1 Bus Collision	84	0000BCh	IFS5[4]	IEC5[4]	IPC21[2:0]
I2C2BC – I2C2 Bus Collision	85	0000BEh	IFS5[5]	IEC5[5]	IPC21[6:4]
USB1 – USB1 Interrupt	86	0000C0h	IFS5[6]	IEC5[6]	IPC21[10:8]
U4E – UART4 Error	87	0000C2h	IFS5[7]	IEC5[7]	IPC21[14:12]
U4RX – UART4 Receiver	88	0000C4h	IFS5[8]	IEC5[8]	IPC22[2:0]
U4TX – UART4 Transmitter	89	0000C6h	IFS5[9]	IEC5[9]	IPC22[6:4]
SPI3 – SPI3 General	90	0000C8h	IFS5[10]	IEC5[10]	IPC22[10:8]
SPI3TX – SPI3 Transfer Done	91	0000CAh	IFS5[11]	IEC5[11]	IPC22[14:12]
—	92	92	—	—	_
—	93	93	—	—	_
CCP3 – Capture/Compare 3	94	0000D0h	IFS5[14]	IEC5[14]	IPC23[10:8]
CCP4 – Capture/Compare 4	95	0000D2h	IFS5[15]	IEC5[15]	IPC23[14:12]
CLC1 – Configurable Logic Cell 1	96	0000D4h	IFS6[0]	IEC6[0]	IPC24[2:0]
CLC2 – Configurable Logic Cell 2	97	0000D6h	IFS6[1]	IEC6[1]	IPC24[6:4]
CLC3 – Configurable Logic Cell 3	98	0000D8h	IFS6[2]	IEC6[2]	IPC24[10:8]
CLC4 – Configurable Logic Cell 4	99	0000DAh	IFS6[3]	IEC6[3]	IPC24[14:12]
_	100	—	—	—	_
CCT1 – Capture/Compare Timer1	101	0000DEh	IFS6[5]	IEC6[5]	IPC25[6:4]
CCT2 – Capture/Compare Timer2	102	0000E0h	IFS6[6]	IEC6[6]	IPC25[10:8]
	103		—	—	
_	104	—	—	—	_
—	105	—	—	—	_
FST – FRC Self-Tuning Interrupt	106	0000E8h	IFS6[10]	IEC6[10]	IPC26[10:8]
	107		—	—	<u> </u>
_	108	_		—	_
I2C3BC – I2C3 Bus Collision	109	0000EEh	IFS6[13]	IEC6[13]	IPC27[6:4]
RTCCTS – Real-Time Clock Timestamp	110	0000F0h	IFS6[14]	IEC6[14]	IPC27[10:8]
U5RX – UART5 Receiver	111	0000F2h	IFS6[15]	IEC6[15]	IPC27[14:12]
U5TX – UART5 Transmitter	112	0000F4h	IFS7[0]	IEC7[0]	IPC28[2:0]
U5E – UART5 Error	113	0000F6h	IFS7[1]	IEC7[1]	IPC28[6:4]
U6RX – UART6 Receiver	114	0000F8h	IFS7[2]	IEC7[2]	IPC28[10:8]
U6TX – UART6 Transmitter	115	0000FAh	IFS7[3]	IEC7[3]	IPC28[14:12]
U6E – UART6 Error	116	0000FCh	IFS7[4]	IEC7[4]	IPC29[2:0]
JTAG – JTAG	117	0000FEh	IFS7[5]	IEC7[5]	IPC29[6:4]

TABLE 8-2: INTERRUPT VECTOR DETAILS (CONTINUED)

8.3 Interrupt Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

8.3.1 KEY RESOURCES

- "Interrupts" (www.microchip.com/DS70000600) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

8.4 Interrupt Control and Status Registers

PIC24FJ1024GA610/GB610 family devices implement the following registers for the interrupt controller:

- INTCON1
- INTCON2
- INTCON4
- IFS0 through IFS7
- IEC0 through IEC7
- IPC0 through IPC29
- INTTREG

8.4.1 INTCON1-INTCON4

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit, as well as the control and status flags for the processor trap sources.

The INTCON2 register controls global interrupt generation, the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table (AIVT).

The INTCON4 register contains the Software Generated Hard Trap bit (SGHT) and ECC Double-Bit Error (ECCDBE) trap.

8.4.2 IFSx

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal, and is cleared via software.

8.4.3 IECx

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

8.4.4 IPCx

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

8.4.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number bits (VECNUM[7:0]) and Interrupt Priority Level bits (ILR[3:0]) fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence as they are listed in Table 8-2. For example, the INT0 (External Interrupt 0) is shown as having Vector Number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0[0], the INT0IE bit in IEC0[0] and the INT0IP bits in the first position of IPC0 (IPC0[2:0]).

8.4.6 STATUS/CONTROL REGISTERS

Although these registers are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. For more information on these registers refer to "CPU with Extended Data Space (EDS)" (www.microchip.com/DS39732) in the "dsPIC33/PIC24 Family Reference Manual".

- The CPU STATUS Register, SR, contains the IPL[2:0] bits (SR[7:5]). These bits indicate the current CPU Interrupt Priority Level. The user software can change the current CPU Interrupt Priority Level by writing to the IPLx bits.
- The CORCON register contains the IPL3 bit, which together with the IPL[2:0] bits, also indicates the current CPU Interrupt Priority Level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 8-3 through Register 8-6 in the following pages.

REGISTER 8-1: SR: ALU STATUS REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	DC
bit 15							bit 8

R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7							bit 0

Legend:				
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-5	IPL[2:0]: CPU Interrupt Priority Level Status bits ^(2,3)
	111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled
	110 = CPU Interrupt Priority Level is 6 (14)
	101 = CPU Interrupt Priority Level is 5 (13)
	100 = CPU Interrupt Priority Level is 4 (12)
	011 = CPU Interrupt Priority Level is 3 (11)
	010 = CPU Interrupt Priority Level is 2 (10)
	001 = CPU Interrupt Priority Level is 1 (9)
	000 = CPU Interrupt Priority Level is 0 (8)

Note 1: For complete register details, see Register 3-1.

- 2: The IPL[2:0] Status bits are concatenated with the IPL3 Status bit (CORCON[3]) to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1. User interrupts are disabled when IPL3 = 1.
- **3:** The IPL[2:0] Status bits are read-only when the NSTDIS bit (INTCON1[15]) = 1.

^{© 2015-2019} Microchip Technology Inc.

PIC24FJ1024GA610/GB610 FAMILY

REGISTER 8-2: CORCON: CPU CORE CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_		—	—	—		—
bit 15	•						bit 8

U-0	U-0	U-0	U-0	R/C-0	R/W-1	U-0	U-0
—	—	—	-	IPL3 ⁽²⁾	PSV	—	—
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4 Unimplemented: Read as '0'

bit 3 IPL3: CPU Interrupt Priority Level Status bit⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less

bit 2 **PSV:** Not used as part of the interrupt module

bit 1-0 Unimplemented: Read as '0'

Note 1: For complete register details, see Register 3-2.

2: The IPL[2:0] Status bits are concatenated with the IPL3 Status bit (CORCON[3]) to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1. User interrupts are disabled when IPL3 = 1.

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
NSTDIS	—	—	—	—	_	—		
bit 15							bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	
	—	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—	
bit 7							bit 0	
Legend: R = Readable	a hit	W = Writable	hit	II = I Inimplem	ented bit, read	ae 'N'		
-n = Value at		'1' = Bit is se		'0' = Bit is clea		x = Bit is unkn	own	
	TOR	1 - Dit 13 30					own	
bit 14-5	1 = Interrupt 0 = Interrupt	errupt Nesting t nesting is dis t nesting is ena t nted: Read as	abled abled					
bit 4	-	Math Error Sta						
		ror trap has oc ror trap has no						
bit 3	ADDRERR: 1 = Address	•	r Trap Status bit occurred					
bit 2	STKERR: S	tack Error Tra	o Status bit					
		ror trap has oc ror trap has no						
bit 1	1 = Oscillato	or failure trap h	re Trap Status b as occurred as not occurred					
bit 0	Unimpleme	nted: Read as	s '0'					

REGISTER 8-3: INTCON1: INTERRUPT CONTROL REGISTER 1

© 2015-2019 Microchip Technology Inc.

R/W-1	R-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0
GIE	DISI	SWTRAP	_				AIVTEN
bit 15							bit
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_			INT4EP	INT3EP	INT2EP	INT1EP	INTOEP
bit 7							bit
Legend:							
R = Readab	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value a	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unki	nown
bit 15		Interrupt Enable					
		ts and associate ts are disabled, l			abled		
bit 14	-	Instruction Statu	-				
		struction is activ					
	0 = DISI in	struction is not a	ctive				
bit 13	SWTRAP: S	Software Trap St	atus bit				
		e trap is enabled e trap is disabled					
bit 12-9	Unimpleme	ented: Read as '	0'				
bit 8	AIVTEN: AI	ternate Interrupt	Vector Table	Enable bit			
		ternate Interrupt andard Interrupt			onfiguration bit	s)	
bit 7-5	Unimpleme	nted: Read as '	0'				
bit 4	INT4EP: Ex	ternal Interrupt 4	Edge Detect	Polarity Select	bit		
		t on negative ed t on positive edg	•				
bit 3	INT3EP: Ex	ternal Interrupt 3	B Edge Detect	Polarity Select	bit		
		t on negative ed t on positive edg	0				
bit 2	-	ternal Interrupt 2		Polarity Select	bit		
		t on negative ed t on positive edg					
bit 1	INT1EP: Ex	ternal Interrupt 1	Edge Detect	Polarity Select	bit		
		t on negative ed t on positive edg					
bit 0	-	ternal Interrupt (Polarity Select	bit		
		t on negative ed	ge	2			

REGISTER 8-4: INTCON2: INTERRUPT CONTROL REGISTER 2

REGISTER 8-5: INTCON4: INTERRUPT CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	_
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/C-0	R/C-0
—	—	—	—	—	—	ECCDBE	SGHT
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-2	Unimplemented: Read as '0'
----------	----------------------------

bit 1	ECCDBE: ECC Double-Bit Error Trap bit
	1 = ECC double-bit error trap has occurred
	0 = ECC double-bit error trap has not occurred

bit 0 SGHT: Software Generated Hard Trap Status bit

1 = Software generated hard trap has occurred

0 = Software generated hard trap has not occurred

^{© 2015-2019} Microchip Technology Inc.

R-0	U-0	R/W-0	U-0	R-0	R-0	R-0	R-0				
CPUIRQ		VHOLD	_	ILR3	ILR2	ILR1	ILR0				
bit 15					l		bit 8				
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
			VECN	NUM[7:0]							
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable b	oit	U = Unimple	mented bit, read	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown				
1.11.45											
bit 15		nterrupt Request f	-								
		rrupt request has he CPU priority is				jed by the CPU	; this happens				
		errupt request is u	0		lonty						
bit 14		ented: Read as '0		-							
bit 13	VHOLD: Vector Number Capture Configuration bit										
	1 = The VECNUMx bits contain the value of the highest priority pending interrupt										
		ECNUMx bits con s occurred with hi									
bit 12		ented: Read as '0	• • •				0,				
bit 11-8	ILR[3:0]: New CPU Interrupt Priority Level bits										
	1111 = CPU Interrupt Priority Level is 15										
	•										
	•										
	• 0001 = CPU Interrupt Priority Level is 1										
	0000 = CPU Interrupt Priority Level is 0										
bit 7-0	VECNUM[7:0]: Vector Number of Pending Interrupt bits										
	11111111 = 255, Reserved; do not use										
	•										
	•										
	• 00001001 - 9. IC1 - Input Capture 1										
	00001001 = 9, IC1 – Input Capture 1 00001000 = 8, INT0 – External Interrupt 0										
		00001000 = 8, in ro – External interrupt 0 00000111 = 7, Reserved; do not use									
		= 6, Generic soft	-								
		= 5, Reserved; do									
		 = 4, Math error tra = 3, Stack error tra 	•								
		= 2, Generic hard									
	00000001	= 1, Address erro	r trap								
	00000000	= 0, Oscillator fail	trap								

REGISTER 8-6: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

9.0 OSCILLATOR CONFIGURATION

Note 1: This data sheet summarizes the features of the PIC24FJ1024GA610/GB610 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Oscillator" (www.microchip.com/ DS39700) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com).

The oscillator system for the PIC24FJ1024GA610/ GB610 family devices has the following features:

 A Total of Five External and Internal Oscillator Options as Clock Sources, providing 12 Different Clock modes

- An On-Chip USB PLL Block to provide a Stable 48 MHz Clock for the USB module, as well as a Range of Frequency Options for the System Clock
- Software-Controllable Switching Between
 Various Clock Sources
- Software-Controllable Postscaler for Selective Clocking of CPU for System Power Savings
- A Fail-Safe Clock Monitor (FSCM) that Detects Clock Failure and permits Safe Application Recovery or Shutdown
- A Separate and Independently Configurable System Clock Output for Synchronizing External Hardware

A simplified diagram of the oscillator system is shown in Figure 9-1.

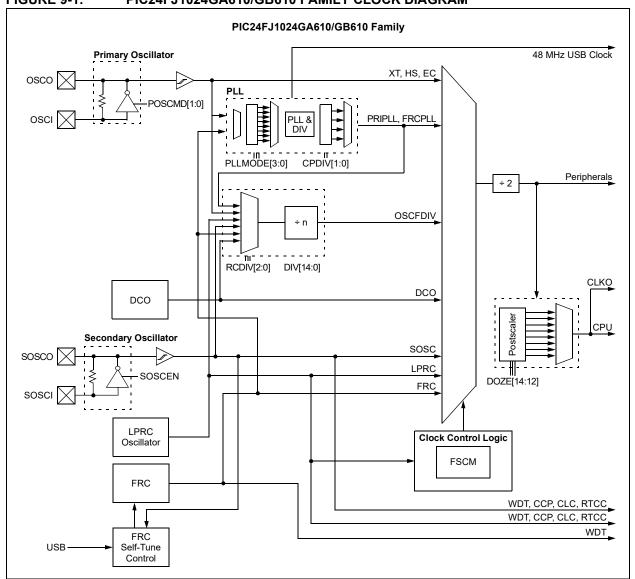


FIGURE 9-1: PIC24FJ1024GA610/GB610 FAMILY CLOCK DIAGRAM

9.1 CPU Clocking Scheme

The system clock source can be provided by one of five sources:

- Primary Oscillator (POSC) on the OSCI and OSCO pins
- Secondary Oscillator (SOSC) on the SOSCI and SOSCO pins
- Digitally Controlled Oscillator (DCO)
- Fast Internal RC (FRC) Oscillator
- · Low-Power Internal RC (LPRC) Oscillator

The Primary Oscillator and FRC sources have the option of using the internal PLL block, which can generate a 96 MHz USB module PLL clock, or a 4x, 6x or 8x PLL clock. If the 96 MHz PLL is used, the PLL clocks can then be postscaled, if necessary, and used as the system clock. If the 4x, 6x or 8x PLL multipliers are selected, the PLL clock can be used directly as a system clock. Refer to Section 9.6 "PLL Oscillator Modes and USB Operation" for additional information. The internal FRC provides an 8 MHz clock source.

Each clock source (POSC, SOSC, DCO, FRC and LPRC) can be used as an input to an additional divider, which can then be used to produce a divided clock source for use as a system clock (OSCFDIV).

The selected clock source is used to generate the processor and peripheral clock sources. The processor clock source is divided by two to produce the internal instruction cycle clock, FCY. In this document, the instruction cycle clock is also denoted by FOSC/2. The internal instruction cycle clock, FOSC/2, can be provided on the OSCO I/O pin for some Primary Oscillator configurations.

9.2 Initial Configuration on POR

The oscillator source (and operating mode) that is used at a device Power-on Reset event is selected using Configuration bit settings. The Oscillator Configuration bit settings are located in the Configuration registers in the program memory (refer to Section 30.1 "Configuration Bits" for further details). The Primary Oscillator Configuration bits, POSCMD[1:0] (FOSC[1:0]), and the Initial Oscillator Select Configuration bits, FNOSC[2:0] (FOSCSEL[2:0]), select the oscillator source that is used at a Power-on Reset. The OSCFDIV clock source is the default (unprogrammed) selection; the default input source to the OSCFDIV divider is the FRC clock source. Other oscillators may be chosen by programming these bit locations.

The Configuration bits allow users to choose between the various clock modes shown in Table 9-1.

9.2.1 CLOCK SWITCHING MODE CONFIGURATION BITS

The FCKSM[1:0] Configuration bits (FOSC[7:6]) are used to jointly configure device clock switching and the Fail-Safe Clock Monitor (FSCM). Clock switching is enabled only when FCKSM[1] is programmed ('0'). The FSCM is enabled only when FCKSM[1:0] are both programmed ('00').

Oscillator Mode	Oscillator Source	FNOSC[2:0]	Notes
Oscillator with Frequency Division (OSCFDIV)	Internal/External	111	1, 2, 3
Digitally Controlled Oscillator (DCO)	Internal	110	3
Low-Power RC Oscillator (LPRC)	Internal	101	3
Secondary (Timer1) Oscillator (SOSC)	Secondary	100	3
Primary Oscillator (XT, HS or EC) with PLL Module	Primary	011	4
Primary Oscillator (XT, HS or EC)	Primary	010	4
Fast RC Oscillator with PLL Module (FRCPLL)	Internal	001	3
Fast RC Oscillator (FRC)	Internal	000	3

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: The input oscillator to the OSCFDIV Clock mode is determined by the RCDIV[2:0] (CLKDIV[10:8) bits. At POR, the default value selects the FRC module.

- 2: This is the default oscillator mode for an unprogrammed (erased) device.
- 3: OSCO pin function is determined by the OSCIOFNC Configuration bit.
- 4: The POSCMD[1:0] Configuration bits select the oscillator driver mode (XT, HS or EC).

9.3 Control Registers

The operation of the oscillator is controlled by five Special Function Registers:

- · OSCCON
- CLKDIV
- OSCTUN
- OSCDIV
- OSCFDIV

In addition, two registers are used to control the DCO:

- DCOCON
- DCOTUN

The OSCCON register (Register 9-1) is the main control register for the oscillator. It controls clock source switching and allows the monitoring of clock sources. OSCCON is protected by a write lock to prevent inadvertent clock switches. See **Section 9.4 "Clock Switching Operation**" for more information. The CLKDIV register (Register 9-2) controls the features associated with Doze mode, as well as the postscalers for the OSCFDIV Clock mode and the PLL module.

The OSCTUN register (Register 9-3) allows the user to fine-tune the FRC Oscillator over a range of approximately $\pm 1.5\%$. It also controls the FRC self-tuning features described in Section 9.5 "FRC Active Clock Tuning".

The OSCDIV and OSCFDIV registers provide control for the system Oscillator Frequency Divider.

9.3.1 DCO OVERVIEW

The DCO (Digitally Controlled Oscillator) is a lowpower alternative to the FRC. It can generate a wider selection of operating frequencies and can be trimmed to correct process variations if an exact frequency is required. However, the DCO is not designed for use with USB applications and cannot meet USB timing restrictions.

^{© 2015-2019} Microchip Technology Inc.

U-0	R-x ⁽¹⁾	R-x ⁽¹⁾	R-x ⁽¹⁾	U-0	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾					
_	COSC2	COSC1	COSC0	—	NOSC2	NOSC1	NOSC0					
bit 15							bit 8					
R/W-0	R/W-0	R-0 ⁽³⁾	U-0	R/CO-0	R/W-0	R/W-0	R/W-0					
CLKLOCK	IOLOCK ⁽²⁾	LOCK	—	CF	POSCEN	SOSCEN	OSWEN					
bit 7							bit 0					
Legend:		CO = Clearat	-									
R = Readable		W = Writable		•	nented bit, read							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own					
bit 15	•	ted: Read as '		(1)								
bit 14-12		Current Oscillat										
		tor with Freque										
		y Controlled O ower RC Oscill										
			· · ·									
		100 = Secondary Oscillator (SOSC) 011 = Primary Oscillator with PLL module (XTPLL, ECPLL)										
		010 = Primary Oscillator (XT, HS, EC) 001 = Fast RC Oscillator with PLL module (FRCPLL)										
		C Oscillator wi		(FRGPLL)								
bit 11		ted: Read as '	•									
bit 10-8	-	lew Oscillator)								
		tor with Freque										
		y Controlled O										
		ower RC Oscill										
		dary Oscillator v Oscillator wit		(XTPLL, ECPLI	1)							
		y Oscillator (X		(**** ==, ==) =: =:	_,							
		C Oscillator wi		(FRCPLL)								
		C Oscillator (F	,									
bit 7		lock Selection		bit								
		abled (FCKSN										
	 1 = Clock and PLL selections are locked 0 = Clock and PLL selections are not locked and may be modified by setting the OSWEN bit 											
	If FSCM is Disabled (FCKSM[1:0] = $1x$):											
				and may be m	odified by setti	ng the OSWEN	bit.					
bit 6	IOLOCK: I/O	Lock Enable b	it ⁽²⁾									
	1 = I/O lock is											
	0 = I/O lock is											
bit 5		ock Status bit ⁽										
				start-up timer is o timer is runnir		abled						
bit 4		ted: Read as '	-									
Note 1: Re	• eset values for t				onfiguration bit							
	e state of the l		-		-		ecuted In					
	dition, if the IOI											
		0										

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER

3: This bit also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

- bit 3
 CF: Clock Fail Detect bit

 1 = FSCM has detected a clock failure

 0 = No clock failure has been detected

 bit 2
 POSCEN: Primary Oscillator Sleep Enable bit
 - 1 = Primary Oscillator continues to operate during Sleep mode
 - 0 = Primary Oscillator is disabled during Sleep mode
- bit 1 SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit
 - 1 = Enables Secondary Oscillator
 - 0 = Disables Secondary Oscillator

bit 0 OSWEN: Oscillator Switch Enable bit

- 1 = Initiates an oscillator switch to a clock source specified by the NOSC[2:0] bits
- 0 = Oscillator switch is complete
- Note 1: Reset values for these bits are determined by the FNOSCx Configuration bits.
 - 2: The state of the IOLOCK bit can only be changed once an unlocking sequence has been executed. In addition, if the IOL1WAY Configuration bit is '1', once the IOLOCK bit is set, it cannot be cleared.
 - 3: This bit also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI	DOZE2	DOZE1	DOZE0	DOZEN ⁽¹⁾	RCDIV2	RCDIV1	RCDIV0
bit 15		•	•			•	bit 8
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
CPDIV1	CPDIV0	PLLEN	—	—		—	_
bit 7							bit (
Legend:							
R = Readabl		W = Writable		U = Unimplem			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	IOWN
bit 15 bit 14-12	1 = Interrupts 0 = Interrupts	on Interrupt bi clear the DOZ have no effect CPU Peripheral	EN bit and res on the DOZEN		pheral clock ra	tio to 1:1	
	111 = 1:128 110 = 1:64 101 = 1:32 100 = 1:16 011 = 1:8 (de 010 = 1:4 001 = 1:2 000 = 1:1	fault)					
bit 11	DOZEN: Doz	e Enable bit ⁽¹⁾					
	-	0] bits specify t pheral clock ra		eral clock ratio			
bit 10-8	000 = Fast R 001 = Fast R 010 = Primar 011 = Primar 100 = Second 101 = Low-Pe 110 = Digital	C Oscillator (Fl C Oscillator (Fl y Oscillator (X1	RC) RC) with PLL n , HS, EC) , HS, EC) with (SOSC) ator (LPRC) scillator (DCO)	ock Source Sel nodule (FRCPL PLL module (X	L)	, ECPLL)	
bit 7-6 bit 5	11 = 4 MHz (10 = 8 MHz (01 = 16 MHz 00 = 32 MHz PLLEN: USB 1 = PLL is alw 0 = PLL is onl	divide-by-8) ⁽²⁾ divide-by-4) ⁽²⁾ (divide-by-2) (divide-by-1) PLL Enable bi vays active ly active when	t a PLL Oscillato	tscaler select fr			
bit 4-0	Unimplemen	ted: Read as '	0'				
	nis bit is automa nis setting is not	-			n interrupt occu	irs.	

REGISTER 9-2: CLKDIV: CLOCK DIVIDER REGISTER

R/W-0	U-0	R/W-0	R/W-1	R-0	R/W-0	R-0	R/W-0			
STEN		STSIDL	STSRC ⁽¹⁾	STLOCK	STLPOL	STOR	STORPOL			
bit 15			•				bit			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	—			TUN[5:0] ⁽²⁾					
bit 7							bit			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is clea	ared	x = Bit is unk	nown			
bit 15		Self-Tune Enab								
			oled; TUNx bits a bled; application			INx hits				
bit 14		nted: Read as '		indy optional	y control the re					
bit 13	-	C Self-Tune Sto								
		ing stops during								
		-	uring Idle mode	(4)						
bit 12	STSRC: FRC Self-Tune Reference Clock Source bit ⁽¹⁾									
	 1 = FRC is tuned to approximately match the USB host clock tolerance 0 = FRC is tuned to approximately match the 32.768 kHz SOSC tolerance 									
bit 11	STLOCK: FRC Self-Tune Lock Status bit									
			tly within ±0.2% be within ±0.2%							
bit 10	STLPOL: FF	RC Self-Tune Lo	ock Interrupt Pol	larity bit		-				
			ot is generated v ot is generated v							
bit 9	STOR: FRC	Self-Tune Out	of Range Status	bit						
			c error is beyond c is within the tur				ned			
bit 8	STORPOL:	FRC Self-Tune	Out of Range In	nterrupt Polarity	y bit					
			interrupt is gen interrupt is gen							
bit 7-6	Unimpleme	nted: Read as '	0'							
bit 5-0	TUN[5:0]: FRC Oscillator Tuning bits ⁽²⁾									
	011111 = Maximum frequency deviation 011110 =									
	000001 =									
	0000000 = C 111111 =	enter frequency	, oscillator is rur	nning at factory	/ calibrated free	quency				
	100001 =									

- Note 1: Use of either clock tuning reference source has specific application requirements. See Section 9.5 "FRC Active Clock Tuning" for details.
 - **2:** These bits are read-only when STEN = 1.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
0-0	0-0	17/00-0	N/W-0		N[5:0] ⁽¹⁾	17/00-0	N/W-0
				DCOTO	N[5.0]		L:+ (
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15-6 bit 5-0	DCOTUN[5: 011111 = M 011110 = • • • • • • • • • • • • • • • • • • •	nted: Read as '0 0]: DCO Tuning aximum frequen crease frequency, ecrease frequency,	bits ⁽¹⁾ cy (+4.65% ac cy by a single s oscillator is ru	tep (+0.15% ac nning at calibra	ited frequency		

REGISTER 9-4: DCOTUN: DIGITALLY CONTROLLED OSCILLATOR TUNE REGISTER

REGISTER 9-5: DCOCON: DIGITALLY CONTROLLED OSCILLATOR ENABLE REGISTER

U-0	U-0	R/W-0	U-0	R/W-0	R/W-1	R/W-1	R/W-1				
		DCOEN			DCOF	SEL[3:0]					
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
 bit 7		—	_	_	_	—	 bit 0				
							DILO				
Legend:											
R = Readal	ole bit	W = Writable b	it	U = Unimplem	nented bit, rea	d as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own				
bit 15-14	-	ted: Read as '0'									
bit 13	DCOEN: DCO Enable bit										
	 1 = DCO continues to operate during Sleep mode 0 = DCO is inactive during Sleep mode 										
		-	-								
bit 12	-	ted: Read as '0'									
bit 11-8	DCOFSEL[3:0]: DCO Frequency Select bits										
	0000 = 1 MHz										
	0001 = 2 MHz										
	0010 = 3 MHz										
	0011 = 4 MHz 0100 = 5 MHz										
	0100 = 5 MHz 0101 = 6 MHz										
	0101 = 7 MHz										
	0111 = 8 MHz (most accurate oscillator setting)										
	1000 = Reserved; do not use										
	1001 = Reserved; do not use										
	1010 = Reserved; do not use										
	1011 = Reserved; do not use										
	1100 = Reserved; do not use										
	1100 = Rese										
	1100 = Rese 1101 = Rese	rved; do not use									
	1100 = Rese 1101 = Rese 1110 = 16 M	rved; do not use Hz									
bit 7-0	1100 = Rese 1101 = Rese 1110 = 16 MI 1111 = 32 MI	rved; do not use Hz									

© 2015-2019 Microchip Technology Inc.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				DIV[14:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
			DI	/ [7:0]			
bit 7							bit (
Legend:							
R = Readabl	le bit	W = Writable bit		U = Unimplem	nented bit, rea	id as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			iown	
bit 15	Unimpleme	nted: Read as '0'					
bit 14-0	DIV[14:0]: F	Reference Clock Di	vider bits				
	(ex: Period of 111111111	e 1/2 period of the of ref_clk_output = 111111 = Oscillat 111110 = Oscillat	[Reference or frequency	Source * 2] * DI y divided by 65,	V[14:0]). 534 (32,767 *		
	000000000 000000000	000011 = Oscillat 000010 = Oscillat 000001 = Oscillat 000000 = Oscillat	or frequenc	y divided by 4 (2 y divided by 2 (1	2 * 2) * 2) (default)		

REGISTER 9-6: OSCDIV: OSCILLATOR DIVISOR REGISTER

REGISTER 9-7: OSCFDIV: OSCILLATOR FRACTIONAL DIVISOR REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRI	Л[0:7]			
bit 15							bit 8
R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
TRIM8		—	_	—	_	—	—
bit 7	·						bit 0
Legend:							
R = Readabl	le bit	W = Writable b	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-7	0000_0000 0000_0000 • • 100000000 • • 1111_1111	ctional additive to $_{0}^{0} = 0/512 (0.0)$ $_{1}^{1} = 1/512 (0.00)$ $_{0}^{0} = 2/512 (0.00)$ = 256/512 (0.00) $_{0}^{0} = 510/512 (0.00)$	divisor added 1953125) divis 390625) diviso 5000) divisor a 99609375) div	to DIVx value sor added to DI or added to DIV added to DIVx v	Vx value /x value value DIVx value	e oscillator cloc	k.
bit 6-0		_1 = 511/512 (0. ^y n ted: Read as '0	,	ivisor added to	DIVX value		
	Sumbicilie						

Note 1: TRIMx values greater than zero are ONLY valid when DIVx values are greater than zero.

^{© 2015-2019} Microchip Technology Inc.

9.4 Clock Switching Operation

With few limitations, applications are free to switch between any of the five clock sources (POSC, SOSC, FRC, DCO and LPRC) under software control and at any time. To limit the possible side effects that could result from this flexibility, PIC24F devices have a safeguard lock built into the switching process.

Note: The Primary Oscillator mode has three different submodes (XT, HS and EC), which are determined by the POSCMD[1:0] Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch between the different primary submodes without reprogramming the device.

9.4.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM[1] Configuration bit in FOSC must be programmed to '0'. (Refer to **Section 30.1 "Configuration Bits"** for further details.) If the FCKSM[1] Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled; this is the default setting.

The NOSC[2:0] control bits (OSCCON[10:8]) do not control the clock selection when clock switching is disabled. However, the COSC[2:0] bits (OSCCON[14:12]) will reflect the clock source selected by the FNOSC[2:0] Configuration bits.

The OSWEN control bit (OSCCON[0]) has no effect when clock switching is disabled; it is held at '0' at all times.

9.4.2 OSCILLATOR SWITCHING SEQUENCE

At a minimum, performing a clock switch requires this basic sequence:

- 1. If desired, read the COSC[2:0] bits (OSCCON[14:12]) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- Write the appropriate value to the NOSC[2:0] bits (OSCCON[10:8]) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

- 1. The clock switching hardware compares the COSC[2:0] bits with the new value of the NOSC[2:0] bits. If they are the same, then the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.
- If a valid clock switch has been initiated, the LOCK (OSCCON[5]) and CF (OSCCON[3]) bits are cleared.
- 3. The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware will wait until the OST expires. If the new source is using the PLL, then the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for ten clock cycles from the new clock source and then performs the clock switch.
- The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC[2:0] bits values are transferred to the COSC[2:0] bits.
- The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM is enabled) or SOSC (if SOSCEN remains set).
 - **Note 1:** The processor will continue to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.
 - 2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.

A recommended code sequence for a clock switch includes the following:

- 1. Disable interrupts during the OSCCON register unlock and write sequence.
- Execute the unlock sequence for the OSCCON high byte by writing 78h and 9Ah to OSCCON[15:8] in two back-to-back instructions.
- 3. Write the new oscillator source to the NOSCx bits in the instruction immediately following the unlock sequence.
- Execute the unlock sequence for the OSCCON low byte by writing 46h and 57h to OSCCON[7:0] in two back-to-back instructions.
- 5. Set the OSWEN bit in the instruction immediately following the unlock sequence.
- 6. Continue to execute code that is not clock-sensitive (optional).
- Invoke an appropriate amount of software delay (cycle counting) to allow the selected oscillator and/or PLL to start and stabilize.
- 8. Check to see if OSWEN is '0'. If it is, the switch was successful. If OSWEN is still set, then check the LOCK bit to determine the cause of the failure.

The core sequence for unlocking the OSCCON register and initiating a clock switch is shown in Example 9-1.

EXAMPLE 9-1: BASIC CODE SEQUENCE FOR CLOCK SWITCHING

;Place the new oscillator selection in WO ;OSCCONH (high byte) Unlock Sequence
MOV #OSCCONH, w1
MOV #0x78, w2
MOV #0x9A, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Set new oscillator selection
MOV.b WREG, OSCCONH
;OSCCONL (low byte) unlock sequence
MOV #OSCCONL, w1
MOV #0x46, w2
MOV #0x57, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Start oscillator switch operation
BSET OSCCON, #0

9.5 FRC Active Clock Tuning

PIC24FJ1024GA610/GB610 family devices include an automatic mechanism to calibrate the FRC during run time. This system uses active clock tuning from a source of known accuracy to maintain the FRC within a very narrow margin of its nominal 8 MHz frequency. This allows for a frequency accuracy that is well within the requirements of the *"USB 2.0 Specification"* regarding full-speed USB devices.

Note: The self-tune feature maintains sufficient accuracy for operation in USB Device mode. For applications that function as a USB host, a high-accuracy clock source (±0.05%) is still required.

The self-tune system is controlled by the bits in the upper half of the OSCTUN register. Setting the STEN bit (OSCTUN[15]) enables the self-tuning feature, allowing the hardware to calibrate to a source selected by the STSRC bit (OSCTUN[12]). When STSRC = 1, the system uses the Start-of-Frame (SOF) packets from an external USB host for its source. When STSRC = 0, the system uses the crystal-controlled SOSC for its calibration source. Regardless of the source, the system uses the TUN[5:0] bits (OSCTUN[5:0]) to change the FRC Oscillator's frequency. Frequency monitoring and adjustment is dynamic, occurring continuously during run time. While the system is active, the TUNx bits cannot be written to by software.

Note:	To use the USB as a reference clock tuning source (STSRC = 1), the microcontroller must be configured for USB device opera- tion and connected to a non-suspended USB host or hub port.
	If the SOSC is to be used as the reference clock tuning source (STSRC = 0), the SOSC must also be enabled for clock tuning to occur.

The self-tune system can generate a hardware interrupt, FSTIF. The interrupt can result from a drift of the FRC from the reference, by greater than 0.2% in either direction, or whenever the frequency deviation is beyond the ability of the TUN[5:0] bits to correct (i.e., greater than 1.5%). The STLOCK and STOR status bits (OSCTUN[11,9]) are used to indicate these conditions.

The STLPOL and STORPOL bits (OSCTUN[10,8]) configure the FSTIF interrupt to occur in the presence or the absence of the conditions. It is the user's responsibility to monitor both the STLOCK and STOR bits to determine the exact cause of the interrupt.

Note: The STLPOL and STORPOL bits should be ignored when the self-tune system is disabled (STEN = 0).

9.6 PLL Oscillator Modes and USB Operation

The PLL block, shown in Figure 9-2, can generate a wide range of clocks used for both parts with USB functionality (PIC24FJ1024GB610 family) and non-USB functionality (PIC24FJ1024GA610 family). All of the available PLL modes are available for both families whether or nor USB is enabled or present.

The PLL input clock source (FRC or POSC) is controlled by the COSC[2:0] bits (OSCCON[14:12]) if the PLL output is used as a system clock. When COSC[2:0] = 001 (FRCPLL), the PLL is clocked from FRC, and when COSC[2:0] = 011 (PRIPLL), the Primary Oscillator (POSC) is connected to the PLL. The default COSC[2:0] value is selected by the FNOSC[2:0] Configuration bits (FOSCSEL[2:0]). Also, REFO can use the PLL when it is not selected for the system clock (COSC[2:0] bits (OSCCON[14:12]) are not '001' or '011'). In this case, the PLL clock source is selected by the PLLSS Configuration bit (FOSC[4]). If PLLSS is cleared ('0'), the PLL is fed by the FRC Oscillator. If the PLLSS Configuration bit is not programmed ('1'), the PLL is clocked from the Primary Oscillator.

When used in a USB application, the 48 MHz internal clock must be running at all times which requires the VCO of the PLL to run at 96 MHz. This, in turn, forces the system clock (that drives the CPU and peripherals) to route the 96 MHz through a fixed divide-by-3 block (generating 32 MHz) and then through a selection of four fixed divisors ('postscaler'). The postscaler output becomes the system clock.

The input to the PLL must be 4 MHz when used in a USB application, which restricts the frequency input sources to be used with a small set of fixed frequency dividers (see Figure 9-2). For example, if a 12 MHz crystal is used, the PLLMODE[3:0] Configuration bits must be set for divide-by-3 to generate the required 4 MHz. A popular baud rate crystal is 11.0592 MHz, but this value cannot be used for USB operation as there are no divisors available to generate 4 MHz exactly. See Table 9-3 for the possible combinations of input clock and PLLMODE[3:0] bits settings for USB operation.

Non-USB operation allows a wider range of PLL input frequencies. The multiplier ratios can be selected as 4x, 6x or 8x and there is no clock prescaler. The postscaler (CPDIV[1:0]) is available and can be used to reduce the system clock to meet the 32 MHz maximum specification. Note that the minimum input frequency to the PLL is 2 MHz, but the range is 2 MHz to 8 MHz. Therefore, it is possible to select a multiplier ratio that exceeds the 32 MHz maximum specification for the system clock. This allows the system clock to be any frequency between 8 MHz (2 MHz input clock with 4x multiplier ratio) and 32 MHz (4 MHz input clock with 8x multiplier ratio). For example, a common crystal frequency is 3.58 MHz ('color burst') and this can be

used with the 6x multiplier to generate a system clock of 21.48 MHz. The VCO frequency becomes the system clock.

Note 1:	The maximum operating frequency of the
	system clock is 32 MHz. It is up to the
	user to select the proper multiplier ratio
	with the selected clock source frequency.

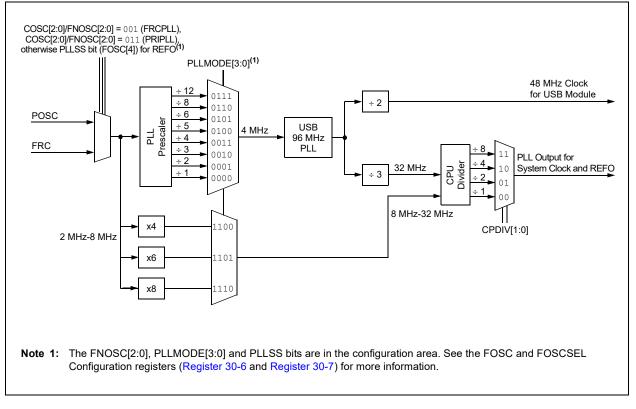
The PLL block is shown in Figure 9-2. In this system, the PLL input is divided down by a PLL prescaler to generate a 4 MHz output. This is used to drive an on-chip, 96 MHz PLL frequency multiplier to drive the two clock branches. One branch uses a fixed, divide-by-2 frequency divider to generate the 48 MHz USB clock. The other branch uses a fixed, divide-by-3 frequency divider and configurable PLL prescaler/divider to generate a range of system clock frequencies. The CPDIV[1:0] bits select the system clock speed. The available clock options are listed in Table 9-2.

The USB PLL prescaler must be configured to generate the required 4 MHz VCO input using the PLLMODE[3:0] Configuration bits. This limits the choices for the PLL source frequency to a total of eight possibilities, as shown in Table 9-3.

TABLE 9-2:	SYSTEM CLOCK OPTIONS
	DURING USB OPERATION

Clock Division (CPDIV[1:0])	Microcontroller Oscillator Clock Frequency (Fosc)
None (00)	32 MHz
÷2(01)	16 MHz
÷4 (10) ⁽¹⁾	8 MHz
÷8 (11) ⁽¹⁾	4 MHz

Note 1: System clock frequencies below 16 MHz are too slow to allow USB operation. The USB module must be disabled to use this option. See Section 9.6.1 "Considerations for USB Operation".


TABLE 9-3: VALID PRIMARY OSCILLATOR CONFIGURATIONS FOR USB OPERATIONS⁽¹⁾

PLL Input Frequency	Clock Mode	PLL Mode (PLLMODE[3:0])
48 MHz	EC	÷12 (0111)
32 MHz	HS, EC	÷8(0110)
24 MHz	HS, EC	÷6(0101)
20 MHz	HS, EC	÷5(0100)
16 MHz	HS, EC	÷4(0011)
12 MHz	HS, EC	÷3(0010)
8 MHz	EC, XT, FRC ⁽²⁾	÷2(0001)
4 MHz	EC, XT	÷1 (0000)

Note 1: USB operation restricts the VCO input frequency to be 4 MHz.

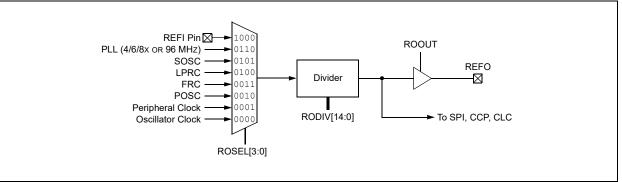
2: This requires the use of the FRC self-tune feature to maintain the required clock accuracy.

FIGURE 9-2: PLL BLOCK

^{© 2015-2019} Microchip Technology Inc.

9.6.1 CONSIDERATIONS FOR USB OPERATION

When using the USB On-The-Go module in PIC24FJ1024GA610/GB610 devices, users must always observe these rules in configuring the system clock:


- The system clock frequency must be 16 MHz or 32 MHz. System clock frequencies below 16 MHz are not allowed for USB module operation.
- The Oscillator modes listed in Table 9-3 are the only oscillator configurations that permit USB operation. There is no provision to provide a separate external clock source to the USB module.
- For USB operation, the selected clock source (EC, HS or XT) must meet the USB clock tolerance requirements.
- When the FRCPLL Oscillator mode is used for USB applications, the FRC self-tune system should be used as well. While the FRC is accurate, the only two ways to ensure the level of accuracy, required by the "USB 2.0 Specification" throughout the application's operating range, are either the self-tune system or manually changing the TUN[5:0] bits.

- The user must always ensure that the FRC source is configured to provide a frequency of 4 MHz or 8 MHz (RCDIV[2:0] = 001 or 000) and that the USB PLL prescaler is configured appropriately.
- All other Oscillator modes are available; however, USB operation is not possible when these modes are selected. They may still be useful in cases where other power levels of operation are desirable and the USB module is not needed (e.g., the application is Sleeping and waiting for a bus attachment).

9.7 Reference Clock Output

In addition to the CLKO output (Fosc/2), the PIC24FJ1024GA610/GB610 family devices can be configured to provide a reference clock output signal to a port pin. This feature is available in all oscillator configurations and allows the user to select a greater range of clock submultiples to drive external devices in the application. CLKO is enabled by Configuration bit, OSCIOFNC, and is independent of the REFO reference clock. REFO is mappable to any I/O pin that has mapped output capability. Refer to Table 11-4 for more information. The REFO module block diagram is shown on Figure 9-3.

FIGURE 9-3: REFERENCE CLOCK GENERATOR

This reference clock output is controlled by the REFOCONL and REFOCONH registers. Setting the ROEN bit (REFOCONL[15]) makes the clock signal available on the REFO pin. The RODIV[14:0] bits (REFOCONH[14:0]) enable the selection of different clock divider options. The formula for determining the final frequency output is shown in Equation 9-1. The ROSWEN bit (REFOCONL[9]) indicates that the clock divider has been successfully switched. In order to switch the REFO divider, the user should ensure that this bit reads as '0'. Write the updated values to the RODIV[14:0] bit, set the ROSWEN bit and then wait until it is cleared before assuming that the REFO clock is valid.

EQUATION 9-1: CALCULATING FREQUENCY OUTPUT

$$F_{REFOUT} = \frac{F_{REFIN}}{2 \cdot N}$$

Where: F_{REFOUT} = Output Frequency F_{REFIN} = Input Frequency N = Value of RODIV[14:0] When N = 0, the initial clock is the same as the input clock.

The ROSEL[3:0] bits (REFOCONL[3:0]) determine which clock source is used for the reference clock output. The ROSLP bit (REFOCONL[11]) determines if the reference source is available on REFO when the device is in Sleep mode.

To use the reference clock output in Sleep mode, both the ROSLP bit must be set and the clock selected by the ROSEL[3:0] bits must be enabled for operation during Sleep mode, if possible. Clearing the ROSEL[3:0] bits allows the reference output frequency to change as the system clock changes during any clock switches. The ROOUT bit enables/disables the reference clock output on the REFO pin.

The ROACTIVE bit (REFOCONL[8]) indicates that the module is active; it can be cleared by disabling the module (setting ROEN to '0'). The user must not change the reference clock source, or adjust the trim or divider when the ROACTIVE bit indicates that the module is active. To avoid glitches, the user should not disable the module until the ROACTIVE bit is '1'.

The REFO can use the PLL when it is not selected for the system clock (COSC[2:0] bits (OSCCON[14:12]) are not '001' or '011'). In this case, the PLL clock source is selected by the PLLSS Configuration bit (FOSC[4]). If PLLSS is cleared ('0'), the PLL is fed by the FRC Oscillator. If the PLLSS Configuration bit is not programmed ('1'), the PLL is clocked from the Primary Oscillator.

9.8 Secondary Oscillator

9.8.1 BASIC SOSC OPERATION

PIC24FJ1024GA610/GB610 family devices do not have to set the SOSCEN bit to use the Secondary Oscillator. Any module requiring the SOSC (such as RTCC or Timer1) will automatically turn on the SOSC when the clock signal is needed. The SOSC, however, has a long start-up time (as long as one second). To avoid delays for peripheral start-up, the SOSC can be manually started using the SOSCEN bit.

To use the Secondary Oscillator, the SOSCSEL bit (FOSC[3]) must be set to '1'. Programming the SOSCSEL bit to '0' configures the SOSC pins for Digital mode, enabling digital I/O functionality on the pins.

9.8.2 CRYSTAL SELECTION

The 32.768 kHz crystal used for the SOSC must have the following specifications in order to properly start up and run at the correct frequency when in High-Power mode:

- 12.5 pF loading capacitance
- 1.0 pF shunt capacitance
- A typical ESR of 35K; 50K maximum

In addition, the two external crystal loading capacitors should be in the range of 18-22 pF, which will be based on the PC board layout. The capacitors should be COG, 5% tolerance and rated 25V or greater.

The accuracy and duty cycle of the SOSC can be measured on the REFO pin, and is recommended to be in the range of 40-60% and accurate to ± 0.65 Hz.

9.8.3 LOW-POWER SOSC OPERATION

The Secondary Oscillator can operate in two distinct levels of power consumption based on device configuration. In Low-Power mode, the oscillator operates in a low drive strength, low-power state. By default, the oscillator uses a higher drive strength, and therefore, requires more power. Low-Power mode is selected by Configuration bit, SOSCHP (FDEVOPT1[3]). The lower drive strength of this mode makes the SOSC more sensitive to noise and requires a longer start-up time. This mode can be used with lower load capacitance crystals (6 pF-9 pF) having higher ESR ratings (50K-80K) to reduce Sleep current in the RTCC. When Low-Power mode is used, care must be taken in the design and layout of the SOSC circuit to ensure that the oscillator starts up and oscillates properly. PC board layout issues, stray capacitance and other factors will need to be carefully controlled in order for the crystal to operate.

							_
R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-0
ROEN	—	ROSIDL	ROOUT	ROSLP	—	ROSWEN	ROACTIVE
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
		_	_			EL[3:0]	1411 0
bit 7						[]	bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkr	nown
bit 15		ence Oscillator	Enchlo hit				
DIL 15		e Oscillator mo		4			
		e Oscillator is c		J			
bit 14	Unimplement	ted: Read as ') '				
bit 13	ROSIDL: REF	FO Stop in Idle	Mode bit				
		ues module op			dle mode		
	0 = Continues	s module opera	tion in Idle mo	de			
bit 12		erence Clock O	-				
		 1 = Reference clock is driven out on the REFO pin 0 = Reference clock is not driven out on the REFO pin 					
bit 11		erence Oscillato		•			
		e Oscillator cor	• •	•			
	0 = Reference	e Oscillator is c	isabled in Slee	эр			
bit 10	Unimplemented: Read as '0'						
bit 9	ROSWEN: Reference Clock RODIV[14:0]/ROTRIM[0:8] Switch Enable bit						
	 1 = Switch clock divider; clock divider switching is currently in progress 0 = Clock divider switch has been completed 						
bit 8			•				
	ROACTIVE: Reference Clock Request Status bit 1 = Reference clock is active (user should not change the REFO settings) 0 = Reference clock is inactive (user can update the REFO settings)						
bit 7-4	Unimplemented: Read as '0'						
bit 3-0	ROSEL[3:0]: Reference Clock Source Select bits						
	1111-1001 =						
	1000 = REFI	•					
	0111 = Reser)				
	0110 = PLL (4) 0101 = SOSC	4/6/8x or 96 MI	72)				
	0100 = LPRC						
	0011 = FRC	_					
	0010 = POSC						
	0001 = Peripł 0000 = Oscilla						

REGISTER 9-8: REFOCONL: REFERENCE OSCILLATOR CONTROL REGISTER LOW

REGISTER 9-9: REFOCONH: REFERENCE OSCILLATOR CONTROL REGISTER HIGH

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_				RODIV[14:8]				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			ROD	IV[7:0]				
bit 7							bit 0	
Legend:								
R = Readal	ble bit	W = Writable bit		U = Unimplem	nented bit, read	d as '0'		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is un		x = Bit is unkr	known	
bit 15	Unimpleme	ented: Read as '0'						
bit 14-0	RODIV[14:0]: Reference Clock	k Divider bits	;				
	Specifies 1/2	2 period of the refe	rence clock i	in the source cl	ocks			
		of Output = [Refere	ence Source	* 2] * RODIV[14	4:0]; this equat	tion does not ap	oply to	
	RODIV[14:0	- ,						
		.111111 = REFO c						
	111111111	111110 = REFO c	clock is the b	ase clock frequ	ency divided b	oy 65,532 (32,7	66 * 2)	
	•							
	•							
	•							
	000000000	000011 = REFO c	clock is the h	ase clock frequ	ency divided h	$1 \times 6(3 \times 2)$		

0000000000011 = REFO clock is the base clock frequency divided by 6 (3 * 2) 00000000000010 = REFO clock is the base clock frequency divided by 4 (2 * 2) 00000000000001 = REFO clock is the base clock frequency divided by 2 (1 * 2) 00000000000000 = REFO clock is the same frequency as the base clock (no divider)

^{© 2015-2019} Microchip Technology Inc.

NOTES:

10.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "Power-Saving Features" (www.microchip.com/DS39698) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The PIC24FJ1024GA610/GB610 family of devices provides the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. All PIC24F devices manage power consumption in four different ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- · Software-Controlled Doze mode
- · Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption, while still maintaining critical application features, such as timing-sensitive communications.

10.1 Clock Frequency and Clock Switching

PIC24F devices allow for a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC[2:0] bits. The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in Section 9.0 "Oscillator Configuration".

10.2 Instruction-Based Power-Saving Modes

PIC24F devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution; Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembly syntax of the PWRSAV instruction is shown in Example 10-1.

The XC16 C compiler offers "built-in" functions for the power-saving modes as follows:

Idle();	//	places	part	in	Idle
Sleep();	//	places	part	in	Sleep

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

10.2.1 SLEEP MODE

Sleep mode has these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption will be reduced to a minimum provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled.
- The LPRC clock will continue to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate in Sleep mode. This includes items, such as the Input Change Notification (ICN) on the I/O ports or peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation will be disabled in Sleep mode.

The device will wake-up from Sleep mode on any of the these events:

- On any interrupt source that is individually enabled
- · On any form of device Reset
- · On a WDT time-out

On wake-up from Sleep, the processor will restart with the same clock source that was active when Sleep mode was entered.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV#0; Put the device into SLEEP modePWRSAV#1; Put the device into IDLE mode

© 2015-2019 Microchip Technology Inc.

10.2.2 IDLE MODE

Idle mode has these features:

- The CPU will stop executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Selective Peripheral Module Control").
- If the WDT or FSCM is enabled, the LPRC will also remain active.

The device will wake from Idle mode on any of these events:

- Any interrupt that is individually enabled.
- · Any device Reset.
- · A WDT time-out.

On wake-up from Idle, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction will be held off until entry into Sleep or Idle mode has completed. The device will then wake-up from Sleep or Idle mode.

10.2.4 LOW-VOLTAGE RETENTION REGULATOR

PIC24FJ1024GA610/GB610 family devices incorporate a second on-chip voltage regulator, designed to provide power to select microcontroller features at 1.2V nominal. This regulator allows features, such as data RAM and the WDT, to be maintained in power-saving modes where they would otherwise be inactive, or maintain them at a lower power than would otherwise be the case.

Retention Sleep uses less power than standard Sleep mode, but takes more time to recover and begin execution. An additional 20-35 μ S (typical) is required to charge VCAP from 1.2V to 1.8V and start to execute instructions when exiting Retention Sleep.

The VREGS bit allows the control of speed to exit from the Sleep modes (regular and Retention) at the cost of more power. The regulator band gaps are enabled when VREGS = 1, which increases the current but reduces time to recover from Sleep by ~10 μ S.

The low-voltage retention regulator is only available when Sleep mode is invoked. It is controlled by the LPCFG Configuration bit (FPOR[2]) and in firmware by the RETEN bit (RCON[12]). LPCFG must be programmed (= 0) and the RETEN bit must be set (= 1) for the regulator to be enabled.

10.2.5 EXITING FROM LOW-VOLTAGE RETENTION SLEEP

All of the standard methods for exiting from standard Sleep also apply to Retention Sleep (MCLR, INTO, etc.). However, in order to allow the regulator to switch from 1.8V (operating) to Retention mode (1.2V), there is a hardware 'lockout timer' from the execution of Retention Sleep until Retention Sleep can be exited. During the 'lockout time', the only method to exit Retention Sleep is a POR or MCLR. Interrupts that are asserted (such as INTO) during the 'lockout time' are masked. The lockout timer then sets a minimum interval from when the part enters Retention Sleep until it can exit from Retention Sleep. Interrupts are not 'held pending' during lockout; they are masked and in order to exit after the lockout expires, the exiting source must assert after the lockout time.

The lockout timer is derived from the LPRC clock, which has a wide (untrimmed) frequency tolerance. The lockout time will be one of the following two cases:

- If the LPRC was not running at the time of Retention Sleep, the lockout time is two LPRC periods + LPRC wake-up time
- If the LPRC was running at the time of Retention Sleep, the lockout time is one LPRC period

Refer to Table 33-20 and Table 33-21 in the AC Electrical Specifications for the LPRC timing.

10.2.6 SUMMARY OF LOW-POWER SLEEP MODES

The RETEN bit and the VREGS bit (RCON[8]) allow for four different Sleep modes, which will vary by wake-up time and power consumption. Refer to Table 10-1 for a summary of these modes. Specific information about the current consumption and wake times can be found in Section 33.0 "Electrical Characteristics".

TABLE 10-1: LOW-POWER SLEEP MODES

RETEN	VREGS	Mode	Relative Power (1 = Lowest)
0	0	Sleep	3
0	1	Fast Wake-up	4
1	0	Retention Sleep	1
1	1	Fast Retention	2

10.3 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV[11]). The ratio between peripheral and core clock speed is determined by the DOZE[2:0] bits (CLKDIV[14:12]). There are eight possible configurations, from 1:1 to 1:256, with 1:1 being the default.

It is also possible to use Doze mode to selectively reduce power consumption in event driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV[15]). By default, interrupt events have no effect on Doze mode operation.

10.4 Selective Peripheral Module Control

Idle and Doze modes allow users to substantially reduce power consumption by slowing or stopping the CPU clock. Even so, peripheral modules still remain clocked, and thus, consume power. There may be cases where the application needs what these modes do not provide: the allocation of power resources to CPU processing with minimal power consumption from the peripherals.

PIC24F devices address this requirement by allowing peripheral modules to be selectively disabled, reducing or eliminating their power consumption. This can be done with two control bits:

- The Peripheral Enable bit, generically named, "XXXEN", located in the module's main control SFR.
- The Peripheral Module Disable (PMD) bit, generically named, "XXXMD", located in one of the PMD Control registers.

Both bits have similar functions in enabling or disabling their associated module. Setting the PMD bit for a module disables all clock sources to that module, reducing its power consumption to an absolute minimum. In this state, the control and status registers associated with the peripheral will also be disabled, so writes to those registers will have no effect and read values will be invalid. Many peripheral modules have a corresponding PMD bit.

In contrast, disabling a module by clearing its XXXEN bit disables its functionality, but leaves its registers available to be read and written to. This reduces power consumption, but not by as much as setting the PMD bit does. Most peripheral modules have an enable bit; exceptions include input capture, output compare and RTCC.

To achieve more selective power savings, peripheral modules can also be selectively disabled when the device enters Idle mode. This is done through the control bit of the generic name format, "XXXIDL". By default, all modules that can operate during Idle mode will do so. Using the disable on Idle feature allows further reduction of power consumption during Idle mode, enhancing power savings for extremely critical power applications.

TABLE 10-2: PERIPHERAL MODULE DISABLE REGISTER SUMMARY

Register	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	T5MD	T4MD	T3MD	T2MD	T1MD	—	—	_	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_	_	ADCMD	0000
PMD2	_	-	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	_	_	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	_	-	_		_	CMPMD	RTCCMD	PMPMD	CRCMD	_	_	_	U3MD	I2C3MD	I2C2MD	_	0000
PMD4	—	_	—	_	_	_	—	_	—	—	U4MD	_	REFOMD	CTMUMD	LVDMD	USBMD ⁽¹⁾	0000
PMD5	_	-	_		_	_	_	_	_	CCP7MD	CCP6MD	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	0000
PMD6	_	-	_		_	_	_	_	_	_	_	_	_	_	_	SPI3MD	0000
PMD7	_	_	_	_	_	_	_	_	_	_	DMA1MD	DMA0MD	_	_	_	_	0000
PMD8	—	_	_	_	_	_	_		U6MD	U5MD	CLC4MD	CLC3MD	CLC2MD	CLC1MD	-		0000

PIC24FJ1024GA610/GB610 FAMILY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: USB is not present on PIC24FJXXXXGA6XX devices.

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE REGISTER 1											
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0				
T5MD	T4MD	T3MD	T2MD	T1MD	—	—	—				
bit 15							bit				
				D/M/ 0	11.0	11.0	D/M/ 0				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0				
l2C1MD bit 7	U2MD	U1MD	SPI2MD	SPI1MD	—	_	ADC1MD bit				
							DIC				
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimpleme	ented bit, read	d as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clear	ed	x = Bit is unk	nown				
bit 15	T5MD: Timer	5 Module Disa	ole hit								
bit 10	1 = Module is	-									
			k sources are e	enabled							
bit 14	T4MD: Timer4 Module Disable bit										
	1 = Module is disabled										
	•		k sources are e	enabled							
bit 13	T3MD: Timer3 Module Disable bit										
	 1 = Module is disabled 0 = Module power and clock sources are enabled 										
bit 12	T2MD: Timer2 Module Disable bit										
	1 = Module is	s disabled									
	-		k sources are e	enabled							
bit 11		1 Module Disa	ole bit								
	1 = Module is 0 = Module p		k sources are e	enabled							
bit 10-8	-	ted: Read as '									
bit 7	-	1 Module Disal									
	1 = Module is	s disabled									
	0 = Module power and clock sources are enabled										
bit 6	U2MD: UART2 Module Disable bit										
	 1 = Module is disabled 0 = Module power and clock sources are enabled 										
bit 5				anabieu							
DIL D	U1MD: UART1 Module Disable bit 1 = Module is disabled										
	 0 = Module power and clock sources are enabled 										
bit 4	SPI2MD: SPI2 Module Disable bit										
	1 = Module is										
	•		k sources are e	enabled							
bit 3	-	1 Module Disa	ble bit								
	1 = Module is 0 = Module r		k sources are e	nabled							
bit 2-1	•	ited: Read as '									
bit 0	-		∘ odule Disable I	oit							
	1 = Module is	-									
	0 = Module p										

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE REGISTER 1

^{© 2015-2019} Microchip Technology Inc.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
	_	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD					
bit 15						•	bit					
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
_	_	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD					
bit 7							bit					
Legend:												
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	iown					
bit 15-14	Unimpleme	nted: Read as '	0'									
bit 13	-	It Capture 6 Mo		t								
	•	•										
	 1 = Module is disabled 0 = Module power and clock sources are enabled 											
bit 12	IC5MD: Input Capture 5 Module Disable bit											
	1 = Module is disabled											
	0 = Module power and clock sources are enabled											
bit 11	IC4MD: Input Capture 4 Module Disable bit											
	 1 = Module is disabled 0 = Module power and clock sources are enabled 											
bit 10	IC3MD: Input Capture 3 Module Disable bit											
	1 = Module is disabled											
	0 = Module power and clock sources are enabled											
bit 9	IC2MD: Input Capture 2 Module Disable bit											
	1 = Module is disabled											
L:1 0	0 = Module power and clock sources are enabled											
bit 8	IC1MD: Input Capture 1 Module Disable bit											
	 1 = Module is disabled 0 = Module power and clock sources are enabled 											
bit 7-6		nted: Read as '										
bit 5	-			e bit								
	OC6MD: Output Capture 6 Module Disable bit 1 = Module is disabled											
	 0 = Module power and clock sources are enabled 											
bit 4	OC5MD: Output Capture 5 Module Disable bit											
	1 = Module is disabled											
	0 = Module power and clock sources are enabled											
bit 3	OC4MD: Output Capture 4 Module Disable bit											
	1 = Module is disabled											
bit 2	0 = Module power and clock sources are enabled											
	OC3MD: Output Capture 3 Module Disable bit											
	 1 = Module is disabled 0 = Module power and clock sources are enabled 											
bit 1	OC2MD: Output Capture 2 Module Disable bit											
	1 = Module											
	0 = Module	power and clocl	sources are	enabled								
bit 0		tput Capture 1 I	Module Disable	e bit								
	1 = Module											

REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE REGISTER 2

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
_	_		_	_	CMPMD	RTCCMD	PMPMD				
bit 15					•		bit 8				
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0				
CRCMD				U3MD	I2C3MD	I2C2MD					
bit 7							bit (
Legend:											
R = Readab	le bit	W = Writable t	oit	U = Unimplem	nented bit, read	d as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own				
bit 15-11	Unimplemen	nted: Read as '0)'								
bit 10	CMPMD: Triple Comparator Module Disable bit										
	1 = Module is disabled										
	0 = Module power and clock sources are enabled										
bit 9	RTCCMD: RTCC Module Disable bit										
	1 = Module is disabled										
	0 = Module power and clock sources are enabled										
bit 8	PMPMD: Enhanced Parallel Master Port Disable bit										
	1 = Module i	s disabled									
	0 = Module p	power and clock	sources are e	enabled							
bit 7	CRCMD: CRC Module Disable bit										
	1 = Module is disabled										
	0 = Module power and clock sources are enabled										
bit 6-4	Unimplemen	nted: Read as '0)'								
bit 3	U3MD: UART3 Module Disable bit										
	1 = Module is disabled										
	0 = Module power and clock sources are enabled										
bit 2	I2C3MD: I2C3 Module Disable bit										
	1 = Module is disabled										
	0 = Module power and clock sources are enabled										
bit 1	12C2MD: 12C	2 Module Disab	le bit								
	1 = Module i										
	0 = Module p	power and clock	sources are e	enabled							
		nted: Read as '0									

DS30010074G-page 143

PIC24FJ1024GA610/GB610 FAMILY

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
			<u> </u>								
bit 15							bit 8				
U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
—	—	U4MD	—	REFOMD	CTMUMD	LVDMD	USBMD ⁽¹⁾				
bit 7							bit C				
Legend:											
R = Readat	ole bit	W = Writable b	oit	U = Unimplem	nented bit, read	l as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown					
	Unimpleme	power and clock nted: Read as '0	,								
bit 4 bit 3	REFOMD : R	eference Output		le bit							
	 1 = Module is disabled 0 = Module power and clock sources are enabled 										
bit 2	1 = Module			enabled							
bit 1	 0 = Module power and clock sources are enabled LVDMD: High/Low-Voltage Detect Module Disable bit 1 = Module is disabled 0 = Module power and clock sources are enabled 										
bit 0	USBMD: USB On-The-Go Module Disable bit ⁽¹⁾ 1 = Module is disabled 0 = Module power and clock sources are enabled										

REGISTER 10-4: PMD4: PERIPHERAL MODULE DISABLE REGISTER 4

Note 1: USB is not present on PIC24FJXXXXGA6XX devices.

REGISTER 10-5: PMD5: PERIPHERAL MODULE DISABLE REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—				—		—
bit 15							bit 8

U-0	R/W-0						
—	CCP7MD	CCP6MD	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD
bit 7							bit 0

Legend:				
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-7	Unimple	mented: Read as '0'		
bit 6	CCP7MD	: SCCP7 Module Disable bit		
	1 = Mod	ule is disabled		
	0 = Mod	ule power and clock sources	are enabled	
bit 5	CCP6MD	: SCCP6 Module Disable bit		
	1 = Mod	ule is disabled		
	0 = Mod	ule power and clock sources	are enabled	
bit 4	CCP5MD	: SCCP5 Module Disable bit		
	1 = Mod	ule is disabled		
	0 = Mod	ule power and clock sources	are enabled	
bit 3	CCP4ME	: MCCP4 Module Disable bit		
	1 = Mod	ule is disabled		
	0 = Mod	ule power and clock sources	are enabled	
bit 2	CCP3MD	: MCCP3 Module Disable bit		
	1 = Mod	ule is disabled		
	0 = Mod	ule power and clock sources	are enabled	
bit 1	CCP2MD	: MCCP2 Module Disable bit		
	1 = Mod	ule is disabled		
	0 = Mod	ule power and clock sources	are enabled	
bit 0	CCP1MD	: MCCP1 Module Disable bit		
	1 = Mod	ule is disabled		
	0 = Mod	ule power and clock sources	are enabled	

PIC24FJ1024GA610/GB610 FAMILY

REGISTER 10-6: PMD6: PERIPHERAL MODULE DISABLE REGISTER 6

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	_	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
	_	—	—	—	—		SPI3MD
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Unimplemented: Read as '0' bit 15-1

bit 0 SPI3MD: SPI3 Module Disable bit

1 = Module is disabled

0 = Module power and clock sources are enabled

REGISTER 10-7: PMD7: PERIPHERAL MODULE DISABLE REGISTER 7

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	—	DMA1MD	DMA0MD	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6	Unimplemented: Read as '0'
bit 5	DMA1MD: DMA1 Controller (Channels 4 through 7) Disable bit
	1 = Controller is disabled
	0 = Controller power and clock sources are enabled
bit 4	DMA0MD: DMA0 Controller (Channels 0 through 3) Disable bit
	1 = Controller is disabled
	0 = Controller power and clock sources are enabled
bit 3-0	Unimplemented: Read as '0'

REGISTER 10-8: PMD8: PERIPHERAL MODULE DISABLE REGISTER 8

	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—		—		—	
bit 15		·					bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
U6MD	U5MD	CLC4MD	CLC3MD	CLC2MD	CLC1MD		_
bit 7							bit (
Legend:							
R = Readab	ole bit	W = Writable	oit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-8	Unimplemer	nted: Read as ')'				
bit 7	U6MD: UAR	T6 Module Disa	ole bit				
	1 = Module i						
	0 = Module	power and clock	sources are e	enabled			
bit 6	U5MD: UAR	T5 Module Disa	ole bit				
	1 = Module is disabled						
	0 = Module	power and clock		enabled			
bit 5	0 = Module CLC4MD: Cl	oower and clock _C4 Module Dis		enabled			
bit 5	0 = Module CLC4MD: Cl 1 = Module i	oower and clock _C4 Module Dis s disabled	able bit				
	0 = Module CLC4MD: Cl 1 = Module 0 = Module	oower and clock _C4 Module Dis s disabled power and clock	able bit sources are e				
bit 5 bit 4	0 = Module CLC4MD: Cl 1 = Module 0 = Module CLC3MD: Cl	cower and clock C4 Module Dis s disabled cower and clock C3 Module Dis	able bit sources are e				
	0 = Module CLC4MD: Cl 1 = Module 0 = Module CLC3MD: Cl 1 = Module	cower and clock C4 Module Dis s disabled cower and clock C3 Module Dis	able bit sources are e able bit	enabled			
	0 = Module CLC4MD: Cl 1 = Module 0 = Module CLC3MD: Cl 1 = Module 0 = Module	cower and clock _C4 Module Dis s disabled cower and clock _C3 Module Dis s disabled	able bit sources are e able bit sources are e	enabled			
bit 4	0 = Module CLC4MD: Cl 1 = Module 0 = Module CLC3MD: Cl 1 = Module 0 = Module	cower and clock C4 Module Dis s disabled cower and clock C3 Module Dis s disabled cower and clock C2 Module Dis	able bit sources are e able bit sources are e	enabled			
bit 4	0 = Module (CLC4MD: Cl 1 = Module (0 = Module (CLC3MD: Cl 1 = Module (0 = Module (CLC2MD: Cl 1 = Module (cower and clock C4 Module Dis s disabled cower and clock C3 Module Dis s disabled cower and clock C2 Module Dis	able bit sources are e able bit sources are e able bit	enabled enabled			
bit 4	0 = Module (CLC4MD: Cl 1 = Module (0 = Module (CLC3MD: Cl 1 = Module (0 = Module (1 = Module (1 = Module (1 = Module (0 = Mo	cower and clock C4 Module Dis s disabled cower and clock C3 Module Dis s disabled cower and clock C2 Module Dis s disabled	able bit sources are e able bit sources are e able bit sources are e	enabled enabled			
bit 4 bit 3	0 = Module y CLC4MD: Cl 1 = Module y CLC3MD: Cl 1 = Module y CLC2MD: Cl 1 = Module y CLC2MD: Cl 1 = Module y CLC1MD: Cl 1 = Module y	Cower and clock C4 Module Dis s disabled cower and clock C3 Module Dis s disabled cower and clock C2 Module Dis s disabled cower and clock C1 Module Dis s disabled	able bit sources are e able bit sources are e able bit sources are e able bit	enabled enabled enabled			
bit 4 bit 3	 0 = Module (CLC4MD: Cl 1 = Module (0 = Module (CLC3MD: Cl 1 = Module (0 = Module (CLC2MD: Cl 1 = Module (0 = Module (CLC1MD: Cl 1 = Module (0 = Module (Cower and clock C4 Module Dis s disabled C3 Module Dis s disabled cower and clock C2 Module Dis s disabled cower and clock C1 Module Dis	able bit sources are e able bit sources are e able bit sources are e able bit sources are e	enabled enabled enabled			

^{© 2015-2019} Microchip Technology Inc.

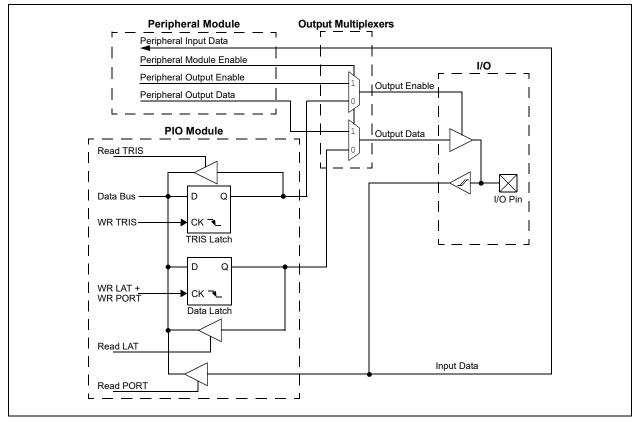
NOTES:

11.0 I/O PORTS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "I/O Ports with Interrupt-on-Change (IOC)" (www.microchip.com/ DS70005186) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

All of the device pins (except power and reset) are shared between the peripherals and the Parallel I/O (PIO) ports. All I/O input ports feature Schmitt Trigger (ST) inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports


A Parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin may be driven by a port.

All port pins have three registers directly associated with their operation as digital I/Os and one register associated with their operation as analog inputs. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Output Latch register (LATx), read the latch; writes to the latch, write the latch. Reads from the PORTx register, read the port pins; writes to the port pins, write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers, and the port pin, will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is regarded as a dedicated port because there is no other competing source of inputs.

FIGURE 11-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE

© 2015-2019 Microchip Technology Inc.

11.1.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

11.1.2 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx and TRISx registers for data control, each port pin can also be individually configured for either a digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired digital only pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

11.2 Configuring Analog Port Pins (ANSx)

The ANSx and TRISx registers control the operation of the pins with analog function. Each port pin with analog function is associated with one of the ANSx bits (see Register 11-1 through Register 11-6), which decides if the pin function should be analog or digital. Refer to Table 11-1 for detailed behavior of the pin for different ANSx and TRISx bit settings.

When reading the PORTx register, all pins configured as analog input channels will read as cleared (a low level).

11.2.1 ANALOG INPUT PINS AND VOLTAGE CONSIDERATIONS

The voltage tolerance of pins used as device inputs is dependent on the pin's input function. Most input pins are able to handle DC voltages of up to 5.5V, a level typical for digital logic circuits. However, several pins can only tolerate voltages up to VDD. Voltage excursions beyond VDD on these pins should always be avoided.

 Table 11-2
 summarizes
 the
 different
 voltage
 tolerances.

 For
 more
 information, refer
 to
 Section 33.0

 "Electrical Characteristics"
 for
 more
 details.

Pin Function	ANSx Setting	TRISx Setting	Comments
Analog Input	1	1	It is recommended to keep ANSx = 1.
Analog Output	1	1	It is recommended to keep ANSx = 1.
Digital Input	0	1	Firmware must wait at least one instruction cycle after configuring a pin as a digital input before a valid input value can be read.
Digital Output	0	0	Make sure to disable the analog output function on the pin if any is present.

TABLE 11-1: CONFIGURING ANALOG/DIGITAL FUNCTION OF AN I/O PIN

TABLE 11-2: INPUT VOLTAGE LEVELS FOR PORT OR PIN TOLERATED DESCRIPTION INPUT

Port or Pin	Tolerated Input	Description		
PORTA[15:14,5:0]				
PORTC[3:1]				
PORTD[15:8,5:0]		Tolerates input levels above VDD; useful		
PORTE[8:5,3:0]		for most standard logic.		
PORTF[13:12,8:0]				
PORTG[15:12,1:0]				
PORTA[10:9,7:6]				
PORTB[15:0]				
PORTC[15:13,4] ⁽¹⁾	VDD	Only VCD input loyale are telerated		
PORTD[7:6]		Only VDD input levels are tolerated.		
PORTE[9,4]]			
PORTG[9:6,3:2] ⁽²⁾				

Note 1: PORTC[12] has OSCI pin function.

2: PORTG[3:2] have USB function on PIC24FJXXXXGBXXX devices.

REGISTER 11-1: ANSA: PORTA ANALOG FUNCTION SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	U-0
—	—		—	—	ANSA[10:9] ⁽¹⁾		—
bit 15							bit 8

R/W-1	R/W-1	U-0	U-0	U-0	U-0	U-0	U-0
ANSA[7:6] ⁽¹⁾		—	—	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
bit 10-9	ANSA[10:9]: PORTA Analog Function Selection bits ⁽¹⁾
	 1 = Pin is configured in Analog mode; I/O port read is disabled 0 = Pin is configured in Digital mode; I/O port read is enabled
bit 8	Unimplemented: Read as '0'
bit 7-6	ANSA[7:6]: PORTA Analog Function Selection bits ⁽¹⁾
	 1 = Pin is configured in Analog mode; I/O port read is disabled 0 = Pin is configured in Digital mode; I/O port read is enabled
bit 5-0	Unimplemented: Read as '0'

Note 1: ANSA[10:9,7] bits are not available on 64-pin devices.

REGISTER 11-2: ANSB: PORTB ANALOG FUNCTION SELECTION REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			ANS	SB[15:8]			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			AN	SB[7:0]			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplemented bit, read as '0'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-0 ANSB[15:0]: PORTB Analog Function Selection bits

1 = Pin is configured in Analog mode; I/O port read is disabled

0 = Pin is configured in Digital mode; I/O port read is enabled

^{© 2015-2019} Microchip Technology Inc.

REGISTER 11-3: ANSC: PORTC ANALOG FUNCTION SELECTION REGISTER

U-0	R/W-1	R/W-1	U-0	U-0	U-0	U-0	U-0		
—	ANSC	C[14:13]	—	—	—	—	—		
bit 15							bit 8		
U-0	U-0	U-0	R/W-1	U-0	U-0	U-0	U-0		
—	—	—	ANSC4 ⁽¹⁾	—	—	_	—		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set	t '0' = Bit is cleared		ared	x = Bit is unknowr			
bit 15	Unimplemer	nted: Read as '	0'						
bit 14-13	ANSC[14:13]: PORTC Anal	og Function Se	election bits					
		nfigured in Anal							
		nfigured in Digit	•	ort read is enab	led				
bit 12-5	-	nted: Read as '							
bit 4	ANSC4: PO	RTC Analog Fu	nction Selection	n bit ⁽¹⁾					
	 1 = Pin is configured in Analog mode; I/O port read is disabled 0 = Pin is configured in Digital mode; I/O port read is enabled 								
		-							

Note 1: ANSC4 is not available on 64-pin devices.

REGISTER 11-4: ANSD: PORTD ANALOG FUNCTION SELECTION REGISTER

U-0	U-0	r-1	U-0	U-0	U-0	U-0	U-0
—	—	—	—	_	—	—	—
bit 15							bit 8

R/W-1	R/W-1	U-0	U-0	U-0	U-0	U-0	U-0
ANSD[7:6]		—	—	—	—	—	—
bit 7							bit 0

Legend:	r = Reserved bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14	Unimplemented: Read as '0'
bit 13	Reserved: Read as '1'

hit 40.0

- bit 12-8
 Unimplemented: Read as '0'

 bit 7-6
 ANSD[7:6]: PORTD Analog Function Selection bits

 1 = Pin is configured in Analog mode; I/O port read is disabled

 0 = Pin is configured in Digital mode; I/O port read is enabled
- bit 5-0 Unimplemented: Read as '0'

U-0	U-0	U-0	U-0	U-0	U-0	R/W-1	U-0								
—	—	—	—	—	—	ANSE9 ⁽¹⁾	—								
bit 15		•				•	bit 8								
U-0	U-0	U-0	R/W-1	U-0	U-0	U-0	U-0								
_	—	—	ANSE4	—	—	—	—								
bit 7							bit 0								
Legend:															
R = Readable	e bit	W = Writable I	bit	U = Unimplem	nented bit, read	l as '0'									
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown									
bit 15-10	Unimplemen	ted: Read as ')'												
bit 9	ANSE9: POR	TE Analog Fun	ction Selectior	ı bit ⁽¹⁾											
	 1 = Pin is configured in Analog mode; I/O port read is disabled 0 = Pin is configured in Digital mode; I/O port read is enabled 														
bit 8-5	Unimplemen	ted: Read as 'o)'												
bit 4	ANSE4: POR	TE Analog Fun	ction Selectior	n bit											
	ANSE4: PORTE Analog Function Selection bit 1 = Pin is configured in Analog mode; I/O port read is disabled 0 = Pin is configured in Digital mode; I/O port read is enabled														

- bit 3-0 Unimplemented: Read as '0'
- **Note 1:** ANSE9 is not available on 64-pin devices.

REGISTER 11-6: ANSG: PORTG ANALOG FUNCTION SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1
_	_	—	—	—	—	ANSG[9:8]	
bit 15		·	•	•	•		bit 8
R/W-1	R/W-1	U-0	U-0	U-0	U-0	U-0	U-0
ANSG[7:6]		—	—	—	—	—	—
bit 7			•	•	•		bit 0
Legend:							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10	Unimplemented: Read as '0'
bit 9-6	ANSG[9:6]: PORTG Analog Function Selection bits
	 1 = Pin is configured in Analog mode; I/O port read is disabled 0 = Pin is configured in Digital mode; I/O port read is enabled
bit 5-0	Unimplemented: Read as '0'

^{© 2015-2019} Microchip Technology Inc.

11.3 Interrupt-on-Change (IOC)

The interrupt-on-change function of the I/O ports allows the PIC24FJ1024GA610/GB610 family of devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature is capable of detecting input Change-of-States, even in Sleep mode when the clocks are disabled.

Interrupt-on-change functionality is enabled on a pin by setting the IOCPx and/or IOCNx register bit for that pin. For example, PORTC has register names, IOCPC and IOCNC, for these functions. Setting a value of '1' in the IOCPx register enables interrupts for low-to-high transitions, while setting a value of '1' in the IOCNx register enables interrupts for high-to-low transitions. Setting a value of '1' in both register bits will enable interrupts for either case (e.g., a pulse on the pin will generate two interrupts). In order for any IOC to be detected, the global IOC Interrupt Enable bit (IEC1[3]) must be set, the IOCON bit (PADCON[15]) set and the associated IFSx flag cleared.

When an interrupt request is generated for a pin, the corresponding status flag (IOCFx register bit) will be set, indicating that a Change-of-State occurred on that pin. The IOCFx register bit will remain set until cleared by writing a zero to it. When any IOCFx flag bit in a given port is set, the corresponding IOCPxF bit in the IOCSTAT register will be set. This flag indicates that a change was detected on one of the bits on the given port. The IOCPxF flag will be cleared when all IOCFx[15:0] bits are cleared.

Multiple individual status flags can be cleared by writing a zero to one or more bits using a Read-Modify-Write operation. If another edge is detected on a pin whose status bit is being cleared during the Read-Modify-Write sequence, the associated change flag will still be set at the end of the Read-Modify-Write sequence. The user should use the instruction sequence (or equivalent) shown in Example 11-1 to clear the Interrupt-on-Change Status registers.

At the end of this sequence, the W0 register will contain a zero for each bit for which the port pin had a change detected. In this way, any indication of a pin changing will not be lost.

Due to the asynchronous and real-time nature of the interrupt-on-change, the value read on the port pins may not indicate the state of the port when the change was detected, as a second change can occur during the interval between clearing the flag and reading the port. It is up to the user code to handle this case if it is a possibility in their application. To keep this interval to a minimum, it is recommended that any code modifying the IOCFx registers be run either in the interrupt handler or with interrupts disabled.

Each interrupt-on-change (IOC) pin has both a weak pull-up and a weak pull-down connected to it. The pullups act as a current source connected to the pin, while the pull-downs act as a current sink connected to the pin. These eliminate the need for external resistors when push button or keypad devices are connected.

The pull-ups and pull-downs are separately enabled using the IOCPUx registers (for pull-ups) and the IOCPDx registers (for pull-downs). Each IOC pin has individual control bits for its pull-up and pull-down. Setting a control bit enables the weak pull-up or pull-down for the corresponding pin.

Note: Pull-ups and pull-downs on pins should always be disabled whenever the pin is configured as a digital output.

EXAMPLE 11-1: IOC STATUS READ/CLEAR IN ASSEMBLY

MOV	OxFFFF, WO	; Initial mask value 0xFFFF -> W0	
XOR	IOCFx, WO	; WO has '1' for each bit set in IOCF	'x
AND	IOCFx	; IOCFx & WO ->IOCFx	

EXAMPLE 11-2: PORT READ/WRITE IN ASSEMBLY

MOV		; Configure PORTB<15:8> as inputs
MOV	WO, TRISB	; and PORTB<7:0> as outputs
NOP		; Delay 1 cycle
BTSS	PORTB, #13	; Next Instruction

EXAMPLE 11-3: PORT READ/WRITE IN 'C'

TRISB = 0xFF00;	<pre>// Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs</pre>
Nop();	// Delay 1 cycle
<pre>If (PORTBbits.RB13) { };</pre>	// Test if RB13 is a `1'

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
IOCON	—	—	—	—	—	—	—
bit 15		•		•		•	bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	—	—		—	—	—	PMPTTL
bit 7		•		•		•	bit 0
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown		nown	

REGISTER 11-7: PADCON: PORT CONFIGURATION REGISTER

bit 15 **IOCON:** Interrupt-on-Change Enable bit

- 1 = Interrupt-on-change functionality is enabled
- 0 = Interrupt-on-change functionality is disabled

bit 14-1 Unimplemented: Read as '0'

bit 0 **PMPTTL:** PMP Port Type bit

1 = TTL levels on PMP port pins

0 = Schmitt Triggers on PMP port pins

^{© 2015-2019} Microchip Technology Inc.

REGISTER 11-8: IOCSTAT: INTERRUPT-ON-CHANGE STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	R/HS/HC-0						
—	IOCPGF	IOCPFF	IOCPEF	IOCPDF	IOCPCF	IOCPBF	IOCPAF
bit 7							bit 0

Legend:	HS = Hardware Settable bit	Hardware Clearable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7	Unimplemented: Read as '0'
bit 6	IOCPGF: Interrupt-on-Change PORTG Flag bit
	 1 = A change was detected on an IOC-enabled pin on PORTG 0 = No change was detected or the user has cleared all detected changes
bit 5	IOCPFF: Interrupt-on-Change PORTF Flag bit
	 1 = A change was detected on an IOC-enabled pin on PORTF 0 = No change was detected or the user has cleared all detected changes
bit 4	IOCPEF: Interrupt-on-Change PORTE Flag bit
	 1 = A change was detected on an IOC-enabled pin on PORTE 0 = No change was detected or the user has cleared all detected changes
bit 3	IOCPDF: Interrupt-on-Change PORTD Flag bit
	 1 = A change was detected on an IOC-enabled pin on PORTD 0 = No change was detected or the user has cleared all detected changes
bit 2	IOCPCF: Interrupt-on-Change PORTC Flag bit
	 1 = A change was detected on an IOC-enabled pin on PORTC 0 = No change was detected or the user has cleared all detected changes
bit 1	IOCPBF: Interrupt-on-Change PORTB Flag bit
	 1 = A change was detected on an IOC-enabled pin on PORTB 0 = No change was detected or the user has cleared all detected changes
bit 0	IOCPAF: Interrupt-on-Change PORTA Flag bit
	 1 = A change was detected on an IOC-enabled pin on PORTA 0 = No change was detected, or the user has cleared all detected change

REGISTER 11-9: IOCPX: INTERRUPT-ON-CHANGE POSITIVE EDGE x REGISTER^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
			IOCP	'x[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			IOCF	Px[7:0]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'				l as '0'			

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 **IOCPx[15:0]:** Interrupt-on-Change Positive Edge x Enable bits

- 1 = Interrupt-on-change is enabled on the IOCx pin for a positive going edge; the associated status bit and interrupt flag will be set upon detecting an edge
- 0 = Interrupt-on-change is disabled on the IOCx pin for a positive going edge
- **Note 1:** Setting both IOCPx and IOCNx will enable the IOCx pin for both edges, while clearing both registers will disable the functionality.
 - 2: Changing the value of this register while the module is enabled (IOCON = 1) may cause a spurious IOC event. The corresponding interrupt must be ignored, cleared (using IOCFx) or masked (within the interrupt controller), or this module must be enabled (IOCON = 0) when changing this register.

REGISTER 11-10: IOCNX: INTERRUPT-ON-CHANGE NEGATIVE EDGE x REGISTER^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	
IOCNx[15:8]								
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
IOCNx[7:0]								
bit 7							bit 0	

Legend:				
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-0 **IOCNx[15:0]:** Interrupt-on-Change Negative Edge x Enable bits

- 1 = Interrupt-on-change is enabled on the IOCx pin for a negative going edge; the associated status bit and interrupt flag will be set upon detecting an edge
- 0 = Interrupt-on-change is disabled on the IOCx pin for a negative going edge
- **Note 1:** Setting both IOCPx and IOCNx will enable the IOCx pin for both edges, while clearing both registers will disable the functionality.
 - 2: Changing the value of this register while the module is enabled (IOCON = 1) may cause a spurious IOC event. The corresponding interrupt must be ignored, cleared (using IOCFx) or masked (within the interrupt controller), or this module must be enabled (IOCON = 0) when changing this register.

© 2015-2019 Microchip Technology Inc.

REGISTER 11-11: IOCFx: INTERRUPT-ON-CHANGE FLAG x REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	
			IOC	Fx[15:8]				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	IOCFx[7:0]							
bit 7						bit 0		
Legend:								
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unl		x = Bit is unkr	nown					

bit 15-0 **IOCFx[15:0]:** Interrupt-on-Change Flag x bits

- 1 = An enabled change was detected on the associated pin; set when IOCPx = 1 and a positive edge was detected on the IOCx pin, or when IOCNx = 1 and a negative edge was detected on the IOCx pin
 0 = No change was detected or the user cleared the detected change
- **Note 1:** It is not possible to set the IOCFx register bits with software writes (as this would require the addition of significant logic). To test IOC interrupts, it is recommended to enable the IOC functionality on one or more GPIO pins and then use the corresponding LATx register bit(s) to trigger an IOC interrupt.

11.4 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. In an application that needs to use more than one peripheral multiplexed on a single pin, inconvenient work arounds in application code, or a complete redesign, may be the only option.

The Peripheral Pin Select (PPS) feature provides an alternative to these choices by enabling the user's peripheral set selection and its placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of any one of many digital peripherals to any one of these I/O pins. PPS is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

11.4.1 AVAILABLE PINS

The PPS feature is used with a range of up to 44 pins, depending on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the designation, "RPn" or "RPIn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions, while "RPI" indicates pins that support remappable input functions only.

PIC24FJ1024GA610/GB610 family devices support a larger number of remappable input/output pins than remappable input only pins. In this device family, there are up to 44 remappable input/output pins, depending on the pin count of the particular device selected. These pins are numbered, RP0 through RP31, and RPI32 through RPI43.

See Table 1-1 for a summary of pinout options in each package offering.

11.4.2 AVAILABLE PERIPHERALS

The peripherals managed by the PPS are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer related peripherals (input capture and output compare) and external interrupt inputs. Also included are the outputs of the comparator module, since these are discrete digital signals. PPS is not available for these peripherals:

- I²C (input and output)
- Input Change Notifications
- EPMP Signals (input and output)
- Analog (inputs and outputs)
- INT0

A key difference between pin select and non-pin select peripherals is that pin select peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-pin select peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

11.4.2.1 Peripheral Pin Select Function Priority

Pin-selectable peripheral outputs (e.g., output compare, UART transmit) will take priority over general purpose digital functions on a pin, such as EPMP and port I/O. Specialized digital outputs will take priority over PPS outputs on the same pin. The pin diagrams list peripheral outputs in the order of priority. Refer to them for priority concerns on a particular pin.

Unlike PIC24F devices with fixed peripherals, pinselectable peripheral inputs will never take ownership of a pin. The pin's output buffer will be controlled by the TRISx setting or by a fixed peripheral on the pin. If the pin is configured in Digital mode, then the PPS input will operate correctly. If an analog function is enabled on the pin, the PPS input will be disabled.

11.4.3 CONTROLLING PERIPHERAL PIN SELECT

PPS features are controlled through two sets of Special Function Registers (SFRs): one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on if an input or an output is being mapped.

11.4.3.1 Input Mapping

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral; that is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 11-12 through Register 11-35). Each register contains one or two sets of 6-bit fields, with each set associated with one of the pin-selectable peripherals. Programming a given peripheral's bit field with an appropriate 6-bit value maps the RPn/RPIn pin with that value to that peripheral. For any given device, the valid range of values for any of the bit fields corresponds to the maximum number of Peripheral Pin Selections supported by the device.

TABLE 11-3. SELECTABLE INFUT SOURCES (WAFS INFUT TO FUNCTION)	TABLE 11-3:	SELECTABLE INPUT SOURCES	(MAPS INPUT TO FUNCTION) ⁽¹⁾
---	-------------	--------------------------	---

Input Name	Function Name	Register	Function Mapping Bits
Output Compare Trigger 1	OCTRIG1	RPINR0[5:0]	OCTRIG1R[5:0]
External Interrupt 1	INT1	RPINR0[13:8]	INT1R[5:0]
External Interrupt 2	INT2	RPINR1[5:0]	INT2R[5:0]
External Interrupt 3	INT3	RPINR1[13:8]	INT3R[5:0]
External Interrupt 4	INT4	RPINR2[5:0]	INT4R[5:0]
Output Compare Trigger 2	OCTRIG2	RPINR2[13:8]	OCTRIG2R[5:0]
Timer2 External Clock	T2CK	RPINR3[5:0]	T2CKR[5:0]
Timer3 External Clock	T3CK	RPINR3[13:8]	T3CKR[5:0]
Timer4 External Clock	T4CK	RPINR4[5:0]	T4CKR[5:0]
Timer5 External Clock	T5CK	RPINR4[13:8]	T5CKR[5:0]
Input Capture 1	IC1	RPINR7[5:0]	IC1R[5:0]
Input Capture 2	IC2	RPINR7[13:8]	IC2R[5:0]
Input Capture 3	IC3	RPINR8[5:0]	IC3R[5:0]
Output Compare Fault A	OCFA	RPINR11[5:0]	OCFAR[5:0]
Output Compare Fault B	OCFB	RPINR11[13:8]	OCFBR[5:0]
CCP Clock Input A	TCKIA	RPINR12[5:0]	TCKIAR[5:0]
CCP Clock Input B	TCKIB	RPINR12[13:8]	TCKIBR[5:0]
UART3 Receive	U3RX	RPINR17[13:8]	U3RXR[5:0]
UART1 Receive	U1RX	RPINR18[5:0]	U1RXR[5:0]
UART1 Clear-to-Send	U1CTS	RPINR18[13:8]	U1CTSR[5:0]
UART2 Receive	U2RX	RPINR19[5:0]	U2RXR[5:0]
UART2 Clear-to-Send	U2CTS	RPINR19[13:8]	U2CTSR[5:0]
SPI1 Data Input	SDI1	RPINR20[5:0]	SDI1R[5:0]
SPI1 Clock Input	SCK1IN	RPINR20[13:8]	SCK1R[5:0]
SPI1 Slave Select Input	SS1IN	RPINR21[5:0]	SS1R[5:0]
UART3 Clear-to-Send	U3CTS	RPINR21[13:8]	U3CTSR[5:0]
SPI2 Data Input	SDI2	RPINR22[5:0]	SDI2R[5:0]
SPI2 Clock Input	SCK2IN	RPINR22[13:8]	SCK2R[5:0]
SPI2 Slave Select Input	SS2IN	RPINR23[5:0]	SS2R[5:0]
Generic Timer External Clock	TxCK	RPINR23[13:8]	TXCKR[5:0]
CLC Input A	CLCINA	RPINR25[5:0]	CLCINAR[5:0]
CLC Input B	CLCINB	RPINR25[13:8]	CLCINBR[5:0]
UART4 Receive	U4RX	RPINR27[5:0]	U4RXR[5:0]
UART4 Clear-to-Send	U4CTS	RPINR27[13:8]	U4CTSR[5:0]
SPI3 Data Input	SDI3	RPINR28[5:0]	SDI3R[5:0]
SPI3 Clock Input	SCK3IN	RPINR28[13:8]	SCK3R[5:0]
SPI3 Slave Select Input	SS3IN	RPINR29[5:0]	SS3R[5:0]

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger (ST) input buffers.

11.4.3.2 Output Mapping

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Each register contains two 6-bit fields, with each field being associated with one RPn pin (see Register 11-36 through Register 11-51). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 11-4).

Because of the mapping technique, the list of peripherals for output mapping also includes a null value of '000000'. This permits any given pin to remain disconnected from the output of any of the pin-selectable peripherals.

TABI F 11-4 [.]	SELECTABLE OUTPUT SOURCES	(MAPS FUNCTION TO OUTPUT)
IADEE II-4.		

Output Function Number	Function	Output Name	
0	None (Pin Disabled)		
1	C1OUT	Comparator 1 Output	
2	C2OUT	Comparator 2 Output	
3	U1TX	UART1 Transmit	
4	U1RTS	UART1 Request-to-Send	
5	U2TX	UART2 Transmit	
6	U2RTS	UART2 Request-to-Send	
7	SDO1	SPI1 Data Output	
8	SCK1OUT	SPI1 Clock Output	
9	SS1OUT	SPI1 Slave Select Output	
10	SDO2	SPI2 Data Output	
11	SCK2OUT	SPI2 Clock Output	
12	SS2OUT	SPI2 Slave Select Output	
13	OC1	Output Compare 1	
14	OC2	Output Compare 2	
15	OC3	Output Compare 3	
16	OCM4	CCP4 Output Compare	
17	OCM5	CCP5 Output Compare	
18	OCM6	CCP6 Output Compare	
19	U3TX	UART3 Transmit	
20	U3RTS	UART3 Request-to-Send	
21	U4TX	UART4 Transmit	
22	U4RTS	UART4 Request-to-Send	
23	SDO3	SPI3 Data Output	
24	SCK3OUT	SPI3 Clock Output	
25	SS3OUT	SPI3 Slave Select Output	
26	C3OUT	Comparator 3 Output	
27	OCM7	CCP7 Output Compare	
28	REFO	Reference Clock Output	
29	CLC10UT	CLC1 Output	
30	CLC2OUT	CLC2 Output	
31	RTCC	RTCC Output	

^{© 2015-2019} Microchip Technology Inc.

11.4.3.3 Mapping Limitations

The control schema of the Peripheral Pin Select is extremely flexible. Other than systematic blocks that prevent signal contention, caused by two physical pins being configured as the same functional input or two functional outputs configured as the same pin, there are no hardware enforced lockouts. The flexibility extends to the point of allowing a single input to drive multiple peripherals or a single functional output to drive multiple output pins.

11.4.3.4 Mapping Exceptions for PIC24FJ1024GA610/GB610 Family Devices

Although the PPS registers theoretically allow for inputs to be remapped to up to 64 pins, or for outputs to be remapped from 32 pins, not all of these are implemented in all devices. For 100-pin or 121-pin variants of the PIC24FJ1024GA610/GB610 family devices, 32 remappable input/output pins are available and 12 remappable input pins are available. For 64-pin variants, 29 input/outputs and 1 input are available. The differences in available remappable pins are summarized in Table 11-5.

When developing applications that use remappable pins, users should also keep these things in mind:

- For the RPINRx registers, bit combinations corresponding to an unimplemented pin for a particular device are treated as invalid; the corresponding module will not have an input mapped to it.
- For RPORx registers, the bit fields corresponding to an unimplemented pin will also be unimplemented; writing to these fields will have no effect.

11.4.4 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. PIC24F devices include three features to prevent alterations to the peripheral map:

- · Control register lock sequence
- · Continuous state monitoring
- · Configuration bit remapping lock

11.4.4.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes will appear to execute normally, but the contents of the registers will remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON[6]). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 46h to OSCCON[7:0].
- 2. Write 57h to OSCCON[7:0].
- 3. Clear (or set) IOLOCK as a single operation.

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the Peripheral Pin Selects to be configured with a single unlock sequence, followed by an update to all control registers, then locked with a second lock sequence.

11.4.4.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset will be triggered.

11.4.4.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (FOSC[5]) Configuration bit blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure will not execute and the Peripheral Pin Select Control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows users unlimited access (with the proper use of the unlock sequence) to the Peripheral Pin Select registers.

Device		RPn Pins (I/O)	RPIn Pins		
Device	Total	Unimplemented	Total	Unimplemented	
PIC24FJXXXGB606	28	RP5, RP15, RP30, RP31	1	All except RPI37	
PIC24FJXXXGX61X	32	_	12	—	
PIC24FJXXXGA606	29	RP5, RP15, RP31	1	All except RPI37	

TABLE 11-5: REMAPPABLE PIN EXCEPTIONS FOR PIC24FJ1024GA610/GB610 FAMILY DEVICES

11.4.5 CONSIDERATIONS FOR PERIPHERAL PIN SELECTION

The ability to control Peripheral Pin Selection introduces several considerations into application design that could be overlooked. This is particularly true for several common peripherals that are available only as remappable peripherals.

The main consideration is that the Peripheral Pin Selects are not available on default pins in the device's default (Reset) state. Since all RPINRx registers reset to '111111' and all RPORx registers reset to '000000', all Peripheral Pin Select inputs are tied to Vss, and all Peripheral Pin Select outputs are disconnected.

This situation requires the user to initialize the device with the proper peripheral configuration before any other application code is executed. Since the IOLOCK bit resets in the unlocked state, it is not necessary to execute the unlock sequence after the device has come out of Reset. For application safety, however, it is best to set IOLOCK and lock the configuration after writing to the control registers.

Because the unlock sequence is timing-critical, it must be executed as an assembly language routine in the same manner as changes to the oscillator configuration. If the bulk of the application is written in 'C', or another high-level language, the unlock sequence should be performed by writing in-line assembly.

Choosing the configuration requires the review of all Peripheral Pin Selects and their pin assignments, especially those that will not be used in the application. In all cases, unused pin-selectable peripherals should be disabled completely. Unused peripherals should have their inputs assigned to an unused RPn/RPIn pin function. I/O pins with unused RPn functions should be configured with the null peripheral output.

The assignment of a peripheral to a particular pin does not automatically perform any other configuration of the pin's I/O circuitry. In theory, this means adding a pinselectable output to a pin may mean inadvertently driving an existing peripheral input when the output is driven. Users must be familiar with the behavior of other fixed peripherals that share a remappable pin and know when to enable or disable them. To be safe, fixed digital peripherals that share the same pin should be disabled when not in use. Along these lines, configuring a remappable pin for a specific peripheral does not automatically turn that feature on. The peripheral must be specifically configured for operation and enabled as if it were tied to a fixed pin. Where this happens in the application code (immediately following a device Reset and peripheral configuration or inside the main application routine) depends on the peripheral and its use in the application.

A final consideration is that Peripheral Pin Select functions neither override analog inputs nor reconfigure pins with analog functions for digital I/O. If a pin is configured as an analog input on a device Reset, it must be explicitly reconfigured as a digital I/O when used with a Peripheral Pin Select.

Example 11-4 shows a configuration for bidirectional communication with flow control using UART1. The following input and output functions are used:

- Input Functions: U1RX, U1CTS
- Output Functions: U1TX, U1RTS

EXAMPLE 11-4: CONFIGURING UART1 INPUT AND OUTPUT FUNCTIONS

	Unlock Regi			
asm	volatile		#OSCCON, w1	
			#0x46, w2	
			#0x57, w3	
				\n"
			w3, [w1]	\n "
		"BCLR	OSCCON, #6")	;
	or use XC16			0h-£)
//	Dulltin_w	rite_OS	CCONL (OSCCON &	(IdXU
//	Configure I	nput Fu	nctions (Table	11-3)
	// Assign U	1RX To 1	Pin RPO	
	RPINR18bits	.U1RXR =	= 0;	
	()	1000 0	D' DD1	
	// Assign U			
	RPINR18bits	.UICTSR	= 1;	
//	Configure O	utput Fi	unctions (Table	11-4)
	// Assign U	1TX To 1	Pin RP2	
	RPOR1bits.R	P2R = 3	;	
	// Assign U			
	RPOR1bits.R	P3R = 4	;	
//	Lock Regist	ers		
asm	volatile	("MOV	#OSCCON, w1	\n"
		"MOV	#0x46, w2	\n"
		"MOV	#0x57, w3	\n"
		"MOV.b	w2, [w1]	\n"
		"MOV.b	w3, [w1]	\n"
		"BSET	OSCCON, #6")	;
//	or use XC16			
11	builtin w	rite OS	CCONL (OSCCON	0×40)

11.4.6 PERIPHERAL PIN SELECT REGISTERS

The PIC24FJ1024GA610/GB610 family of devices implements a total of 40 registers for remappable peripheral configuration:

- Input Remappable Peripheral Registers (24)
- Output Remappable Peripheral Registers (16)

Note: Input and Output register values can only be changed if IOLOCK (OSCCON[6]) = 0. See Section 11.4.4.1 "Control Register Lock" for a specific command sequence.

REGISTER 11-12: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	OCTRIG1R5	OCTRIG1R4	OCTRIG1R3	OCTRIG1R2	OCTRIG1R1	OCTRIG1R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 INT1R[5:0]: Assign External Interrupt 1 (INT1) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 OCTRIG1R[5:0]: Assign Output Compare Trigger 1 to Corresponding RPn or RPIn Pin bits

REGISTER 11-13: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
_	—	INT3R5	INT3R4	INT3R3	INT3R2	INT3R1	INT3R0			
bit 15							bit 8			
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
_	—	INT2R5	INT2R4	INT2R3	INT2R2	INT2R1	INT2R0			
bit 7	·						bit 0			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	it is unknown			
bit 15-14	Unimplemen	ted: Read as ')'							
bit 13-8	INT3R[5:0]: A	INT3R[5:0]: Assign External Interrupt 3 (INT3) to Corresponding RPn or RPIn Pin bits								
bit 7-6	Unimplemented: Read as '0'									

bit 5-0 INT2R[5:0]: Assign External Interrupt 2 (INT2) to Corresponding RPn or RPIn Pin bits

DS30010074G-page 164

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	OCTRIG2R5	OCTRIG2R4	OCTRIG2R3	OCTRIG2R2	OCTRIG2R1	OCTRIG2R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	INT4R5	INT4R4	INT4R3	INT4R2	INT4R1	INT4R0
bit 7							bit 0

Legend:				
R = Readab	ole bit W =	= Writable bit	U = Unimplemented bit, read	as '0'
-n = Value a	at POR '1' =	= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	OCTRIG2R[5:0]: Assign Output Compare Trigger 2 to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	INT4R[5:0]: Assign External Interrupt 4 (INT4) to Corresponding RPn or RPIn Pin bits

REGISTER 11-15: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	T3CKR5	T3CKR4	T3CKR3	T3CKR2	T3CKR1	T3CKR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	T2CKR5	T2CKR4	T2CKR3	T2CKR2	T2CKR1	T2CKR0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 T3CKR[5:0]: Assign Timer3 Clock to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 T2CKR[5:0]: Assign Timer2 Clock to Corresponding RPn or RPIn Pin bits

^{© 2015-2019} Microchip Technology Inc.

PIC24FJ1024GA610/GB610 FAMILY

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—		T5CKR5	T5CKR4	T5CKR3	T5CKR2	T5CKR1	T5CKR0
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	T4CKR5	T4CKR4	T4CKR3	T4CKR2	T4CKR1	T4CKR0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			iown	

REGISTER 11-16: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4

bit 15-14	Unimplemented: Read as '0'
bit 13-8	T5CKR[5:0]: Assign Timer5 Clock to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	T4CKR[5:0]: Assign Timer4 Clock to Corresponding RPn or RPIn Pin bits

REGISTER 11-17: RPINR5: PERIPHERAL PIN SELECT INPUT REGISTER 5

U-0	U-0	r-1	r-1	r-1	r-1	r-1	r-1
—	—	—	—	—	_	—	—
bit 15							bit 8

U-0	U-0	r-1	r-1	r-1	r-1	r-1	r-1
—	—	—	_	_	_	—	—
bit 7							bit 0

Legend:	r = Reserved bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **Reserved**: Maintain as '1'

bit 7-6 Unimplemented: Read as '0'

bit 5-0 Reserved: Maintain as '1'

REGISTER 11-18: RPINR6: PERIPHERAL PIN SELECT INPUT REGISTER 6

U-0	U-0	r-1	r-1	r-1	r-1	r-1	r-1
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	r-1	r-1	r-1	r-1	r-1	r-1
—	—	—	—	—	_	—	—
bit 7							bit 0

Legend:	r = Reserved bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14	Unimplemented: Read as '0'
bit 13-8	Reserved : Maintain as '1'

nted: Read as '0'

bit 5-0 **Reserved**: Maintain as '1'

REGISTER 11-19: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	IC2R5	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	IC1R5	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 IC2R[5:0]: Assign Input Capture 2 (IC2) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 IC1R[5:0]: Assign Input Capture 1 (IC1) to Corresponding RPn or RPIn Pin bits

© 2015-2019 Microchip Technology Inc.

PIC24FJ1024GA610/GB610 FAMILY

REGISTER 11-20: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
		IC3R5	IC3R4	IC3R3	IC3R2	IC3R1	IC3R0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 IC3R[5:0]: Assign Input Capture 3 (IC3) to Corresponding RPn or RPIn Pin bits

REGISTER 11-21: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	OCFBR5	OCFBR4	OCFBR3	OCFBR2	OCFBR1	OCFBR0
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	OCFAR5	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 OCFBR[5:0]: Assign Output Compare Fault B (OCFB) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 OCFAR[5:0]: Assign Output Compare Fault A (OCFA) to Corresponding RPn or RPIn Pin bits

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	TCKIBR5	TCKIBR4	TCKIBR3	TCKIBR2	TCKIBR1	TCKIBR0
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	TCKIAR5	TCKIAR4	TCKIAR3	TCKIAR2	TCKIAR1	TCKIAR0
bit 7							bit 0
Legend:							

REGISTER 11-22: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 TCKIBR[5:0]: Assign MCCP/SCCP Clock Input B to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 TCKIAR[5:0]: Assign MCCP/SCCP Clock Input A to Corresponding RPn or RPIn Pin bits

REGISTER 11-23: RPINR14: PERIPHERAL PIN SELECT INPUT REGISTER 14

U-0	U-0	r-1	r-1	r-1	r-1	r-1	r-1
	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	r-1	r-1	r-1	r-1	r-1	r-1

				• •		• •	• •
—	—	—	—	—	—	—	—
bit 7							bit 0

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **Reserved**: Maintain as '1'

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **Reserved**: Maintain as '1'

REGISTER 11-24: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	r-1	r-1	r-1	r-1	r-1	r-1
—	—	—	—	—	—	—	—
bit 7							bit 0
Legend:		r = Reserved	bit				
R = Readable	bit	W = Writable	hit	II = IInimplemented bit read as '0'			

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	id as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 **Reserved**: Maintain as '1'

REGISTER 11-25: RPINR17: PERIPHERAL PIN SELECT INPUT REGISTER 17

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U3RXR5	U3RXR4	U3RXR3	U3RXR2	U3RXR1	U3RXR0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7						•	bit 0
Legend:							
R = Readable	e bit	W = Writable I	bit	U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **U3RXR[5:0]:** Assign UART3 Receive (U3RX) to Corresponding RPn or RPIn Pin bits

bit 7-0 Unimplemented: Read as '0'

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0
bit 15							bit 8
11_0	11.0						

REGISTER 11-26: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	U1CTSR[5:0]: Assign UART1 Clear-to-Send (U1CTS) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	U1RXR[5:0]: Assign UART1 Receive (U1RX) to Corresponding RPn or RPIn Pin bits

REGISTER 11-27: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U2CTSR5	U2CTSR4	U2CTSR3	U2CTSR2	U2CTSR1	U2CTSR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U2RXR5	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 U2CTSR[5:0]: Assign UART2 Clear-to-Send (U2CTS) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 U2RXR[5:0]: Assign UART2 Receive (U2RX) to Corresponding RPn or RPIn Pin bits

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SCK1R5	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writab		W = Writable I	oit	U = Unimplemented bit, read as '0'		l as '0'	
-n = Value at POR '1		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

REGISTER 11-28: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

bit 15-14	Unimplemented: Read as '0'
bit 13-8	SCK1R[5:0]: Assign SPI1 Clock Input (SCK1IN) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	SDI1R[5:0]: Assign SPI1 Data Input (SDI1) to Corresponding RPn or RPIn Pin bits

REGISTER 11-29: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U3CTSR5	U3CTSR4	U3CTSR3	U3CTSR2	U3CTSR1	U3CTSR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SS1R5	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 U3CTSR[5:0]: Assign UART3 Clear-to-Send (U3CTS) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 SS1R[5:0]: Assign SPI1 Slave Select Input (SS1IN) to Corresponding RPn or RPIn Pin bits

RPIn Pin bits

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SCK2R5	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0
bit 15							bit 8

REGISTER 11-30: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0
bit 7							bit 0

l edeuq.

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14	Unimplemented: Read as '0'
bit 13-8	SCK2R[5:0]: Assign SPI2 Clock Input (SCK2IN) to Corresponding RPn or
bit 7-6	Unimplemented: Read as '0'

bit 5-0 SDI2R[5:0]: Assign SPI2 Data Input (SDI2) to Corresponding RPn or RPIn Pin bits

REGISTER 11-31: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	TXCKR5	TXCKR4	TXCKR3	TXCKR2	TXCKR1	TXCKR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SS2R5	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **TXCKR[5:0]:** Assign General Timer External Input (TxCK) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 SS2R[5:0]: Assign SPI2 Slave Select Input (SS2IN) to Corresponding RPn or RPIn Pin bits

PIC24FJ1024GA610/GB610 FAMILY

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	CLCINBR5	CLCINBR4	CLCINBR3	CLCINBR2	CLCINBR1	CLCINBR0
bit 15							bit 8

REGISTER 11-32: RPINR25: PERIPHERAL PIN SELECT INPUT REGISTER 25

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	CLCINAR5	CLCINAR4	CLCINAR3	CLCINAR2	CLCINAR1	CLCINAR0
bit 7							bit 0

Legend:				
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14	Unimplemented: Read as '0'
bit 13-8	CLCINBR[5:0]: Assign CLC Input B to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	CLCINAR[5:0]: Assign CLC Input A to Corresponding RPn or RPIn Pin bits

REGISTER 11-33: RPINR27: PERIPHERAL PIN SELECT INPUT REGISTER 27

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U4CTSR5	U4CTSR4	U4CTSR3	U4CTSR2	U4CTSR1	U4CTSR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U4RXR5	U4RXR4	U4RXR3	U4RXR2	U4RXR1	U4RXR0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 U4CTSR[5:0]: Assign UART4 Clear-to-Send Input (U4CTS) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 U4RXR[5:0]: Assign UART4 Receive Input (U4RX) to Corresponding RPn or RPIn Pin bits

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SCK3R5	SCK3R4	SCK3R3	SCK3R2	SCK3R1	SCK3R0
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1

REGISTER 11-34: RPINR28: PERIPHERAL PIN SELECT INPUT REGISTER 28

l ea	end	•
LCY		

bit 7

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	SCK3R[5:0]: Assign SPI3 Clock Input (SCK3IN) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	SDI3R[5:0]: Assign SPI3 Data Input (SDI3) to Corresponding RPn or RPIn Pin bits

REGISTER 11-35: RPINR29: PERIPHERAL PIN SELECT INPUT REGISTER 29

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	_	—	—
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SS3R5	SS3R4	SS3R3	SS3R2	SS3R1	SS3R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 SS3R[5:0]: Assign SPI3 Slave Select Input (SS3IN) to Corresponding RPn or RPIn Pin bits bit 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' =		'1' = Bit is set	1' = Bit is set		ared	x = Bit is unknown	
bit 15-14	Unimplemen	ted: Read as '	כי				
hit 13-8	RP1RI5.01. R		Manning hite				

REGISTER 11-36: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

	-	
k	oit 13-8	RP1R[5:0]: RP1 Output Pin Mapping bits
		Peripheral Output Number n is assigned to pin, RP1 (see Table 11-4 for peripheral function numbers).
k	oit 7-6	Unimplemented: Read as '0'
ł	oit 5-0	RP0R[5:0]: RP0 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP0 (see Table 11-4 for peripheral function numbers).

REGISTER 11-37: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		RP3R5	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0
bit 15							bit
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP2R5	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP3R[5:0]:** RP3 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP3 (see Table 11-4 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP2R[5:0]:** RP2 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP2 (see Table 11-4 for peripheral function numbers).

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	RP5R5 ⁽¹⁾	RP5R4 ⁽¹⁾	RP5R3 ⁽¹⁾	RP5R2 ⁽¹⁾	RP5R1 ⁽¹⁾	RP5R0 ⁽¹⁾
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP4R5	RP4R4	RP4R3	RP4R2	RP4R1	RP4R0
bit 7							bit 0

REGISTER 11-38: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP5R[5:0]: RP5 Output Pin Mapping bits ⁽¹⁾
	Peripheral Output Number n is assigned to pin, RP5 (see Table 11-4 for peripheral function numbers).
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP4R[5:0]: RP4 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP4 (see Table 11-4 for peripheral function numbers).

Note 1: This pin is not available on 64-pin devices.

REGISTER 11-39: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	RP7R5	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0		
bit 15	bit 15 bit 8								
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
0-0	0-0	R/W-U	R/VV-U	R/VV-U	R/VV-U	R/VV-U	R/W-0		
-0-0		RP6R5	RP6R4	RP6R3	RP6R2	RP6R1	R/W-0 RP6R0		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP7R[5:0]:** RP7 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP7 (see Table 11-4 for peripheral function numbers).

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP6R[5:0]:** RP6 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP6 (see Table 11-4 for peripheral function numbers).

^{© 2015-2019} Microchip Technology Inc.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	_	RP9R5	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0	
bit 15		•		·		•	bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—	RP8R5	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0	
bit 7				·	•	•	bit 0	
Legend:								
R = Readable	e bit	W = Writable	oit	U = Unimplemented bit, read as '0'				
-n = Value at POR (1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown		
-								
bit 15-14 Unimplemented: Read as '0'								

REGISTER 11-40: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

dit 15-14	Unimplemented: Read as 10°
bit 13-8	RP9R[5:0]: RP9 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP9 (see Table 11-4 for peripheral function numbers).
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP8R[5:0]: RP8 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP8 (see Table 11-4 for peripheral function numbers).

REGISTER 11-41: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	RP11R5	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	RP10R5	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0
bit 7					•	•	bit 0
Legend:							
	1.11						

R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP11R[5:0]:** RP11 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP11 (see Table 11-4 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP10R[5:0]:** RP10 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP10 (see Table 11-4 for peripheral function numbers).

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP13R5	RP13R4	RP13R3	RP13R2	RP13R1	RP13R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP12R5	RP12R4	RP12R3	RP12R2	RP12R1	RP12R0
bit 7							bit 0

REGISTER 11-42: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

Legend:				
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP13R[5:0]: RP13 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP13 (see Table 11-4 for peripheral function numbers).
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP12R[5:0]: RP12 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin. RP12 (see Table 11-4 for peripheral function numbers).

REGISTER 11-43: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	RP15R5 ⁽¹⁾	RP15R4 ⁽¹⁾	RP15R3 ⁽¹⁾	RP15R2 ⁽¹⁾	RP15R1 ⁽¹⁾	RP15R0 ⁽¹⁾
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP14R5	RP14R4	RP14R3	RP14R2	RP14R1	RP14R0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP15R[5:0]:** RP15 Output Pin Mapping bits⁽¹⁾

Peripheral Output Number n is assigned to pin, RP15 (see Table 11-4 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP14R[5:0]:** RP14 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP14 (see Table 11-4 for peripheral function numbers).

Note 1: This pin is not available on 64-pin devices.

^{© 2015-2019} Microchip Technology Inc.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—	RP17R5	RP17R4	RP17R3	RP17R2	RP17R1	RP17R0		
bit 15	·				•	•	bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	RP16R5	RP16R4	RP16R3	RP16R2	RP16R1	RP16R0		
bit 7				·			bit 0		
Legend:									
R = Readable bit W =		W = Writable I	W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-14	Unimplemen	ted: Read as ')'						

REGISTER 11-44: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

-	
bit 13-8	RP17R[5:0]: RP17 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP17 (see Table 11-4 for peripheral function numbers).
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP16R[5:0]: RP16 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP16 (see Table 11-4 for peripheral function numbers).

REGISTER 11-45: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9

bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		RP18R5	RP18R4	RP18R3	RP18R2	RP18R1	RP18R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP19R[5:0]:** RP19 Output Pin Mapping bits

'1' = Bit is set

Peripheral Output Number n is assigned to pin, RP19 (see Table 11-4 for peripheral function numbers). bit 7-6 Unimplemented: Read as '0'

'0' = Bit is cleared

bit 5-0 **RP18R[5:0]:** RP18 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP18 (see Table 11-4 for peripheral function numbers).

-n = Value at POR

x = Bit is unknown

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP21R5	RP21R4	RP21R3	RP21R2	RP21R1	RP21R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP20R5	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0
bit 7							bit 0

REGISTER 11-46: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP21R[5:0]: RP21 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP21 (see Table 11-4 for peripheral function numbers).
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP20R[5:0]: RP20 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP20 (see Table 11-4 for peripheral function numbers).

REGISTER 11-47: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP23R5	RP23R4	RP23R3	RP23R2	RP23R1	RP23R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP22R5	RP22R4	RP22R3	RP22R2	RP22R1	RP22R0
bit 7			•	•	•	•	bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP23R[5:0]:** RP23 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP23 (see Table 11-4 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP22R[5:0]:** RP22 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP22 (see Table 11-4 for peripheral function numbers).

 $[\]circledcirc$ 2015-2019 Microchip Technology Inc.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	RP25R5	RP25R4	RP25R3	RP25R2	RP25R1	RP25R0
bit 15		-					bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	RP24R5	RP24R4	RP24R3	RP24R2	RP24R1	RP24R0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

REGISTER 11-48: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12

bit 15-14	Unimplemented: Read as '0'	

. . .

. ...

.. .

- bit 13-8RP25R[5:0]: RP25 Output Pin Mapping bits
Peripheral Output Number n is assigned to pin, RP25 (see Table 11-4 for peripheral function numbers).bit 7-6Unimplemented: Read as '0'bit 5-0RP24R[5:0]: RP24 Output Pin Mapping bits
 - Peripheral Output Number n is assigned to pin, RP24 (see Table 11-4 for peripheral function numbers).

REGISTER 11-49: RPOR13: PERIPHERAL PIN SELECT OUTPUT REGISTER 13

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	RP27R5	RP27R4	RP27R3	RP27R2	RP27R1	RP27R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	RP26R5	RP26R4	RP26R3	RP26R2	RP26R1	RP26R0
bit 7							bit 0
Legend:							
R = Readable	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP27R[5:0]:** RP27 Output Pin Mapping bits

'1' = Bit is set

Peripheral Output Number n is assigned to pin, RP27 (see Table 11-4 for peripheral function numbers). bit 7-6 **Unimplemented:** Read as '0'

'0' = Bit is cleared

bit 5-0 **RP26R[5:0]:** RP26 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP26 (see Table 11-4 for peripheral function numbers).

-n = Value at POR

x = Bit is unknown

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP29R5	RP29R4	RP29R3	RP29R2	RP29R1	RP29R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP28R5	RP28R4	RP28R3	RP28R2	RP28R1	RP28R0
bit 7							bit 0

REGISTER 11-50: RPOR14: PERIPHERAL PIN SELECT OUTPUT REGISTER 14

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP29R[5:0]: RP29 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP29 (see Table 11-4 for peripheral function numbers).
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP28R[5:0]: RP28 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP28 (see Table 11-4 for peripheral function numbers).

REGISTER 11-51: RPOR15: PERIPHERAL PIN SELECT OUTPUT REGISTER 15

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP31R5 ⁽¹⁾	RP31R4 ⁽¹⁾	RP31R3 ⁽¹⁾	RP31R2 ⁽¹⁾	RP31R1 ⁽¹⁾	RP31R0 ⁽¹⁾
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	RP30R5 ⁽²⁾	RP30R4 ⁽²⁾	RP30R3 ⁽²⁾	RP30R2 ⁽²⁾	RP30R1 ⁽²⁾	RP30R0 ⁽²⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP31R[5:0]:** RP31 Output Pin Mapping bits⁽¹⁾

Peripheral Output Number n is assigned to pin, RP31 (see Table 11-4 for peripheral function numbers). bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 **RP30R[5:0]:** RP30 Output Pin Mapping bits⁽²⁾ Peripheral Output Number n is assigned to pin, RP30 (see Table 11-4 for peripheral function numbers).

Note 1: These pins are not available in 64-pin devices.

2: These pins are not available on the PIC24FJXXXGB606.

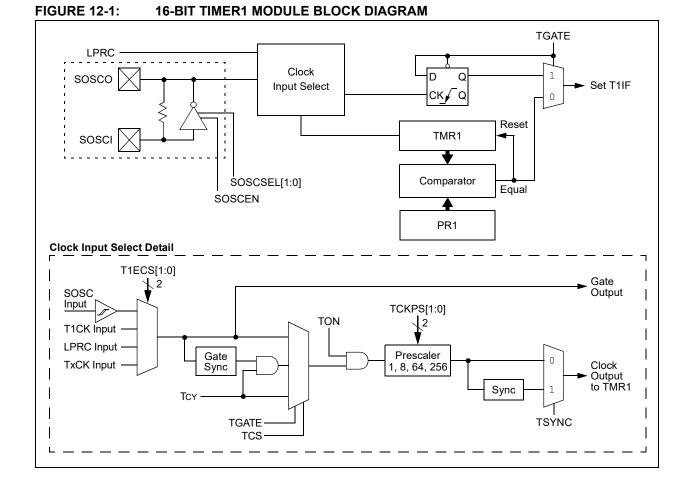
NOTES:

12.0 TIMER1

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "Timers" (www.microchip.com/DS39704) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Timer1 module is a 16-bit timer, which can serve as the time counter for the Real-Time Clock (RTC) or operate as a free-running, interval timer/counter. Timer1 can operate in three modes:

- 16-Bit Timer
- 16-Bit Synchronous Counter
- 16-Bit Asynchronous Counter


Timer1 also supports these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during CPU Idle and Sleep modes
- Interrupt on 16-Bit Period Register Match or Falling Edge of External Gate Signal

Figure 12-1 presents a block diagram of the 16-bit timer module.

To configure Timer1 for operation:

- 1. Clear the TON bit (= 0).
- 2. Select the timer prescaler ratio using the TCKPS[1:0] bits.
- 3. Set the Clock and Gating modes using the TCS, TECS[1:0] and TGATE bits.
- 4. Set or clear the TSYNC bit to configure synchronous or asynchronous operation.
- 5. Load the timer period value into the PR1 register.
- 6. If interrupts are required, set the interrupt enable bit, T1IE. Use the priority bits, T1IP[2:0], to set the interrupt priority.
- 7. Set the TON bit (= 1).

© 2015-2019 Microchip Technology Inc.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
TON	_	TSIDL	—	_	_	TECS1	TECS0
bit 15							bit
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
0-0				0-0			0-0
 bit 7	TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS	bit
Legend:	- 1-:4	\A/\A/:4 - - -	1. 14	11 11 - inc. 1		(0)	
R = Readabl		W = Writable		-	nented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15	TON: Timer1	On bit					
	1 = Starts 16 0 = Stops 16						
bit 14	•	nted: Read as '	0'				
bit 13	TSIDL: Time	r1 Stop in Idle I	Node bit				
			peration when de ation in Idle mod		dle mode		
bit 12-10	Unimplemented: Read as '0'						
bit 9-8	TECS[1:0]: Timer1 Extended Clock Source Select bits (selected when TCS = 1)						
		timer (TxCK) e		· ·			
	10 = LPRC C						
	01 = 11CK e	xternal clock in	put				
bit 7		nted: Read as '	0'				
bit 6	•		Accumulation E	Enable bit			
	When TCS =						
	This bit is ign						
	<u>When TCS =</u> 1 = Cated tir	<u>0:</u> ne accumulatic	n is anablad				
		ne accumulatio					
bit 5-4	TCKPS[1:0]:	Timer1 Input C	Clock Prescale S	Select bits			
	11 = 1:256						
	10 = 1:64 01 = 1:8						
	01 = 1.8 00 = 1:1						
bit 3	Unimplemen	nted: Read as '	0'				
bit 2	TSYNC: Timer1 External Clock Input Synchronization Select bit						
	When TCS =						
		nizes the extern	nal clock input ne external clocl	kinnut			
	When TCS =	-		, input			
	This bit is ign						
bit 1	TCS: Timer1	Clock Source	Select bit				
	1 = Extended	l clack is salact	ad by the timer				
			ed by the time				
bit 0	0 = Internal c	lock (Fosc/2)	-				

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER⁽¹⁾

13.0 TIMER2/3 AND TIMER4/5

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "Timers" (www.microchip.com/DS39704) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as four independent, 16-bit timers with selectable operating modes.

As 32-bit timers, Timer2/3 and Timer4/5 can each operate in three modes:

- Two Independent 16-Bit Timers with All 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter

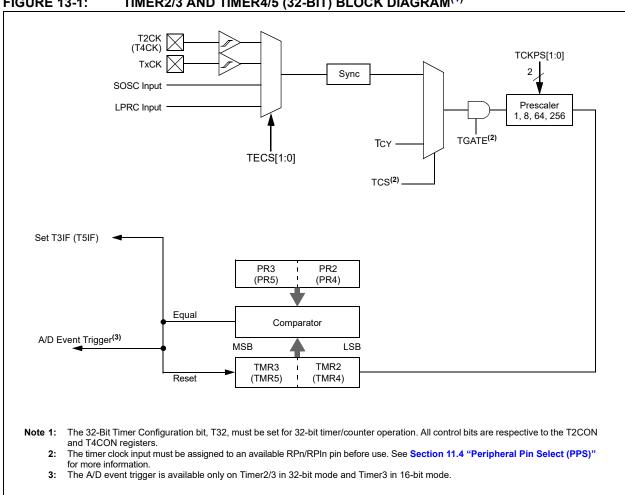
They also support these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- · Timer Operation during Idle mode
- · Interrupt on a 32-Bit Period Register Match
- A/D Event Trigger (only on Timer2/3 in 32-bit mode and Timer3 in 16-bit mode)

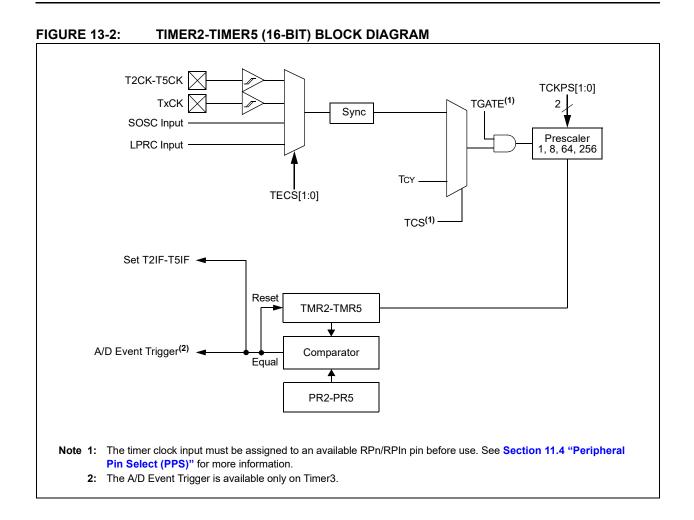
Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the A/D Event Trigger. This Trigger is implemented only on Timer2/3 in 32-bit mode and Timer3 in 16-bit mode. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON and T5CON registers. T2CON and T4CON are shown in generic form in Register 13-1; T3CON and T5CON are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word; Timer3 and Timer5 are the most significant word of the 32-bit timers.

Note: For 32-bit operation, T3CON and T5CON control bits are ignored. Only T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 or Timer5 interrupt flags. To configure Timer2/3 or Timer4/5 for 32-bit operation:


- Set the T32 or T45 bit (T2CON[3] or T4CON[3] = 1).
- 2. Select the prescaler ratio for Timer2 or Timer4 using the TCKPS[1:0] bits.
- Set the Clock and Gating modes using the TCS and TGATE bits. If TCS is set to an external clock, RPINRx (TyCK) must be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".
- 4. Load the timer period value. PR3 (or PR5) will contain the most significant word (msw) of the value, while PR2 (or PR4) contains the least significant word (lsw).
- If interrupts are required, set the interrupt enable bit, T3IE or T5IE. Use the priority bits, T3IP[2:0] or T5IP[2:0], to set the interrupt priority. Note that while Timer2 or Timer4 controls the timer, the interrupt appears as a Timer3 or Timer5 interrupt.
- 6. Set the TON bit (= 1).

The timer value, at any point, is stored in the register pair, TMR[3:2] (or TMR[5:4]). TMR3 (TMR5) always contains the most significant word of the count, while TMR2 (TMR4) contains the least significant word.


To configure any of the timers for individual 16-bit operation:

- Clear the T32 bit corresponding to that timer (T2CON[3] for Timer2 and Timer3 or T4CON[3] for Timer4 and Timer5).
- 2. Select the timer prescaler ratio using the TCKPS[1:0] bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP[2:0], to set the interrupt priority.
- 6. Set the TON (TxCON[15] = 1) bit.

PIC24FJ1024GA610/GB610 FAMILY

TIMER2/3 AND TIMER4/5 (32-BIT) BLOCK DIAGRAM⁽¹⁾ FIGURE 13-1:

^{© 2015-2019} Microchip Technology Inc.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
TON		TSIDL			—	TECS1 ⁽²⁾	TECS0 ⁽²⁾
bit 15					•		bita
	D /// 0	D 444 0	D 1110	DAA/O		D /// 0	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
 bit 7	TGATE	TCKPS1	TCKPS0	T32 ^(3,4)	—	TCS ⁽²⁾	—
							bit
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value	at POR	'1' = Bit is set	t	'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	TON: Timerx	-					
	When TxCO 1 = Starts 32						
	0 = Stops 32	•					
	When TxCO	•					
	1 = Starts 16						
	0 = Stops 16						
bit 14	-	nted: Read as '					
bit 13		erx Stop in Idle I					
		nues module op es module opera			le mode		
bit 12-10		nted: Read as '		he			
bit 9-8	-	Timerx Extende		Select hits (se	lected when T	(CS - 1)(2)	
DIL 9-0	When TCS =					00 = 1).	
		c timer (TxCK) e	external input				
	10 = LPRC (Oscillator	-				
		xternal clock in	put				
	00 = SOSC When TCS =	- 0.					
		<u>· ∪.</u> re ignored; the t	timer is clocked	from the interr	al system clo	ck (Fosc/2).	
bit 7		nted: Read as '			,	(
bit 6	-	erx Gated Time		Enable bit			
	When TCS =	:1:					
	This bit is igr	nored.					
	When TCS =						
		ne accumulatio ne accumulatio					
bit 5-4		: Timerx Input (Select bits			
	11 = 1:256						
	10 = 1:64						
	01 = 1:8 00 = 1:1						
Note 1:	Changing the va	lue of TxCON v	while the timer is	s running (TON	l = 1) causes t	the timer presca	le counter to
	reset and is not i						
	If TCS = 1 and T available RPn/R						
	In 32-bit mode, t	-					
4.	This hit is labeled	d T15 in the T1	CON register				

REGISTER 13-1: TxCON: TIMER2 AND TIMER4 CONTROL REGISTER⁽¹⁾

4: This bit is labeled T45 in the T4CON register.

REGISTER 13-1: TxCON: TIMER2 AND TIMER4 CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 3 **T32:** 32-Bit Timer Mode Select bit^(3,4)
 - 1 = Timerx and Timery form a single 32-bit timer
 - 0 = Timerx and Timery act as two 16-bit timers
 - In 32-bit mode, T3CON control bits do not affect 32-bit timer operation.
- bit 2 Unimplemented: Read as '0'
- bit 1 **TCS:** Timerx Clock Source Select bit⁽²⁾ 1 = Timer source is selected by TECS[1:0]
 - 0 = Internal clock (Fosc/2)
- bit 0 Unimplemented: Read as '0'
- **Note 1:** Changing the value of TxCON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.
 - 2: If TCS = 1 and TECS[1:0] = x1, the selected external timer input (TxCK or TyCK) must be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".
 - 3: In 32-bit mode, the T3CON or T5CON control bits do not affect 32-bit timer operation.
 - 4: This bit is labeled T45 in the T4CON register.

^{© 2015-2019} Microchip Technology Inc.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
TON ⁽²⁾		TSIDL ⁽²⁾	_		_	TECS1 ^(2,3)	TECS0 ^(2,3)
bit 15							bit
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
	TGATE ⁽²⁾	TCKPS1 ⁽²⁾	TCKPS0 ⁽²⁾			TCS ^(2,3)	—
bit 7							bit
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
6:4 <i>4</i> F		On hit(2)					
bit 15	TON: Timery						
	1 = Starts 16- 0 = Stops 16-						
bit 14	Unimplemen	ted: Read as ')'				
bit 13	TSIDL: Timer	ry Stop in Idle M	lode bit ⁽²⁾				
		ues module op s module opera			le mode		
bit 12-10		ited: Read as '					
bit 9-8	TECS [1:0]: Timery Extended Clock Source Select bits (selected when TCS = $1)^{(2,3)}$						
		timer (TxCK) e				,	
	10 = LPRC C						
	01 = TyCK ex 00 = SOSC	kternal clock inp	out				
bit 7		ted: Read as ')'				
bit 6	-	ery Gated Time		Enable bit ⁽²⁾			
	When TCS =	•					
	This bit is ign	ored.					
	When TCS =						
		ne accumulatio ne accumulatio					
bit 5-4		Timery Input C		Select hits ⁽²⁾			
	11 = 1:256	minory input o					
	10 = 1:64						
	01 = 1:8						
	00 = 1:1						
bit 3-2	Unimplemented: Read as '0' TCS: Timery Clock Source Select bit ^(2,3)						
bit 1	•			ining odge)			
		clock from pin, [·] lock (Fosc/2)	TYCK (on the n	sing eage)			
bit 0		ted: Read as ')'				
Note 1:	Changing the value reset and is not re		nile the timer is	running (TON :	= 1) causes th	e timer prescale	counter to
2:	When 32-bit oper operation; all time					nave no effect or	Timery
3:	If TCS = 1 and TI available RPn/RF						

REGISTER 13-2: TyCON: TIMER3 AND TIMER5 CONTROL REGISTER⁽¹⁾

14.0 INPUT CAPTURE WITH DEDICATED TIMERS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "Input Capture with Dedicated Timer" (www.microchip.com/DS70000352) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

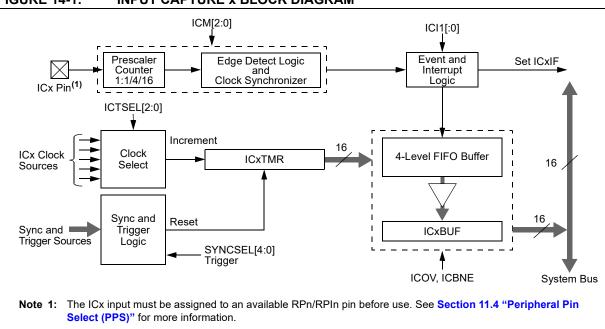
Devices in the PIC24FJ1024GA610/GB610 family contain six independent input capture modules. Each of the modules offers a wide range of configuration and operating options for capturing external pulse events and generating interrupts.

Key features of the input capture module include:

- Hardware-Configurable for 32-Bit Operation in all modes by Cascading Two Adjacent modules
- Synchronous and Trigger modes of Output Compare Operation with up to 31 User-Selectable Sync/Trigger Sources Available
- A Four-Level FIFO Buffer for Capturing and Holding Timer Values for Several Events
- Configurable Interrupt Generation
- Up to Six Clock Sources Available for each module, Driving a Separate Internal 16-Bit Counter

The module is controlled through two registers: ICxCON1 (Register 14-1) and ICxCON2 (Register 14-2). A general block diagram of the module is shown in Figure 14-1.

14.1 General Operating Modes


14.1.1 SYNCHRONOUS AND TRIGGER MODES

When the input capture module operates in a Free-Running mode, the internal 16-bit counter, ICxTMR, counts up continuously, wrapping around from FFFh to 0000h on each overflow. Its period is synchronized to the selected external clock source. When a capture event occurs, the current 16-bit value of the internal counter is written to the FIFO buffer.

In Synchronous mode, the module begins capturing events on the ICx pin as soon as its selected clock source is enabled. Whenever an event occurs on the selected Sync source, the internal counter is reset. In Trigger mode, the module waits for a Sync event from another internal module to occur before allowing the internal counter to run.

Standard, free-running operation is selected by setting the SYNCSEL[4:0] bits (ICxCON2[4:0]) to '00000' and clearing the ICTRIG bit (ICxCON2[7]). Synchronous and Trigger modes are selected any time the SYNCSELx bits are set to any value except '00000'. The ICTRIG bit selects either Synchronous or Trigger mode; setting the bit selects Trigger mode operation. In both modes, the SYNCSELx bits determine the Sync/ Trigger source.

When the SYNCSELx bits are set to '00000' and ICTRIG is set, the module operates in Software Trigger mode. In this case, capture operations are started by manually setting the TRIGSTAT bit (ICxCON2[6]).

FIGURE 14-1: INPUT CAPTURE x BLOCK DIAGRAM

^{© 2015-2019} Microchip Technology Inc.

14.1.2 CASCADED (32-BIT) MODE

By default, each module operates independently with its own 16-bit timer. To increase resolution, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, Modules 1 and 2 are paired, as are Modules 3 and 4, and so on.) The odd numbered module (ICx) provides the Least Significant 16 bits of the 32-bit register pairs and the even numbered module (ICy) provides the Most Significant 16 bits. Wrap-arounds of the ICx registers cause an increment of their corresponding ICy registers.

Cascaded operation is configured in hardware by setting the IC32 bits (ICxCON2[8]) for both modules.

14.2 Capture Operations

The input capture module can be configured to capture timer values and generate interrupts on rising edges on ICx or all transitions on ICx. Captures can be configured to occur on all rising edges or just some (every 4^{th} or 16^{th}). Interrupts can be independently configured to generate on each event or a subset of events.

To set up the module for capture operations:

- 1. Configure the ICx input for one of the available Peripheral Pin Select pins.
- 2. If Synchronous mode is to be used, disable the Sync source before proceeding.
- 3. Make sure that any previous data have been removed from the FIFO by reading ICxBUF until the ICBNE bit (ICxCON1[3]) is cleared.
- 4. Set the SYNCSELx bits (ICxCON2[4:0]) to the desired Sync/Trigger source.
- 5. Set the ICTSELx bits (ICxCON1[12:10]) for the desired clock source.
- 6. Set the ICIx bits (ICxCON1[6:5]) to the desired interrupt frequency.
- 7. Select Synchronous or Trigger mode operation:
 - a) Check that the SYNCSELx bits are not set to '00000'.
 - b) For Synchronous mode, clear the ICTRIG bit (ICxCON2[7]).
 - c) For Trigger mode, set ICTRIG and clear the TRIGSTAT bit (ICxCON2[6]).
- 8. Set the ICMx bits (ICxCON1[2:0]) to the desired operational mode.
- 9. Enable the selected Sync/Trigger source.

For 32-bit cascaded operations, the setup procedure is slightly different:

- Set the IC32 bits for both modules (ICyCON2[8] and ICxCON2[8]), enabling the even numbered module first. This ensures the modules will start functioning in unison.
- 2. Set the ICTSELx and SYNCSELx bits for both modules to select the same Sync/Trigger and time base source. Set the even module first, then the odd module. Both modules must use the same ICTSELx and SYNCSELx bits settings.
- Clear the ICTRIG bit of the even module (ICyCON2[7]). This forces the module to run in Synchronous mode with the odd module, regardless of its Trigger setting.
- 4. Use the odd module's ICIx bits (ICxCON1[6:5]) to set the desired interrupt frequency.
- Use the ICTRIG bit of the odd module (ICxCON2[7]) to configure Trigger or Synchronous mode operation.
- **Note:** For Synchronous mode operation, enable the Sync source as the last step. Both input capture modules are held in Reset until the Sync source is enabled.
- Use the ICMx bits of the odd module (ICxCON1[2:0]) to set the desired Capture mode.

The module is ready to capture events when the time base and the Sync/Trigger source are enabled. When the ICBNE bit (ICxCON1[3]) becomes set, at least one capture value is available in the FIFO. Read input capture values from the FIFO until the ICBNE clears to '0'.

For 32-bit operation, read both the ICxBUF and ICyBUF for the full 32-bit timer value (ICxBUF for the Isw, ICyBUF for the msw). At least one capture value is available in the FIFO buffer when the odd module's ICBNE bit (ICxCON1[3]) becomes set. Continue to read the buffer registers until ICBNE is cleared (performed automatically by hardware).

REGISTER 14-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER
--

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
_	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	—	—
bit 15							bit 8
	D 444 0	D111	1100/0.0		D 444 0	D111	D M M O
U-0	R/W-0	R/W-0	HSC/R-0	HSC/R-0	R/W-0	R/W-0	R/W-0
	ICI1	ICI0	ICOV	ICBNE	ICM2 ⁽¹⁾	ICM1 ⁽¹⁾	ICM0 ⁽¹⁾
bit 7							bit (
Legend:		HSC = Hardv	/are Settable/C	learable bit			
R = Readab	le bit	W = Writable			nented bit, read	l as '0'	
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
				0 2000 000			
bit 15-14	Unimplemen	ted: Read as '	0'				
bit 13	ICSIDL: Inpu	t Capture x Sto	p in Idle Contro	l bit			
			CPU Idle mode es to operate in		e		
bit 12-10	ICTSEL[2:0]	Input Capture	x Timer Select	bits			
	111 = Syster	n clock (Fosc/2	2)				
	110 = Reserv						
	101 = Reserv 100 = Timer1						
	011 = Timer5						
	010 = Timer4						
	001 = Timer2						
	000 = Timer3						
bit 9-7	-	ted: Read as '					
bit 6-5		-	lect Number of		nterrupt bits		
		t on every touri t on every third	h capture event	t			
			apture event	nt			
		t on every capt					
bit 4	ICOV: Input (Capture x Over	flow Status Flag	bit (read-only)		
			v has occurred				
bit 3			rflow has occuri fer Empty Statu		<i>v</i>)		
DIT O		-	s not empty, at I	• •		can be read	
		pture x buffer is					
bit 2-0	ICM[2:0]: Inp	out Capture x M	ode Select bits	(1)			
			Capture x func		errupt pin only w	when the device	e is in Sleep o
			e detect only, a	Ill other control	bits are not ap	plicable)	
		ed (module is d	isabled) ode: Capture oi	n over v 16 th rig	ing odgo		
			ode: Capture of ode: Capture of				
			e: Capture on e				
	010 = Simple	e Capture mod	e: Capture on e	very falling ed	ge		
	001 = Edae	Detect Cantur	e mode: Cantu	re on every e	dae (risina and	falling); ICI[1:	01 hits do no
	contro	ol interrupt gene	eration for this n ule is turned off	node	-90 (9		

Note 1: The ICx input must also be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

^{© 2015-2019} Microchip Technology Inc.

PIC24FJ1024GA610/GB610 FAMILY

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	IC32
bit 15							bit 8

R/W-0	HS/R/W-0	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1
ICTRIG	TRIGSTAT	—	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-9	Unimplemented: Read as '0'
bit 8	IC32: Cascade Two Input Capture Modules Enable bit (32-bit operation)
	 1 = ICx and ICy operate in cascade as a 32-bit module (this bit must be set in both modules) 0 = ICx functions independently as a 16-bit module
bit 7	ICTRIG: Input Capture x Sync/Trigger Select bit
	 1 = Triggers ICx from the source designated by the SYNCSELx bits 0 = Synchronizes ICx with the source designated by the SYNCSELx bits
bit 6	TRIGSTAT: Timer Trigger Status bit
	 1 = Timer source has been triggered and is running (set in hardware, can be set in software) 0 = Timer source has not been triggered and is being held clear
bit 5	Unimplemented: Read as '0'

- **Note 1:** Use these inputs as Trigger sources only and never as Sync sources.
 - 2: Never use an Input Capture x module as its own Trigger source by selecting this mode.

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)

bit 4-0 SYNCSEL[4:0]: Synchronization/Trigger Source Selection bits

11111 = IC6 interrupt⁽²⁾ 11110 = IC5 interrupt⁽²⁾ 11101 = IC4 interrupt⁽²⁾ 11100 = CTMU Trigger⁽¹⁾ 11011 = A/D interrupt⁽¹⁾ 11010 = CMP3 Trigger⁽¹⁾ 11001 = CMP2 Trigger⁽¹⁾ 11000 = CMP1 Trigger⁽¹⁾ 10111 = SCCP5 IC/OC interrupt 10110 = SCCP4 IC/OC interrupt 10101 = MCCP3 IC/OC interrupt 10100 = MCCP2 IC/OC interrupt 10011 = MCCP1 IC/OC interrupt 10010 = IC3 interrupt⁽²⁾ 10001 = IC2 interrupt⁽²⁾ 10000 = IC1 interrupt⁽²⁾ 01111 = SCCP7 IC/OC interrupt 01110 = SCCP6 IC/OC interrupt 01101 = Timer3 match event 01100 = Timer2 match event 01011 = Timer1 match event 01010 = SCCP7 Sync/Trigger out 01001 = SCCP6 Sync/Trigger out 01000 = SCCP5 Sync/Trigger out 00111 = SCCP4 Sync/Trigger out 00110 = MCCP3 Sync/Trigger out 00101 = MCCP2 Sync/Trigger out 00100 = MCCP1 Sync/Trigger out 00011 = OC3 Sync/Trigger out 00010 = OC2 Sync/Trigger out 00001 = OC1 Sync/Trigger out 00000 = Off

- **Note 1:** Use these inputs as Trigger sources only and never as Sync sources.
 - 2: Never use an Input Capture x module as its own Trigger source by selecting this mode.

NOTES:

15.0 OUTPUT COMPARE WITH DEDICATED TIMERS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "Output Compare with Dedicated Timer" (www.microchip.com/DS70005159) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

All devices in the PIC24FJ1024GA610/GB610 family feature six independent output compare modules. Each of these modules offers a wide range of configuration and operating options for generating pulse trains on internal device events, and can produce Pulse-Width Modulated (PWM) waveforms for driving power applications.

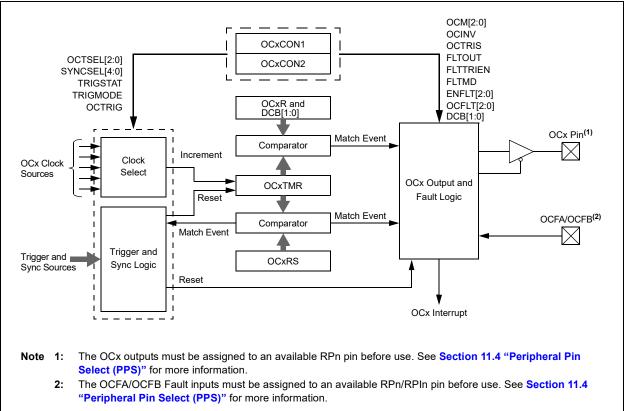
Key features of the output compare module include:

- Hardware-Configurable for 32-Bit Operation in all modes by Cascading Two Adjacent modules
- Synchronous and Trigger modes of Output Compare Operation with up to 31 User-Selectable Sync/Trigger Sources Available
- Two Separate Period registers (a main register, OCxR, and a secondary register, OCxRS) for Greater Flexibility in Generating Pulses of Varying Widths
- Configurable for Single Pulse or Continuous Pulse Generation on an Output Event or Continuous PWM Waveform Generation
- Up to Six Clock Sources Available for each module, Driving a Separate Internal 16-Bit Counter

15.1 General Operating Modes

15.1.1 SYNCHRONOUS AND TRIGGER MODES

When the output compare module operates in a Free-Running mode, the internal 16-bit counter, OCxTMR, runs counts up continuously, wrapping around from 0xFFFF to 0x0000 on each overflow. Its period is synchronized to the selected external clock source. Compare or PWM events are generated each time a match between the internal counter and one of the Period registers occurs. In Synchronous mode, the module begins performing its compare or PWM operation as soon as its selected clock source is enabled. Whenever an event occurs on the selected Sync source, the module's internal counter is reset. In Trigger mode, the module waits for a Sync event from another internal module to occur before allowing the counter to run.


Free-Running mode is selected by default or any time that the SYNCSEL[4:0] bits (OCxCON2[4:0]) are set to '00000'. Synchronous or Trigger modes are selected any time the SYNCSELx bits are set to any value except '00000'. The OCTRIG bit (OCxCON2[7]) selects either Synchronous or Trigger mode; setting the bit selects Trigger mode operation. In both modes, the SYNCSELx bits determine the Sync/Trigger source.

15.1.2 CASCADED (32-BIT) MODE

By default, each module operates independently with its own set of 16-Bit Timer and Duty Cycle registers. To increase resolution, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, Modules 1 and 2 are paired, as are Modules 3 and 4, and so on.) The odd numbered module (OCx) provides the Least Significant 16 bits of the 32-bit register pairs and the even numbered module (OCy) provides the Most Significant 16 bits. Wrap-arounds of the OCx registers cause an increment of their corresponding OCy registers.

Cascaded operation is configured in hardware by setting the OC32 bit (OCxCON2[8]) for both modules. For more details on cascading, refer to "**Output Compare with Dedicated Timer**" (www.microchip.com/ DS70005159) in the "*dsPIC33/PIC24 Family Reference Manual*".

© 2015-2019 Microchip Technology Inc.

FIGURE 15-1: OUTPUT COMPARE x BLOCK DIAGRAM (16-BIT MODE)

15.2 Compare Operations

In Compare mode (Figure 15-1), the output compare module can be configured for Single-Shot or Continuous mode pulse generation. It can also repeatedly toggle an output pin on each timer event.

To set up the module for compare operations:

- 1. Configure the OCx output for one of the available Peripheral Pin Select pins if available on the OCx module you are using. Otherwise, configure the dedicated OCx output pins.
- Calculate the required values for the OCxR and (for Double Compare modes) OCxRS Duty Cycle registers:
 - a) Determine the instruction clock cycle time. Take into account the frequency of the external clock to the timer source (if one is used) and the timer prescaler settings.
 - b) Calculate the time to the rising edge of the output pulse relative to the timer start value (0000h).
 - c) Calculate the time to the falling edge of the pulse based on the desired pulse width and the time to the rising edge of the pulse.

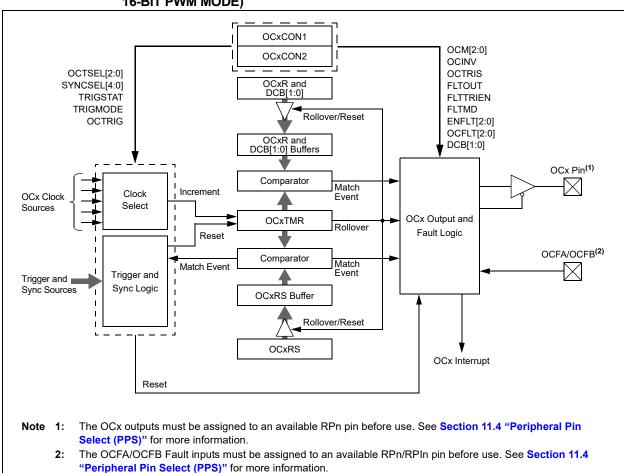
- 3. Write the rising edge value to OCxR and the falling edge value to OCxRS.
- 4. Set the Timer Period register, PRy, to a value equal to or greater than the value in OCxRS.
- 5. Set the OCM[2:0] bits for the appropriate compare operation (= 0xx).
- For Trigger mode operations, set OCTRIG to enable Trigger mode. Set or clear TRIGMODE to configure Trigger operation and TRIGSTAT to select a hardware or software Trigger. For Synchronous mode, clear OCTRIG.
- Set the SYNCSEL[4:0] bits to configure the Trigger or Sync source. If free-running timer operation is required, set the SYNCSELx bits to '00000' (no Sync/Trigger source).
- Select the time base source with the OCTSEL[2:0] bits. If necessary, set the TON bit for the selected timer, which enables the compare time base to count. Synchronous mode operation starts as soon as the time base is enabled; Trigger mode operation starts after a Trigger source event occurs.

For 32-bit cascaded operation, these steps are also necessary:

- Set the OC32 bits for both registers (OCyCON2[8] and OCxCON2[8]). Enable the even numbered module first to ensure the modules will start functioning in unison.
- Clear the OCTRIG bit of the even module (OCyCON2[7]), so the module will run in Synchronous mode.
- 3. Configure the desired output and Fault settings for OCy.
- 4. Force the output pin for OCx to the output state by clearing the OCTRIS bit.
- If Trigger mode operation is required, configure the Trigger options in OCx by using the OCTRIG (OCxCON2[7]), TRIGMODE (OCxCON1[3]) and SYNCSEL[4:0] (OCxCON2[4:0]) bits.
- Configure the desired Compare or PWM mode of operation (OCM[2:0]) for OCy first, then for OCx.

Depending on the output mode selected, the module holds the OCx pin in its default state and forces a transition to the opposite state when OCxR matches the timer. In Double Compare modes, OCx is forced back to its default state when a match with OCxRS occurs. The OCxIF interrupt flag is set after an OCxR match in Single Compare modes and after each OCxRS match in Double Compare modes.

Single-Shot pulse events only occur once, but may be repeated by simply rewriting the value of the OCxCON1 register. Continuous pulse events continue indefinitely until terminated.


15.3 Pulse-Width Modulation (PWM) Mode

In PWM mode, the output compare module can be configured for edge-aligned or center-aligned pulse waveform generation. All PWM operations are doublebuffered (buffer registers are internal to the module and are not mapped into SFR space).

To configure the output compare module for PWM operation:

- 1. Configure the OCx output for one of the available Peripheral Pin Select pins if available on the OC module you are using. Otherwise, configure the dedicated OCx output pins.
- 2. Calculate the desired duty cycles and load them into the OCxR register.
- 3. Calculate the desired period and load it into the OCxRS register.
- Select the current OCx as the synchronization source by writing 0x1F to the SYNCSEL[4:0] bits (OCxCON2[4:0]) and '0' to the OCTRIG bit (OCxCON2[7]).
- 5. Select a clock source by writing to the OCTSEL[2:0] bits (OCxCON1[12:10]).
- 6. Enable interrupts, if required, for the timer and output compare modules. The output compare interrupt is required for PWM Fault pin utilization.
- Select the desired PWM mode in the OCM[2:0] bits (OCxCON1[2:0]).
- 8. Appropriate Fault inputs may be enabled by using the ENFLT[2:0] bits as described in Register 15-1.
- 9. If a timer is selected as a clock source, set the selected timer prescale value. The selected timer's prescaler output is used as the clock input for the OCx timer, and not the selected timer output.

Note: This peripheral contains input and output functions that may need to be configured by the Peripheral Pin Select. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.

FIGURE 15-2: OUTPUT COMPARE x BLOCK DIAGRAM (DOUBLE-BUFFERED, 16-BIT PWM MODE)

15.3.1 PWM PERIOD

The PWM period is specified by writing to PRy, the Timer Period register. The PWM period can be calculated using Equation 15-1.

EQUATION 15-1: CALCULATING THE PWM PERIOD⁽¹⁾

PWM Period = $[(PRy) + 1] \bullet TCY \bullet (Timer Prescale Value)$

Where: PWM Frequency = 1/[PWM Period]

Note 1: Based on TCY = TOSC * 2; Doze mode and PLL are disabled.

Note: A PRy value of N will produce a PWM period of N + 1 time base count cycles. For example, a value of 7, written into the PRy register, will yield a period consisting of eight time base cycles.

15.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the OCxRS and OCxR registers. The OCxRS and OCxR registers can be written to at any time, but the duty cycle value is not latched until a match between PRy and TMRy occurs (i.e., the period is complete). This provides a double buffer for the PWM duty cycle and is essential for glitchless PWM operation.

Some important boundary parameters of the PWM duty cycle include:

- If OCxR, OCxRS and PRy are all loaded with 0000h, the OCx pin will remain low (0% duty cycle).
- If OCxRS is greater than PRy, the pin will remain high (100% duty cycle).

See Example 15-1 for PWM mode timing details. Table 15-1 and Table 15-2 show example PWM frequencies and resolutions for a device operating at 4 MIPS and 10 MIPS, respectively.

EQUATION 15-2: CALCULATION FOR MAXIMUM PWM RESOLUTION⁽¹⁾

Maximum PWM Resolution (bits) = $\frac{\log_{10} \left(\frac{FCY}{FPWM \bullet (Timer Prescale Value)} \right)}{\log_{10}(2)}$ bits

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

EXAMPLE 15-1: PWM PERIOD AND DUTY CYCLE CALCULATIONS⁽¹⁾

- Find the Timer Period register value for a desired PWM frequency of 52.08 kHz, where Fosc = 32 MHz with PLL (32 MHz device clock rate) and a Timer2 prescaler setting of 1:1.
 TCY = 2 * Tosc = 62.5 ns
 PWM Period = 1/PWM Frequency = 1/52.08 kHz = 19.2 μs
 PWM Period = (PR2 + 1) TCY (Timer2 Prescale Value)
 19.2 μs = (PR2 + 1) 62.5 ns 1
 PR2 = 306

 Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz device clock rate:
 PWM Resolution = log₁₀(FCY/FPWM)/log₁₀2) bits
 = (log₁₀(16 MHz/52.08 kHz)/log₁₀2) bits
 = 8.3 bits
- **Note 1:** Based on TCY = 2 * TOSC; Doze mode and PLL are disabled.

TABLE 15-1 :	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (Fcy = 4 MHz) ⁽¹⁾

PWM Frequency	7.6 Hz	61 Hz	122 Hz	977 Hz	3.9 kHz	31.3 kHz	125 kHz
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

TABLE 15-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (Fcy = 16 MHz)⁽¹⁾

						-	-
PWM Frequency	30.5 Hz	244 Hz	488 Hz	3.9 kHz	15.6 kHz	125 kHz	500 kHz
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

^{© 2015-2019} Microchip Technology Inc.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2 ⁽²⁾	ENFLT1 ⁽²⁾			
bit 15		•				•	bit 8			
R/W-0		HSC/R/W-0	HSC/R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ENFLT0	(2) OCFLT2 ^(2,3)	OCFLT1 ^(2,4)	OCFLT0 ^(2,4)	TRIGMODE	OCM2 ⁽¹⁾	OCM1 ⁽¹⁾	ОСМ0 ⁽¹⁾			
bit 7							bit 0			
Legend:		HSC = Hardw	are Settable/C	learable bit						
R = Read	able bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'				
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15-14	-	ted: Read as '								
bit 13			Stop in Idle Mo							
			in CPU Idle me	ode e in CPU Idle m	node					
bit 12-10	•	•	are x Timer Se							
511 12-10		eral clock (FCY)								
	110 = Reserv	• •	/							
	101 = Reserv									
		· · ·	nchronous cloc	k is supported)						
	011 = Timer5 010 = Timer4									
	001 = Timer3									
	000 = Timer2									
bit 9	ENFLT2: Fau	lt Input 2 Enab	le bit ⁽²⁾							
	1 = Fault 2 (0 0 = Fault 2 is		/3 out) is enabl	ed ⁽³⁾						
bit 8	ENFLT1: Fau	lt Input 1 Enab	le bit ⁽²⁾							
		DCFB pin) is er	nabled ⁽⁴⁾							
	0 = Fault 1 is		(2)							
bit 7		It Input 0 Enab								
	1 = Fault 0 (0 0 = Fault 0 is	DCFA pin) is er	abled(*)							
bit 6				(Comparator 1/2	2/3) Condition	Statue hit(2.3)				
		ult 2 has occur								
		Fault 2 has occur								
bit 5				(OCFB pin) Cor	ndition Status I	oit ^(2,4)				
		ult 1 has occur		,						
	0 = No PWM	Fault 1 has oc	curred							
Note 1:	The OCx output n "Peripheral Pin S		nfigured to an a	available RPn p	oin. For more ir	nformation, see	Section 11.4			
2:	The Fault input er		status bits are	valid when OC	CM[2:0] = 111	or 110.				
3:	The Comparator 2						e OC4-OC6			
	channels, Compa				•	-				
4:	The OCFA/OCFB	e OCFA/OCFB Fault inputs must also be configured to an available RPn/RPIn pin. For more information,								

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

4: The OCFA/OCFB Fault inputs must also be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 4 OCFLT0: PWM Fault 0 (OCFA pin) Condition Status bit^(2,4)
 - 1 = PWM Fault 0 has occurred
 - 0 = No PWM Fault 0 has occurred
- bit 3 TRIGMODE: Trigger Status Mode Select bit
 - 1 = TRIGSTAT (OCxCON2[6]) is cleared when OCxRS = OCxTMR or in software
 - 0 = TRIGSTAT is only cleared by software
- bit 2-0 OCM[2:0]: Output Compare x Mode Select bits⁽¹⁾
 - 111 = Center-Aligned PWM mode on $OCx^{(2)}$
 - 110 = Edge-Aligned PWM mode on $OCx^{(2)}$
 - 101 = Double Compare Continuous Pulse mode: Initializes the OCx pin low; toggles the OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initializes the OCx pin low; toggles the OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare Continuous Pulse mode: Compare events continuously toggle the OCx pin
 - 010 = Single Compare Single-Shot mode: Initializes OCx pin high; compare event forces the OCx pin low
 - 001 = Single Compare Single-Shot mode: Initializes OCx pin low; compare event forces the OCx pin high
 - 000 = Output compare channel is disabled
- Note 1: The OCx output must also be configured to an available RPn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".
 - 2: The Fault input enable and Fault status bits are valid when OCM[2:0] = 111 or 110.
 - **3:** The Comparator 1 output controls the OC1-OC3 channels, Comparator 2 output controls the OC4-OC6 channels, Comparator 3 output controls the OC7-OC9 channels.
 - 4: The OCFA/OCFB Fault inputs must also be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

R/W-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 DCB1⁽³⁾ DCB0⁽³⁾ **FLTMD FLTOUT FLTTRIEN** OCINV OC32 bit 15 bit 8 R/W-0 HS/R/W-0 R/W-0 R/W-0 R/W-1 **R/W-1** R/W-0 R/W-0 OCTRIG TRIGSTAT OCTRIS SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 bit 7 bit 0 Legend: HS = Hardware Settable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 FLTMD: Fault Mode Select bit 1 = Fault mode is maintained until the Fault source is removed and the corresponding OCFLT0 bit is cleared in software 0 = Fault mode is maintained until the Fault source is removed and a new PWM period starts bit 14 FLTOUT: Fault Out bit 1 = PWM output is driven high on a Fault 0 = PWM output is driven low on a Fault bit 13 FLTTRIEN: Fault Output State Select bit 1 = Pin is forced to an output on a Fault condition 0 = Pin I/O condition is unaffected by a Fault OCINV: OCMP Invert bit bit 12 1 = OCx output is inverted 0 = OCx output is not inverted bit 11 Unimplemented: Read as '0' bit 10-9 DCB[1:0]: PWM Duty Cycle Least Significant bits⁽³⁾ 11 = Delays OCx falling edge by ³/₄ of the instruction cycle 10 = Delays OCx falling edge by $\frac{1}{2}$ of the instruction cycle 01 = Delays OCx falling edge by ¼ of the instruction cycle 00 = OCx falling edge occurs at the start of the instruction cycle bit 8 OC32: Cascade Two OC Modules Enable bit (32-bit operation) 1 = Cascade module operation is enabled 0 = Cascade module operation is disabled bit 7 OCTRIG: OCx Trigger/Sync Select bit 1 = Triggers OCx from the source designated by the SYNCSELx bits 0 = Synchronizes OCx with the source designated by the SYNCSELx bits TRIGSTAT: Timer Trigger Status bit bit 6 1 = Timer source has been triggered and is running 0 = Timer source has not been triggered and is being held clear bit 5 OCTRIS: OCx Output Pin Direction Select bit 1 = OCx pin is tri-stated 0 = Output Compare Peripheral x is connected to an OCx pin Note 1: Never use an Output Compare x module as its own Trigger source, either by selecting this mode or another equivalent SYNCSELx setting. 2: Use these inputs as Trigger sources only and never as Sync sources.

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

- 3: The DCB[1:0] bits are double-buffered in the PWM modes only (OCM[2:0] (OCxCON1[2:0]) = 111, 110).

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 **SYNCSEL[4:0]:** Trigger/Synchronization Source Selection bits
 - 111111 = OCx Sync out⁽¹⁾ 11110 = OCTRIG1 pin 11101 = OCTRIG2 pin 11100 = CTMU Trigger⁽²⁾ 11011 = A/D interrupt⁽²⁾ 11010 = CMP3 Trigger⁽²⁾ 11001 = CMP2 Trigger⁽²⁾ 11000 = CMP1 Trigger⁽²⁾ 10111 = SCCP5 IC/OC interrupt 10110 = SCCP4 IC/OC interrupt 10101 = MCCP3 IC/OC interrupt 10100 = MCCP2 IC/OC interrupt 10011 = MCCP1 IC/OC interrupt $10010 = IC3 interrupt^{(2)}$ 10001 = IC2 interrupt⁽²⁾ 10000 = IC1 interrupt⁽²⁾ 01111 = SCCP7 IC/OC interrupt 01110 = SCCP6 IC/OC interrupt 01101 = Timer3 match event 01100 = Timer2 match event (default) 01011 = Timer1 match event 01010 = SCCP7 Sync/Trigger out 01001 = SCCP6 Sync/Trigger out 01000 = SCCP5 Sync/Trigger out 00111 = SCCP4 Sync/Trigger out 00110 = MCCP3 Sync/Trigger out 00101 = MCCP2 Sync/Trigger out 00100 = MCCP1 Sync/Trigger out 00011 = OC5 Sync/Trigger out⁽¹⁾ 00010 = OC3 Sync/Trigger out⁽¹⁾ 00001 = OC1 Sync/Trigger out⁽¹⁾
 - 00000 = Off, Free-Running mode with no synchronization and rollover at FFFFh
- **Note 1:** Never use an Output Compare x module as its own Trigger source, either by selecting this mode or another equivalent SYNCSELx setting.
 - 2: Use these inputs as Trigger sources only and never as Sync sources.
 - 3: The DCB[1:0] bits are double-buffered in the PWM modes only (OCM[2:0] (OCxCON1[2:0]) = 111, 110).

NOTES:

16.0 CAPTURE/COMPARE/PWM/ TIMER MODULES (MCCP AND SCCP)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the MCCP/SCCP modules, refer to "Capture/Compare/PWM/Timer (MCCP and SCCP)" (www.microchip.com/ DS30003035A) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

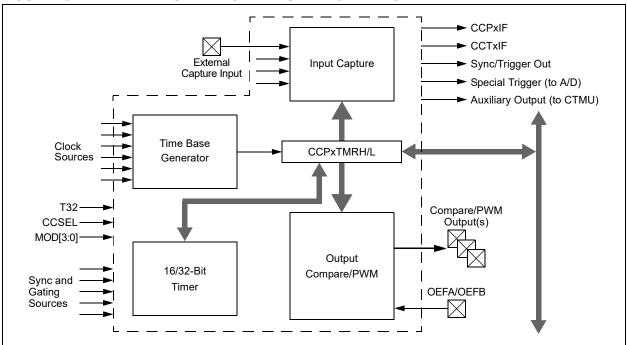
PIC24FJ1024GA610/GB610 family devices include several Capture/Compare/PWM/Timer base modules, which provide the functionality of three different peripherals of earlier PIC24F devices. The module can operate in one of three major modes:

- · General Purpose Timer
- Input Capture
- Output Compare/PWM

The module is provided in two different forms, distinguished by the number of PWM outputs that the module can generate. Single Capture/Compare/PWM (SCCPs) output modules provide only one PWM output. Multiple Capture/Compare/PWM (MCCPs) output modules can provide up to six outputs and an extended range of power control features, depending on the pin count of the particular device. All other features of the modules are identical. The SCCPx and MCCPx modules can be operated only in one of the three major modes at any time. The other modes are not available unless the module is reconfigured for the new mode.

A conceptual block diagram for the module is shown in Figure 16-1. All three modules share a time base generator and a common Timer register pair (CCPxTMRH/L); other shared hardware components are added as a particular mode requires.

Each module has a total of eight control and status registers:


- CCPxCON1L (Register 16-1)
- CCPxCON1H (Register 16-2)
- CCPxCON2L (Register 16-3)
- CCPxCON2H (Register 16-4)
- CCPxCON3L (Register 16-5)
- CCPxCON3H (Register 16-6)
- CCPxSTATL (Register 16-7)
- CCPxSTATH (Register 16-8)

Each module also includes eight buffer/counter registers that serve as Timer Value registers or data holding buffers:

- CCPxTMRH/CCPxTMRL (Timer High/Low Counters)
- CCPxPRH/CCPxPRL (Timer Period High/Low)
- CCPxRA (Primary Output Compare Data Buffer)
- CCPxRB (Secondary Output Compare Data Buffer)
- CCPxBUFH/CCPxBUFL (Input Capture High/Low Buffers)

^{© 2015-2019} Microchip Technology Inc.

PIC24FJ1024GA610/GB610 FAMILY

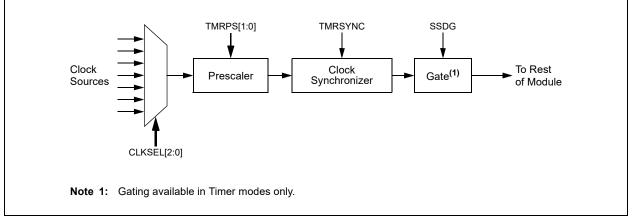


FIGURE 16-1: MCCPx/SCCPx CONCEPTUAL BLOCK DIAGRAM

16.1 Time Base Generator

The Timer Clock Generator (TCG) generates a clock for the module's internal time base using one of the clock signals already available on the microcontroller. This is used as the time reference for the module in its three major modes. The internal time base is shown in Figure 16-2. There are eight inputs available to the clock generator, which are selected using the CLKSEL[2:0] bits (CCPxCON1L[10:8]). Available sources include the FRC and LPRC, the Secondary Oscillator and the TCLKI external clock inputs. The system clock is the default source (CLKSEL[2:0] = 000).

16.2 General Purpose Timer

Timer mode is selected when CCSEL = 0 and MOD[3:0] = 0000. The timer can function as a 32-bit timer or a dual 16-bit timer, depending on the setting of the T32 bit (Table 16-1).

T32 (CCPxCON1L[5])	Operating Mode
0	Dual Timer Mode (16-bit)
1	Timer Mode (32-bit)

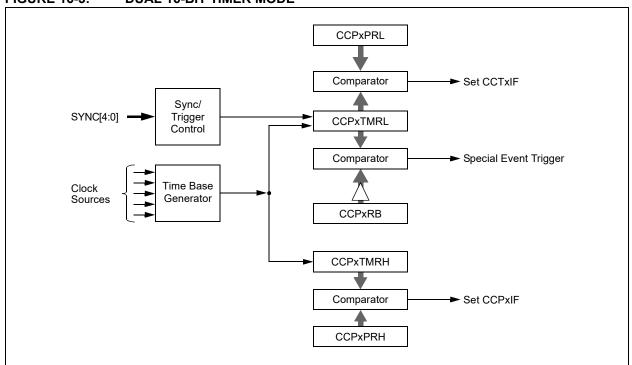
TABLE 16-1: TIMER OPERATION MODE

Dual 16-Bit Timer mode provides a simple timer function with two independent 16-bit timer/counters. The primary timer uses the CCPxTMRL and CCPxPRL registers. Only the primary timer can interact with other modules on the device. It generates the MCCPx Sync out signals for use by other MCCPx modules. It can also use the SYNC[4:0] bits signal generated by other modules.

The secondary timer uses the CCPxTMRH and CCPxPRH registers. It is intended to be used only as a periodic interrupt source for scheduling CPU events. It does not generate an output Sync/Trigger signal like the primary time base. In Dual Timer mode, the Secondary Timer Period register, CCPxPRH, generates the MCCPx Compare Event (CCPxIF) used by many other modules on the device.

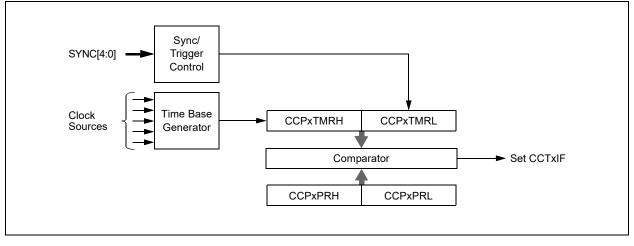
The 32-Bit Timer mode uses the CCPxTMRL and CCPxTMRH registers, together, as a single 32-bit timer. When CCPxTMRL overflows, CCPxTMRH increments

FIGURE 16-3: DUAL 16-BIT TIMER MODE


by one. This mode provides a simple timer function when it is important to track long time periods. Note that the T32 bit (CCPxCON1L[5]) should be set before the CCPxTMRL or CCPxPRH registers are written to initialize the 32-bit timer.

16.2.1 SYNC AND TRIGGER OPERATION

In both 16-bit and 32-bit modes, the timer can also function in either Synchronization ("Sync") or Trigger mode operation. Both use the SYNC[4:0] bits (CCPxCON1H[4:0]) to determine the input signal source. The difference is how that signal affects the timer.


In Sync operation, the Timer Reset or clear occurs when the input selected by SYNC[4:0] is asserted. The timer immediately begins to count again from zero unless it is held for some other reason. Sync operation is used whenever the TRIGEN bit (CCPxCON1H[7]) is cleared. The SYNC[4:0] bits can have any value except '11111'.

In Trigger operation, the timer is held in Reset until the input selected by SYNC[4:0] is asserted; when it occurs, the timer starts counting. Trigger operation is used whenever the TRIGEN bit is set. In Trigger mode, the timer will continue running after a Trigger event as long as the CCPTRIG bit (CCPxSTATL[7]) is set. To clear CCPTRIG, the TRCLR bit (CCPxSTATL[5]) must be set to clear the Trigger event, reset the timer and hold it at zero until another Trigger event occurs. On PIC24FJ1024GA610/GB610 family devices, Trigger operation can only be used when the system clock is the time base source (CLKSEL[2:0] = 000).

© 2015-2019 Microchip Technology Inc.

FIGURE 16-4: 32-BIT TIMER MODE

16.3 Output Compare Mode

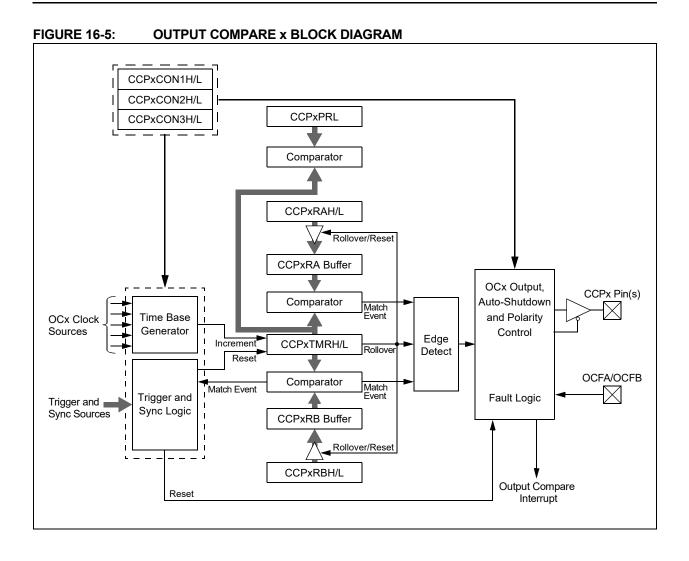

Output Compare mode compares the Timer register value with the value of one or two Compare registers, depending on its mode of operation. The Output Compare x module, on compare match events, has the ability to generate a single output transition or a train of output pulses. Like most PIC[®] MCU peripherals, the Output Compare x module can also generate interrupts on a compare match event.

Table 16-2shows the various modes available inOutput Compare modes.

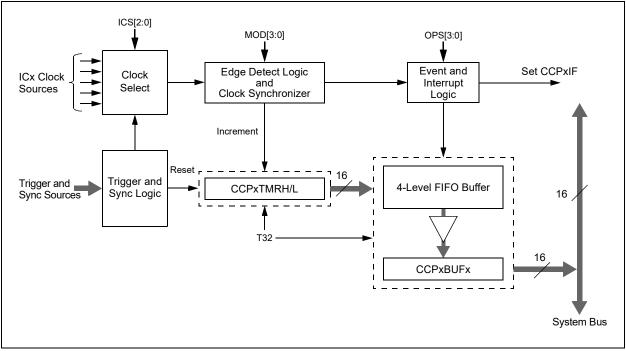
MOD[3:0] (CCPxCON1L[3:0])	T32 (CCPxCON1L[5])) Operating Mode			
0001	0	Output High on Compare (16-bit)			
0001	1	Output High on Compare (32-bit)			
0010	0	Output Low on Compare (16-bit)	Cinala Edua Mada		
0010	1	Output Low on Compare (32-bit)	Single Edge Mode		
0011	0	Output Toggle on Compare (16-bit)			
0011	1	Output Toggle on Compare (32-bit)			
0100	0	Dual Edge Compare (16-bit)	Dual Edge Mode		
0101	0	Dual Edge Compare (16-bit buffered)	PWM Mode		
₀₁₁₀ (1)	0	Center-Aligned Pulse (16-bit buffered)	Center PWM Mode		
0111	0	Variable Frequency Pulse (16-bit)			
1111	0	External Input Source Mode (16-bit)			

TABLE 16-2: OUTPUT COMPARE/PWM MODES

Note 1: Only MCCP supports center-aligned PWM mode.

^{© 2015-2019} Microchip Technology Inc.

16.4 Input Capture Mode


Input Capture mode is used to capture a timer value from an independent timer base upon an event on an input pin or other internal Trigger source. The input capture features are useful in applications requiring frequency (time period) and pulse measurement. Figure 16-6 depicts a simplified block diagram of the Input Capture mode. Input Capture mode uses a dedicated 16/32-bit, synchronous, up counting timer for the capture function. The timer value is written to the FIFO when a capture event occurs. The internal value may be read (with a synchronization delay) using the CCPxTMRH/L registers.

To use Input Capture mode, the CCSEL bit (CCPxCON1L[4]) must be set. The T32 and MOD[3:0] bits are used to select the proper Capture mode, as shown in Table 16-3.

MOD[3:0] (CCPxCON1L[3:0])	T32 (CCPxCON1L[5])	Operating Mode				
0000	0	Edge Detect (16-bit capture)				
0000	1	Edge Detect (32-bit capture)				
0001	0	Every Rising (16-bit capture)				
0001	1	Every Rising (32-bit capture)				
0010	0	Every Falling (16-bit capture)				
0010	1	Every Falling (32-bit capture)				
0011	0	Every Rise/Fall (16-bit capture)				
0011	1	Every Rise/Fall (32-bit capture)				
0100	0	Every 4th Rising (16-bit capture)				
0100	1	Every 4th Rising (32-bit capture)				
0101	0	Every 16th Rising (16-bit capture)				
0101	1	Every 16th Rising (32-bit capture)				

TABLE 16-3: INPUT CAPTURE MODES

16.5 Auxiliary Output

The MCCPx and SCCPx modules have an auxiliary (secondary) output that provides other peripherals access to internal module signals. The auxiliary output is intended to connect to other MCCPx or SCCPx modules, or other digital peripherals, to provide these types of functions:

- Time Base Synchronization
- Peripheral Trigger and Clock Inputs
- Signal Gating

The type of output signal is selected using the AUXOUT[1:0] control bits (CCPxCON2H[4:3]). The type of output signal is also dependent on the module operating mode.

On the PIC24FJ1024GA610/GB610 family of devices, only the CTMU discharge Trigger has access to the auxiliary output signal.

AUXOUT[1:0]	CCSEL	MOD[3:0]	Comments	Signal Description
00	х	XXXX	Auxiliary Output Disabled	No Output
01	0	0000	Time Base Modes	Time Base Period Reset or Rollover
10				Special Event Trigger Output
11				No Output
01	0	0001	Output Compare Modes	Time Base Period Reset or Rollover
10		through		Output Compare Event Signal
11		1111		Output Compare Signal
01	1	XXXX	Input Capture Modes	Time Base Period Reset or Rollover
10				Reflects the Value of the ICDIS bit
11				Input Capture Event Signal

TABLE 16-4: AUXILIARY OUTPUT

© 2015-2019 Microchip Technology Inc.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CCPON		CCPSIDL	CCPSLP	TMRSYNC	CLKSEL2	CLKSEL1	CLKSEL0
bit 15			I		I		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TMRPS1	TMRPS0	T32	CCSEL	MOD3	MOD2	MOD1	MOD0
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
bit 15	CCPON: CCF	Px Module Ena	ble bit				
				node specified b	ov the MOD[3:0)] control bits	
	0 = Module is		1 5		,		
bit 14	Unimplemen	ted: Read as '	כי				
bit 13	CCPSIDL: CO	CPx Stop in Idle	e Mode Bit				
	1 = Discontir	ues module op	eration when o	device enters Id	lle mode		
	0 = Continue	s module opera	ation in Idle mo	ode			
bit 12	CCPSLP: CC	Px Sleep Mode	e Enable bit				
		ontinues to ope					
		loes not operat	-				
bit 11		ime Base Cloc	-				
				d to the interna			tions apply
L:1 40 0			-	nized to the inte	ernal system ci	OCKS	
bit 10-8		: CCPx Time E	ase Clock Sel	ect dits			
	111 = TCKIA 110 = TCKIB						
	101 = PLL clo	ock ⁽²⁾					
	100 = 2x peri	•					
	010 = SOSC						
	001 = Refere 000 = Systen	nce clock outpu	ut				
	For MCCP1 a						
	011 = CLC1 (
	For MCCP2 a	-					
	011 = CLC2 (output					
	For MCCP3 a						
	011 = CLC3 (output					
	For SCCP7: 011 = CLC4 (outout					
bit 7-6		Time Base Pre	escale Select h	its			
	11 = 1:64 Pre						
	10 = 1:16 Pre						
	01 = 1:4 Pres						
	00 = 1:1 Pres						

REGISTER 16-1: CCPxCON1L: CCPx CONTROL 1 LOW REGISTERS

- Note 1: Only MCCP supports Center-Aligned PWM mode.
 - **2:** 96 MHz PLL modes are not supported. x4, x6 or x8 modes should be selected in the PLLMODE[3:0] (FOSCSEL[6:3]) Configuration bits.

REGISTER 16-1: CCPxCON1L: CCPx CONTROL 1 LOW REGISTERS (CONTINUED)

- bit 5 T32: 32-Bit Time Base Select bit
 - 1 = Uses 32-bit time base for timer, single edge output compare or input capture function
 - 0 = Uses 16-bit time base for timer, single edge output compare or input capture function
- bit 4 CCSEL: Capture/Compare Mode Select bit
 - 1 = Input capture peripheral
 - 0 = Output compare/PWM/timer peripheral (exact function is selected by the MOD[3:0] bits)
- bit 3-0 MOD[3:0]: CCPx Mode Select bits
 - For CCSEL = 1 (Input Capture modes):
 - 1xxx = Reserved
 - 011x = Reserved
 - 0101 = Capture every 16th rising edge
 - 0100 = Capture every 4th rising edge
 - 0011 = Capture every rising and falling edge
 - 0010 = Capture every falling edge
 - 0001 = Capture every rising edge
 - 0000 = Capture every rising and falling edge (Edge Detect mode)

For CCSEL = 0 (Output Compare/Timer modes):

1111 = External Input mode: Pulse generator is disabled, source is selected by ICS[2:0]

- 1110 = Reserved
- 110x = Reserved
- 10xx = Reserved
- 0111 = Variable Frequency Pulse mode
- 0110 = Center-Aligned Pulse Compare mode, buffered⁽¹⁾
- 0101 = Dual Edge Compare mode, buffered
- 0100 = Dual Edge Compare mode
- 0011 = 16-Bit/32-Bit Single Edge mode, toggles output on compare match
- 0010 = 16-Bit/32-Bit Single Edge mode, drives output low on compare match
- 0001 = 16-Bit/32-Bit Single Edge mode, drives output high on compare match
- 0000 = 16-Bit/32-Bit Timer mode, output functions are disabled
- Note 1: Only MCCP supports Center-Aligned PWM mode.
 - **2:** 96 MHz PLL modes are not supported. x4, x6 or x8 modes should be selected in the PLLMODE[3:0] (FOSCSEL[6:3]) Configuration bits.

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
OPSSRC ⁽¹⁾	RTRGEN ⁽²⁾	—		OPS3 ⁽³⁾	OPS2 ⁽³⁾	OPS1 ⁽³⁾	OPS0 ⁽³⁾
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TRIGEN	ONESHOT	ALTSYNC	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	iown
bit 15	OPSSRC: Ou	Itput Postscaler	Source Selec	ct bit ⁽¹⁾			
				ger output event	ts		
		ostscaler scales		terrupt events			
bit 14		trigger Enable					
		e can be retrig e mav not be re		RIGEN bit = 1 en TRIGEN bit =	= 1		
bit 13-12		ted: Read as '0		-			
bit 11-8	OPS3[3:0] : C	CPx Interrupt C	Output Postsca	ale Select bits ⁽³⁾)		
		upt every 16th t	-				
		upt every 15th t	ime base peri	od match			
	 0100 = Interri	upt every 5th tir	ne base perio	d match			
				d match or 4th i	input capture e	vent	
				d match or 3rd			
				od match or 2nd			
bit 7		Px Trigger Enal	-	od match or inp	ut capture ever	IL .	
		peration of time		ed			
		peration of time					
bit 6	ONESHOT: C	ne-Shot Mode	Enable bit				
				igger duration is	s set by OSCN	T[2:0]	
		t Trigger mode					
bit 5		CPx Clock Sele					
		-		lule synchroniza gnal is the Time			
bit 4-0		CPx Synchroni		-	Dase Reserve		
		5 for the definit					
Note 1: Thi	is control bit ha	is no function ir	n Input Captur	e modes			
		is no function w					
				0_1111) will re	sult in a FIFO b	ouffer overflow f	or

REGISTER 16-2: CCPxCON1H: CCPx CONTROL 1 HIGH REGISTERS

 Output postscale settings, from 1:5 to 1:16 (0100-1111), will result in a FIFO buffer overflow for Input Capture modes.

SYNC[4:0]	Synchronization Source
11111	None; Timer with Rollover on CCPxPR Match or FFFh
11110	Reserved
11101	Reserved
11100	CTMU Trigger
11011	A/D Start Conversion
11010	CMP3 Trigger
11001	CMP2 Trigger
11000	CMP1 Trigger
10111	Reserved
10110	Reserved
10101	Reserved
10100	Reserved
10011	CLC4 Out
10010	CLC3 Out
10001	CLC2 Out
10000	CLC1 Out
01111	Reserved
01110	Reserved
01101	Reserved
01100	Reserved
01011	INT2 Pad
01010	INT1 Pad
01001	INT0 Pad
01000	SCCP7 Sync Out
00111	SCCP6 Sync Out
00110	SCCP5 Sync Out
00101	SCCP4 Sync Out
00100	MCCP3 Sync Out
00011	MCCP2 Sync Out
00010	MCCP1 Sync Out
00001	MCCPx/SCCPx Sync Out ⁽¹⁾
00000	MCCPx/SCCPx Timer Sync Out ⁽¹⁾

TABLE 16-5: SYNCHRONIZATION SOURCES

Note 1: CCP1 when connected to CCP1, CCP2 when connected to CCP2, etc.

R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	
PWMRSEN	ASDGM		SSDG		—	_	—	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			ASD	G[7:0]				
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit. read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	nknown	
=								
bit 15	PWMRSEN:	CCPx PWM Re	start Enable b	it				
bit 15				it peginning of the	next PWM pe	riod, after the s	hutdown input	
bit 15	1 = ASEVT b has ende	it clears autom	atically at the t	beginning of the			hutdown input	
	1 = ASEVT b has ende 0 = ASEVT b	oit clears autom ed oit must be clea	atically at the t red in software	beginning of the to resume PW			hutdown input	
bit 15 bit 14	1 = ASEVT b has ende 0 = ASEVT b ASDGM: CCI	it clears autom d it must be clea Px Auto-Shutdo	atically at the t red in software own Gate Mode	beginning of the to resume PW e Enable bit	M activity on c	output pins	hutdown input	
	1 = ASEVT b has ende 0 = ASEVT b ASDGM: CCI 1 = Waits unt	it clears autom ed bit must be clea Px Auto-Shutdo til the next Time	atically at the t red in software wn Gate Mode Base Reset c	beginning of the to resume PW	M activity on c	output pins	hutdown input	
bit 14	1 = ASEVT b has ende 0 = ASEVT b ASDGM: CCI 1 = Waits unt 0 = Shutdow	it clears autom d it must be clea Auto-Shutdo til the next Time n event occurs	atically at the b red in software own Gate Mode Base Reset c immediately	beginning of the to resume PW e Enable bit	M activity on c	output pins	hutdown input	
bit 14 bit 13	 1 = ASEVT b has ender 0 = ASEVT b ASDGM: CCI 1 = Waits unt 0 = Shutdown Unimplement 	it clears autom d it must be clea Px Auto-Shutdo til the next Time n event occurs ted: Read as '(atically at the t red in software wm Gate Mode Base Reset o immediately	beginning of the to resume PW e Enable bit or rollover for sh	M activity on c	output pins	hutdown input	
bit 14 bit 13	1 = ASEVT b has ender 0 = ASEVT b ASDGM: CCP 1 = Waits unt 0 = Shutdown Unimplemen SSDG: CCPx	it clears autom ad it must be clea Px Auto-Shutdo til the next Time n event occurs ted: Read as '(Software Shut	atically at the b red in software own Gate Mode Base Reset c immediately o' down/Gate Co	beginning of the to resume PW E Enable bit or rollover for sh ntrol bit	M activity on c utdown to occ	output pins ur		
	1 = ASEVT b has ender 0 = ASEVT b ASDGM: CCF 1 = Waits unit 0 = Shutdown Unimplemen SSDG: CCPx 1 = Manually	it clears autom ad Dx Auto-Shutdo til the next Time n event occurs ted: Read as '(Software Shut forces auto-sh	atically at the t red in software own Gate Mode Base Reset o immediately o' down/Gate Co nutdown, timer	beginning of the to resume PW e Enable bit or rollover for sh	M activity on c	output pins ur		
bit 14 bit 13	1 = ASEVT b has ende 0 = ASEVT b ASDGM: CCI 1 = Waits uni 0 = Shutdowi Unimplemen SSDG: CCPx 1 = Manually ASDGM	it clears autom ad it must be clea Px Auto-Shutdo til the next Time n event occurs ted: Read as '(Software Shut	atically at the t red in software own Gate Mode Base Reset o immediately o' down/Gate Co nutdown, timer	beginning of the to resume PW E Enable bit or rollover for sh ntrol bit	M activity on c	output pins ur		
bit 14 bit 13 bit 12	1 = ASEVT b has ender 0 = ASEVT b ASDGM: CCI 1 = Waits unt 0 = Shutdown Unimplemen SSDG: CCPx 1 = Manually ASDGM 0 = Normal n	it clears autom ad Dr Auto-Shutdo til the next Time n event occurs ted: Read as '(Software Shut forces auto-sh bit still applies)	atically at the t red in software won Gate Mode Base Reset o immediately o' down/Gate Co hutdown, timer	beginning of the to resume PW E Enable bit or rollover for sh ntrol bit	M activity on c	output pins ur		
bit 14 bit 13 bit 12 bit 11-8	1 = ASEVT b has ender 0 = ASEVT b ASDGM: CCI 1 = Waits unt 0 = Shutdown Unimplemen SSDG: CCPx 1 = Manually ASDGM 0 = Normal n	it clears autom ad Px Auto-Shutdo til the next Time n event occurs ted: Read as '(Software Shut forces auto-sh bit still applies) nodule operatio ted: Read as '(atically at the b red in software own Gate Mode Base Reset o immediately o' down/Gate Co nutdown, timer n	beginning of the to resume PW E Enable bit or rollover for sh ntrol bit	M activity on c utdown to occ input capture	output pins ur		
bit 14 bit 13	1 = ASEVT b has ender 0 = ASEVT b ASDGM: CCI 1 = Waits unt 0 = Shutdown Unimplemen SSDG: CCPx 1 = Manually ASDGM 0 = Normal n Unimplemen ASDG[7:0]: C	it clears autom ad bit must be clear Px Auto-Shutdo til the next Time n event occurs ted: Read as '(Software Shut forces auto-sh bit still applies) nodule operatio ted: Read as '(CCPx Auto-Shu	atically at the t red in software own Gate Mode Base Reset o immediately o' down/Gate Co nutdown, timer n o' tdown/Gating 3	e to resume PW e Enable bit or rollover for sh ntrol bit · clock gate or	M activity on o utdown to occ input capture bits	output pins ur signal gate eve		

REGISTER 16-3: CCPxCON2L: CCPx CONTROL 2 LOW REGISTERS

TABLE 16-6: AUTO-SHUTDOWN SOURCES

A 6D 017-01			Auto	-Shutdown So	ource		
ASDG[7:0]	MCCP1	MCCP2	MCCP3	SCCP4	SCCP5	SCCP6	SCCP7
1xxx xxxx				OCFB			
x1xx xxxx				OCFA			
xx1x xxxx	CLC1	CLC2	CLC3	CLC1	CLC2	CLC3	CLC4
xxx1 xxxx	:	SCCP4 OC Ou	t		MCCP1	OC Out	
xxxx 1xxx	:	SCCP5 OC Ou	t		MCCP2	OC Out	
xxxx x1xx				CMP3 Out			
xxxx xx1x				CMP2 Out			
xxxx xxx1				CMP1 Out			

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
OENSYNC	_	OCFEN ^(1,2)	OCEEN ^(1,2)	OCDEN ^(1,2)	OCCEN ^(1,2)	OCBEN ⁽¹⁾	OCAEN
bit 15							bit 8
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ICGSM1	ICGSM0	—	AUXOUT1	AUXOUT0	ICS2	ICS1	ICS0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	OENSYNC: (Dutput Enable S	Synchronizatior	n bit			
		y output enable			Base Reset or	rollover	
L:1 4 4	-	y output enable		mediately			
bit 14 bit 13-8	-	i ted: Read as 'd out Enable/Stee		to(1.2)			
DIL 13-0		n is controlled b			luces an output	t compare or P	MM signal
		n is not control					
	periphera	al multiplexed o	n the pin				-
bit 7-6	ICGSM[1:0]:	Input Capture (Gating Source	Mode Control b	pits		
	11 = Reserve			4:			
		ot mode: Falling ot mode: Rising					
	00 = Level-Se	ensitive mode:	A high level fr	om gating sou			
		l disable future	•	5			
bit 5	-	ted: Read as '					
bit 4-3]: Auxiliary Out					
		pture or output output is defined)	
		se rollover eve				,	
	00 = Disableo						
bit 2-0		ut Capture Sou	rce Select bits				
	111 = CLC4 110 = CLC3						
	101 = CLC2						
	100 = CLC1	output					
		arator 3 output					
		arator 2 output arator 1 output					
		Capture x (ICM)	() I/O pin				
Note 1: 00	CFEN through (OCBEN (bits[13	8:9]) are impler	mented in MCC	Px modules on	ıly.	

REGISTER 16-4: CCPxCON2H: CCPx CONTROL 2 HIGH REGISTERS

- OCFEN through OCBEN (bits[13:9]) are implemented in MCCPx modules only. Note 1:
 - 2: OCFEN through OCCEN (bits[13:10]) are not available on 64-pin parts.

^{© 2015-2019} Microchip Technology Inc.

PIC24FJ1024GA610/GB610 FAMILY

REGISTER 16-5: CCPxCON3L: CCPx CONTROL 3 LOW REGISTERS⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	_		—	—
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			DT[5:0]		
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable I	oit	U = Unimplem	ented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-6	Unimpleme	nted: Read as '0)'				

bit 5-0 DT[5:0]: CCPx Dead-Time Select bits 111111 = Inserts 63 dead-time delay periods between complementary output signals 111110 = Inserts 62 dead-time delay periods between complementary output signals ... 000010 = Inserts 2 dead-time delay periods between complementary output signals 000001 = Inserts 1 dead-time delay period between complementary output signals 000000 = Dead-time logic is disabled

Note 1: This register is implemented in MCCPx modules only.

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
OETRIG	OSCNT2	OSCNT1	OSCNT0	_	OUTM2 ⁽¹⁾	OUTM1 ⁽¹⁾	OUTM0 ⁽¹⁾
bit 15							bit 8
		DAVA	D /// 0	DAVA	DAMA	D 4440	D /// 0
U-0	U-0	R/W-0	R/W-0 POLBDF ⁽¹⁾	R/W-0	R/W-0	R/W-0	R/W-0
 bit 7	_	- POLACE		PSSACE1	PSSACE0	PSSBDF1 ⁽¹⁾	PSSBDF0 ⁽¹ bit
							DI
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	1 = For Trigg	Px Dead-Time ered mode (TF utput pin opera	RIGEN = 1): Mo	odule does not	drive enabled o	output pins unti	l triggered
bit 14-12	111 = Extend 110 = Extend 101 = Extend 100 = Extend 011 = Extend 010 = Extend 001 = Extend	s one-shot even s one-shot even s one-shot even s one-shot even s one-shot even s one-shot even s one-shot even	ent by seven tim ent by six time b ent by five time ent by four time	base periods (s base periods (s base periods (e base periods base periods (base period (t	even time base six time base p five time base (four time bas three time base	periods total) e periods total) e periods total)	,
bit 11	Unimplemen	ted: Read as '	0'				
bit 10-8	111 = Reserv 110 = Output 101 = Brush I 100 = Brush I 011 = Reserv 010 = Half-Br 001 = Push-P 000 = Steeral	red Scan mode DC Output mod DC Output mod red idge Output mod Pull Output mod ble Single Outp	de, reverse ode de out mode	its ⁽¹⁾			
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5	1 = Output pi	Px Output Pin n polarity is ac n polarity is ac		MxC and OCM	lxE, Polarity Co	ontrol bit	
bit 4	1 = Output pi	Px Output Pins n polarity is ac n polarity is ac		MxD and OCM	xF, Polarity Co	ntrol bit ⁽¹⁾	
bit 3-2	PSSACE[1:0] 11 = Pins are 10 = Pins are	PWMx Output driven active driven inactive	-	vn event occurs own event occu	s	down State Cor	ntrol bits
bit 1-0	11 = Pins are 10 = Pins are	driven active v driven inactive	ut Pins, OCMxE when a shutdov when a shutdo dance state wh	vn event occurs own event occu	s urs	down State Cor	ntrol bits ⁽¹⁾

REGISTER 16-6: CCPxCON3H: CCPx CONTROL 3 HIGH REGISTERS

Note 1: These bits are implemented in MCCPx modules only.

REGISTER 16-7: CCPxSTATL: CCPx STATUS REGISTER LOW
--

U-0	U-0	U-0	U-0	U-0	W-0	U-0	U-0
_		_			ICGARM	_	_
bit 15							bit 8
R-0	W1-0	W1-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE
bit 7							bit (
Legend:		C = Clearable	hit	W = Writable	hit		
R = Readab	le hit	W1 = Write '1			nented bit, read	as '0'	
-n = Value a		'1' = Bit is set	,	'0' = Bit is clea		x = Bit is unkn	own
		1 Dit lo cot		- Dit io olot			
bit 15-11	Unimplemen	ted: Read as '	D'				
bit 10	ICGARM: Inp	ut Capture Gat	e Arm bit				
		to this location 01 or 10; read		nput Capture >	module for a	one-shot gatin	g event wher
bit 9-8	Unimplemen	ted: Read as '	o'				
bit 7	CCPTRIG: CO	CPx Trigger Sta	atus bit				
		s been triggere s not been trigg		•			
bit 6	TRSET: CCP	x Trigger Set R	equest bit				
	Write '1' to thi	is location to tri	gger the timer	when TRIGEN	= 1 (location al	ways reads as	ʻ0 ') .
bit 5	TRCLR: CCP	Px Trigger Clear	^r Request bit				
	Write '1' to thi	is location to ca	ancel the timer	Trigger when T	RIGEN = 1 (loo	cation always re	eads as '0').
bit 4		x Auto-Shutdov					
		wn event is in p tputs operate n		x outputs are in	the shutdown	state	
bit 3		le Edge Compa		s hit			
	•	edge compare					
	0	edge compare					
bit 2	ICDIS: Input (Capture x Disal	ble bit				
					e a capture eve	ent	
				rate a capture e	event		
bit 1	-	Capture x Buffe					
	•	t Capture x FIF t Capture x FIF					
bit 0		Capture x Buff					
-	-	pture x buffer h		ble			
		pture x buffer i					

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	_			—		_	_	
bit 15							bit 8	
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0	
	—	—	PRLWIP	TMRHWIP	TMRLWIP	RBWIP	RAWIP	
bit 7							bit 0	
Lananda								
Legend: R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unknown		
bit 15-5	Unimplement	ted: Read as ')'					
bit 4	PRLWIP: CCF	PxPRL Write in	Progress Stat	us bit				
		to the CCPxP to the CCPxP		h the buffered on the buffered on the buffered of the buffered	contents is in p	rogress		
bit 3	•	CPxTMRH Wri	0					
			0	with the buffered s not in progres		progress		
bit 2	TMRLWIP: CO	CPxTMRL Writ	e in Progress S	Status bit				
			•	vith the buffered s not in progres		progress		
bit 1	RBWIP: CCP	xRB Write in P	rogress Status	bit				
	RBWIP: CCPxRB Write in Progress Status bit 1 = An update to the CCPxRB register with the buffered contents is in progress 0 = An update to the CCPxRB register is not in progress							
bit 0	RAWIP: CCP	xRA Write in Pi	rogress Status	bit				
	RAWIP: CCPxRA Write in Progress Status bit 1 = An update to the CCPxRA register with the buffered contents is in progress 0 = An update to the CCPxRA register is not in progress							

REGISTER 16-8: CCPxSTATH: CCPx STATUS REGISTER HIGH

NOTES:

17.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note: This data sheet summarizes the features of the PIC24FJ1024GA610/GB610 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Serial Peripheral Interface (SPI) with Audio Codec Support" (www.microchip.com/DS70005136) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D Converters, etc. The SPI module is compatible with the Motorola[®] SPI and SIOP interfaces. All devices in the PIC24FJ1024GA610/GB610 family include three SPI modules.

The module supports operation in two buffer modes. In Standard mode, data are shifted through a single serial buffer. In Enhanced Buffer mode, data are shifted through a FIFO buffer. The FIFO level depends on the configured mode.

Variable length data can be transmitted and received from 2 to 32 bits.

Note: Do not perform Read-Modify-Write operations (such as bit-oriented instructions) on the SPIxBUF register in either Standard or Enhanced Buffer mode.

The module also supports a basic framed SPI protocol while operating in either Master or Slave mode. A total of four framed SPI configurations are supported.

The module also supports Audio modes. Four different Audio modes are available.

- I²S mode
- · Left Justified
- Right Justified
- PCM/DSP

In each of these modes, the serial clock is free-running and audio data are always transferred.

If an audio protocol data transfer takes place between two devices, then usually one device is the master and the other is the slave. However, audio data can be transferred between two slaves. Because the audio protocols require free-running clocks, the master can be a third party controller. In either case, the master generates two free-running clocks: SCKx and LRC (Left, Right Channel Clock/SSx/FSYNC). The SPI serial interface consists of four pins:

- SDIx: Serial Data Input
- SDOx: Serial Data Output
- SCKx: Shift Clock Input or Output
- SSx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPI module can be configured to operate using two, three or four pins. In the three-pin mode, SSx is not used. In the two-pin mode, both SDOx and SSx are not used.

The SPI module has the ability to generate three interrupts reflecting the events that occur during the data communication. The following types of interrupts can be generated:

- 1. Receive interrupts are signalled by SPIxRXIF.
 - This event occurs when:
 - RX watermark interrupt
 - SPIROV = 1
 - SPIRBF = 1
 - SPIRBE = 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

- 2. Transmit interrupts are signalled by SPIxTXIF. This event occurs when:
 - TX watermark interrupt
 - SPITUR = 1
 - SPITBF = 1
 - SPITBE = 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

- 3. General interrupts are signalled by SPIxIF. This event occurs when
 - FRMERR = 1
 - SPIBUSY = 1
 - SRMT = 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

A block diagram of the module in Enhanced Buffer mode is shown in Figure 17-1.

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1, SPI2 or SPI3. Special Function Registers will follow a similar notation. For example, SPIxCON1 and SPIxCON2 refer to the control registers for any of the three SPI modules.

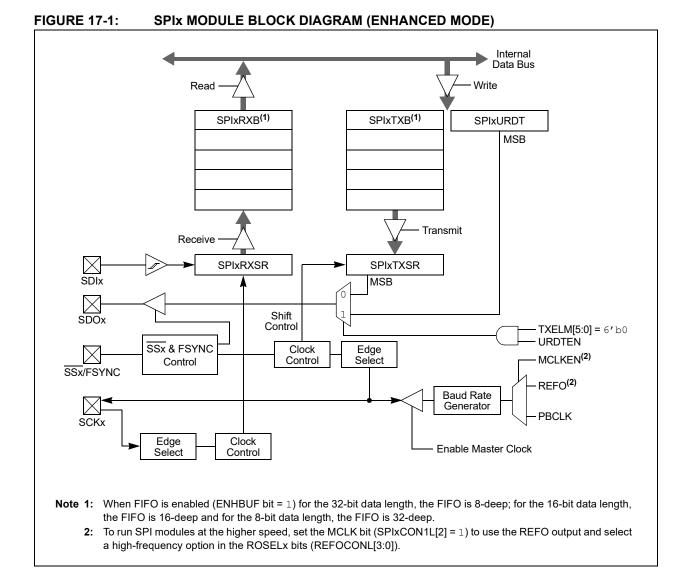
^{© 2015-2019} Microchip Technology Inc.

17.1 Master Mode Operation

Perform the following steps to set up the SPIx module for Master mode operation:

- 1. Disable the SPIx interrupts in the respective IECx register.
- 2. Stop and reset the SPIx module by clearing the SPIEN bit.
- 3. Clear the receive buffer.
- Clear the ENHBUF bit (SPIxCON1L[0]) if using Standard Buffer mode or set the bit if using Enhanced Buffer mode.
- 5. If SPIx interrupts are not going to be used, skip this step. Otherwise, the following additional steps are performed:
 - a) Clear the SPIx interrupt flags/events in the respective IFSx register.
 - b) Write the SPIx interrupt priority and sub-priority bits in the respective IPCx register.
 - c) Set the SPIx interrupt enable bits in the respective IECx register.
- 6. Write the Baud Rate register, SPIxBRGL.
- 7. Clear the SPIROV bit (SPIxSTATL[6]).
- 8. Write the desired settings to the SPIxCON1L register with MSTEN (SPIxCON1L[5]) = 1.
- 9. Enable SPI operation by setting the SPIEN bit (SPIxCON1L[15]).
- 10. Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission (and reception) will start as soon as data are written to the SPIxBUFL/H registers.
 - Note 1: To run SPI modules at the higher speed, set the MCLK bit (SPIxCON1L[2] = 1) to use the REFO output and select the highfrequency option in the ROSELx bits (REFOCONL[3:0]).

17.2 Slave Mode Operation


The following steps are used to set up the SPIx module for the Slave mode of operation:

- 1. If using interrupts, disable the SPIx interrupts in the respective IECx register.
- 2. Stop and reset the SPIx module by clearing the SPIEN bit.
- 3. Clear the receive buffer.
- Clear the ENHBUF bit (SPIxCON1L[0]) if using Standard Buffer mode or set the bit if using Enhanced Buffer mode.

- 5. If using interrupts, the following additional steps are performed:
 - a) Clear the SPIx interrupt flags/events in the respective IFSx register.
 - b) Write the SPIx interrupt priority and subpriority bits in the respective IPCx register.
 - c) Set the SPIx interrupt enable bits in the respective IECx register.
- 6. Clear the SPIROV bit (SPIxSTATL[6]).
- Write the desired settings to the SPIxCON1L register with MSTEN (SPIxCON1L[5]) = 0.
- 8. Enable SPI operation by setting the SPIEN bit (SPIxCON1L[15]).
- 9. Transmission (and reception) will start as soon as the master provides the serial clock.

The following additional features are provided in Slave mode:

- Slave Select Synchronization:
- The SSx pin allows a Synchronous Slave mode. If the SSEN bit (SPIxCON1L[7]) is set, transmission and reception are enabled in Slave mode only if the SSx pin is driven to a low state. The port output or other peripheral outputs must not be driven in order to allow the SSx pin to function as an input. If the SSEN bit is set and the SSx pin is driven high, the SDOx pin is no longer driven and will tri-state, even if the module is in the middle of a transmission. An aborted transmission will be tried again the next time the SSx pin is driven low using the data held in the SPIxTXB register. If the SSEN bit is not set, the SSx pin does not affect the module operation in Slave mode.
- SPITBE Status Flag Operation: The SPITBE bit (SPIxSTATL[3]) has a different function in the Slave mode of operation. The following describes the function of SPITBE for various settings of the Slave mode of operation:
 - If SSEN (SPIxCON1L[7]) is cleared, the SPITBE bit is cleared when SPIxBUF is loaded by the user code. It is set when the module transfers SPIxTXB to SPIxTXSR. This is similar to the SPITBE bit function in Master mode.
 - If SSEN is set, SPITBE is cleared when SPIxBUF is loaded by the user code. However, it is set only when the SPIx module completes data transmission. A transmission will be aborted when the SSx pin goes high and may be retried at a later time. So, each data word is held in SPIxTXB until all bits are transmitted to the receiver.

17.3 Audio Mode Operation

To initialize the SPIx module for Audio mode, follow the steps to initialize it for Master/Slave mode, but also set the AUDEN bit (SPIxCON1H[15]). In Master+Audio mode:

- This mode enables the device to generate SCKx and LRC pulses as long as the SPIEN bit (SPIxCON1L[15]) = 1.
- The SPIx module generates LRC and SCKx continuously in all cases, regardless of the transmit data, while in Master mode.
- The SPIx module drives the leading edge of LRC and SCKx within one SCKx period, and the serial data shift in and out continuously, even when the TX FIFO is empty.

In Slave+Audio mode:

- This mode enables the device to receive SCKx and LRC pulses as long as the SPIEN bit (SPIxCON1L[15]) = 1.
- The SPIx module drives zeros out of SDOx, but does not shift data out or in (SDIx) until the module receives the LRC (i.e., the edge that precedes the left channel).
- Once the module receives the leading edge of LRC, it starts receiving data if DISSDI (SPIxCON1L[4]) = 0 and the serial data shift out continuously, even when the TX FIFO is empty.

^{© 2015-2019} Microchip Technology Inc.

17.4 SPI Control/Status Registers

REGISTER 17-1: SPIxCON1L: SPIx CONTROL REGISTER 1 LOW

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SPIEN	—	SPISIDL	DISSDO	MODE32 ^(1,4,5)	MODE16 ^(1,4,5)	SMP	CKE ⁽¹⁾
bit 15					• •		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN ⁽²) CKP	MSTEN	DISSDI	DISSCK	MCLKEN ⁽³⁾	SPIFE	ENHBUF ⁽⁵⁾
bit 7					• •		bit 0
Legend:							
R = Reada	able bit W	/ = Writable b	it	U = Unimplem	ented bit, read as	'0'	
-n = Value	at POR '1	' = Bit is set		'0' = Bit is clea	red x	= Bit is unk	nown
bit 15	SPIEN: SPIx Or	n bit					
	1 = Enables mo	odule					
			odule, disab	les clocks, disat	oles interrupt ever	nt generatio	n, allows SFR
	modification						
bit 14	Unimplemente						
bit 13	SPISIDL: SPIX	•	ode bit				
	1 = Halts in CPL 0 = Continues to		DILIdia ma	40			
bit 12	DISSDO: Disab						
DIL 12		•		nin is controlled	by the port function	n	
	0 = SDOx pin is						
bit 11-10	MODE[32,16]: S	-					
	AUDEN = 0:		5				
	MODE32	MODE16	COMMUN	IICATION			
	1	X	32-Bit				
	0	1 0	16-Bit 8-Bit				
	AUDEN = 1:	0	0-Dit				
	MODE32	MODE16	COMMUN	IICATION			
	1	1			2-Bit Channel/64-		
	1	0			2-Bit Channel/64-		
	0	1 0			2-Bit Channel/64- 6-Bit Channel/32-		
bit 9	SMP: SPIx Data	•		a, 10-Dict II O, 1	0-bit Ghannel/32-	DitTanic	
bit 3	Master Mode:	a mput Gampi					
	1 = Input data a	re sampled a	t the end of o	data output time			
		•		of data output tin	ne		
	Slave Mode:						
	Input data are a	lways sample	d at the mid	dle of data outpu	t time, regardless	of the SMP	setting.
Note 1:	When AUDEN = 1,	this module f	unctions as i	f CKE = 0, regar	dless of its actual	value.	
2:	When FRMEN = 1,			., 3			
3:	MCLKEN can only I			v bit = 0.			
4:	This channel is not				llows the FRMSY	⊃W bit.	
5:	When the FIFO is e	•					FIFO is
	8-deep; if the MODI the FIFO is 32-deep	E selects 16-b					

REGISTER 17-1: SPIxCON1L: SPIx CONTROL REGISTER 1 LOW (CONTINUED)

bit 8	CKE: SPIx Clock Edge Select bit ⁽¹⁾
	1 = Transmit happens on transition from active clock state to Idle clock state
	0 = Transmit happens on transition from Idle clock state to active clock state
bit 7	SSEN: Slave Select Enable bit (Slave mode) ⁽²⁾
	1 = \overline{SSx} pin is used by the macro in Slave mode; \overline{SSx} pin is used as the slave select input 0 = \overline{SSx} pin is not used by the macro (\overline{SSx} pin will be controlled by the port I/O)
bit 6	CKP: SPIx Clock Polarity Select bit
	 1 = Idle state for clock is a high level; active state is a low level 0 = Idle state for clock is a low level; active state is a high level
bit 5	MSTEN: Master Mode Enable bit
	1 = Master mode
	0 = Slave mode
bit 4	DISSDI: Disable SDIx Input Port bit
	 1 = SDIx pin is not used by the module; pin is controlled by the port function 0 = SDIx pin is controlled by the module
bit 3	DISSCK: Disable SCKx Output Port bit
	 1 = SCKx pin is not used by the module; pin is controlled by the port function 0 = SCKx pin is controlled by the module
bit 2	MCLKEN: Master Clock Enable bit ⁽³⁾
	1 = REFO output is used by the BRG
	0 = Peripheral clock is used by the BRG
bit 1	SPIFE: Frame Sync Pulse Edge Select bit
	 1 = Frame Sync pulse (Idle-to-active edge) coincides with the first bit clock 0 = Frame Sync pulse (Idle-to-active edge) precedes the first bit clock
bit 0	ENHBUF: Enhanced Buffer Mode Enable bit ⁽⁵⁾
	1 = Enhanced Buffer mode is enabled
	0 = Enhanced Buffer mode is disabled
Note 1:	When AUDEN = 1, this module functions as if CKE = 0, regardless of its actual value.
0.	

- 2: When FRMEN = 1, SSEN is not used.
- **3:** MCLKEN can only be written when the SPIEN bit = 0.
- 4: This channel is not meaningful for DSP/PCM mode as LRC follows the FRMSYPW bit.
- 5: When the FIFO is enabled (ENHBUF bit = 1), if the MODE bits select 32-bit data length, the FIFO is 8-deep; if the MODE selects 16-bit data length, the FIFO is 16-deep or if MODE selects 8-bit data length, the FIFO is 32-deep.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AUDEN ⁽¹⁾	SPISGNEXT	IGNROV	IGNTUR	AUDMONO ⁽²⁾	URDTEN ⁽³⁾	AUDMOD1 ⁽⁴⁾	AUDMOD0 ⁽⁴⁾
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FRMCNT2	FRMCNT1	FRMCNT0
bit 7							bit C
Legend:							
R = Readal	ole bit	W = Writable b	pit	U = Unimpleme	ented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clear	red	x = Bit is unkr	nown
bit 15	1 = Audio pro and this SMP = 0,		d; MSTEN cor ns as if FRN heir actual va	ntrols the direction			
bit 14				Read Data Enabl	e bit		
	1 = Data from	RX FIFO are s RX FIFO are r	ign-extended				
bit 13	IGNROV: Igno	ore Receive Ov	erflow bit				
	by the rec	e Overflow (RO ceive data a critical error	,	ritical error; durin I operation	g ROV, data ir	n the FIFO are i	not overwritten
bit 12	IGNTUR: Igno	ore Transmit Ur	nderrun bit				
	until the S	it Underrun (Tl SPIxTXB is not a critical error	empty	critical error and operation	data indicated	by URDTEN a	are transmitted
bit 11		Audio Data For	-	-			
	1 = Audio data 0 = Audio data	•	., each data w	ord is transmitted	d on both left a	and right chann	els)
bit 10	URDTEN: Tra	nsmit Underru	n Data Enable	e bit ⁽³⁾			
				egister during Tra			
				Transmit Under	run conditions		
bit 9-8	-]: Audio Protoc	ol Mode Sele	ection bits ⁽⁴⁾			
	01 = Left Just	stified mode: Tl ified mode: Thi	s module fund	nctions as if SPIF ctions as if SPIFE f SPIFE = 0, rega	= 1, regardle	ss of its actual	
bit 7		ned SPIx Supp		· ·			
		Plx support is e Plx support is o	•	pin is used as the	e FSYNC inpu	it/output)	
2: /	AUDEN can only AUDMONO can o JRDTEN is only	only be written	when the SPI		only valid for	AUDEN = 1.	
4: /	AUDMOD[1:0] bit	s can only be w	ritten when th	ne SPIEN bit = 0 a			

REGISTER 17-2: SPIxCON1H: SPIx CONTROL REGISTER 1 HIGH

NOT in PCM/DSP mode, this module functions as if FRMSYPW = 1, regardless of its actual value.

REGISTER 17-2: SPIxCON1H: SPIx CONTROL REGISTER 1 HIGH (CONTINUED)

bit 6	FRMSYNC: Frame Sync Pulse Direction Control bit
	1 = Frame Sync pulse input (slave) 0 = Frame Sync pulse output (master)
bit 5	FRMPOL: Frame Sync/Slave Select Polarity bit
	 1 = Frame Sync pulse/slave select is active-high 0 = Frame Sync pulse/slave select is active-low
bit 4	MSSEN: Master Mode Slave Select Enable bit
	 1 = SPIx slave select support is enabled with polarity determined by FRMPOL (SSx pin is automatically driven during transmission in Master mode) 0 = SPIx slave select support is disabled (SSx pin will be controlled by port IO)
bit 3	FRMSYPW: Frame Sync Pulse-Width bit
	 1 = Frame Sync pulse is one serial word length wide (as defined by MODE[32,16]/WLENGTH[4:0]) 0 = Frame Sync pulse is one clock (SCK) wide
bit 2-0	FRMCNT[2:0]: Frame Sync Pulse Counter bits
	Controls the number of serial words transmitted per Sync pulse. 111 = Reserved 110 = Reserved
	101 = Generates a Frame Sync pulse on every 32 serial words
	100 = Generates a Frame Sync pulse on every 16 serial words
	011 = Generates a Frame Sync pulse on every 8 serial words
	010 = Generates a Frame Sync pulse on every 4 serial words
	001 = Generates a Frame Sync pulse on every 2 serial words (value used by audio protocols)000 = Generates a Frame Sync pulse on each serial word

- **Note 1:** AUDEN can only be written when the SPIEN bit = 0.
 - **2:** AUDMONO can only be written when the SPIEN bit = 0 and is only valid for AUDEN = 1.
 - **3:** URDTEN is only valid when IGNTUR = 1.
 - **4:** AUDMOD[1:0] bits can only be written when the SPIEN bit = 0 and are only valid when AUDEN = 1. When NOT in PCM/DSP mode, this module functions as if FRMSYPW = 1, regardless of its actual value.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
			_			—	
bit 15							bit 8
							
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				W	/LENGTH[4:0] ^{(*}	1,2)	
bit 7							bit 0
Logond							
Legend: R = Readal	hle hit	W = Writable	hit	LI = Unimplen	nented bit, read	1 as 'N'	
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	own
					alcu		lown
bit 15-5	Unimpleme	nted: Read as '	0'				
bit 4-0	-	4:0]: Variable W		ts ^(1,2)			
	11111 = 32 -	-	C C				
	11110 = 31 -						
	11101 = 30-						
	11100 = 29-						
	11011 = 28- 11010 = 27-						
	11010 – 27 - 11001 – 26 -						
	11000 = 25-						
	10111 = 24-						
	10110 = 23 -	-bit data					
	10101 = 22-						
	10100 = 21-						
	10011 = 20-						
	10010 = 19 - 10001 = 18 -						
	100001 = 18-						
	01111 = 16-						
	01110 = 15 -	-bit data					
	01101 = 14 -						
	01100 = 13-						
	01011 = 12-						
	01010 = 11- 01001 = 10-						
	01000 = 9-b						
	00111 = 8-b						
	00110 = 7-b						
	00101 = 6-b						
	00100 = 5-b						
	00011 = 4 -b						
	00010 = 3-b 00001 = 2-b						
		e MODE[32,16]	bits in SPIxC	ON1I [11·10]			

REGISTER 17-3: SPIxCON2L: SPIx CONTROL REGISTER 2 LOW

- **Note 1:** These bits are effective when AUDEN = 0 only.
 - 2: Varying the length by changing these bits does not affect the depth of the TX/RX FIFO.

REGISTER 17-4: SPIx STATL: SPIx STATUS REGISTER LOW

U-0	U-0	U-0	HS/R/C-0	HSC/R-0	U-0	U-0	HSC/R-0
_	—	—	FRMERR	SPIBUSY	—	—	SPITUR ⁽¹⁾
bit 15							bit 8

HSC/R-0	HS/R/C-0	HSC/R-1	U-0	HSC/R-1	U-0	HSC/R-0	HSC/R-0
SRMT	SPIROV	SPIRBE		SPITBE	—	SPITBF	SPIRBF
bit 7							bit 0

Legend:	C = Clearable bit	HS = Hardware Settable bit	x = Bit is unknown		
R = Readable bit	W = Writable bit	'0' = Bit is cleared	HSC = Hardware Settable/Clearable bit		
-n = Value at POR	'1' = Bit is set	U = Unimplemented bit, read as '0'			

bit 15-13	Unimplemented: Read as '0'
bit 12	FRMERR: SPIx Frame Error Status bit
	1 = Frame error is detected
	0 = No frame error is detected
bit 11	SPIBUSY: SPIx Activity Status bit
	1 = Module is currently busy with some transactions
	0 = No ongoing transactions (at time of read)
bit 10-9	Unimplemented: Read as '0'
bit 8	SPITUR: SPIx Transmit Underrun Status bit ⁽¹⁾
	 1 = Transmit buffer has encountered a Transmit Underrun condition 0 = Transmit buffer does not have a Transmit Underrun condition
bit 7	SRMT: Shift Register Empty Status bit
	 1 = No current or pending transactions (i.e., neither SPIxTXB or SPIxTXSR contains data to transmit) 0 = Current or pending transactions
bit 6	SPIROV: SPIx Receive Overflow Status bit
	 1 = A new byte/half-word/word has been completely received when the SPIxRXB is full 0 = No overflow
bit 5	SPIRBE: SPIx RX Buffer Empty Status bit
	1 = RX buffer is empty
	0 = RX buffer is not empty
	Standard Buffer Mode:
	Automatically set in hardware when SPIxBUF is read from, reading SPIxRXB. Automatically cleared in hardware when SPIx transfers data from SPIxRXSR to SPIxRXB.
	Enhanced Buffer Mode:
	Indicates RXELM[5:0] = 6' b000000.
bit 4	Unimplemented: Read as '0'
bit 3	SPITBE: SPIx Transmit Buffer Empty Status bit
	1 = SPIxTXB is empty
	0 = SPIxTXB is not empty
	<u>Standard Buffer Mode:</u> Automatically set in hardware when SPIx transfers data from SPIxTXB to SPIxTXSR. Automatically
	cleared in hardware when SPIxBUF is written, loading SPIxTXB.
	Enhanced Buffer Mode:
	Indicates TXELM[5:0] = 6'b000000.

Note 1: SPITUR is cleared when SPIEN = 0. When IGNTUR = 1, SPITUR provides dynamic status of the Transmit Underrun condition, but does not stop RX/TX operation and does not need to be cleared by software.

 $[\]ensuremath{\textcircled{}^{\odot}}$ 2015-2019 Microchip Technology Inc.

REGISTER 17-4: SPIxSTATL: SPIx STATUS REGISTER LOW (CONTINUED)

- bit 2 Unimplemented: Read as '0' bit 1 SPITBF: SPIx Transmit Buffer Full Status bit 1 = SPIxTXB is full 0 = SPIxTXB not full Standard Buffer Mode: Automatically set in hardware when SPIxBUF is written, loading SPIxTXB. Automatically cleared in hardware when SPIx transfers data from SPIxTXB to SPIxTXSR. Enhanced Buffer Mode: Indicates TXELM[5:0] = 6' b111111. bit 0 SPIRBF: SPIx Receive Buffer Full Status bit 1 = SPIxRXB is full 0 = SPIxRXB is not full Standard Buffer Mode: Automatically set in hardware when SPIx transfers data from SPIxRXSR to SPIxRXB. Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB. Enhanced Buffer Mode: Indicates RXELM[5:0] = 6' b111111.
- **Note 1:** SPITUR is cleared when SPIEN = 0. When IGNTUR = 1, SPITUR provides dynamic status of the Transmit Underrun condition, but does not stop RX/TX operation and does not need to be cleared by software.

TXELM2

TXELM1

x = Bit is unknown

TXELMO

U-0	U-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0
—	—	RXELM5 ⁽³⁾	RXELM4 ⁽²⁾	RXELM3 ⁽¹⁾	RXELM2	RXELM1	RXELM0
bit 15					•		bit 8
U-0	U-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0

REGISTER 17-5: SPIxSTATH: SPIx STATUS REGISTER HIGH

TXELM5(3)

'1' = Bit is set

bit 7		bit	0
Legend:	HSC = Hardware Settat	le/Clearable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	

TXELM3⁽¹⁾

'0' = Bit is cleared

bit 15-14 Unimplemented: Read as '0'

-n = Value at POR

bit 13-8 **RXELM[5:0]:** Receive Buffer Element Count bits (valid in Enhanced Buffer mode)^(1,2,3)

TXELM4⁽²⁾

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **TXELM[5:0]:** Transmit Buffer Element Count bits (valid in Enhanced Buffer mode)^(1,2,3)

Note 1: RXELM3 and TXELM3 bits are only present when FIFODEPTH = 8 or higher.

2: RXELM4 and TXELM4 bits are only present when FIFODEPTH = 16 or higher.

3: RXELM5 and TXELM5 bits are only present when FIFODEPTH = 32.

^{© 2015-2019} Microchip Technology Inc.

REGISTER 17-6: SPIxBUFL: SPIx BUFFER REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DA	TA[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DA	TA[7:0]			
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable bit		U = Unimplem	ented bit, read	as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown							nown

bit 15-0 DATA[15:0]: SPIx FIFO Data bits

When the MODE[32,16] or WLENGTH[4:0] bits select 16 to 9-bit data, the SPIx only uses DATA[15:0]. When the MODE[32,16] or WLENGTH[4:0] bits select 8 to 2-bit data, the SPIx only uses DATA[7:0].

REGISTER 17-7: SPIxBUFH: SPIx BUFFER REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			DA	TA[31:24]							
bit 15	bit 15 bit 8										
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			DA	TA[23:16]							
bit 7							bit 0				
Legend:											
R = Readab	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'										
-n = Value a	-n = Value at POR (1' = Bit is set (0' = Bit is cleared x = Bit is unknown										

bit 15-0 DATA[31:16]: SPIx FIFO Data bits

When the MODE[32,16] or WLENGTH[4:0] bits select 32 to 25-bit data, the SPIx uses DATA[31:16]. When the MODE[32,16] or WLENGTH[4:0] bits select 24 to 17-bit data, the SPIx only uses DATA[23:16].

x = Bit is unknown

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	—			BRG[12:8] ⁽¹⁾		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			BRO	G[7:0] ⁽¹⁾			
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable bit		U = Unimplem	ented bit, read a	as '0'	

'0' = Bit is cleared

REGISTER 17-8: SPIxBRGL: SPIx BAUD RATE GENERATOR REGISTER LOW

bit 15-13 Unimplemented: Read as '0'

-n = Value at POR

bit 12-0 BRG[12:0]: SPIx Baud Rate Generator Divisor bits⁽¹⁾

'1' = Bit is set

Note 1: Changing the BRG value when SPIEN = 1 causes undefined behavior.

^{© 2015-2019} Microchip Technology Inc.

U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0
	_	_	FRMERREN	BUSYEN	_	_	SPITUREN
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0
SRMTEN	SPIROVEN	SPIRBEN	_	SPITBEN	_	SPITBFEN	SPIRBFEN
bit 7	1					1	bit 0
Legend:							
R = Readab	le bit	W = Writable b	it	U = Unimplem	ented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-13	Unimplemen	ted: Read as '0	,				
bit 12		Enable Interrup					
		ror generates ar					
bit 11		ror does not ger able Interrupt E		-			
		′ generates an i					
		does not gener		t event			
bit 10-9	Unimplemen	ted: Read as '0	,				
bit 8	SPITUREN: E	Enable Interrupt	Events via SPI	TUR bit			
		Underrun (TUR					
		Underrun does	-	-	t		
bit 7		able Interrupt E					
		ister Empty (SR ister Empty doe					
bit 6	-	Enable Interrupt	-	-			
		eive Overflow g					
		eive Overflow d			event		
bit 5		nable Interrupt E					
		Buffer Empty ge					
hit 1		Buffer Empty do	-	e an interrupt ev	vent		
bit 4	-	ted: Read as '0					
bit 3		able Interrupt E Smit Buffer Em			ht		
	 SPIx Transmit Buffer Empty generates an interrupt event SPIx Transmit Buffer Empty does not generate an interrupt event 						
bit 2		ted: Read as '0					
bit 1	SPITBFEN: E	Enable Interrupt	Events via SPI	TBF bit			
		nsmit Buffer Full Ismit Buffer Full			t event		
bit 0	SPIRBFEN: E	Enable Interrupt	Events via SPI	RBF bit			
		eive Buffer Full	-				
	0 = SPIx Rec	eive Buffer Full	does not genera	ate an interrupt	event		

REGISTER 17-9: SPIXIMSKL: SPIX INTERRUPT MASK REGISTER LOW

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
RXWIEN		RXMSK5 ⁽¹⁾	RXMSK4 ^(1,4)	RXMSK3 ^(1,3)	RXMSK2 ^(1,2)	RXMSK1 ⁽¹⁾	RXMSK0 ⁽¹⁾	
bit 15							bit 8	
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
TXWIEN	—	TXMSK5 ⁽¹⁾	TXMSK4 ^(1,4)	TXMSK3 ^(1,3)	TXMSK2 ^(1,2)	TXMSK1 ⁽¹⁾	TXMSK0 ⁽¹⁾	
bit 7							bit 0	
Legend:								
R = Reada	ıble bit	W = Writable	bit	U = Unimpleme	nted bit, read as	'0'		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cleare	ed	x = Bit is unkno	own	
bit 14 bit 13-8	 D = Disables receive buffer element watermark interrupt Unimplemented: Read as '0' RXMSK[5:0]: RX Buffer Mask bits^(1,2,3,4) RX mask bits; used in conjunction with the RXWIEN bit. 							
bit 7	TXWIEN:	TXWIEN: Transmit Watermark Interrupt Enable bit						
		1 = Triggers transmit buffer element watermark interrupt when TXMSK[5:0] = TXELM[5:0] 0 = Disables transmit buffer element watermark interrupt						
bit 6	Unimplemented: Read as '0'							
bit 5-0	TXMSK[5:0]: TX Buffer Mask bits ^(1,2,3,4)							
	TX mask b	its; used in conj	junction with the	e TXWIEN bit.				
Note 1:	Mask values this case.	Mask values higher than FIFODEPTH are not valid. The module will not trigger a match for any value in						
2:	RXMSK2 an	d TXMSK2 bits	are only prese	nt when FIFODE	PTH = 8 or high	er.		
3:			• •	nt when FIFODE	•	her.		
4:	RXMSK4 ar	d TXMSK4 bits	are only prese	nt when FIFODE	PTH = 32.			

REGISTER 17-10: SPIxIMSKH: SPIx INTERRUPT MASK REGISTER HIGH

REGISTER 17-11: SPIxURDTL: SPIx UNDERRUN DATA REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			URD	ATA[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			URE	ATA[7:0]			
bit 7							bit 0
Legend:							
D - Doodoh	la hit	M = M/ritable bit		II – Unimplom	onted hit read	ac 'O'	

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

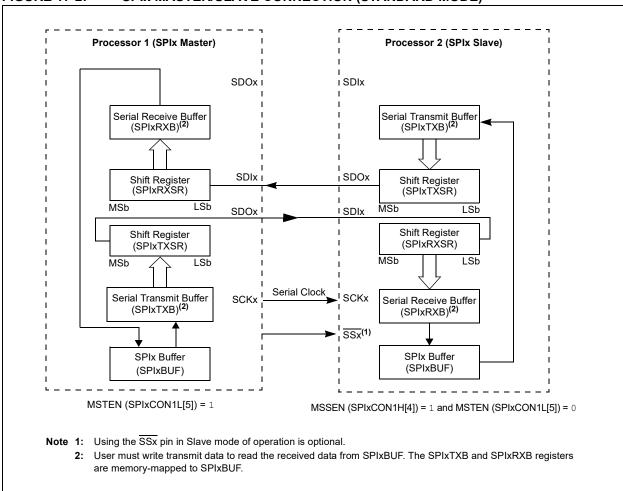
bit 15-0 URDATA[15:0]: SPIx Underrun Data bits

These bits are only used when URDTEN = 1. This register holds the data to transmit when a Transmit Underrun condition occurs.

When the MODE[32,16] or WLENGTH[4:0] bits select 16 to 9-bit data, the SPIx only uses URDATA[15:0]. When the MODE[32,16] or WLENGTH[4:0] bits select 8 to 2-bit data, the SPIx only uses URDATA[7:0].

REGISTER 17-12: SPIxURDTH: SPIx UNDERRUN DATA REGISTER HIGH

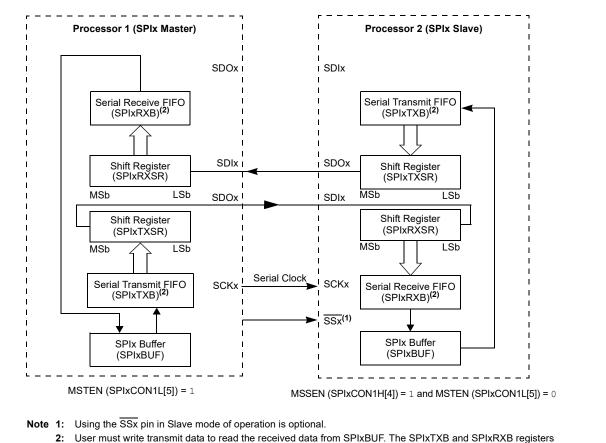
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			URDA	TA[31:24]			
bit 15							bit 8

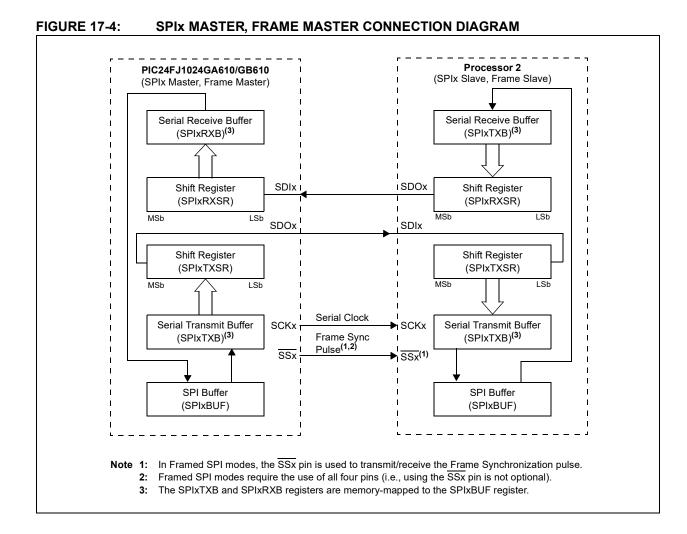

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
URDATA[23:16]							
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

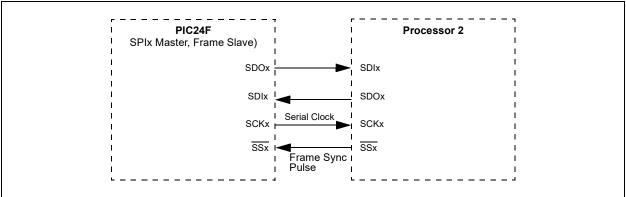
bit 15-0 URDATA[31:16]: SPIx Underrun Data bits

These bits are only used when URDTEN = 1. This register holds the data to transmit when a Transmit Underrun condition occurs.

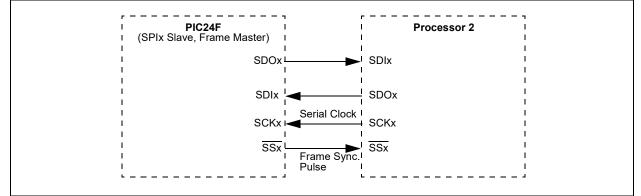

When the MODE[32,16] or WLENGTH[4:0] bits select 32 to 25-bit data, the SPIx only uses URDATA[15:0]. When the MODE[32,16] or WLENGTH[4:0] bits select 24 to 17-bit data, the SPIx only uses URDATA[7:0].


FIGURE 17-2: SPIx MASTER/SLAVE CONNECTION (STANDARD MODE)

PIC24FJ1024GA610/GB610 FAMILY



are memory-mapped to SPIxBUF.



PIC24FJ1024GA610/GB610 FAMILY

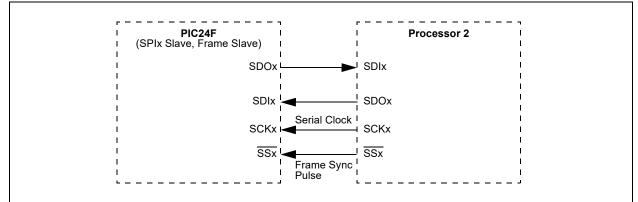


FIGURE 17-5: SPIX MASTER, FRAME SLAVE CONNECTION DIAGRAM

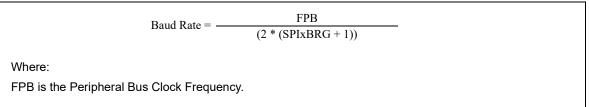


FIGURE 17-7: SPIx SLAVE, FRAME SLAVE CONNECTION DIAGRAM

EQUATION 17-1: RELATIONSHIP BETWEEN DEVICE AND SPIx CLOCK SPEED

18.0 INTER-INTEGRATED CIRCUIT (I²C)

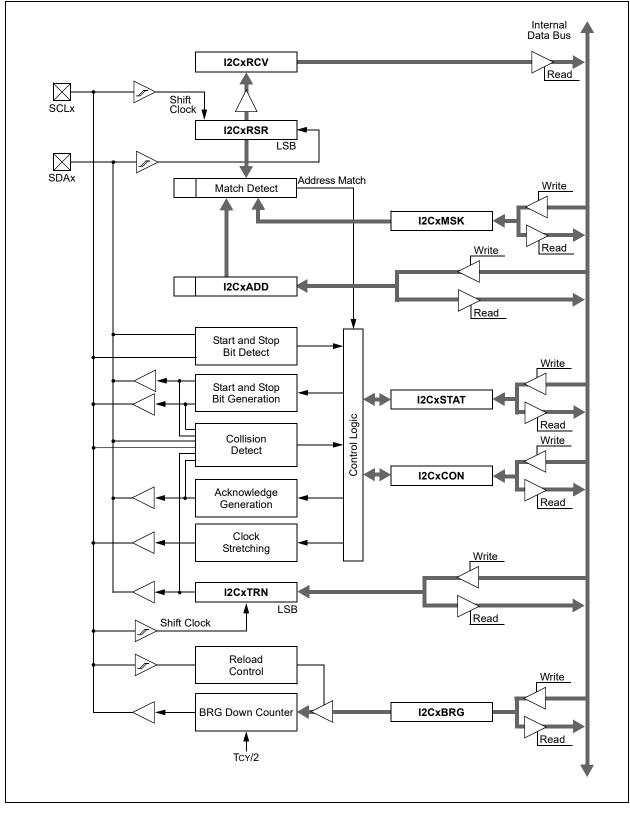
Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to **"Inter-Integrated Circuit (I²C)"** (www.microchip.com/DS70000195) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Inter-Integrated Circuit (I^2C) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, display drivers, A/D Converters, etc.

The I²C module supports these features:

- Independent Master and Slave Logic
- 7-Bit and 10-Bit Device Addresses
- General Call Address as Defined in the l²C Protocol
- Clock Stretching to Provide Delays for the Processor to Respond to a Slave Data Request
- Both 100 kHz and 400 kHz Bus Specifications
- Configurable Address Masking
- Multi-Master modes to Prevent Loss of Messages
 in Arbitration
- Bus Repeater mode, Allowing the Acceptance of All Messages as a Slave, Regardless of the Address
- Automatic SCL
- A block diagram of the module is shown in Figure 18-1.

18.1 Communicating as a Master in a Single Master Environment


The details of sending a message in Master mode depends on the communications protocol for the device being communicated with. Typically, the sequence of events is as follows:

- 1. Assert a Start condition on SDAx and SCLx.
- 2. Send the I²C device address byte to the slave with a write indication.
- 3. Wait for and verify an Acknowledge from the slave.
- 4. Send the first data byte (sometimes known as the command) to the slave.
- 5. Wait for and verify an Acknowledge from the slave.
- 6. Send the serial memory address low byte to the slave.
- 7. Repeat Steps 4 and 5 until all data bytes are sent.
- 8. Assert a Repeated Start condition on SDAx and SCLx.
- 9. Send the device address byte to the slave with a read indication.
- 10. Wait for and verify an Acknowledge from the slave.
- 11. Enable master reception to receive serial memory data.
- 12. Generate an ACK or NACK condition at the end of a received byte of data.
- 13. Generate a Stop condition on SDAx and SCLx.

^{© 2015-2019} Microchip Technology Inc.

PIC24FJ1024GA610/GB610 FAMILY

FIGURE 18-1: I2Cx BLOCK DIAGRAM

18.2 Setting Baud Rate When Operating as a Bus Master

To compute the Baud Rate Generator reload value, use Equation 18-1.

EQUATION 18-1: COMPUTING BAUD RATE RELOAD VALUE^(1,2,3)

 $FSCL = \frac{FCY}{(I2CxBRG + 2) * 2}$ or: $I2CxBRG = \left[\frac{FCY}{(FSCL * 2)} - 2\right]$

2: These clock rate values are for guidance only. The actual clock rate can be affected by various systemlevel parameters. The actual clock rate should be measured in its intended application.

3: BRG values of '0' and '1' are forbidden.

18.3 Slave Address Masking

The I2CxMSK register (Register 18-4) designates address bit positions as "don't care" for both 7-Bit and 10-Bit Addressing modes. Setting a particular bit location (= 1) in the I2CxMSK register causes the slave module to respond, whether the corresponding address bit value is a '0' or a '1'. For example, when I2CxMSK is set to '0010000000', the slave module will detect both addresses, '000000000' and '001000000'.

To enable address masking, the Intelligent Peripheral Management Interface (IPMI) must be disabled by clearing the STRICT bit (I2CxCONL[11]).

Note: As a result of changes in the I²C protocol, the addresses in Table 18-2 are reserved and will not be Acknowledged in Slave mode. This includes any address mask settings that include any of these addresses.

Demuined Quetern Foot	For	I2CxB		
Required System Fsc∟	Fcy	(Decimal)	(Hexadecimal)	Actual FSCL
100 kHz	16 MHz	78	4E	100 kHz
100 kHz	8 MHz	38	26	100 kHz
100 kHz	4 MHz	18	12	100 kHz
400 kHz	16 MHz	18	12	400 kHz
400 kHz	8 MHz	8	8	400 kHz
400 kHz	4 MHz	3	3	400 kHz
1 MHz	16 MHz	6	6	1.000 MHz
1 MHz	8 MHz	2	2	1.000 MHz

TABLE 18-1: I2Cx CLOCK RATES^(1,2)

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

2: These clock rate values are for guidance only. The actual clock rate can be affected by various system-level parameters. The actual clock rate should be measured in its intended application.

	TABLE 18-2:	I2Cx RESERVED ADDRESSES ⁽¹⁾
--	-------------	--

Slave Address	R/W Bit	Description
000 000	0	General Call Address ⁽²⁾
0000 000	1	Start Byte
0000 001	х	CBus Address
0000 01x	х	Reserved
0000 1xx	Х	HS Mode Master Code
1111 0xx	х	10-Bit Slave Upper Byte ⁽³⁾
1111 1xx	х	Reserved

Note 1: The address bits listed here will never cause an address match independent of address mask settings.

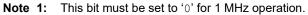
- 2: This address will be Acknowledged only if GCEN = 1.
- 3: A match on this address can only occur on the upper byte in 10-Bit Addressing mode.

^{© 2015-2019} Microchip Technology Inc.

R/W-0	U-0	HC/R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN	l —	I2CSIDL	SCLREL ⁽¹⁾	STRICT	A10M	DISSLW	SMEN
bit 15			•		•	•	bit a
R/W-0	R/W-0	R/W-0	HC/R/W-0	HC/R/W-0	HC/R/W-0	HC/R/W-0	HC/R/W-0
GCEN		ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7	STREN	ACRUT	ACKEN	ROEN	FEN	RSEN	bit
				L			
Legend:		-	are Clearable bit				
R = Read		W = Writable		-	nented bit, read		
-n = Value	e at POR	'1' = Bit is set	I	'0' = Bit is cle	ared	x = Bit is unkn	IOWN
bit 15	12CEN: 12Cx	Enable bit (wri	table from softw	are onlv)			
		•	e and configure	• •	nd SCLx pins as	s serial port pin	S
	0 = Disables	the I2Cx modu	le; all I ² C pins a	are controlled b	by port function	S	
bit 14	Unimplemer	nted: Read as '	0'				
bit 13	12CSIDL: 120	Cx Stop in Idle I	Mode bit				
		•	eration when de		le mode		
			ation in Idle mod		. (1)		
bit 12			ontrol bit (I ² C Sl	•	,)(1)		
	If STREN = (•	= 0) sets SCLR	=L = 1.			
	1 = Releases						
		lock low (clock	stretch)				
	If STREN = 1	<u>L:</u>					
	1 = Releases						
			tretch); user ma	• • •	s bit to '0', clock	stretch at next	SCLX IOW
bit 11			ed Address Rule		ddraaaa rafar	to Table 19.2	
			ing is enforced; vice doesn't res				esses falling i
		gory are NACk					looco laining l
			evice is allowed		ddresses with r	eserved addres	ss space.
			ould be Acknov ice will respond		falling in the re	acrued address	anaaa Wha
			nce will respond ny of the reserve		•		•
		er Mode: Reser	-	,		5	
bit 10	A10M: 10-Bi	t Slave Addres	s Flag bit				
	1 = I2CxADE) is a 10-bit slav	/e address				
) is a 7-bit slave					
bit 9		w Rate Contro			(100.111		• • • • • • • •
			bled for Standa bled for High-Sp			o disabled for 1	MHz mode)
bit 8	SMEN: SMB	us Input Levels	Enable bit				
		input logic so tł SMBus-specifi	nresholds are co c inputs	ompliant with th	ne SMBus spec	cification	
Note 1:	Automatically cle of slave reception setting the SCLR as specified in S	n. The user sof REL bit. This de	tware must prov lay must be grea	vide a delay be ater than the m	tween writing t	o the transmit b	ouffer and
•							

REGISTER 18-1: I2CxCONL: I2Cx CONTROL REGISTER LOW

2: Automatically cleared to '0' at the beginning of slave transmission.


REGISTER 18-1: I2CxCONL: I2Cx CONTROL REGISTER LOW (CONTINUED)

bit 7	GCEN: General Call Enable bit (I ² C Slave mode only)
	1 = Enables interrupt when a general call address is received in I2CxRSR; module is enabled for reception
	0 = General call address is disabled.
bit 6	STREN: SCLx Clock Stretch Enable bit
	In I ² C Slave mode only; used in conjunction with the SCLREL bit.
	1 = Enables clock stretching
	0 = Disables clock stretching
bit 5	ACKDT: Acknowledge Data bit
	In I ² C Master mode during Master Receive mode. The value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive.
	In I ² C Slave mode when AHEN = 1 or DHEN = 1. The value that the slave will transmit when it initiates an Acknowledge sequence at the end of an address or data reception. 1 = NACK is sent
	0 = ACK is sent
bit 4	ACKEN: Acknowledge Sequence Enable bit
	In I ² C Master mode only; applicable during Master Receive mode.
	1 = Initiates Acknowledge sequence on SDAx and SCLx pins, and transmits ACKDT data bit
	0 = Acknowledge sequence is Idle
bit 3	RCEN: Receive Enable bit (I ² C Master mode only)
	 1 = Enables Receive mode for I²C; automatically cleared by hardware at end of 8-bit receive data byte 0 = Receive sequence is not in progress
bit 2	PEN: Stop Condition Enable bit (I ² C Master mode only)
	 1 = Initiates Stop condition on SDAx and SCLx pins 0 = Stop condition is Idle
bit 1	RSEN: Restart Condition Enable bit (I ² C Master mode only)
	1 = Initiates Restart condition on SDAx and SCLx pins
	0 = Restart condition is Idle
bit 0	SEN: Start Condition Enable bit (I ² C Master mode only)
	1 = Initiates Start condition on SDAx and SCLx pins0 = Start condition is Idle
Note 1:	Automatically cleared to '0' at the beginning of slave transmission; automatically cleared to '0' at the end of slave reception. The user software must provide a delay between writing to the transmit buffer and setting the SCLREL bit. This delay must be greater than the minimum set up time for slave transmissions,

as specified in Section 33.0 "Electrical Characteristics".2: Automatically cleared to '0' at the beginning of slave transmission.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	—	_	—	—	—	
bit 15							bit 8
				R/W-0			
U-0	R/W-0 PCIE	R/W-0 SCIE	R/W-0 BOEN	SDAHT ⁽¹⁾	R/W-0 SBCDE	R/W-0 AHEN	R/W-0 DHEN
 bit 7	FUE	SCIE	BOEN	3DAILY	SDODE	AHEN	bit C
							Site
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR		'1' = Bit is set '0' = Bit is cleared x = Bit is unknown					own
bit 15-7	Unimplemented: Read as '0'						
bit 6	PCIE: Stop Condition Interrupt Enable bit (I ² C Slave mode only)						
	 Enables interrupt on detection of Stop condition Stop detection interrupts are disabled 						
bit 5	SCIE: Start Condition Interrupt Enable bit (I ² C Slave mode only)						
DILO	1 = Enables interrupt on detection of Start or Restart conditions						
	0 = Start detection interrupts are disabled						
bit 4	BOEN: Buffer Overwrite Enable bit (I ² C Slave mode only)						
	1 = I2CxRCV is updated and an ACK is generated for a received address/data byte, ignoring the state						
	of the I2COV bit only if RBF bit = 0 0 = I2CxRCV is only updated when I2COV is clear						
bit 3	SDAHT: SDAx Hold Time Selection bit ⁽¹⁾						
	1 = Minimum of 300 ns hold time on SDAx after the falling edge of SCLx						
	0 = Minimum of 100 ns hold time on SDAx after the falling edge of SCLx						
bit 2	SBCDE: Slave Mode Bus Collision Detect Enable bit (I ² C Slave mode only)						
	If, on the rising edge of SCLx, SDAx is sampled low when the module is outputting a high state, the						
	BCL bit is set and the bus goes Idle. This Detection mode is only valid during data and ACK transmit sequences.						
	1 = Enables slave bus collision interrupts						
	0 = Slave bus collision interrupts are disabled						
bit 1	AHEN: Address Hold Enable bit (I ² C Slave mode only)						
	1 = Following the 8th falling edge of SCLx for a matching received address byte; SCLREL bi (I2CxCONL[12]) will be cleared and SCLx will be held low						
	0 = Address holding is disabled						
bit 0	DHEN: Data Hold Enable bit (I ² C Slave mode only)						
	1 = Following the 8th falling edge of SCLx for a received data byte; slave hardware clears the SCLREI						
	· ·	CONL[12]) and ling is disabled	SCLx is held I	OW			
	$\Box = \Box a a noic$	mous disabled.					

REGISTER 18-2: I2CxCONH: I2Cx CONTROL REGISTER HIGH

HSC/R-0	HSC/R-0	HSC/R-0	U-0	U-0	HSC/R/C-0	HSC/R-0	HSC/R-0
ACKSTAT	TRSTAT	ACKTIM	_	_	BCL	GCSTAT	ADD10
bit 15							bit 8
HS/R/C-0	HS/R/C-0	HSC/R-0	HSC/R/C-0	HSC/R/C-0	HSC/R-0	HSC/R-0	HSC/R-0
IWCOL	I2COV	D/Ā	Р	S	R/W	RBF	TBF
bit 7		·					bit 0
Legend:		C = Clearabl	e bit	HS = Hardwa	re Settable bit	'0' = Bit is clear	red
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is se	t	HSC = Hardw	are Settable/Clea	arable bit	
bit 15	1 = Acknowl	Acknowledge S edge was not edge was rece	received from	slave	ter and Slave mo	odes)	
bit 14	1 = Master tr	ansmit Status k ransmit is in pr ransmit is not i	ogress (8 bits	•	aster; applicable	to master trans	mit operation)
bit 13	ACKTIM: Ac	cknowledge Tir	ne Status bit (valid in I ² C Sla lae sequence.	ive mode only) set on 8th falling	edae of SCLx o	clock
	0 = Not an A	cknowledge s	equence, clea	red on 9th risir	ng edge of SCLx	clock	
bit 12-11	Unimpleme	nted: Read as	· '0'				
bit 10			•		ared when I ² C m		d, I2CEN = 0)
		ollision has bee collision has be		uring a master o	or slave transmit	operation	
bit 9				d after Stop de	tection)		
DIL 9		call address w		u aller olop ue	lection		
	-	call address w		ed			
bit 8	ADD10: 10-8	Bit Address St	atus bit (cleare	ed after Stop de	etection)		
		ldress was ma					
L:1 7		ldress was not x Write Collisio					
bit 7	1 = An atten in softwa	npt to write to t are		egister failed b	ecause the I ² C r	nodule is busy; I	must be cleared
h it C	0 = No collis		-flavy Elasy hit				
bit 6	 I2COV: I2Cx Receive Overflow Flag bit 1 = A byte was received while the I2CxRCV register is still holding the previous byte; I2COV is a "don't care" in Transmit mode, must be cleared in software 						
hit E	0 = No over	ddress bit (wh	on onorating -	12C alove)			
bit 5	1 = Indicates	s that the last b	oyte received	was data	was an address		
bit 4	P: I2Cx Stop		, to 10001000				
	Updated when 1 = Indicates		it has been de		when the I ² C m	odule is disable	d, I2CEN = 0.

REGISTER 18-3: I2CxSTAT: I2Cx STATUS REGISTER

© 2015-2019 Microchip Technology Inc.

REGISTER 18-3: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: I2Cx Start bit
	Updated when Start, Reset or Stop is detected; cleared when the I^2C module is disabled, $I2CEN = 0$. 1 = Indicates that a Start (or Repeated Start) bit has been detected last
	0 = Start (or Repeated Start) bit was not detected last
bit 2	R/W : Read/Write Information bit (when operating as I ² C slave)
	 1 = Read: Indicates the data transfer is output from the slave 0 = Write: Indicates the data transfer is input to the slave
bit 1	RBF: Receive Buffer Full Status bit
	 1 = Receive is complete, I2CxRCV is full 0 = Receive is not complete, I2CxRCV is empty
bit 0	TBF: Transmit Buffer Full Status bit
	 1 = Transmit is in progress, I2CxTRN is full (eight bits of data) 0 = Transmit is complete, I2CxTRN is empty

REGISTER 18-4: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	_	MSH	([9:8]
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MS	K[7:0]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-10 Unimplemented: Read as '0'

bit 9-0 MSK[9:0]: I2Cx Mask for Address Bit x Select bits

1 = Enables masking for bit x of the incoming message address; bit match is not required in this position 0 = Disables masking for bit x; bit match is required in this position

19.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "UART" (www.microchip.com/DS39708) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the PIC24F device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins. The UART module includes an IrDA[®] encoder/decoder unit.

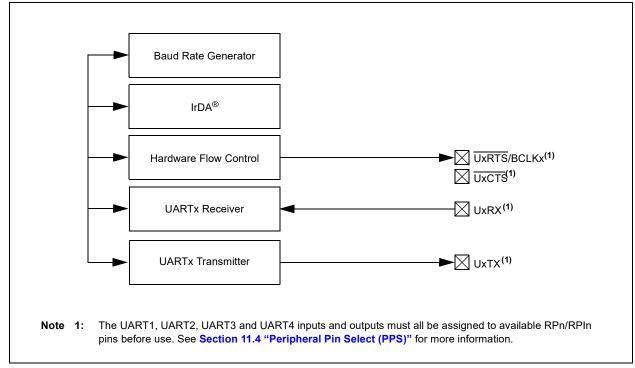
The PIC24FJ1024GA610/GB610 family devices are equipped with six UART modules, referred to as UART1, UART2, UART3, UART4, UART5 and UART6.

The primary features of the UARTx modules are:

- Full-Duplex, 8 or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- · One or Two Stop bits
- Hardware Flow Control Option with the UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Range from up to 1 Mbps and Down to 15 Hz at 16 MIPS in 16x mode

- Baud Rates Range from up to 4 Mbps and Down to 61 Hz at 16 MIPS in 4x mode
- Four-Deep, First-In-First-Out (FIFO) Transmit Data Buffer
- Four-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- Separate Transmit and Receive Interrupts
- · Loopback mode for Diagnostic Support
- · Polarity Control for Transmit and Receive Lines
- Support for Sync and Break Characters
- Supports Automatic Baud Rate Detection
- IrDA[®] Encoder and Decoder Logic
- Includes DMA Support
- 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UARTx module is shown in Figure 19-1. The UARTx module consists of these key important hardware elements:


- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

Note: Throughout this section, references to register and bit names that may be associated with a specific UART module are referred to generically by the use of 'x' in place of the specific module number. Thus, "UxSTA" might refer to the Status register for either UART1, UART2, UART3, UART4, UART5 or UART6.

^{© 2015-2019} Microchip Technology Inc.

PIC24FJ1024GA610/GB610 FAMILY

FIGURE 19-1: UARTX SIMPLIFIED BLOCK DIAGRAM

19.1 UARTx Baud Rate Generator (BRG)

The UARTx module includes a dedicated, 16-bit Baud Rate Generator. The UxBRG register controls the period of a free-running, 16-bit timer. Equation 19-1 shows the formula for computation of the baud rate when BRGH = 0.

EQUATION 19-1: UARTX BAUD RATE WITH BRGH = $0^{(1,2)}$

Baud Rate =
$$\frac{FCY}{16 \cdot (UxBRG + 1)}$$

 $UxBRG = \frac{FCY}{16 \cdot Baud Rate} - 1$
Note 1: FCY denotes the instruction cycle clock frequency (FOSC/2).

2: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

Example 19-1 shows the calculation of the baud rate error for the following conditions:

- Fcy = 4 MHz
- Desired Baud Rate = 9600

The maximum baud rate (BRGH = 0) possible is Fcy/16 (for UxBRG = 0) and the minimum baud rate possible is Fcy/(16 * 65536).

Equation 19-2 shows the formula for computation of the baud rate when BRGH = 1.

EQUATION 19-2: UARTX BAUD RATE WITH BRGH = $1^{(1,2)}$

Baud Rate =
$$\frac{F_{CY}}{4 \cdot (UxBRG + 1)}$$

UxBRG = $\frac{F_{CY}}{4 \cdot Baud Rate} - 1$

- **Note 1:** FCY denotes the instruction cycle clock frequency.
 - **2:** Based on FCY = FOSC/2; Doze mode and PLL are disabled.

The maximum baud rate (BRGH = 1) possible is FCY/4 (for UxBRG = 0) and the minimum baud rate possible is FCY/(4 * 65536).

Writing a new value to the UxBRG register causes the BRG timer to be reset (cleared). This ensures the BRG does not wait for a timer overflow before generating the new baud rate.

EXAMPLE 19-1: BAUD RATE ERROR CALCULATION (BRGH = 0)⁽¹⁾

Desired Baud Rate = FCY/(16 (UxBRG + 1))Solving for UxBRG Value: **UxBRG** = ((FCY/Desired Baud Rate)/16) - 1UxBRG = ((400000/9600)/16) - 1UxBRG = 25 Calculated Baud Rate = 4000000/(16(25+1))= 9615 Error = (Calculated Baud Rate – Desired Baud Rate) Desired Baud Rate = (9615 - 9600)/9600 = 0.16% Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

© 2015-2019 Microchip Technology Inc.

19.2 Transmitting in 8-Bit Data Mode

- 1. Set up the UARTx:
 - a) Write appropriate values for data, parity and Stop bits.
 - b) Write appropriate baud rate value to the UxBRG register.
 - c) Set up transmit and receive interrupt enable and priority bits.
- 2. Enable the UARTx.
- 3. Set the UTXEN bit (causes a transmit interrupt, two cycles after being set).
- 4. Write a data byte to the lower byte of the UxTXREG word. The value will be immediately transferred to the Transmit Shift Register (TSR) and the serial bit stream will start shifting out with the next rising edge of the baud clock.
- Alternatively, the data byte may be transferred while UTXEN = 0 and then the user may set UTXEN. This will cause the serial bit stream to begin immediately because the baud clock will start from a cleared state.
- 6. A transmit interrupt will be generated as per interrupt control bits, UTXISEL[1:0].

19.3 Transmitting in 9-Bit Data Mode

- 1. Set up the UARTx (as described in Section 19.2 "Transmitting in 8-Bit Data Mode").
- 2. Enable the UARTx.
- 3. Set the UTXEN bit (causes a transmit interrupt).
- 4. Write UxTXREG as a 16-bit value only.
- 5. A word write to UxTXREG triggers the transfer of the 9-bit data to the TSR. The serial bit stream will start shifting out with the first rising edge of the baud clock.
- 6. A transmit interrupt will be generated as per the setting of control bits, UTXISELx.

19.4 Break and Sync Transmit Sequence

The following sequence will send a message frame header, made up of a Break, followed by an auto-baud Sync byte.

- 1. Configure the UARTx for the desired mode.
- 2. Set UTXEN and UTXBRK to set up the Break character.
- 3. Load the UxTXREG with a dummy character to initiate transmission (value is ignored).
- 4. Write '55h' to UxTXREG; this loads the Sync character into the transmit FIFO.
- 5. After the Break has been sent, the UTXBRK bit is reset by hardware. The Sync character now transmits.

19.5 Receiving in 8-Bit or 9-Bit Data Mode

- 1. Set up the UARTx (as described in Section 19.2 "Transmitting in 8-Bit Data Mode").
- Enable the UARTx by setting the URXEN bit (UxSTA[12]).
- 3. A receive interrupt will be generated when one or more data characters have been received as per interrupt control bits, URXISEL[1:0].
- 4. Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software.
- 5. Read UxRXREG.

The act of reading the UxRXREG character will move the next character to the top of the receive FIFO, including a new set of PERR and FERR values.

19.6 Operation of UxCTS and UxRTS Control Pins

UARTx Clear-to-Send (UxCTS) and Request-to-Send (UxRTS) are the two hardware-controlled pins that are associated with the UARTx modules. These two pins allow the UARTx to operate in Simplex and Flow Control mode. They are implemented to control the transmission and reception between the Data Terminal Equipment (DTE). The UEN[1:0] bits in the UxMODE register configure these pins.

19.7 Infrared Support

The UARTx module provides two types of infrared UART support: one is the IrDA clock output to support an external IrDA encoder and decoder device (legacy module support), and the other is the full implementation of the IrDA encoder and decoder. Note that because the IrDA modes require a 16x baud clock, they will only work when the BRGH bit (UxMODE[3]) is '0'.

19.7.1 IrDA CLOCK OUTPUT FOR EXTERNAL IrDA SUPPORT

To support external IrDA encoder and decoder devices, the BCLKx pin (same as the UxRTS pin) can be configured to generate the 16x baud clock. When UEN[1:0] = 11, the BCLKx pin will output the 16x baud clock if the UARTx module is enabled; it can be used to support the IrDA codec chip.

19.7.2 BUILT-IN IrDA ENCODER AND DECODER

The UARTx has full implementation of the IrDA encoder and decoder as part of the UARTx module. The built-in IrDA encoder and decoder functionality is enabled using the IREN bit (UxMODE[12]). When enabled (IREN = 1), the receive pin (UxRX) acts as the input from the infrared receiver. The transmit pin (UxTX) acts as the output to the infrared transmitter.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN ⁽¹⁾		USIDL	IREN ⁽²⁾	RTSMD		UEN1	UEN0
bit 15							bit
	DAMO		DAA/ O	D 444 0	DAMA	DAA/ 0	DAALO
HC/R/W-0	R/W-0	HC/R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL
bit 7							bit
Legend:		HC = Hardwa	e Clearable bi	t			
R = Readabl	e bit	W = Writable I	bit	U = Unimplen	nented bit, read	1 as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own
bit 15	UARTEN: UA	ARTx Enable bit	(1)				
		s enabled; all U		controlled by L	JARTx as defin	ed by UEN[1:0]	
		s disabled; all UA					otion is minima
bit 14	Unimplemer	nted: Read as '0	,				
bit 13	USIDL: UAR	Tx Stop in Idle N	lode bit				
		ues module ope			le mode		
		s module operat					
bit 12		Encoder and De		bit ⁽²⁾			
		oder and decode					
bit 11		de Selection for					
		in is in Simplex					
		in is in Flow Cor					
bit 10	Unimplemer	nted: Read as '0	,				
bit 9-8	UEN[1:0]: U	ARTx Enable bit	S				
		JxRX and BCLK				controlled by po	rt latches
		JxRX, UxCTS a				controlled by no	urt latabaa
		JxRX and UxRT nd UxRX pins ar					
	latches						a olioù by po
bit 7	WAKE: Wake	e-up on Start Bit	Detect During	Sleep Mode E	nable bit		
	1 = UARTx o	continues to sam	ple the UxRX	pin; interrupt is	s generated on	the falling edge	, bit is cleare
		are on the follov	ving rising edg	e			
L:1 0		e-up is enabled	Mada Oslasti	:4			
bit 6		ARTx Loopback	Mode Select b	lt			
		Loopback mode k mode is disabl	ed				
bit 5		o-Baud Enable I					
-		baud rate meas		e next charact	er – requires re	eception of a Sy	nc field (55h
		n hardware upo					, ,
	0 = Baud rat	e measurement	is disabled or	completed			
bit 4		RTx Receive Po	larity Inversior	n bit			
	1 = UxRX Idl 0 = UxRX Idl						
					_		
		the peripheral in			-	available RPn/R	PIn pin. For
m		n, see Section '	11.4 "Periphei		(773)		

REGISTER 19-1: UXMODE: UARTX MODE REGISTER

2: This feature is only available for the 16x BRG mode (BRGH = 0).

© 2015-2019 Microchip Technology Inc.

REGISTER 19-1: **UxMODE: UARTx MODE REGISTER (CONTINUED)**

- bit 3 BRGH: High Baud Rate Enable bit 1 = High-Speed mode (4 BRG clock cycles per bit) 0 = Standard Speed mode (16 BRG clock cycles per bit) bit 2-1
- PDSEL[1:0]: Parity and Data Selection bits
- 11 = 9-bit data, no parity 10 = 8-bit data, odd parity
 - 01 = 8-bit data, even parity
 - 00 = 8-bit data, no parity
- STSEL: Stop Bit Selection bit bit 0
 - 1 = Two Stop bits
 - 0 = One Stop bit
- Note 1: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".
 - 2: This feature is only available for the 16x BRG mode (BRGH = 0).

R/W-0	R/W-0	R/W-0	R/W-0	HC/R/W-0	R/W-0	HSC/R-0	HSC/R-1	
UTXISEL1	UTXINV ⁽¹⁾	UTXISEL0	URXEN	UTXBRK	UTXEN ⁽²⁾	UTXBF	TRMT	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	HSC/R-1	HSC/R-0	HSC/R-0	HS/R/C-0	HSC/R-0	
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	
bit 7							bit 0	
Legend:	Legend:		C = Clearable bit		HSC = Hardware Settable/Clearable bit			
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own	
HS = Hardware	e Settable bit	HC = Hardwar	re Clearable b	it				

REGISTER 19-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

- 11 = Reserved; do not use
- 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result, the transmit buffer becomes empty
- 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
- 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)
- bit 14 UTXINV: UARTx IrDA[®] Encoder Transmit Polarity Inversion bit⁽¹⁾

DIL 14	UTXINV: UARTX IDA ² Encoder Transmit Polarity Inversion bit ¹
	<u>IREN = 0:</u>
	1 = UxTX Idle state is '0'
	0 = UxTX Idle state is '1'
	<u>IREN = 1:</u>
	1 = UxTX Idle state is '1'
	0 = UxTX Idle state is '0'
bit 12	URXEN: UARTx Receive Enable bit
	1 = Receive is enabled, UxRX pin is controlled by UARTx
	0 = Receive is disabled, UxRX pin is controlled by the port
bit 11	UTXBRK: UARTx Transmit Break bit
	1 = Sends Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit;
	cleared by hardware upon completion
	0 = Sync Break transmission is disabled or completed
bit 10	UTXEN: UARTx Transmit Enable bit ⁽²⁾
	1 = Transmit is enabled, UxTX pin is controlled by UARTx
	0 = Transmit is disabled, any pending transmission is aborted and the buffer is reset; UxTX pin is
	controlled by the port
bit 9	UTXBF: UARTx Transmit Buffer Full Status bit (read-only)
	1 = Transmit buffer is full
	0 = Transmit buffer is not full, at least one more character can be written
bit 8	TRMT: Transmit Shift Register Empty bit (read-only)
	1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
	0 = Transmit Shift Register is not empty, a transmission is in progress or queued
Note 4	The value of this hit calls offer to the transmit mean atting of the meadule value Φ_{n} the Φ_{n} and Φ_{n}
Note 1:	The value of this bit only affects the transmit properties of the module when the IrDA [®] encoder is enabled (IREN = 1).
	$(INEIN = \pm).$

2: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

© 2015-2019 Microchip Technology Inc.

REGISTER 19-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 7-6	URXISEL[1:0]: UARTx Receive Interrupt Mode Selection bits
	 11 = Interrupt is set on an RSR transfer, making the receive buffer full (i.e., has four data characters) 10 = Interrupt is set on an RSR transfer, making the receive buffer 3/4 full (i.e., has three data characters) 0x = Interrupt is set when any character is received and transferred from the RSR to the receive buffer; receive buffer has one or more characters
bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode is enabled (if 9-bit mode is not selected, this does not take effect) 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle 0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character (the character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	 1 = Framing error has been detected for the current character (the character at the top of the receive FIFO) 0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (clear/read-only)
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed (clearing a previously set OERR bit, 1 → 0 transition); will reset the receive buffer and the RSR to the empty state
bit 0	URXDA: UARTx Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty
Note 1:	The value of this bit only affects the transmit properties of the module when the $IrDA^{(i)}$ encoder is enabled (IREN = 1).

2: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

REGISTER 19-3: UXRXREG: UARTX RECEIVE REGISTER (NORMALLY READ-ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0
_	_	—	_	—	—	—	UxRXREG8
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			UxRX	REG[7:0]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			oit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at POR (1' = Bit is set (0' = Bit i			'0' = Bit is cle	ared	x = Bit is unkr	nown	

bit 15-9 Unimplemented: Read as '0'

bit 8-0 UxRXREG[8:0]: Data of the Received Character bits

REGISTER 19-4: UxTXREG: UARTx TRANSMIT REGISTER (NORMALLY WRITE-ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	W-x
—	—	_	—	—	—	—	UxTXREG8
bit 15							bit 8

W-x	W-x	W-x	W-x	W-x	W-x	W-x	W-x
UxTXREG[7:0]							
bit 7							bit 0

Legend:					
R = Readable bit W = Writable bit		U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-9 Unimplemented: Read as '0'

Γ.

bit 8-0 UxTXREG[8:0]: Data of the Transmitted Character bits

REGISTER 19-5: UxBRG: UARTx BAUD RATE GENERATOR REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			BR	G[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			BF	RG[7:0]			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimplemented bit, read as '0'			
-n = Value at I	n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown			nown			

bit 15-0 BRG[15:0]: Baud Rate Generator Divisor bits

REGISTER 19-6: UxADMD: UARTx ADDRESS DETECT AND MATCH REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ADM	IASK[7:0]			
bit 15							bit 8
	5444.0	D #44.0	D 444 0	5444.0	D 444 0	D 444 0	D 444.0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ADMA	DDR[7:0]			
bit 7							bit 0
Legend:							
R = Readable	e bit W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-8	ADMMASK[7:0]: ADMADDR[7:0] (UxADMD[7:0]) Masking bits
	For ADMAASKx: 1 = ADMADDRx is used to detect the address match
	0 = ADMADDRx is not used to detect the address match
bit 7-0	ADMADDR[7:0]: Address Detect Task Off-Load bits
	Used with the ADMMASK[7:0] bits (UxADMD[15:8]) to off-load the task of detecting the address character from the processor during Address Detect mode.

20.0 UNIVERSAL SERIAL BUS WITH ON-THE-GO SUPPORT (USB OTG)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "USB On-The-Go (OTG)" (www.microchip.com/DS39721) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

PIC24FJ1024GB610 family devices contain a fullspeed and low-speed compatible, On-The-Go (OTG) USB Serial Interface Engine (SIE). The OTG capability allows the device to act as either a USB peripheral device or as a USB embedded host with limited host capabilities. The OTG capability allows the device to dynamically switch from device to host operation using OTG's Host Negotiation Protocol (HNP).

For more details on OTG operation, refer to the "On-The-Go Supplement" to the "USB 2.0 Specification", published by the USB-IF. For more details on USB operation, refer to the "Universal Serial Bus Specification", v2.0.

The USB OTG module offers these features:

- USB Functionality in Device and Host modes, and OTG Capabilities for Application-Controlled mode Switching
- Software-Selectable module Speeds of Full Speed (12 Mbps) or Low Speed (1.5 Mbps available in Host mode only)
- Support for All Four USB Transfer Types: Control, Interrupt, Bulk and Isochronous
- 16 Bidirectional Endpoints for a Total of 32 Unique Endpoints
- DMA Interface for Data RAM Access
- Queues up to 16 Unique Endpoint Transfers without Servicing
- Integrated, On-Chip USB Transceiver with Support for Off-Chip Transceivers via a Digital Interface
- Integrated VBUS Generation with On-Chip Comparators and Boost Generation, and Support of External VBUS Comparators and Regulators through a Digital Interface
- Configurations for On-Chip Bus Pull-up and Pull-Down Resistors

A simplified block diagram of the USB OTG module is shown in Figure 20-1.

The USB OTG module can function as a USB peripheral device or as a USB host, and may dynamically switch between Device and Host modes under software control. In either mode, the same data paths and Buffer Descriptors (BDs) are used for the transmission and reception of data.

In discussing USB operation, this section will use a controller-centric nomenclature for describing the direction of the data transfer between the microcontroller and the USB. RX (Receive) will be used to describe transfers that move data from the USB to the microcontroller and TX (Transmit) will be used to describe transfers that move data from the microcontroller to the USB. Table 20-1 shows the relationship between data direction in this nomenclature and the USB tokens exchanged.

TABLE 20-1: CONTROLLER-CENTRIC DATA DIRECTION FOR USB HOST OR TARGET

USB Mode	Direction				
USB Wode	RX	ТХ			
Device	OUT or SETUP	IN			
Host	IN	OUT or SETUP			

This chapter presents the most basic operations needed to implement USB OTG functionality in an application. A complete and detailed discussion of the USB protocol and its OTG supplement are beyond the scope of this data sheet. It is assumed that the user already has a basic understanding of USB architecture and the latest version of the protocol.

Not all steps for proper USB operation (such as device enumeration) are presented here. It is recommended that application developers use an appropriate device driver to implement all of the necessary features. Microchip provides a number of application-specific resources, such as USB firmware and driver support. Refer to www.microchip.com/usb for the latest firmware and driver support.

^{© 2015-2019} Microchip Technology Inc.

PIC24FJ1024GA610/GB610 FAMILY

20.1 Hardware Configuration

20.1.1 DEVICE MODE

20.1.1.1 D+ Pull-up Resistor

PIC24FJ1024GB610 family devices have a built-in 1.5 kΩ resistor on the D+ line that is available when the microcontroller is operating in Device mode. This is used to signal an external host that the device is operating in Full-Speed Device mode. It is engaged by setting the USBEN bit (U1CON[0]) and powering up the USB module (USBPWR = 1). If the OTGEN bit (U1OTGCON[2]) is set, then the D+ pull-up is enabled through the DPPULUP bit (U1OTGCON[7]).

20.1.1.2 The VBUS Pin

In order to meet the *"USB 2.0 Specification"* requirement, relating to the back drive voltage on the D+/Dpins, the USB module incorporates VBUS-level sensing comparators. When the comparators detect the VBUS level below the VA_SESS_VLD level, the hardware will automatically disable the D+ pull-up resistor described in Section 20.1.1.1 *"D+ Pull-up Resistor"*. This allows the device to automatically meet the back drive requirement for D+ and D-, even if the application firmware does not explicitly monitor the VBUS level. Therefore, the VBUS microcontroller pin should not be left floating in USB Device mode application designs, and should normally be connected to the VBUS pin on the USB connector/cable (either directly or through a small resistance \leq 100 ohms).

20.1.1.3 Power Modes

Many USB applications will likely have several different sets of power requirements and configuration. The most common power modes encountered are:

- · Bus Power Only mode
- · Self-Power Only mode
- Dual Power with Self-Power Dominance

Bus Power Only mode (Figure 20-2) is effectively the simplest method. All power for the application is drawn from the USB.

To meet the inrush current requirements of the *"USB 2.0 Specification"*, the total effective capacitance, appearing across VBUS and ground, must be no more than $10 \ \mu$ F.

In the USB Suspend mode, devices must consume no more than 2.5 mA from the 5V VBUS line of the USB cable. During the USB Suspend mode, the D+ or D-pull-up resistor must remain active, which will consume some of the allowed suspend current.

In Self-Power Only mode (Figure 20-3), the USB application provides its own power, with very little power being pulled from the USB. Note that an attach indication is added to indicate when the USB has been connected and the host is actively powering VBUS.

To meet compliance specifications, the USB module (and the D+ or D- pull-up resistor) should not be enabled until the host actively drives VBUS high. One of the 5.5V tolerant I/O pins may be used for this purpose.

The application should never source any current onto the 5V VBUS pin of the USB cable when the USB module is operated in USB Device mode.

The Dual Power mode with Self-Power Dominance (Figure 20-4) allows the application to use internal power primarily, but switch to power from the USB when no internal power is available. Dual power devices must also meet all of the special requirements for inrush current and Suspend mode current previously described, and must not enable the USB module until VBUS is driven high.

FIGURE 20-2: BUS-POWERED INTERFACE EXAMPLE

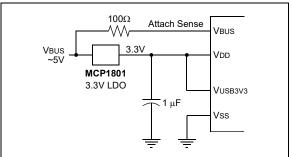


FIGURE 20-3: SELF-POWER ONLY

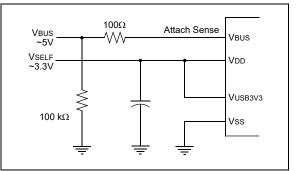
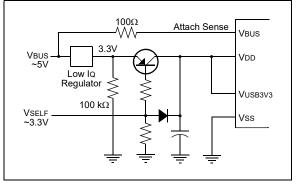
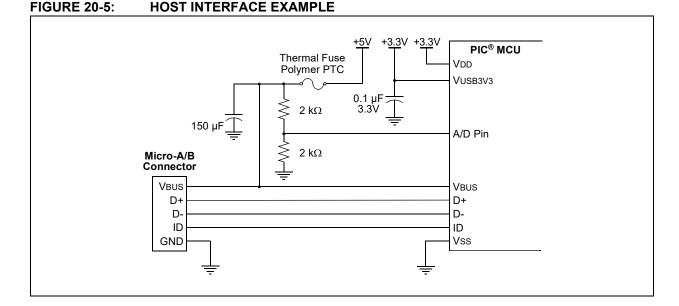



FIGURE 20-4:

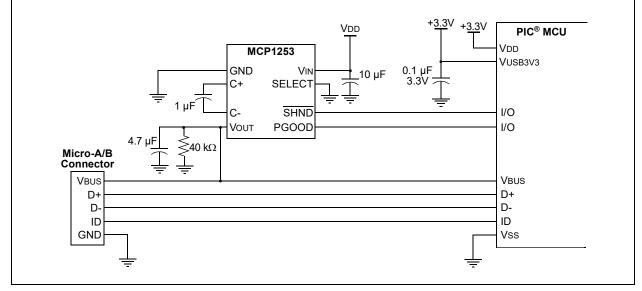
DUAL POWER EXAMPLE

^{© 2015-2019} Microchip Technology Inc.

20.1.2 HOST AND OTG MODES


20.1.2.1 D+ and D- Pull-Down Resistors

PIC24FJ1024GB610 family devices have a built-in 15 kΩ pull-down resistor on the D+ and D- lines. These are used in tandem to signal to the bus that the microcontroller is operating in Host mode. They are engaged by setting the HOSTEN bit (U1CON[3]). If the OTGEN bit (U1OTGCON[2]) is set, then these pull-downs are enabled by setting the DPPULDWN and DMPULDWN bits (U1OTGCON[5:4]).


20.1.2.2 Power Configurations

In Host mode, as well as Host mode in On-The-Go operation, the "USB 2.0 Specification" requires that the host application should supply power on VBUS. Since the microcontroller is running below VBUS, and is not able to source sufficient current, a separate power supply must be provided.

When the application is always operating in Host mode, a simple circuit can be used to supply VBUS and regulate current on the bus (Figure 20-5). For OTG operation, it is necessary to be able to turn VBUS on or off as needed, as the microcontroller switches between Device and Host modes. A typical example using an external charge pump is shown in Figure 20-6.

FIGURE 20-6: OTG INTERFACE EXAMPLE

20.1.3 CALCULATING TRANSCEIVER POWER REQUIREMENTS

The USB transceiver consumes a variable amount of current depending on the characteristic impedance of the USB cable, the length of the cable, the VUSB supply voltage and the actual data patterns moving across the USB cable. Longer cables have larger capacitances and consume more total energy when switching output states. The total transceiver current consumption will be application-specific. Equation 20-1 can help estimate how much current actually may be required in full-speed applications.

Refer to "**USB On-The-Go (OTG)**" (www.microchip.com/ DS39721) in the "*dsPIC33/PIC24 Family Reference Manual*" for a complete discussion on transceiver power consumption.

EQUATION 20-1: ESTIMATING USB TRANSCEIVER CURRENT CONSUMPTION

 $IXCVR = \frac{40 \text{ mA} \cdot \text{VUSB} \cdot \text{PZERO} \cdot \text{PIN} \cdot \text{LCABLE}}{3.3V \cdot 5m} + I\text{PULLUP}$

Legend: VUSB – Voltage applied to the VUSB3V3 pin in volts (3.0V to 3.6V).

PZERO – Percentage (in decimal) of the IN traffic bits sent by the PIC[®] microcontroller that are a value of '0'.

PIN – Percentage (in decimal) of total bus bandwidth that is used for IN traffic.

LCABLE – Length (in meters) of the USB cable. The *"USB 2.0 Specification"* requires that full-speed applications use cables no longer than 5m.

IPULLUP – Current, which the nominal 1.5 k Ω pull-up resistor (when enabled) must supply to the USB cable.

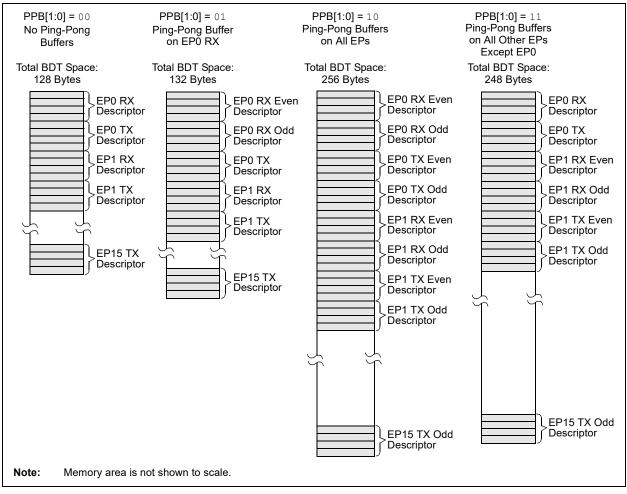
20.2 USB Buffer Descriptors and the BDT

Endpoint buffer control is handled through a structure called the Buffer Descriptor Table (BDT). This provides a flexible method for users to construct and control endpoint buffers of various lengths and configurations.

The BDT can be located in any available 512-byte, aligned block of data RAM. The BDT Pointer (U1BDTP1) contains the upper address byte of the BDT and sets the location of the BDT in RAM. The user must set this pointer to indicate the table's location.

The BDT is composed of Buffer Descriptors (BDs) which are used to define and control the actual buffers in the USB RAM space. Each BD consists of two 16-bit, "soft" (non-fixed-address) registers, BDnSTAT and BDnADR, where n represents one of the 64 possible BDs (range of 0 to 63). BDnSTAT is the status register for BDn, while BDnADR specifies the starting address for the buffer associated with BDn.

Note: Since BDnADR is a 16-bit register, only the first 64 Kbytes of RAM can be accessed by the USB module.


Depending on the endpoint buffering configuration used, there are up to 64 sets of Buffer Descriptors, for a total of 256 bytes. At a minimum, the BDT must be at least eight bytes long. This is because the *"USB 2.0 Specification"* mandates that every device must have Endpoint 0 with both input and output for initial setup.

Endpoint mapping in the BDT is dependent on three variables:

- Endpoint number (0 to 15)
- Endpoint direction (RX or TX)
- Ping-pong settings (U1CNFG1[1:0])

Figure 20-7 illustrates how these variables are used to map endpoints in the BDT.

In Host mode, only Endpoint 0 Buffer Descriptors are used. All transfers utilize the Endpoint 0 Buffer Descriptor and Endpoint Control register (U1EP0). For received packets, the attached device's source endpoint is indicated by the value of ENDPT[3:0] in the USB Status register (U1STAT[7:4]). For transmitted packets, the attached device's destination endpoint is indicated by the value written to the USB Token register (U1TOK).

FIGURE 20-7: BDT MAPPING FOR ENDPOINT BUFFERING MODES

BDs have a fixed relationship to a particular endpoint, depending on the buffering configuration. Table 20-2 provides the mapping of BDs to endpoints. This relationship also means that gaps may occur in the BDT if endpoints are not enabled contiguously. This, theoretically, means that the BDs for disabled endpoints could be used as buffer space. In practice, users should avoid using such spaces in the BDT unless a method of validating BD addresses is implemented.

20.2.1 BUFFER OWNERSHIP

Because the buffers and their BDs are shared between the CPU and the USB module, a simple semaphore mechanism is used to distinguish which is allowed to update the BD and associated buffers in memory. This is done by using the UOWN bit as a semaphore to distinguish which is allowed to update the BD and associated buffers in memory. UOWN is the only bit that is shared between the two configurations of BDnSTAT.

When UOWN is clear, the BD entry is "owned" by the microcontroller core. When the UOWN bit is set, the BD entry and the buffer memory are "owned" by the USB peripheral. The core should not modify the BD or its

corresponding data buffer during this time. Note that the microcontroller core can still read BDnSTAT while the SIE owns the buffer and vice versa.

The Buffer Descriptors have a different meaning based on the source of the register update. Register 20-1 and Register 20-2 show the differences in BDnSTAT depending on its current "ownership".

When UOWN is set, the user can no longer depend on the values that were written to the BDs. From this point, the USB module updates the BDs as necessary, overwriting the original BD values. The BDnSTAT register is updated by the SIE with the token PID and the transfer count is updated.

20.2.2 DMA INTERFACE

The USB OTG module uses a dedicated DMA to access both the BDT and the endpoint data buffers. Since part of the address space of the DMA is dedicated to the Buffer Descriptors, a portion of the memory connected to the DMA must comprise a contiguous address space, properly mapped for the access by the module.

				BDs Ass	signed to Endpoi	int				
Endpoint	Mode 0 (No Ping-Pong)		Mode 1 Mode 2 (Ping-Pong on EP0 RX) (Ping-Pong on All EPs)						(Ping-Pong	de 3 on All Other cept EP0)
	RX	тх	RX	тх	RX	тх	RX	тх		
0	0	1	0 (E), 1 (O)	2	0 (E), 1 (O)	2 (E), 3 (O)	0	1		
1	2	3	3	4	4 (E), 5 (O)	6 (E), 7 (O)	2 (E), 3 (O)	4 (E), 5 (O)		
2	4	5	5	6	8 (E), 9 (O)	10 (E), 11 (O)	6 (E), 7 (O)	8 (E), 9 (O)		
3	6	7	7	8	12 (E), 13 (O)	14 (E), 15 (O)	10 (E), 11 (O)	12 (E), 13 (O)		
4	8	9	9	10	16 (E), 17 (O)	18 (E), 19 (O)	14 (E), 15 (O)	16 (E), 17 (O)		
5	10	11	11	12	20 (E), 21 (O)	22 (E), 23 (O)	18 (E), 19 (O)	20 (E), 21 (O)		
6	12	13	13	14	24 (E), 25 (O)	26 (E), 27 (O)	22 (E), 23 (O)	24 (E), 25 (O)		
7	14	15	15	16	28 (E), 29 (O)	30 (E), 31 (O)	26 (E), 27 (O)	28 (E), 29 (O)		
8	16	17	17	18	32 (E), 33 (O)	34 (E), 35 (O)	30 (E), 31 (O)	32 (E), 33 (O)		
9	18	19	19	20	36 (E), 37 (O)	38 (E), 39 (O)	34 (E), 35 (O)	36 (E), 37 (O)		
10	20	21	21	22	40 (E), 41 (O)	42 (E), 43 (O)	38 (E), 39 (O)	40 (E), 41 (O)		
11	22	23	23	24	44 (E), 45 (O)	46 (E), 47 (O)	42 (E), 43 (O)	44 (E), 45 (O)		
12	24	25	25	26	48 (E), 49 (O)	50 (E), 51 (O)	46 (E), 47 (O)	48 (E), 49 (O)		
13	26	27	27	28	52 (E), 53 (O)	54 (E), 55 (O)	50 (E), 51 (O)	52 (E), 53 (O)		
14	28	29	29	30	56 (E), 57 (O)	58 (E), 59 (O)	54 (E), 55 (O)	56 (E), 57 (O)		
15	30	31	31	32	60 (E), 61 (O)	62 (E), 63 (O)	58 (E), 59 (O)	60 (E), 61 (O)		

TABLE 20-2: ASSIGNMENT OF BUFFER DESCRIPTORS FOR THE DIFFERENT BUFFERING MODES

Legend: (E) = Even transaction buffer, (O) = Odd transaction buffer

REGISTER 20-1: BDnSTAT: BUFFER DESCRIPTOR n STATUS REGISTER PROTOTYPE, USB MODE (BD0STAT THROUGH BD63STAT)

R/W-x	R/W-x	HSC/R/W-x	HSC/R/W-x	HSC/R/W-x	HSC/R/W-x	HSC/R/W-x	HSC/R/W-x
UOWN	DTS	PID3	PID2	PID1	PID0	BC9	BC8
bit 15							bit 8

| HSC/R/W-x |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| BC7 | BC6 | BC5 | BC4 | BC3 | BC2 | BC1 | BC0 |
| bit 7 | | | | | | | bit 0 |

Legend:	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15	UOWN: USB Own bit
	 1 = The USB module owns the BD and its corresponding buffer; the CPU must not modify the BD or the buffer
bit 14	DTS: Data Toggle Packet bit
	1 = Data 1 packet
	0 = Data 0 packet
bit 13-10	PID[3:0]: Packet Identifier bits (written by the USB module)
	In Device mode:
	Represents the PID of the received token during the last transfer.
	In Host mode:
	Represents the last returned PID or the transfer status indicator.
bit 9-0	BC[9:0]: Byte Count bits
	This represents the number of bytes to be transmitted or the maximum number of bytes to be received during a transfer. Upon completion, the byte count is updated by the USB module with the actual number of bytes transmitted or received.

REGISTER 20-2: BDnSTAT: BUFFER DESCRIPTOR n STATUS REGISTER PROTOTYPE, CPU MODE (BD0STAT THROUGH BD63STAT)

R/W-x	R/W-x	r-0	r-0	R/W-x	R/W-x	HSC/R/W-x	HSC/R/W-x
UOWN	DTS ⁽¹⁾	—	_	DTSEN	BSTALL	BC9	BC8
bit 15							bit 8

| HSC/R/W-x |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| BC7 | BC6 | BC5 | BC4 | BC3 | BC2 | BC1 | BC0 |
| bit 7 | | | | | | | bit 0 |

Legend:	r = Reserved bit	HSC = Hardware Settat	HSC = Hardware Settable/Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'r' = Reserved bit	x = Bit is unknown		

bit 15	UOWN: USB Own bit
	0 = The microcontroller core owns the BD and its corresponding buffer; the USB module ignores all other fields in the BD
bit 14	DTS: Data Toggle Packet bit ⁽¹⁾
	1 = Data 1 packet
	0 = Data 0 packet
bit 13-12	Reserved: Maintain as '0'
bit 11	DTSEN: Data Toggle Synchronization Enable bit
	 1 = Data toggle synchronization is enabled; data packets with incorrect Sync value will be ignored 0 = No data toggle synchronization is performed
bit 10	BSTALL: Buffer STALL Enable bit
	 1 = Buffer STALL is enabled; STALL handshake issued if a token is received that would use the BD in the given location (UOWN bit remains set, BD value is unchanged); corresponding EPSTALL bit will get set on any STALL handshake 0 = Buffer STALL is disabled
bit 9-0	BC[9:0]: Byte Count bits
	This represents the number of bytes to be transmitted or the maximum number of bytes to be received during a transfer. Upon completion, the byte count is updated by the USB module with the actual number of bytes transmitted or received.
Note 1:	This bit is ignored unless DTSEN - 1

Note 1: This bit is ignored unless DTSEN = 1.

20.3 USB Interrupts

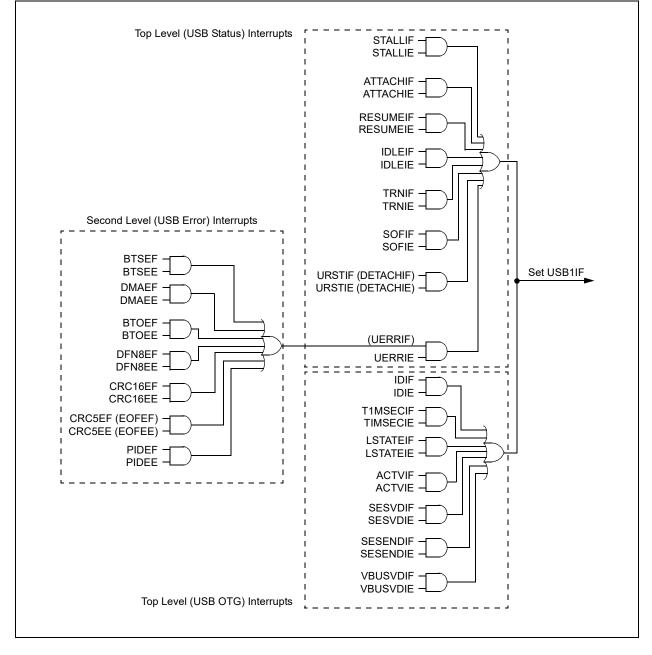
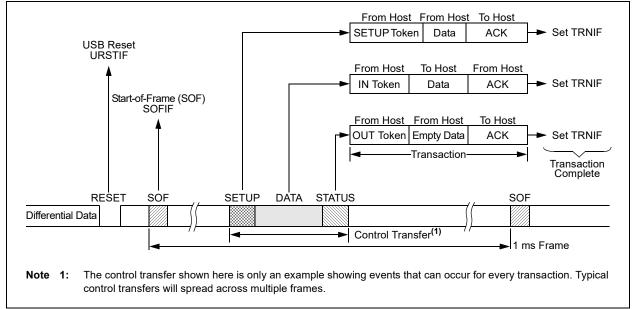

The USB OTG module has many conditions that can be configured to cause an interrupt. All interrupt sources use the same interrupt vector.

Figure 20-8 shows the interrupt logic for the USB module. There are two layers of interrupt registers in the USB module. The top level consists of overall USB status interrupts; these are enabled and flagged in the U1IE and U1IR registers, respectively. The second level consists of USB error conditions, which are enabled and flagged in the U1EIR and U1EIE registers.

An interrupt condition in any of these triggers a USB Error Interrupt Flag (UERRIF) in the top level. Unlike the device-level interrupt flags in the IFSx registers, USB interrupt flags in the U1IR registers can only be cleared by writing a '1' to the bit position.

Interrupts may be used to trap routine events in a USB transaction. Figure 20-9 provides some common events within a USB frame and their corresponding interrupts.

FIGURE 20-8: USB OTG INTERRUPT FUNNEL



20.3.1 CLEARING USB OTG INTERRUPTS

Unlike device-level interrupts, the USB OTG interrupt status flags are not freely writable in software. All USB OTG flag bits are implemented as hardware set only bits. Additionally, these bits can only be cleared in software by writing a '1' to their locations (i.e., performing a MOV type instruction). Writing a '0' to a flag bit (i.e., a BCLR instruction) has no effect.

Note: Throughout this data sheet, a bit that can only be cleared by writing a '1' to its location is referred to as "Write '1' to Clear". In register descriptions; this function is indicated by the descriptor, "K".

20.4 Device Mode Operation

The following section describes how to perform a common Device mode task. In Device mode, USB transfers are performed at the transfer level. The USB module automatically performs the status phase of the transfer.

20.4.1 ENABLING DEVICE MODE

- Reset the Ping-Pong Buffer Pointers by setting, then clearing, the Ping-Pong Buffer Reset bit, PPBRST (U1CON[1]).
- 2. Disable all interrupts (U1IE and U1EIE = 00h).
- 3. Clear any existing interrupt flags by writing FFh to U1IR and U1EIR.
- 4. Verify that VBUS is present (non-OTG devices only).

- 5. Enable the USB module by setting the USBEN bit (U1CON[0]).
- 6. Set the OTGEN bit (U1OTGCON[2]) to enable OTG operation.
- Enable the Endpoint 0 buffer to receive the first setup packet by setting the EPRXEN and EPHSHK bits for Endpoint 0 (U1EP0[3,0] = 1).
- 8. Power up the USB module by setting the USBPWR bit (U1PWRC[0]).
- 9. Enable the D+ pull-up resistor to signal an attach by setting the DPPULUP bit (U10TGCON[7]).

20.4.2 RECEIVING AN IN TOKEN IN DEVICE MODE

- 1. Attach to a USB host and enumerate as described in Chapter 9 of the *"USB 2.0 Specification"*.
- 2. Create a data buffer and populate it with the data to send to the host.
- 3. In the appropriate (even or odd) TX BD for the desired endpoint:
 - a) Set up the status register (BDnSTAT) with the correct data toggle (DATA0/1) value and the byte count of the data buffer.
 - b) Set up the address register (BDnADR) with the starting address of the data buffer.
 - c) Set the UOWN bit of the status register to '1'.
- 4. When the USB module receives an IN token, it automatically transmits the data in the buffer. Upon completion, the module updates the status register (BDnSTAT) and sets the Token Complete Interrupt Flag, TRNIF (U1IR[3]).

20.4.3 RECEIVING AN OUT TOKEN IN DEVICE MODE

- 1. Attach to a USB host and enumerate as described in Chapter 9 of the *"USB 2.0 Specification"*.
- 2. Create a data buffer with the amount of data you are expecting from the host.
- 3. In the appropriate (even or odd) TX BD for the desired endpoint:
 - a) Set up the status register (BDnSTAT) with the correct data toggle (DATA0/1) value and the byte count of the data buffer.
 - b) Set up the address register (BDnADR) with the starting address of the data buffer.
 - c) Set the UOWN bit of the status register to '1'.
- When the USB module receives an OUT token, it automatically receives the data sent by the host to the buffer. Upon completion, the module updates the status register (BDnSTAT) and sets the Token Complete Interrupt Flag, TRNIF (U1IR[3]).

20.5 Host Mode Operation

The following sections describe how to perform common Host mode tasks. In Host mode, USB transfers are invoked explicitly by the host software. The host software is responsible for the Acknowledge portion of the transfer. Also, all transfers are performed using the Endpoint 0 Control register (U1EP0) and Buffer Descriptors.

20.5.1 ENABLE HOST MODE AND DISCOVER A CONNECTED DEVICE

- Enable Host mode by setting the HOSTEN bit (U1CON[3]). This causes the Host mode control bits in other USB OTG registers to become available.
- Enable the D+ and D- pull-down resistors by setting the DPPULDWN and DMPULDWN bits (U1OTGCON[5:4]). Disable the D+ and D- pullup resistors by clearing the DPPULUP and DMPULUP bits (U1OTGCON[7:6]).
- At this point, SOF generation begins with the SOF counter loaded with 12,000. Eliminate noise on the USB by clearing the SOFEN bit (U1CON[0]) to disable Start-of-Frame (SOF) packet generation.
- 4. Enable the device attached interrupt by setting the ATTACHIE bit (U1IE[6]).
- Wait for the device attached interrupt (U1IR[6] = 1). This is signaled by the USB device changing the state of D+ or D- from '0' to '1' (SE0 to J-state). After it occurs, wait 100 ms for the device power to stabilize.
- Check the state of the JSTATE and SE0 bits in U1CON. If the JSTATE bit (U1CON[7]) is '0', the connecting device is low speed. If the connecting device is low speed, set the LSPDEN and LSPD bits (U1ADDR[7] and U1EP0[7]) to enable low-speed operation.
- Reset the USB device by setting the USBRST bit (U1CON[4]) for at least 50 ms, sending Reset signaling on the bus. After 50 ms, terminate the Reset by clearing USBRST.
- In order to keep the connected device from going into suspend, enable the SOF packet generation by setting the SOFEN bit.
- 9. Wait 10 ms for the device to recover from Reset.
- 10. Perform enumeration as described by Chapter 9 of the *"USB 2.0 Specification"*.

20.5.2 COMPLETE A CONTROL TRANSACTION TO A CONNECTED DEVICE

- 1. Follow the procedure described in Section 20.5.1 "Enable Host Mode and Discover a Connected Device" to discover a device.
- Set up the Endpoint Control register for bidirectional control transfers by writing 0Dh to U1EP0 (this sets the EPCONDIS, EPTXEN and EPHSHK bits).
- 3. Place a copy of the device framework setup command in a memory buffer. See Chapter 9 of the *"USB 2.0 Specification"* for information on the device framework command set.
- Initialize the Buffer Descriptor (BD) for the current (even or odd) TX EP0 to transfer the eight bytes of command data for a device framework command (i.e., GET DEVICE DESCRIPTOR):
 - a) Set the BD Data Buffer Address (BD0ADR) to the starting address of the 8-byte memory buffer containing the command.
 - b) Write 8008h to BD0STAT (this sets the UOWN bit and sets a byte count of eight).
- Set the USB device address of the target device in the address register (U1ADDR[6:0]). After a USB bus Reset, the device USB address will be zero. After enumeration, it will be set to another value between 1 and 127.
- 6. Write D0h to U1TOK; this is a SETUP token to Endpoint 0, the target device's default control pipe. This initiates a SETUP token on the bus, followed by a data packet. The device handshake is returned in the PID field of BD0STAT after the packets are complete. When the USB module updates BD0STAT, a Token Complete Interrupt Flag is asserted (the TRNIF flag is set). This completes the setup phase of the setup transaction, as referenced in Chapter 9 of the "USB 2.0 Specification".
- 7. To initiate the data phase of the setup transaction (i.e., get the data for the GET DEVICE DESCRIPTOR command), set up a buffer in memory to store the received data.

- 8. Initialize the current (even or odd) RX or TX (RX for IN, TX for OUT) EP0 BD to transfer the data.
 - a) Write C040h to BD0STAT. This sets the UOWN, configures the Data Toggle bit (DTS) to DATA1 and sets the byte count to the length of the data buffer (64 or 40h in this case).
 - b) Set BD0ADR to the starting address of the data buffer.
- 9. Write the Token register with the appropriate IN or OUT token to Endpoint 0, the target device's default control pipe (e.g., write 90h to U1TOK for an IN token for a GET DEVICE DESCRIPTOR command). This initiates an IN token on the bus, followed by a data packet from the device to the host. When the data packet completes, the BD0STAT is written and a Token Complete Interrupt Flag is asserted (the TRNIF flag is set). For control transfers with a single packet data phase, this completes the data phase of the setup transaction, as referenced in Chapter 9 of the "USB 2.0 Specification". If more data need to be transferred, return to Step 8.
- 10. To initiate the status phase of the setup transaction, set up a buffer in memory to receive or send the zero length status phase data packet.
- 11. Initialize the current (even or odd) TX EP0 BD to transfer the status data:
 - a) Set the BDT buffer address field to the start address of the data buffer.
 - b) Write 8000h to BD0STAT (set UOWN bit, configure DTS to DATA0 and set byte count to 0).
- 12. Write the Token register with the appropriate IN or OUT token to Endpoint 0, the target device's default control pipe (e.g., write 01h to U1TOK for an OUT token for a GET DEVICE DESCRIPTOR command). This initiates an OUT token on the bus, followed by a zero length data packet from the host to the device. When the data packet completes, the BD is updated with the hand-shake from the device and a Token Complete Interrupt Flag is asserted (the TRNIF flag is set). This completes the status phase of the setup transaction, as described in Chapter 9 of the *"USB 2.0 Specification"*.

Note: Only one control transaction can be performed per frame.

20.5.3 SEND A FULL-SPEED BULK DATA TRANSFER TO A TARGET DEVICE

- Follow the procedure described in Section 20.5.1 "Enable Host Mode and Discover a Connected Device" and Section 20.5.2 "Complete a Control Transaction to a Connected Device" to discover and configure a device.
- To enable transmit and receive transfers with handshaking enabled, write 1Dh to U1EP0. If the target device is a low-speed device, also set the LSPD (U1EP0[7]) bit. If you want the hardware to automatically retry indefinitely if the target device asserts a NAK on the transfer, clear the Retry Disable bit, RETRYDIS (U1EP0[6]).
- 3. Set up the BD for the current (even or odd) TX EP0 to transfer up to 64 bytes.
- 4. Set the USB device address of the target device in the address register (U1ADDR[6:0]).
- 5. Write an OUT token to the desired endpoint to U1TOK. This triggers the module's transmit state machines to begin transmitting the token and the data.
- 6. Wait for the Token Complete Interrupt Flag, TRNIF. This indicates that the BD has been released back to the microprocessor and the transfer has completed. If the Retry Disable bit (RETRYDIS) is set, the handshake (ACK, NAK, STALL or ERROR (0Fh)) is returned in the BD PID field. If a STALL interrupt occurs, the pending packet must be dequeued and the error condition in the target device cleared. If a detach interrupt occurs (SE0 for more than 2.5 µs), then the target has detached (U1IR[0] is set).
- 7. Once the Token Complete Interrupt Flag occurs (TRNIF is set), the BD can be examined and the next data packet queued by returning to Step 2.
- **Note:** USB speed, transceiver and pull-ups should only be configured during the module setup phase. It is not recommended to change these settings while the module is enabled.

20.6 OTG Operation

20.6.1 SESSION REQUEST PROTOCOL (SRP)

An OTG A-device may decide to power down the VBUS supply when it is not using the USB link through the Session Request Protocol (SRP). SRP can only be initiated at full speed. Software may do this by configuring a GPIO pin to disable an external power transistor, or voltage regulator enable signal, which controls the VBUS supply. When the VBUS supply is powered down, the A-device is said to have ended a USB session.

An OTG A-device or embedded host may repower the VBUS supply at any time (initiate a new session). An OTG B-device may also request that the OTG A-device repower the VBUS supply (initiate a new session). This is accomplished via Session Request Protocol (SRP).

Prior to requesting a new session, the B-device must first check that the previous session has definitely ended. To do this, the B-device must check for two conditions:

- 1. VBUS supply is below the session valid voltage.
- 2. Both D+ and D- have been low for at least 2 ms.

The B-device will be notified of Condition 1 by the SESENDIF (U1OTGIR[2]) interrupt. Software will have to manually check for Condition 2.

Note:	When the A-device powers down the				
	VBUS supply, the B-device must discon-				
	nect its pull-up resistor from power. If the				
	device is self-powered, it can do this by				
	clearing DPPULUP (U1OTGCON[7]) and				
	DMPULUP (U1OTGCON[6]).				

The B-device may aid in achieving Condition 1 by discharging the V_{BUS} supply through a resistor. Software may do this by setting VBUSDIS (U1OTGCON[0]).

After these initial conditions are met, the B-device may begin requesting the new session. The B-device begins by pulsing the D+ data line. Software should do this by setting DPPULUP (U10TGCON[7]). The data line should be held high for 5 to 10 ms.

The B-device then proceeds by pulsing the VBUS supply. Software should do this by setting PUVBUS (U1CNFG2[4]). When an A-device detects SRP signaling (either via the ATTACHIF (U1IR[6]) interrupt or via the SESVDIF (U1OTGIR[3]) interrupt), the A-device must restore the VBUS supply by properly configuring the general purpose I/O port pin controlling the external power source.

The B-device should not monitor the state of the VBUS supply while performing VBUS supply pulsing. When the B-device does detect that the VBUS supply has been restored (via the SESVDIF (U1OTGIR[3]) interrupt), the B-device must reconnect to the USB link by pulling up D+ or D- (via the DPPULUP or DMPULUP bit).

The A-device must complete the SRP by driving USB Reset signaling.

20.6.2 HOST NEGOTIATION PROTOCOL (HNP)

In USB OTG applications, a Dual Role Device (DRD) is a device that is capable of being either a host or a peripheral. Any OTG DRD must support Host Negotiation Protocol (HNP).

HNP allows an OTG B-device to temporarily become the USB host. The A-device must first enable the B-device to follow HNP. Refer to the *"On-The-Go Supplement"* to the *"USB 2.0 Specification"* for more information regarding HNP. HNP may only be initiated at full speed.

After being enabled for HNP by the A-device, the B-device requests being the host any time that the USB link is in the suspend state, by simply indicating a disconnect. This can be done in software by clearing DPPULUP and DMPULUP. When the A-device detects the disconnect condition (via the URSTIF (U11R[0]) interrupt), the A-device may allow the B-device to take over as host. The A-device does this by signaling connect as a full-speed function. Software may accomplish this by setting DPPULUP.

If the A-device responds instead with resume signaling, the A-device remains as host. When the B-device detects the connect condition (via ATTACHIF, U1IR[6]), the B-device becomes host. The B-device drives Reset signaling prior to using the bus.

When the B-device has finished in its role as host, it stops all bus activity and turns on its D+ pull-up resistor by setting DPPULUP. When the A-device detects a suspend condition (Idle for 3 ms), the A-device turns off its D+ pull-up. The A-device may also power down the VBUS supply to end the session. When the A-device detects the connect condition (via ATTACHIF), the A-device resumes host operation and drives Reset signaling.

20.7 USB OTG Module Registers

There are a total of 37 memory-mapped registers associated with the USB OTG module. They can be divided into four general categories:

- USB OTG Module Control (12)
- USB Interrupt (7)
- USB Endpoint Management (16)
- USB VBUS Power Control (2)

This total does not include the (up to) 128 BD registers in the BDT. Their prototypes, described in Register 20-1 and Register 20-2, are shown separately in Section 20.2 "USB Buffer Descriptors and the BDT".

All USB OTG registers are implemented in the Least Significant Byte (LSB) of the register. Bits in the upper byte are unimplemented and have no function. Note that some registers are instantiated only in Host mode, while other registers have different bit instantiations and functions in Device and Host modes.

The registers described in the following sections are those that have bits with specific control and configuration features. The following registers are used for data or address values only:

- U1BDTP1, U1BDTP2 and U1BDTP3: Specifies the 256-word page in data RAM used for the BDT; 8-bit value with bit 0 fixed as '0' for boundary alignment.
- U1FRML and U1FRMH: Contains the 11-bit byte counter for the current data frame.

20.7.1 USB OTG MODULE CONTROL REGISTERS

REGISTER 20-3: U10TGSTAT: USB OTG STATUS REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—	—	—	—	—	—	—		
bit 15							bit 8		
HSC/R-0	U-0	HSC/R-0	U-0	HSC/R-0	HSC/R-0	U-0	HSC/R-0		
ID	—	LSTATE	—	SESVD	SESEND	—	VBUSVD		
bit 7							bit		
Legend:		U = Unimplem	nented bit, read	1 as '0'					
R = Readab	le bit	W = Writable			are Settable/C	learable bit			
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unk	nown		
bit 15-8	Unimplemen	ted: Read as ')'						
bit 7	ID: ID Pin Sta	te Indicator bit							
	1 = No plug is attached or a Type B cable has been plugged into the USB receptacle								
	• •			he USB recepta	acle				
bit 6	-	ted: Read as '							
bit 5	LSTATE: Line State Stable Indicator bit 1 = The USB line state (as defined by SE0 and JSTATE) has been stable for the previous 1 ms								
) and JSTATE) ו e for the previo		e for the previ	ous 1 ms		
bit 4	Unimplemen	ted: Read as ')'						
bit 3	SESVD: Sess	sion Valid Indica	ator bit						
	1 = The VBU B-device	-	ove VA_SESS_	VLD (as defined	in the <i>"USB 2</i>	.0 Specificatio	on") on the A c		
			ow VA_SESS_V	LD on the A or I	B-device				
bit 2	SESEND: B Session End Indicator bit								
	1 = The VBUS voltage is below VB_SESS_END (as defined in the "USB 2.0 Specification") on the B-device								
				ND on the R de	vice				
		s voltage is abo	ve VB_SESS_E	nd on the D-de					
bit 1	0 = The VBUS	s voltage is abo ted: Read as '(
bit 1 bit 0	0 = The VBUS	-)'						
	0 = The VBUS Unimplemen VBUSVD: A	ted: Read as '(/BUS Valid India s voltage is ab)' cator bit	s_VLD (as defin		B 2.0 Specifi	<i>cation"</i>) on th		

REGISTER 20-4: U10TGCON: USB ON-THE-GO CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—
bit 15	•			•			bit 8

R/W-0	R/W-0	R/W-0	R/W-0	r-0	R/W-0	r-0	R/W-0
DPPULUP	DMPULUP	DPPULDWN ⁽¹⁾	DMPULDWN ⁽¹⁾		OTGEN ⁽¹⁾		VBUSDIS ⁽¹⁾
bit 7							bit 0

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown	

bit 15-8	Unimplemented: Read as '0'
bit 7	DPPULUP: D+ Pull-up Enable bit
	 1 = D+ data line pull-up resistor is enabled 0 = D+ data line pull-up resistor is disabled
bit 6	DMPULUP: D- Pull-up Enable bit
	 1 = D- data line pull-up resistor is enabled 0 = D- data line pull-up resistor is disabled
bit 5	DPPULDWN: D+ Pull-Down Enable bit ⁽¹⁾
	 1 = D+ data line pull-down resistor is enabled 0 = D+ data line pull-down resistor is disabled
bit 4	DMPULDWN: D- Pull-Down Enable bit ⁽¹⁾
	 1 = D- data line pull-down resistor is enabled 0 = D- data line pull-down resistor is disabled
bit 3	Reserved: Maintain as '0'
bit 2	OTGEN: OTG Features Enable bit ⁽¹⁾
	 1 = USB OTG is enabled; all D+/D- pull-up and pull-down bits are enabled 0 = USB OTG is disabled; D+/D- pull-up and pull-down bits are controlled in hardware by the settings of the HOSTEN and USBEN (U1CON[3,0]) bits
bit 1	Reserved: Maintain as '0'
bit 0	VBUSDIS: VBUS Discharge Enable bit ⁽¹⁾
	 1 = VBUS line is discharged through a resistor 0 = VBUS line is not discharged

Note 1: These bits are only used in Host mode; do not use in Device mode.

REGISTER 20-5: U1PWRC: USB POWER CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	—	
bit 15	bit 15 bit 8							

R-x, HSC	U-0	U-0	R/W-0	U-0	U-0	R/W-0, HC	R/W-0
UACTPND	—	—	USLPGRD	—	—	USUSPND	USBPWR
bit 7							bit 0

Legend:	HC = Hardware Clearable bit	HSC = Hardware Settable/Clearable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown	

bit 15-8	Unimplemented: Read as '0'
bit 7	UACTPND: USB Activity Pending bit
	 1 = Module should not be suspended at the moment (requires the USLPGRD bit to be set) 0 = Module may be suspended or powered down
bit 6-5	Unimplemented: Read as '0'
bit 4	USLPGRD: USB Sleep/Suspend Guard bit
	 1 = Indicates to the USB module that it is about to be suspended or powered down 0 = No suspend
bit 3-2	Unimplemented: Read as '0'
bit 1	USUSPND: USB Suspend Mode Enable bit
	 1 = USB OTG module is in Suspend mode; USB clock is gated and the transceiver is placed in a low-power state 0 = Normal USB OTG operation
bit 0	USBPWR: USB Operation Enable bit
	1 = USB OTG module is enabled 0 = USB OTG module is disabled ⁽¹⁾

Note 1: Do not clear this bit unless the HOSTEN, USBEN and OTGEN bits (U1CON[3,0] and U1OTGCON[2]) are all cleared.

REGISTER 20-6: U1STAT: USB STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	_	—	—	—	—
bit 15							bit 8

HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	U-0	U-0
ENDPT3	ENDPT2	ENDPT1	ENDPT0	DIR	PPBI ⁽¹⁾	—	—
bit 7							bit 0

Legend:	U = Unimplemented bit, re	U = Unimplemented bit, read as '0'		
R = Readable bit	W = Writable bit	HSC = Hardware Setta	ble/Clearable bit	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8 Unimplemented: Read as '0'

bit 7-4	ENDPT[3:0]: Number of the Last Endpoint Activity bits (Represents the number of the BDT updated by the last USB transfer.) 1111 = Endpoint 15 1110 = Endpoint 14
	•
	•
	0001 = Endpoint 1
	0000 = Endpoint 0
bit 3	DIR: Last BD Direction Indicator bit
	 1 = The last transaction was a transmit transfer (TX) 0 = The last transaction was a receive transfer (RX)
bit 2	PPBI: Ping-Pong BD Pointer Indicator bit ⁽¹⁾
	1 = The last transaction was to the odd BD bank
	0 = The last transaction was to the even BD bank
bit 1-0	Unimplemented: Read as '0'

Note 1: This bit is only valid for endpoints with available even and odd BD registers.

^{© 2015-2019} Microchip Technology Inc.

PIC24FJ1024GA610/GB610 FAMILY

REGISTER 20-7: U1CON: USB CONTROL REGISTER (DEVICE MODE)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	HSC/R-x	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	SE0	PKTDIS		HOSTEN	RESUME	PPBRST	USBEN
bit 7							bit 0

Legend:	U = Unimplemented bit, read as '0'		
R = Readable bit	W = Writable bit	HSC = Hardware Settable/C	learable bit
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7	Unimplemented: Read as '0'
bit 6	SE0: Live Single-Ended Zero Flag bit
	1 = Single-ended zero is active on the USB bus0 = No single-ended zero is detected
bit 5	PKTDIS: Packet Transfer Disable bit
	 1 = SIE token and packet processing are disabled; automatically set when a SETUP token is received 0 = SIE token and packet processing are enabled
bit 4	Unimplemented: Read as '0'
bit 3	HOSTEN: Host Mode Enable bit
	 1 = USB host capability is enabled; pull-downs on D+ and D- are activated in hardware 0 = USB host capability is disabled
bit 2	RESUME: Resume Signaling Enable bit
	1 = Resume signaling is activated
	0 = Resume signaling is disabled
bit 1	PPBRST: Ping-Pong Buffers Reset bit
	1 = Resets all Ping-Pong Buffer Pointers to the even BD banks0 = Ping-Pong Buffer Pointers are not reset
bit 0	USBEN: USB Module Enable bit
	 1 = USB module and supporting circuitry are enabled (device attached); D+ pull-up is activated in hardware 0 = USB module and supporting circuitry are disabled (device detached)

REGISTER 20-8: U1CON: USB CONTROL REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15	-						bit 8

HSC/R-x	HSC/R-x	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
JSTATE	SE0	TOKBUSY	USBRST	HOSTEN	RESUME	PPBRST	SOFEN
bit 7							bit 0

Legend:	U = Unimplemented bit, read as '0'		
R = Readable bit	W = Writable bit	HSC = Hardware Settable/C	Clearable bit
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7	JSTATE: Live Differential Receiver J-State Flag bit
	 1 = J-state (differential '0' in low speed, differential '1' in full speed) is detected on the USB 0 = No J-state is detected
bit 6	SE0: Live Single-Ended Zero Flag bit
	 1 = Single-ended zero is active on the USB bus 0 = No single-ended zero is detected
bit 5	TOKBUSY: Token Busy Status bit
	1 = Token is being executed by the USB module in On-The-Go state0 = No token is being executed
bit 4	USBRST: USB Module Reset bit
	1 = USB Reset has been generated for a software Reset; application must set this bit for 50 ms, then clear it
	0 = USB Reset is terminated
bit 3	HOSTEN: Host Mode Enable bit
	 1 = USB host capability is enabled; pull-downs on D+ and D- are activated in hardware 0 = USB host capability is disabled
bit 2	RESUME: Resume Signaling Enable bit
	 1 = Resume signaling is activated; software must set bit for 10 ms and then clear to enable remote wake-up 0 = Resume signaling is disabled
bit 1	PPBRST: Ping-Pong Buffers Reset bit
	 1 = Resets all Ping-Pong Buffer Pointers to the even BD banks 0 = Ping-Pong Buffer Pointers are not reset
bit 0	SOFEN: Start-of-Frame Enable bit
	 1 = Start-of-Frame token is sent every one 1 ms 0 = Start-of-Frame token is disabled

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	_	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
LSPDEN ⁽¹⁾				DEVADDR[6:0)]		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7	LSPDEN: Low-Speed Enable Indicator bit ⁽¹⁾
	1 = USB module operates at low speed
	0 = USB module operates at full speed
bit 6-0	DEVADDR[6:0]: USB Device Address bits

Note 1: Host mode only. In Device mode, this bit is unimplemented and read as '0'.

REGISTER 20-10: U1TOK: USB TOKEN REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PID3 | PID2 | PID1 | PID0 | EP3 | EP2 | EP1 | EP0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

- bit 7-4 PID[3:0]: Token Type Identifier bits 1101 = SETUP (TX) token type transaction⁽¹⁾ 1001 = IN (RX) token type transaction⁽¹⁾ 0001 = OUT (TX) token type transaction⁽¹⁾ bit 3-0 EPI3:01: Token Command Endpoint Address bits
- bit 3-0 **EP[3:0]:** Token Command Endpoint Address bits This value must specify a valid endpoint on the attached device.

Note 1: All other combinations are reserved and are not to be used.

REGISTER 20-11: U1SOF: USB OTG START-OF-TOKEN THRESHOLD REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	_	—	_	—	—	—	—		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CNT[7:0]									
bit 7							bit 0		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 CNT[7:0]: Start-of-Frame Size bits

Value represents 10 + (packet size of n bytes). For example:

0100 1010 = 64-byte packet

0010 1010 = **32-byte packet**

0001 0010 **= 8-byte packet**

^{© 2015-2019} Microchip Technology Inc.

REGISTER 20-12: U1CNFG1: USB CONFIGURATION REGISTER 1

UTEYE UOEMON ⁽¹⁾							
R/W-0 R/W-0 U-0 R/W-0 U-0 U-0 R/W-0 F UTEYE UOEMON ⁽¹⁾ — USBSIDL — — PPB1 F bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-8 Unimplemented: Read as '0'	U-0 U-0		U-0	U-0	U-0	U-0	U-0
R/W-0 R/W-0 U-0 R/W-0 U-0 U-0 R/W-0 F UTEYE UOEMON ⁽¹⁾ — USBSIDL — — PPB1 F bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-8 Unimplemented: Read as '0'	_	—	_	—	_	—	_
UTEYE UOEMON ⁽¹⁾ usb USBSIDL PPB1 PPB1 bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-8 Unimplemented: Read as '0' bit 15 UTEYE: USB Eye Pattern Test Enable bit 1 = Eye pattern test is enabled 0 = Eye pattern test is disabled 0 = Eye pattern test is disabled bit 6 UOEMON: USB OE Monitor Enable bit ⁽¹⁾ 1 = OE signal is active; it indicates intervals during which the D+/D- lines are driving 0 = OE signal is inactive 0 Eye pattern test is enabled 0 = OE signal is inactive; it indicates intervals during which the D+/D- lines are driving 0 = OE signal is inactive bit 5 Unimplemented: Read as '0' 0 bit 4 USBSIDL: USB OTG Stop in Idle Mode bit 1 = Discontinues module operation when the device enters Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation in Idle mode bit 3-2 Unimplemented: Read as '0' bit 1-0 PPB[1:0]: Ping-Pong Buffers are enabled for Endpoints 1 to 15 1 = Even/Odd Ping-Pong Buffers are enabled for Endpoints 10							bit 8
UTEYE UOEMON ⁽¹⁾							
bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-8 Unimplemented: Read as '0' bit 7 UTEYE: USB Eye Pattern Test Enable bit 1 = Eye pattern test is enabled 0 = Eye pattern test is disabled 0 Eye pattern test is disabled bit 6 UOEMON: USB OE Monitor Enable bit ⁽¹⁾ 1 = OE signal is active; it indicates intervals during which the D+/D- lines are driving 0 = OE signal is active; it indicates intervals during which the D+/D- lines are driving 0 = OE signal is inactive bit 5 Unimplemented: Read as '0' bit 4 USBSIDL: USB OTG Stop in Idle Mode bit 1 = Discontinues module operation when the device enters Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation in Idle mode bit 3-2 Unimplemented: Read as '0' bit 1-0 PPB[1:0]: Ping-Pong Buffers Configuration bits 11 = Even/Odd Ping-Pong Buffers are enabled for Endpoints 1 to 15 10 = Even/Odd Ping-Pong Buffers are enabled for all endpoints 11 = Even/Odd Ping-Pong Buffers are enabled for all endpoints 11 = Even/Odd Ping-Pong Buffers are enabled for all endpoints <td>R/V</td> <td>U-0</td> <td>R/W-0</td> <td>U-0</td> <td>U-0</td> <td>R/W-0</td> <td>R/W-0</td>	R/V	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-8 Unimplemented: Read as '0' bit 7 UTEYE: USB Eye Pattern Test Enable bit 1 = Eye pattern test is enabled 0 = Eye pattern test is disabled bit 6 UOEMON: USB OE Monitor Enable bit ⁽¹⁾ 1 = OE signal is active; it indicates intervals during which the D+/D- lines are driving 0 = OE signal is inactive bit 5 Unimplemented: Read as '0' bit 4 USBSIDL: USB OTG Stop in Idle Mode bit 1 = Discontinues module operation when the device enters Idle mode 0 = Continues module operation in Idle mode bit 3-2 Unimplemented: Read as '0' bit 1-0 PPB[1:0]: Ping-Pong Buffers configuration bits 11 = Even/Odd Ping-Pong Buffers are enabled for Endpoints 1 to 15 10 = Even/Odd Ping-Pong Buffers are enabled for all endpoints 11 = Even/Odd Ping-Pong Buffers are enabled for all endpoints 01 = Even/Odd Ping-Pong Buffers are enabled for RX Endpoint 0	JSB	—	USBSIDL		—	PPB1	PPB0
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-8 Unimplemented: Read as '0' x = Bit is unknown bit 7 UTEYE: USB Eye Pattern Test Enable bit 1 = Eye pattern test is enabled 0 = Eye pattern test is enabled 0 = Eye pattern test is disabled bit 6 UOEMON: USB OE Monitor Enable bit ⁽¹⁾ 1 = OE signal is active; it indicates intervals during which the D+/D- lines are driving bit 5 Unimplemented: Read as '0' bit 4 USBSIDL: USB OTG Stop in Idle Mode bit 1 = Discontinues module operation when the device enters Idle mode bit 3-2 Unimplemented: Read as '0' bit 1-0 PPB[1:0]: Ping-Pong Buffers Configuration bits 11 = Even/Odd Ping-Pong Buffers are enabled for Endpoints 1 to 15 12 = Even/Odd Ping-Pong Buffers are enabled for all endpoints 13 = Even/Odd Ping-Pong Buffers are enabled for RX Endpoint 0							bit 0
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-8 Unimplemented: Read as '0' x = Bit is unknown bit 7 UTEYE: USB Eye Pattern Test Enable bit 1 = Eye pattern test is enabled 0 = Eye pattern test is enabled 0 = Eye pattern test is disabled bit 6 UOEMON: USB OE Monitor Enable bit ⁽¹⁾ 1 = OE signal is active; it indicates intervals during which the D+/D- lines are driving bit 5 Unimplemented: Read as '0' bit 4 USBSIDL: USB OTG Stop in Idle Mode bit 1 = Discontinues module operation when the device enters Idle mode bit 3-2 Unimplemented: Read as '0' bit 1-0 PPB[1:0]: Ping-Pong Buffers Configuration bits 11 = Even/Odd Ping-Pong Buffers are enabled for Endpoints 1 to 15 12 = Even/Odd Ping-Pong Buffers are enabled for all endpoints 13 = Even/Odd Ping-Pong Buffers are enabled for RX Endpoint 0							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-8 Unimplemented: Read as '0' bit 7 UTEYE: USB Eye Pattern Test Enable bit 1 = Eye pattern test is enabled 0 = Eye pattern test is enabled 0 = Eye pattern test is disabled bit 6 UOEMON: USB OE Monitor Enable bit ⁽¹⁾ 1 = OE signal is active; it indicates intervals during which the D+/D- lines are driving 0 = OE signal is active; it indicates intervals during which the D+/D- lines are driving 0 = OE signal is inactive bit 5 Unimplemented: Read as '0' bit 4 USBSIDL: USB OTG Stop in Idle Mode bit 1 = Discontinues module operation when the device enters Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation bits 11 = Even/Odd Ping-Pong Buffers Configuration bits 11 = Even/Odd Ping-Pong Buffers are enabled for Endpoints 1 to 15 10 = Even/Odd Ping-Pong Buffers are enabled for all endpoints 11 = Even/Odd Ping-Pong Buffers are enabled for RX Endpoint 0 1 = Even/Odd Ping-Pong Buffers are enabled for RX Endpoint 0							
bit 15-8 Unimplemented: Read as '0' bit 7 UTEYE: USB Eye Pattern Test Enable bit 1 = Eye pattern test is enabled 0 = Eye pattern test is disabled bit 6 UOEMON: USB OE Monitor Enable bit ⁽¹⁾ 1 = OE signal is active; it indicates intervals during which the D+/D- lines are driving 0 = OE signal is inactive bit 5 Unimplemented: Read as '0' bit 4 USBSIDL: USB OTG Stop in Idle Mode bit 1 = Discontinues module operation when the device enters Idle mode 0 = Continues module operation in Idle mode bit 3-2 Unimplemented: Read as '0' bit 1-0 PPB[1:0]: Ping-Pong Buffers Configuration bits 11 = Even/Odd Ping-Pong Buffers are enabled for Endpoints 1 to 15 10 = Even/Odd Ping-Pong Buffers are enabled for all endpoints 11 = Even/Odd Ping-Pong Buffers are enabled for RX Endpoint 0		= Writable b	it			ad as '0'	
bit 7 UTEYE: USB Eye Pattern Test Enable bit 1 = Eye pattern test is enabled 0 = Eye pattern test is disabled bit 6 UOEMON: USB OE Monitor Enable bit ⁽¹⁾ 1 = OE signal is active; it indicates intervals during which the D+/D- lines are driving 0 = OE signal is inactive bit 5 Unimplemented: Read as '0' bit 4 USBSIDL: USB OTG Stop in Idle Mode bit 1 = Discontinues module operation when the device enters Idle mode 0 = Continues module operation in Idle mode bit 3-2 Unimplemented: Read as '0' bit 1-0 PPB[1:0]: Ping-Pong Buffers Configuration bits 11 = Even/Odd Ping-Pong Buffers are enabled for Endpoints 1 to 15 10 = Even/Odd Ping-Pong Buffers are enabled for all endpoints 11 = Even/Odd Ping-Pong Buffers are enabled for RX Endpoint 0		= Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 7 UTEYE: USB Eye Pattern Test Enable bit 1 = Eye pattern test is enabled 0 = Eye pattern test is disabled bit 6 UOEMON: USB OE Monitor Enable bit ⁽¹⁾ 1 = OE signal is active; it indicates intervals during which the D+/D- lines are driving 0 = OE signal is inactive bit 5 Unimplemented: Read as '0' bit 4 USBSIDL: USB OTG Stop in Idle Mode bit 1 = Discontinues module operation when the device enters Idle mode 0 = Continues module operation in Idle mode bit 3-2 Unimplemented: Read as '0' bit 1-0 PPB[1:0]: Ping-Pong Buffers Configuration bits 11 = Even/Odd Ping-Pong Buffers are enabled for Endpoints 1 to 15 10 = Even/Odd Ping-Pong Buffers are enabled for all endpoints 11 = Even/Odd Ping-Pong Buffers are enabled for RX Endpoint 0		/					
 1 = Eye pattern test is enabled 0 = Eye pattern test is disabled bit 6 UOEMON: USB OE Monitor Enable bit⁽¹⁾ 1 = OE signal is active; it indicates intervals during which the D+/D- lines are driving 0 = OE signal is inactive bit 5 Unimplemented: Read as '0' bit 4 USBSIDL: USB OTG Stop in Idle Mode bit 1 = Discontinues module operation when the device enters Idle mode 0 = Continues module operation in Idle mode bit 3-2 Unimplemented: Read as '0' bit 1-0 PPB[1:0]: Ping-Pong Buffers Configuration bits 11 = Even/Odd Ping-Pong Buffers are enabled for Endpoints 1 to 15 10 = Even/Odd Ping-Pong Buffers are enabled for RX Endpoint 0 							
 bit 6 bit 6 UOEMON: USB OE Monitor Enable bit⁽¹⁾ 1 = OE signal is active; it indicates intervals during which the D+/D- lines are driving 0 = OE signal is inactive bit 5 Unimplemented: Read as '0' bit 4 USBSIDL: USB OTG Stop in Idle Mode bit 1 = Discontinues module operation when the device enters Idle mode 0 = Continues module operation in Idle mode bit 3-2 Unimplemented: Read as '0' bit 3-2 Unimplemented: Read as '0' bit 1-0 PPB[1:0]: Ping-Pong Buffers Configuration bits 1 = Even/Odd Ping-Pong Buffers are enabled for Endpoints 1 to 15 10 = Even/Odd Ping-Pong Buffers are enabled for all endpoints 01 = Even/Odd Ping-Pong Buffers are enabled for RX Endpoint 0 	Enat						
bit 6 UOEMON: USB OE Monitor Enable bit ⁽¹⁾ 1 = OE signal is active; it indicates intervals during which the D+/D- lines are driving 0 = OE signal is inactive bit 5 Unimplemented: Read as '0' bit 4 USBSIDL: USB OTG Stop in Idle Mode bit 1 = Discontinues module operation when the device enters Idle mode 0 = Continues module operation in Idle mode bit 3-2 Unimplemented: Read as '0' bit 1-0 PPB[1:0]: Ping-Pong Buffers Configuration bits 11 = Even/Odd Ping-Pong Buffers are enabled for Endpoints 1 to 15 10 = Even/Odd Ping-Pong Buffers are enabled for all endpoints 01 = Even/Odd Ping-Pong Buffers are enabled for RX Endpoint 0							
1 = \overrightarrow{OE} signal is active; it indicates intervals during which the D+/D- lines are driving 0 = \overrightarrow{OE} signal is inactive bit 5 Unimplemented: Read as '0' bit 4 USBSIDL: USB OTG Stop in Idle Mode bit 1 = Discontinues module operation when the device enters Idle mode 0 = Continues module operation in Idle mode bit 3-2 Unimplemented: Read as '0' bit 1-0 PPB[1:0]: Ping-Pong Buffers Configuration bits 11 = Even/Odd Ping-Pong Buffers are enabled for Endpoints 1 to 15 10 = Even/Odd Ping-Pong Buffers are enabled for all endpoints 01 = Even/Odd Ping-Pong Buffers are enabled for RX Endpoint 0	abla						
0 = OE signal is inactive bit 5 Unimplemented: Read as '0' bit 4 USBSIDL: USB OTG Stop in Idle Mode bit 1 = Discontinues module operation when the device enters Idle mode 0 = Continues module operation in Idle mode bit 3-2 Unimplemented: Read as '0' bit 1-0 PPB[1:0]: Ping-Pong Buffers Configuration bits 11 = Even/Odd Ping-Pong Buffers are enabled for Endpoints 1 to 15 10 = Even/Odd Ping-Pong Buffers are enabled for all endpoints 01 = Even/Odd Ping-Pong Buffers are enabled for RX Endpoint 0				s during which	the D+/D- line	as are driving	
bit 4 USBSIDL: USB OTG Stop in Idle Mode bit 1 = Discontinues module operation when the device enters Idle mode 0 = Continues module operation in Idle mode bit 3-2 Unimplemented: Read as '0' bit 1-0 PPB[1:0]: Ping-Pong Buffers Configuration bits 11 = Even/Odd Ping-Pong Buffers are enabled for Endpoints 1 to 15 10 = Even/Odd Ping-Pong Buffers are enabled for all endpoints 01 = Even/Odd Ping-Pong Buffers are enabled for RX Endpoint 0	1031			s during which		s are unving	
1 = Discontinues module operation when the device enters Idle mode 0 = Continues module operation in Idle mode bit 3-2 Unimplemented: Read as '0' bit 1-0 PPB[1:0]: Ping-Pong Buffers Configuration bits 11 = Even/Odd Ping-Pong Buffers are enabled for Endpoints 1 to 15 10 = Even/Odd Ping-Pong Buffers are enabled for all endpoints 01 = Even/Odd Ping-Pong Buffers are enabled for RX Endpoint 0		Read as '0					
0 = Continues module operation in Idle mode bit 3-2 Unimplemented: Read as '0' bit 1-0 PPB[1:0]: Ping-Pong Buffers Configuration bits 11 = Even/Odd Ping-Pong Buffers are enabled for Endpoints 1 to 15 10 = Even/Odd Ping-Pong Buffers are enabled for all endpoints 01 = Even/Odd Ping-Pong Buffers are enabled for RX Endpoint 0	еM)TG Stop in	Idle Mode bit				
bit 3-2 Unimplemented: Read as '0' bit 1-0 PPB[1:0]: Ping-Pong Buffers Configuration bits 11 = Even/Odd Ping-Pong Buffers are enabled for Endpoints 1 to 15 10 = Even/Odd Ping-Pong Buffers are enabled for all endpoints 01 = Even/Odd Ping-Pong Buffers are enabled for RX Endpoint 0					rs Idle mode		
bit 1-0 PPB[1:0]: Ping-Pong Buffers Configuration bits 11 = Even/Odd Ping-Pong Buffers are enabled for Endpoints 1 to 15 10 = Even/Odd Ping-Pong Buffers are enabled for all endpoints 01 = Even/Odd Ping-Pong Buffers are enabled for RX Endpoint 0	n in	•		de			
 11 = Even/Odd Ping-Pong Buffers are enabled for Endpoints 1 to 15 10 = Even/Odd Ping-Pong Buffers are enabled for all endpoints 01 = Even/Odd Ping-Pong Buffers are enabled for RX Endpoint 0 		Read as '0					
10 = Even/Odd Ping-Pong Buffers are enabled for all endpoints 01 = Even/Odd Ping-Pong Buffers are enabled for RX Endpoint 0		•	•				
01 = Even/Odd Ping-Pong Buffers are enabled for RX Endpoint 0		0 0					
00 = Even/Odd Ping-Pong Buffers are disabled		0 0					

Note 1: This bit is only active when the UTRDIS bit (U1CNFG2[0]) is set.

REGISTER 20-13: U1CNFG2: USB CONFIGURATION REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	_	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	
	—	—	PUVBUS	EXTI2CEN		—	—	
bit 7							bit 0	
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own	
bit 15-5	Unimplemen	ted: Read as ')'					
bit 4	PUVBUS: VBUS Pull-Up Enable bit							
	1 = Pull-up on VBUS pin is enabled 0 = Pull-up on VBUS pin is disabled							
bit 3	EXTI2CEN: I ² C Interface for External Module Control Enable bit							
				-				

1 = External module(s) is controlled via the I^2C interface

0 = External module(s) is controlled via the dedicated pins

bit 2-0 Unimplemented: Read as '0'

^{© 2015-2019} Microchip Technology Inc.

20.7.2 USB INTERRUPT REGISTERS

REGISTER 20-14: U1OTGIR: USB OTG INTERRUPT STATUS REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

HS/R/K-0	HS/R/K-0	HS/R/K-0	HS/R/K-0	HS/R/K-0	HS/R/K-0	U-0	HS/R/K-0
IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	—	VBUSVDIF
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	K = Write '1' to Clear bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7	IDIF: ID State Change Indicator bit
	1 = Change in ID state is detected
	0 = No ID state change is detected
bit 6	T1MSECIF: 1 Millisecond Timer bit
	1 = The 1 millisecond timer has expired
	0 = The 1 millisecond timer has not expired
bit 5	LSTATEIF: Line State Stable Indicator bit
	1 = USB line state (as defined by the SE0 and JSTATE bits) has been stable for 1 ms, but different from
	the last time 0 = USB line state has not been stable for 1 ms
hit 1	
bit 4	ACTVIF: Bus Activity Indicator bit 1 = Activity on the D+/D- lines or VBUS is detected
	0 = No activity on the D+/D- lines of VBUS is detected
bit 3	SESVDIF: Session Valid Change Indicator bit
Sit 0	1 = VBUS has crossed VA_SESS_END (as defined in the <i>"USB 2.0 Specification"</i>) ⁽¹⁾
	0 = VBUS has not crossed VA_SESS_END
bit 2	SESENDIF: B-Device VBUS Change Indicator bit
	1 = VBUS change on B-device is detected; VBUS has crossed VB_SESS_END (as defined in the "USB 2.0 Specification") ⁽¹⁾
	0 = VBUS has not crossed VB_SESS_END
bit 1	Unimplemented: Read as '0'
bit 0	VBUSVDIF: A-Device VBUS Change Indicator bit
	1 = VBUS change on A-device is detected; VBUS has crossed VA_VBUS_VLD (as defined in the "USB 2.0 Specification") ⁽¹⁾
	0 = No VBUS change on A-device is detected
Note 1:	VBUS threshold crossings may either be rising or falling.

Note: Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits, at the moment of the write, to become cleared.

REGISTER 20-15: U1OTGIE: USB OTG INTERRUPT ENABLE REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE		VBUSVDIE
bit 7							bit 0

Legend:				
R = Readal	ole bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-8	•	mented: Read as '0'		
bit 7		Interrupt Enable bit		
		rupt is enabled rupt is disabled		
bit 6		SIE: 1 Millisecond Timer Inter	runt Enable hit	
		rupt is enabled		
		rupt is disabled		
bit 5		IE: Line State Stable Interrup	t Enable bit	
		rupt is enabled		
	0 = Inter	rupt is disabled		
bit 4	ACTVIE:	Bus Activity Interrupt Enable	e bit	
		rupt is enabled		
	0 = Inter	rupt is disabled		
bit 3	SESVDI	E: Session Valid Interrupt En	able bit	
		rupt is enabled		
		rupt is disabled		
bit 2		DIE: B-Device Session End Ir	iterrupt Enable bit	
		rupt is enabled rupt is disabled		
bit 1		mented: Read as '0'		
	•			
bit 0		DIE: A-Device VBUS Valid Inte	errupt Enable bit	
		rupt is enabled rupt is disabled		

© 2015-2019 Microchip Technology Inc.

REGISTER 20-16: U1IR: USB INTERRUPT STATUS REGISTER (DEVICE MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	—	-		—
bit 15	•			•			bit 8

HS/R/K-0	U-0	HS/R/K-0	HS/R/K-0	HS/R/K-0	HS/R/K-0	HS/R/K-0	HS/R/K-0
STALLIF	—	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	URSTIF
bit 7							bit 0

Legend:	U = Unimplemented bit, rea	ad as '0'	
R = Readable bit	K = Write '1' to Clear bit	HS = Hardware Settable bit	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7	STALLIF: STALL Handshake Interrupt bit
	1 = A STALL handshake was sent by the peripheral during the handshake phase of the transaction in Device mode
	0 = A STALL handshake has not been sent
bit 6	Unimplemented: Read as '0'
bit 5	RESUMEIF: Resume Interrupt bit
	 1 = A K-state is observed on the D+ or D- pin for 2.5 μs (differential '1' for low speed, differential '0' for full speed) No K state is showned.
	0 = No K-state is observed
bit 4	IDLEIF: Idle Detect Interrupt bit
	 1 = Idle condition is detected (constant Idle state of 3 ms or more) 0 = No Idle condition is detected
bit 3	TRNIF: Token Processing Complete Interrupt bit
	 1 = Processing of the current token is complete; read the U1STAT register for endpoint information 0 = Processing of the current token is not complete; clear the U1STAT register or load the next token from STAT (clearing this bit causes the STAT FIFO to advance)
bit 2	SOFIF: Start-of-Frame Token Interrupt bit
	1 = A Start-of-Frame token is received by the peripheral or the Start-of-Frame threshold is reached by the host
	0 = No Start-of-Frame token is received or threshold reached
bit 1	UERRIF: USB Error Condition Interrupt bit
	 1 = An unmasked error condition has occurred; only error states enabled in the U1EIE register can set this bit
	0 = No unmasked error condition has occurred
bit 0	URSTIF: USB Reset Interrupt bit
	 1 = Valid USB Reset has occurred for at least 2.5 μs; Reset state must be cleared before this bit can be reasserted
	0 = No USB Reset has occurred; individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise oper- ations to write to a single bit position will cause all set bits, at the moment of the write, to become cleared
Note:	Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the
1	entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause

all set bits, at the moment of the write, to become cleared.

REGISTER 20-17: U1IR: USB INTERRUPT STATUS REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15							bit 8

| HS/R/K-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| STALLIF | ATTACHIF | RESUMEIF | IDLEIF | TRNIF | SOFIF | UERRIF | DETACHIF |
| bit 7 | | | | | | | bit 0 |

Legend:	U = Unimplemented bit, rea	U = Unimplemented bit, read as '0'						
R = Readable bit	K = Write '1' to Clear bit HS = Hardware Settable bit							
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 15-8	Unimplemented: Read as '0'
bit 7	STALLIF: STALL Handshake Interrupt bit
	 1 = A STALL handshake was sent by the peripheral device during the handshake phase of the transaction in Device mode 0 = A STALL handshake has not been sent
bit 6	ATTACHIF: Peripheral Attach Interrupt bit
Dit O	 1 = A peripheral attachment has been detected by the module; it is set if the bus state is not SE0 and there has been no bus activity for 2.5 μs 0 = No peripheral attachment has been detected
bit 5	RESUMEIF: Resume Interrupt bit
	 1 = A K-state is observed on the D+ or D- pin for 2.5 μs (differential '1' for low speed, differential '0' for full speed) 0 = No K-state is observed
bit 4	IDLEIF: Idle Detect Interrupt bit
DIL 4	 1 = Idle condition is detected (constant Idle state of 3 ms or more) 0 = No Idle condition is detected
bit 3	TRNIF: Token Processing Complete Interrupt bit
	 1 = Processing of the current token is complete; read the U1STAT register for endpoint information 0 = Processing of the current token is not complete; clear the U1STAT register or load the next token from U1STAT
bit 2	SOFIF: Start-of-Frame Token Interrupt bit
	1 = A Start-of-Frame token is received by the peripheral or the Start-of-Frame threshold is reached by the host
	0 = No Start-of-Frame token is received or threshold reached
bit 1	UERRIF: USB Error Condition Interrupt bit
	 1 = An unmasked error condition has occurred; only error states enabled in the U1EIE register can set this bit 0 = No unmasked error condition has occurred
bit 0	DETACHIF: Detach Interrupt bit
	 1 = A peripheral detachment has been detected by the module; Reset state must be cleared before this bit can be re-asserted
	0 = No peripheral detachment is detected. Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits, at the moment of the write, to become cleared.
Note:	Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the
Note.	individual bits can only be cleared by writing $a \pm io$ the bit position as part of a word write operation on the

entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits, at the moment of the write, to become cleared.

PIC24FJ1024GA610/GB610 FAMILY

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	_	—	_	_	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
STALLIE	ATTACHIE ⁽¹⁾	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE	URSTIE
UIALLIL	ALIAOLIE	RECOMEN	IDEEIE		OOHL	OERITE	DETACHIE
bit 7							bit
Legend:							
R = Readabl	le bit	W = Writable b	it	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			
	1 = Interrupt i 0 = Interrupt i	s disabled		<i></i>	\ (1)		
bit 6	•		Interrunt hit	(Host mode onl [,]	(1)		
	1 = Interrupt i	s enabled					
	0 = Interrupt i						
bit 5		Resume Interru	ot bit				
	1 = Interrupt i 0 = Interrupt i						
bit 4	•	Detect Interrupt	bit				
	1 = Interrupt i						
	0 = Interrupt i						
bit 3		Processing Co	mplete Interru	upt bit			
	1 = Interrupt i 0 = Interrupt i						
bit 2	•	of-Frame Token	Interrupt bit				

1 = Interrupt is enabled 0 = Interrupt is disabled UERRIE: USB Error Condition Interrupt bit bit 1 1 = Interrupt is enabled 0 = Interrupt is disabled bit 0 URSTIE or DETACHIE: USB Reset Interrupt (Device mode) or USB Detach Interrupt (Host mode) Enable bit 1 = Interrupt is enabled

0 = Interrupt is disabled

Note 1: This bit is unimplemented in Device mode, read as '0'.

REGISTER 20-19: U1EIR: USB ERROR INTERRUPT STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

HS/R/K-0	U-0	HS/R/K-0	HS/R/K-0	HS/R/K-0	HS/R/K-0	HS/R/K-0	HS/R/K-0
BTSEF	—	DMAEF	BTOEF	DFN8EF	CRC16EF	CRC5EF	PIDEF
						EOFEF	
bit 7							bit 0

Legend:	U = Unimplemented bit, read	U = Unimplemented bit, read as '0'						
R = Readable bit	K = Write '1' to Clear bit HS = Hardware Settable bit							
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 15-8	Unimplemented: Read as '0'
bit 7	BTSEF: Bit Stuff Error Flag bit
	1 = Bit stuff error has been detected
	0 = No bit stuff error has been detected
bit 6	Unimplemented: Read as '0'
bit 5	DMAEF: DMA Error Flag bit
	 1 = A USB DMA error condition is detected; the data size indicated by the BD byte count field is less than the number of received bytes, the received data are truncated
	0 = No DMA error
bit 4	BTOEF: Bus Turnaround Time-out Error Flag bit
	 1 = Bus turnaround time-out has occurred 0 = No bus turnaround time-out has occurred
bit 3	DFN8EF: Data Field Size Error Flag bit
	 1 = Data field was not an integral number of bytes 0 = Data field was an integral number of bytes
bit 2	CRC16EF: CRC16 Failure Flag bit
	1 = CRC16 failed 0 = CRC16 passed
bit 1	For Device mode: CRC5EF: CRC5 Host Error Flag bit
	1 = Token packet is rejected due to CRC5 error
	0 = Token packet is accepted (no CRC5 error)
	For Host mode:
	EOFEF: End-of-Frame (EOF) Error Flag bit
	 1 = End-of-Frame error has occurred 0 = End-of-Frame interrupt is disabled
bit 0	PIDEF: PID Check Failure Flag bit
	1 = PID check failed0 = PID check passed
Note:	Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause

all set bits, at the moment of the write, to become cleared.

^{© 2015-2019} Microchip Technology Inc.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_				_	_	_	_
bit 15			•				bit 8
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BTSEE	—	DMAEE	BTOEE	DFN8EE	CRC16EE	CRC5EE	PIDEE
						EOFEE	
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-8	-	ented: Read as '					
bit 7		Stuff Error Interr	upt Enable bit				
		ot is enabled ot is disabled					
bit 6	•	ented: Read as '	٦,				
bit 5	-	MA Error Interrup					
DIL D		ot is enabled					
		ot is disabled					
bit 4	BTOEE: Bu	s Turnaround Tir	ne-out Error In	terrupt Enable	bit		
		ot is enabled ot is disabled					
bit 3	DFN8EE: D	ata Field Size Er	ror Interrupt E	nable bit			
	1 = Interrup	ot is enabled					
	0 = Interrup	ot is disabled					
bit 2		CRC16 Failure I	nterrupt Enable	e bit			
		ot is enabled ot is disabled					
bit 1	For Device						
		RC5 Host Error	Interrupt Enab	le bit			
		ot is enabled	·····				
	•	ot is disabled					
	For Host mo						
		d-of-Frame (EOF	-) Error interru	pt Enable bit			
		ot is enabled ot is disabled					
bit 0		Check Failure Ir	terrunt Enable	∍ hit			
			non upr Litable				
	1 = Interrur	ot is enabled					

REGISTER 20-20: U1EIE: USB ERROR INTERRUPT ENABLE REGISTER

20.7.3 USB ENDPOINT MANAGEMENT REGISTERS

REGISTER 20-21: U1EPn: USB ENDPOINT n CONTROL REGISTERS (n = 0 TO 15)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
LSPD ⁽¹⁾	RETRYDIS ⁽¹⁾	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7	LSPD: Low-Speed Direct Connection Enable bit (U1EP0 only) ⁽¹⁾
	1 = Direct connection to a low-speed device is enabled
	0 = Direct connection to a low-speed device is disabled
bit 6	RETRYDIS: Retry Disable bit (U1EP0 only) ⁽¹⁾
	1 = Retry NAK transactions are disabled
	0 = Retry NAK transactions are enabled; retry is done in hardware
bit 5	Unimplemented: Read as '0'
bit 4	EPCONDIS: Bidirectional Endpoint Control bit
	If EPTXEN and EPRXEN = 1:
	1 = Disables Endpoint n from control transfers; only TX and RX transfers are allowed
	0 = Enables Endpoint n for control (SETUP) transfers; TX and RX transfers are also allowed
	For All Other Combinations of EPTXEN and EPRXEN:
	This bit is ignored.
bit 3	EPRXEN: Endpoint Receive Enable bit
	1 = Endpoint n receive is enabled
	0 = Endpoint n receive is disabled
bit 2	EPTXEN: Endpoint Transmit Enable bit
	1 = Endpoint n transmit is enabled
	0 = Endpoint n transmit is disabled
bit 1	EPSTALL: Endpoint STALL Status bit
	1 = Endpoint n was stalled
	0 = Endpoint n was not stalled
bit 0	EPHSHK: Endpoint Handshake Enable bit
	1 = Endpoint handshake is enabled
	0 = Endpoint handshake is disabled (typically used for isochronous endpoints)
Note 1:	These bits are available only for U1EP0 and only in Host mode. For all other U1EPn registers, these bits

are always unimplemented and read as '0'.

NOTES:

21.0 ENHANCED PARALLEL MASTER PORT (EPMP)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "Enhanced Parallel Master Port (EPMP)" (www.microchip.com/DS39730) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Enhanced Parallel Master Port (EPMP) module provides a parallel, 4-bit (Master mode only), 8-bit (Master and Slave modes) or 16-bit (Master mode only) data bus interface to communicate with off-chip modules, such as memories, FIFOs, LCD controllers and other microcontrollers. This module can serve as either the master or the slave on the communication bus.

For EPMP Master modes, all external addresses are mapped into the internal Extended Data Space (EDS). This is done by allocating a region of the EDS for each Chip Select, and then assigning each Chip Select to a particular external resource, such as a memory or external controller. This region should not be assigned to another device resource, such as RAM or SFRs. To perform a write or read on an external resource, the CPU simply performs a write or read within the address range assigned for the EPMP.

Key features of the EPMP module are:

- Extended Data Space (EDS) Interface Allows Direct Access from the CPU
- Up to 23 Programmable Address Lines
- Up to Two Chip Select Lines
- Up to Two Acknowledgment Lines (one per Chip Select)
- 4-Bit, 8-Bit or 16-Bit Wide Data Bus
- Programmable Strobe Options (per Chip Select):
 - Individual read and write strobes or;
- Read/Write strobe with enable strobe
- Programmable Address/Data Multiplexing
- Programmable Address Wait States

- Programmable Data Wait States (per Chip Select)
- Programmable Polarity on Control Signals (per Chip Select)
- Legacy Parallel Slave Port Support
- Enhanced Parallel Slave Support:
 - Address support
 - Four-byte deep auto-incrementing buffer

21.1 Specific Package Variations

While all PIC24FJ1024GA610/GB610 family devices implement the EPMP, I/O pin constraints place some limits on 16-Bit Master mode operations in some package types. This is reflected in the number of dedicated Chip Select pins implemented and the number of dedicated address lines that are available. The differences are summarized in Table 21-1. All available EPMP pin functions are summarized in Table 21-2.

For 64-pin devices, the dedicated Chip Select pins (PMCS1 and PMCS2) are not implemented. In addition, only 16 address lines (PMA[15:0]) are available. If required, PMA14 and PMA15 can be remapped to function as PMCS1 and PMCS2, respectively.

The memory space addressable by the device depends on the number of address lines available, as well as the number of Chip Select signals required for the application. Devices with lower pin counts are more affected by Chip Select requirements, as these take away address lines. Table 21-1 shows the maximum addressable range for each pin count.

21.2 PMDOUT1 and PMDOUT2 Registers

The EPMP Data Output 1 and Data Output 2 registers are used only in Slave mode for buffered output data. These registers act as a buffer for outgoing data.

21.3 PMDIN1 and PMDIN2 Registers

The EPMP Data Input 1 and Data Input 2 registers are used in Slave modes to buffer incoming data. These registers hold data that are asynchronously clocked in.

In Master mode, PMDIN1 is the holding register for incoming data.

TABLE 21-1: EPMP FEATURE DIFFERENCES BY DEVICE PIN COUNT

Device	Dedicated Chip Select		Address	Data Lines	Address Range (bytes)		
	CS1	CS2	Lines	Lines	No CS	1 CS ⁽¹⁾	2 CS ⁽¹⁾
PIC24FJXXXGX606 (64-Pin)	_		16	8	64K	32K	16K
PIC24FJXXXGX610 (100-Pin/121-Pin)	Х	Х	23	16		16M	

Note 1: PMA14 and PMA15 can be remapped to be dedicated Chip Selects.

^{© 2015-2019} Microchip Technology Inc.

Pin Name (Alternate Function)	Туре	Description
PMA[22:16]	0	Address Bus bits[22:16]
PMA15	0	Address Bus bit 15
	I/O	Data Bus bit 15 (16-bit port with Multiplexed Addressing)
(PMCS2)	0	Chip Select 2 (alternate location)
PMA14	0	Address Bus bit 14
	I/O	Data Bus bit 14 (16-bit port with Multiplexed Addressing)
(PMCS1)	0	Chip Select 1 (alternate location)
PMA[13:8]	0	Address Bus bits[13:8]
	I/O	Data Bus bits[13:8] (16-bit port with Multiplexed Addressing)
PMA[7:3]	0	Address Bus bits[7:3]
PMA2	0	Address Bus bit 2
(PMALU)	0	Address Latch Upper Strobe for Multiplexed Address
PMA1	I/O	Address Bus bit 1
(PMALH)	0	Address Latch High Strobe for Multiplexed Address
PMA0	I/O	Address Bus bit 0
(PMALL)	0	Address Latch Low Strobe for Multiplexed Address
PMD[15:8]	I/O	Data Bus bits[15:8] (Demultiplexed Addressing)
PMD[7:4]	I/O	Data Bus bits[7:4]
	0	Address Bus bits[7:4] (4-bit port with 1-Phase Multiplexed Addressing)
PMD[3:0]	I/O	Data Bus bits[3:0]
PMCS1 ⁽¹⁾	0	Chip Select 1
PMCS2 ⁽¹⁾	0	Chip Select 2
PMWR	I/O	Write Strobe ⁽²⁾
(PMENB)	I/O	Enable Signal ⁽²⁾
PMRD	I/O	Read Strobe ⁽²⁾
(PMRD/PMWR)	I/O	Read/Write Signal ⁽²⁾
PMBE1	0	Byte Indicator
PMBE0	0	Nibble or Byte Indicator
PMACK1	I	Acknowledgment Signal 1
PMACK2	I	Acknowledgment Signal 2

TABLE 21-2: ENHANCED PARALLEL MASTER PORT PIN DESCRIPTIONS

Note 1: These pins are implemented in 100-pin and 121-pin devices only.

2: Signal function depends on the setting of the MODE[1:0] and SM bits (PMCON1[9:8] and PMCSxCF[8]).

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0				
PMPEN		PSIDL	ADRMUX1	ADRMUX0	_	MODE1	MODE0				
bit 15							bit 8				
DAVA	DAMA	DAMA	DAMA		DAMO	DANA	DAVA				
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0				
CSF1	CSF0	ALP	ALMODE	_	BUSKEEP	IRQM1	IRQM0				
bit 7							bit (
Legend:											
R = Readabl	le bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'					
-n = Value at	t POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 15		rallel Master Po	ort Enable bit								
	1 = EPMP is 0 = EPMP is										
bit 14		nted: Read as	ʻ∩'								
bit 13			Stop in Idle Mo	ode bit							
			, peration when c		lle mode						
			ation in Idle mo								
bit 12-11	ADRMUX[1:	0]: Address/Da	ta Multiplexing	Selection bits							
	11 = Lower address bits are multiplexed with data bits using three address phases										
	 10 = Lower address bits are multiplexed with data bits using two address phases 01 = Lower address bits are multiplexed with data bits using one address phase 										
			e multiplexed wi ear on separate		ng one address	spnase					
bit 10		nted: Read as	-	, pins							
bit 9-8	-										
	MODE[1:0]: Parallel Port Mode Select bits 11 = Master mode										
			ised are PMRD	, PMWR, PMC	S, PMD[7:0] an	d PMA[1:0]					
			ed are PMRD, I								
			Port; pins used	are PMRD, PM	/WR, PMCS ar	nd PMD[7:0]					
bit 7-6		CSF[1:0]: Chip Select Function bits									
	11 = Reserved										
	10 = PMA15 is used for Chip Select 2, PMA14 is used for Chip Select 1 01 = PMA15 is used for Chip Select 2, PMCS1 is used for Chip Select 1										
	01 - PMCS1 is used for Chip Select 2, PMCS1 is used for Chip Select 1 00 = PMCS2 is used for Chip Select 2, PMCS1 is used for Chip Select 1										
bit 5	ALP: Addres	s Latch Polarit	y bit								
			MALH and PMA								
		•	IALH and PMA	LU)							
bit 4		ddress Latch S									
			s strobes (each			nt if the current	access would				
		s "smart" addre	ss in the latch t ss strobes	nan the previot	is address)						
bit 3		nted: Read as									
bit 2	-	Bus Keeper bit	-								
		•	value when not	actively being	driven						
			pedance state			ı					
bit 1-0	IRQM[1:0]:	nterrupt Reque	st Mode bits								
		-	when Read Buff			•					
	or on o	we and a way with a set	n a u a ti a ua vula a ua T		/ A - I - I - I - I - I - I - 🗖	SD mode only	`				
			peration when h	PMA[1:0] = 11	(Addressable F	SF mode only)				
	10 = Reserv	ed	at the end of a			SF mode only)				

REGISTER 21-1: PMCON1: EPMP CONTROL REGISTER 1

© 2015-2019 Microchip Technology Inc.

PIC24FJ1024GA610/GB610 FAMILY

HSC/R-0	U-0	HS/R/C-0	HS/R/C-0	U-0	U-0	U-0	U-0	
BUSY	—	ERROR	TIMEOUT			_	—	
bit 15				·		·	bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			RADDR	[23:16] ⁽¹⁾				
bit 7							bit C	
Legend:								
R = Readable bit W = Writable bit			U = Unimplem	ented, read as '	0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
C = Clearable	bit	HS = Hardward	e Settable bit	HSC = Hardwa	are Settable/Cl	earable bit		
bit 15	BUSY: Busy 1 = Port is b 0 = Port is n		e only)					
bit 14	Unimpleme	nted: Read as '0)'					
bit 13	ERROR: Err	or bit						
		tion error (illegal tion completed s		as requested)				
bit 12	TIMEOUT: T	ime-out bit						
		tion timed out tion completed s	uccessfully					
bit 11-8		nted: Read as '0	-					
bit 7-0	RADDR[23:	16]: Parallel Mas	ster Port Rese	rved Address S	pace bits ⁽¹⁾			
Note 1: If R	ADDR[23:16]	= 00000000, tł	nen the last EI	DS address for (Chip Select 2 v	vill be FFFFFh	۱.	

REGISTER 21-2: PMCON2: EPMP CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
PTWREN	PTRDEN	PTBE1EN	PTBE0EN	_	AWAITM1	AWAITM0	AWAITE
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—		—	—
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 14 bit 13 bit 12	0 = PMWR/P PTRDEN: Rei 1 = PMRD/PI 0 = PMRD/PI PTBE1EN: Hi 1 = PMBE1 p 0 = PMBE1 p PTBE0EN: Lo 1 = PMBE0 p	oort is disabled ow Nibble/Byte	lisabled e Port Enable b abled sabled Enable Port E	nable bit			
bit 11	Unimplement	ted: Read as ')'				
bit 10-9		: Address Latc	h Strobe Wait S	States bits			
bit bit 8	11 = Wait of 3 10 = Wait of 2 01 = Wait of 1 00 = Wait of 1 AWAITE: Add 1 = Wait of 13 0 = Wait of 13	2½ TCY 1½ TCY ½ TCY Iress Hold After ¼ TCY	r Address Latcl	h Strobe Wait S	States bits		

REGISTER 21-3: PMCON3: EPMP CONTROL REGISTER 3

© 2015-2019 Microchip Technology Inc.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PTEN15	PTEN14			PTEN	I[13:8]	8]		
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		PTEN[7:3]				PTEN[2:0]		
bit 7							bit C	
Legend:								
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15	1 = PMA15	/A15 Port Enabl functions as eith functions as por	er Address L	ine 15 or Chip S	elect 2			
bit 14	1 = PMA14	AA14 Port Enabl functions as eith functions as por	er Address L	ine 14 or Chip S	elect 1			
bit 13-3 bit 2-0	 PTEN[13:3]: EPMP Address Port Enable bits 1 = PMA[13:3] function as EPMP address lines 0 = PMA[13:3] function as port I/Os PTEN[2:0]: PMALU/PMALH/PMALL Strobe Enable bits 1 = PMA[2:0] function as either address lines or address latch strobes 							

REGISTER 21-4: PMCON4: EPMP CONTROL REGISTER 4

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0				
CSDIS	CSP	CSPTEN	BEP		WRSP	RDSP	SM				
bit 15	·	•			•	•	bit				
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
ACKP	PTSZ1	PTSZ0	_	_	—	—	_				
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable I	oit	U = Unimpler	mented bit, read	l as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown				
bit 15	CSDIS: Chip	Select x Disabl	e bit								
		s the Chip Select the Chip Select									
bit 14		Select x Polarity b	-	y							
		igh <u>(PMCS</u> x) ow (PMCSx)									
bit 13		MCSx Port Enab	le bit								
		port is enabled									
hit 10		port is disabled	uta Enabla Da	lority bit							
bit 12	1 = Nibble/b	Select x Nibble/B byte enable is ac byte enable is ac	tive-high (PMI	BE0, PMBE1)							
bit 11		nted: Read as '0	•	L0, 1 MBL 1)							
bit 10	WRSP: Chip Select x Write Strobe Polarity bit										
	For Slave m	For Slave modes and Master mode when SM = 0:									
		robe is active-hig robe is active-lov									
	1 = Enable	node when SM = strobe is active-h strobe is active-le	nigh (PMENB)	I.							
bit 9	RDSP: Chip	Select x Read S	Strobe Polarity	bit							
	For Slave modes and Master mode when SM = 0:										
	 1 = Read strobe is active-high (PMRD) 0 = Read strobe is active-low (PMRD) 										
	For Master mode when SM = 1: 1 = Read/write strobe is active-high (PMRD/PMWR) 0 = Read/Write strobe is active-low (PMRD/PMWR)										
bit 8	SM: Chip Se	elect x Strobe Mc	ode bit								
		vrites and enable and writes strobe			nd PMENB)						
bit 7		 0 = Reads and writes strobes (PMRD and PMWR) ACKP: Chip Select x Acknowledge Polarity bit 									
		active-high <u>(PMA</u> active-low (PMA									
bit 6-5		Chip Select x Po	-								
	11 = Reserv										
	01 = 4-bit p	oort size (PMD[1 ort size (PMD[3:0)])								
	00 = 8 hit no	ort size (PMD[7:0)1)								

REGISTER 21-5: PMCSxCF: EPMP CHIP SELECT x CONFIGURATION REGISTER

^{© 2015-2019} Microchip Technology Inc.

REGISTER 21-6: PMCSxBS: EPMP CHIP SELECT x BASE ADDRESS REGISTER⁽²⁾

R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	
			BASE	[23:16]				
bit 15							bit 8	
R/W ⁽¹⁾	U-0	U-0	U-0	R/W ⁽¹⁾	U-0	U-0	U-0	
BASE15	_	—	—	BASE11	—	—	—	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow			iown					

bit 15-7 BASE[23:15]: Chip Select x Base Address bits⁽¹⁾

bit 6-4 Unimplemented: Read as '0'

bit 3 **BASE11:** Chip Select x Base Address bit⁽¹⁾

bit 2-0 Unimplemented: Read as '0'

Note 1: The value at POR is 0080h for PMCS1BS and 8080h for PMCS2BS.

2: If the whole PMCS2BS register is written together as 0x0000, then the last EDS address for the Chip Select 1 will be FFFFFFh. In this case, Chip Select 2 should not be used. PMCS1BS has no such feature.

REGISTER	21-7: PMCS	SxMD: EPMP	CHIP SELE	CT x MODE F	REGISTER					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0			
ACKM1	ACKM0	AMWAIT2	AMWAIT1	AMWAIT0	—	—	_			
bit 15	·				• 		bit			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
DWAITB1	DWAITB0	DWAITM3	DWAITM2	DWAITM1	DWAITM0	DWAITE1	DWAITE0			
bit 7	BWATEG	BWATMO	BWATME	BWAT	BWATMO	BWATET	bit			
Legend: R = Readable	a hit	VV - VVritabla	h it		antad hit raas					
		W = Writable		-	nented bit, read					
-n = Value at	PUR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown			
bit 15-14	11 = Reserve 10 = PMACK 01 = PMACK	x is used to def x is used to def ITM[3:0] = 000	termine when a termine when a	a read/write ope a read/write ope	eration is comp	lete with time-c				
bit 13-11	111 = Wait of	: Chip Select x ten alternate n four alternate three alternate	naster cycles master cycles		bits					
bit 10-8	Unimplemen	ted: Read as ')'							
bit 7-6	DWAITB[1:0]: Chip Select x Data Setup Before Read/Write Strobe Wait States bits									
	11 = Wait of 3 10 = Wait of 2 01 = Wait of 2 00 = Wait of 3	2¼ TCY 1¼ TCY								
bit 5-2	DWAITM[3:0]	: Chip Select x	Data Read/W	rite Strobe Wai	t States bits					
	<u>For Write Ope</u> 1111 = Wait o									
	0001 = Wait o 0000 = Wait o <u>For Read Ope</u> 1111 = Wait o	of ½ TCY erations:								
	0001 = Wait o 0000 = Wait o									
bit 1-0	DWAITE[1:0]	: Chip Select x	Data Hold Afte	er Read/Write S	Strobe Wait Sta	tes bits				
	For Write Ope 11 = Wait of 2 10 = Wait of 2 01 = Wait of 2 00 = Wait of 2 For Read Ope 11 = Wait of 2 10 = Wait of 2 01 = Wait of 2 00 = Wait of 2 0	3¼ TCY 2¼ TCY 1¼ TCY ¼ TCY 2 TCY 3 TCY 2 TCY 1 TCY								

DMOOMED. EDMD OLUD OFLEOT MODE DEGIOTER

© 2015-2019 Microchip Technology Inc.

REGISTER 21-8: PMSTAT: EPMP STATUS REGISTER (SLAVE MODE ONLY)

HSC/R-0	HS/R/W-0	U-0	U-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0		
IBF	IBOV		—	IB3F ⁽¹⁾	IB2F ⁽¹⁾	IB1F ⁽¹⁾	IB0F ⁽¹⁾		
bit 15							bit 8		
HSC/R-1	HS/R/W-0	U-0	U-0	HSC/R-1	HSC/R-1	HSC/R-1	HSC/R-1		
OBE	OBUF	0-0	0-0	OB3E	OB2E	OB1E	OB0E		
bit 7	0001			OBSE	ODZL	OBIL	bit C		
Legend:	-			HSC = Hardw	/are Settable/C	learable bit			
R = Readable	e bit	W = Writable b	oit	U = Unimplen	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 14	IBOV: Input E	all of the writab Buffer Overflow S ttempt to a full I	Status bit			ftware)			
	0 = No overfl		iput regiotor o						
bit 13-12	•	ted: Read as '0							
bit 11-8	IB3F:IB0F: Input Buffer x Status Full bits ⁽¹⁾								
		fer contains unr fer does not cor			vill clear this bit)			
bit 7	OBE: Output	Buffer Empty S	tatus bit						
		ble Output Buffe all of the readal			e full				
bit 6	OBUF: Outpu	it Buffer Underfl	ow Status bit						
	1 = A read of 0 = No under	ccurred from an flow occurred	empty Output	Buffer register	(must be cleare	ed in software)			
bit 5-4	Unimplemen	ted: Read as '0	,						
bit 3-0	-	: Output Buffer >		/ bit					
	1 = Output B 0 = Output B	uffer x is empty			clear this bit)				

Note 1: Even though an individual bit represents the byte in the buffer, the bits corresponding to the word (Byte 0 and 1, or Byte 2 and 3) get cleared, even on byte reading.

REGISTER 21-9: PADCON: PAD CONFIGURATION CONTROL REGISTER

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
IOCON		—	_		—	_	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	PMPTTL
bit 7	•						bit 0
Legend:							
R = Readable	R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is un			x = Bit is unk	nown			

-n = Value at POR '1' = Bit is set '0' = Bit is cleared

bit 15 IOCON: Used for Non-PMP Functionality bit

bit 14-1 Unimplemented: Read as '0'

bit 0 PMPTTL: EPMP Module TTL Input Buffer Select bit

1 = EPMP module inputs (PMDx, PMCS1) use TTL input buffers

0 = EPMP module inputs use Schmitt Trigger input buffers

^{© 2015-2019} Microchip Technology Inc.

NOTES:

22.0 REAL-TIME CLOCK AND CALENDAR WITH TIMESTAMP

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Real-Time Clock and Calendar, refer to "RTCC with Timestamp" (www.microchip.com/DS70005193) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The RTCC provides the user with a Real-Time Clock and Calendar (RTCC) function that can be calibrated.

Key features of the RTCC module are:

- Selectable Clock Source
- Provides Hours, Minutes and Seconds Using 24-Hour Format
- Visibility of One Half Second Period
- Provides Calendar Weekday, Date, Month and Year
- Alarm-Configurable for Half a Second, 1 Second, 10 Seconds, 1 Minute, 10 Minutes, 1 Hour, 1 Day, 1 Week, 1 Month or 1 Year
- Alarm Repeat with Decrementing Counter
- · Alarm with Indefinite Repeat Chime
- · Year 2000 to 2099 Leap Year Correction
- BCD Format for Smaller Software Overhead
- Optimized for Long-Term Battery Operation
- User Calibration of the 32.768 kHz Clock Crystal/ 32K INTRC Frequency with Periodic Auto-Adjust
- Fractional Second Synchronization
- Calibration to within ±2.64 Seconds Error per Month
- Calibrates up to 260 ppm of Crystal Error
- Ability to Periodically Wake-up External Devices
 without CPU Intervention (external power control)
- Power Control Output for External Circuit Control
- · Calibration takes Effect Every 15 Seconds
- Timestamp Capture Register for Time and Date
- Programmable Prescaler and Clock Divider Circuit Allows Operation with Any Clock Source up to 32 MHz, Including 32.768 kHz Crystal, 50/60 Hz Powerline Clock, External Real-Time Clock (RTC) or 31.25 kHz LPRC Clock

22.1 RTCC Source Clock

The RTCC clock divider block converts the incoming oscillator source into accurate 1/2 and 1-second clocks for the RTCC. The clock divider is optimized to work with three different oscillator sources:

- 32.768 kHz Crystal Oscillator
- 31 kHz Low-Power RC Oscillator (LPRC)
- External 50 Hz or 60 Hz Powerline Frequency

An asynchronous prescaler, PS[1:0] (RTCCON2L[5:4]), is provided that allows the RTCC to work with higher speed clock sources, such as the system clock. Divide ratios of 1:16, 1:64 or 1:256 may be selected, allowing sources up to 32 MHz to clock the RTCC.

22.1.1 COARSE FREQUENCY DIVISION

The clock divider block has a 16-bit counter used to divide the input clock frequency. The divide ratio is set by the DIV[15:0] register bits (RTCCON2H[15:0]). The DIV[15:0] bits should be programmed with a value to produce a nominal 1/2-second clock divider count period.

22.1.2 FINE FREQUENCY DIVISION

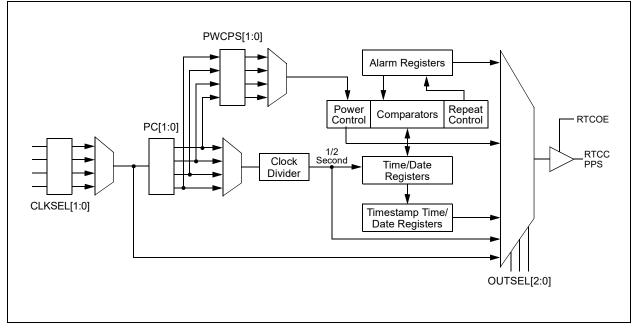
The fine frequency division is set using the FDIV[4:0] (RTCCON2L[15:11]) bits. Increasing the FDIVx value will lengthen the overall clock divider period.

If FDIV[4:0] = 00000, the fine frequency division circuit is effectively disabled. Otherwise, it will optionally remove a clock pulse from the input of the clock divider every 1/2 second. This functionality will allow the user to remove up to 31 pulses over a fixed period of 16 seconds, depending on the value of FDIVx.

The value for DIV[15:0] is calculated as shown in Equation 22-1. The fractional remainder of the DIV[15:0] calculation result can be used to calculate the value for FDIV[4:0].

EQUATION 22-1: RTCC CLOCK DIVIDER OUTPUT FREQUENCY

$$FOUT = \frac{FIN}{2 \cdot (PS[1:0] \ Prescaler) \cdot (DIV[15:0] + 1) + \left(\frac{FDIV[4:0]}{32}\right)}$$


The DIV[15:0] value is the integer part of this calculation:

1

$$DIV[15:0] = \frac{FIN}{2 \cdot (PS[1:0] \ Prescaler)} - 1$$

The FDIV[4:0] value is the fractional part of the DIV[15:0] calculation multiplied by 32.

FIGURE 22-1: RTCC BLOCK DIAGRAM

22.2 RTCC Module Registers

The RTCC module registers are organized into four categories:

- RTCC Control Registers
- RTCC Value Registers
- Alarm Value Registers
- Timestamp Registers

22.2.1 REGISTER MAPPING

Previous RTCC implementations used a Register Pointer to access the RTCC Time and Date registers, as well as the Alarm Time and Date registers. These Registers are now mapped to memory and are individually addressable.

22.2.2 WRITE LOCK

To prevent spurious changes to the RTCC Control or RTCC Value registers, the WRLOCK bit (RTCCON1L[11]) must be cleared ('0'). The POR default state is the WRLOCK bit is '0' and is cleared on any device Reset (POR, BOR, MCLR). It is recommended that the WRLOCK bit be set to '1' after the RTCC Value registers are properly initialized, and after the RTCEN bit (RTCCON1L[15]) has been set.

Any attempt to write to the RTCEN bit, the RTCCON2L/H registers or the RTCC Value registers, will be ignored as long as WRLOCK is '1'. The RTCC Control, Alarm Value and Timestamp registers can be changed when WRLOCK is '1'.

EXAMPLE 22-1: SETTING THE WRLOCK BIT

Clearing the WRLOCK bit requires an unlock sequence after it has been written to a '1', writing two bytes consecutively to the NVMKEY register. A sample assembly sequence is shown in Example 22-1. If WRLOCK is already cleared, it can be set to '1' without using the unlock sequence.

Note: To avoid accidental writes to the timer, it is recommended that the WRLOCK bit (RTCCON1L[11]) is kept clear at any other time. For the WRLOCK bit to be set, there is only one instruction cycle time window allowed between the 55h/AA sequence and the setting of WRLOCK; therefore, it is recommended that code follow the procedure in Example 22-1.

22.2.3 SELECTING RTCC CLOCK SOURCE

The clock source for the RTCC module can be selected using the CLKSEL[1:0] bits in the RTCCON2L register. When the bits are set to '00', the Secondary Oscillator (SOSC) is used as the reference clock and when the bits are '01', LPRC is used as the reference clock. When CLKSEL[1:0] = 10, the external powerline (50 Hz and 60 Hz) is used as the clock source. When CLKSEL[1:0] = 11, the system clock is used as the clock source.

DISI	#6	;disable interrupts for 6 instructions
MOV	#NVKEY, W1	
MOV	#0x55, W2	; first unlock code
MOV	W2, [W1]	; write first unlock code
MOV	#0xAA, W3	; second unlock sequence
MOV	W3, [W1]	; write second unlock sequence
BCLR	RTCCON1L, #WRLOCK	; clear the WRLOCK bit

22.3 Registers

22.3.1 RTCC CONTROL REGISTERS

REGISTER 22-1: RTCCON1L: RTCC CONTROL REGISTER 1 (LOW)

R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
RTCEN	—	—	—	WRLOCK	PWCEN	PWCPOL	PWCPOE
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0
RTCOE	OUTSEL2	OUTSEL1	OUTSEL0	_	—	—	TSAEN
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	RTCEN: RTC	C Enable bit					
			unts from sele	cted clock sour	се		
	0 = RTCC is r						
bit 14-12	-	ted: Read as '					
bit 11		TCC Register V					
		gisters are lock					
h:+ 40		gisters may be	-	ser			
bit 10		ver Control Ena ontrol is enable					
		ontrol is disable					
bit 9		ower Control Po					
bit 0		ntrol output is a	-				
		ntrol output is a					
bit 8	PWCPOE: Po	ower Control O	utput Enable b	it			
	1 = Power cor	ntrol output pin	is enabled				
	0 = Power cor	ntrol output pin	is disabled				
bit 7		C Output Enab	ole bit				
		tput is enabled					
		tput is disabled					
bit 6-4		I: RTCC Outpu	t Signal Select	ion dits			
	111 = Unused 110 = Unused						
	101 = Unused						
	100 = Timest a						
	011 = Power						
	010 = RTCC i 001 = Second						
	000 = Alarm e						
bit 3-1	Unimplement	ted: Read as ')'				
bit 0	-	estamp A Enabl					
		•		pulse is detect	ted on the TMF	PR pin	
	0 = Timestam	p is disabled					

REGISTER 22-2: RTCCON1H: RTCC CONTROL REGISTER 1 (HIGH)

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
ALRMEN	CHIME	_	—		AMA	SK[3:0]	
bit 15							bit 8
DAMA	DAMA	DAM 0	DAMA	DAAL O	D /// 0	D /// 0	D /M/ 0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 7			ALIVIR	PT[7:0]			bit (
							bit (
Legend:							
R = Readabl	e bit	W = Writable I	bit	U = Unimplem	nented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15		larm Enable bit	d automatical	ly offer on elem	n overtwhen		101 - 00h and
	L – Alaini is CHIME :			ly aller all alall	n event when	ever ALMRPT[7	.0] – 0011 and
	0 = Alarm is						
bit 14	CHIME: Chir	ne Enable bit					
	1 = Chime is	enabled; ALMR	PT[7:0] bits ro	ll over from 00h	n to FFh		
		disabled; ALMF					
bit 13-12	Unimplemer	nted: Read as ')'				
bit 11-8	AMASK[3:0]	: Alarm Mask C	onfiguration bi	ts			
	0000 = Eve r	y half second					
	0000 = Ever						
		y ten seconds					
	0011 = Ever	y minute y ten minutes					
	0100 – Ever						
	0110 = Once						
	0111 = Once						
	1000 = Once						
		e a year (except	•	red for February	/ 29th, once e	every 4 years)	
		erved – do not u					
		erved – do not u					
bit 7-0	=)]: Alarm Repea					
	11111111 =	Alarm will repea	at 255 more tir	nes			
	•						
	•						
	•						
	• • 000000000 =	Alarm will repea	at 0 more time	s			
		Alarm will repea decrements on a			s prevented fr	om rolling over fr	rom '00' to 'FF

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0			
		FDIV[4:0]			_	_	_			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0			
PWCPS1	PWCPS0	PS1	PS0	<u> </u>		CLKSEL1	CLKSEL0			
bit 7	1 101 00	101	1.00			OLIVOLLI	bit (
Legend:										
R = Readabl	e bit	W = Writable I	oit	U = Unimplem	ented bit. rea	ad as '0'				
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown			
bit 15-11	FDIV[4:0]: Fr	ractional Clock [Divide bits							
	00000 = No 1	fractional clock	division							
		00001 = Increases period by 1 RTCC input clock cycle every 16 seconds								
	00010 = Increases period by 2 RTCC input clock cycles every 16 seconds									
	•									
	•									
	11101 = Incr	eases period by	30 RTCC inp	out clock cycles	every 16 sec	onds				
	11111 = Incr	eases period by	31 RTCC inp	out clock cycles	every 16 seco	onds				
bit 10-8	Unimplemen	nted: Read as '0)'							
bit 7-6	PWCPS[1:0]	: Power Control	Prescale Sel	ect bits						
	00 = 1:1									
	01 = 1:16									
	10 = 1:64 11 = 1:256									
bit 5-4		scale Select bits								
	00 = 1:1									
	01 = 1:16									
	10 = 1:64									
	11 = 1:256									
bit 3-2	Unimplemen	nted: Read as '0								
bit 3-2 bit 1-0	Unimplemen CLKSEL[1:0	nted: Read as 'd]: Clock Select I								
	Unimplemen CLKSEL[1:0 00 = SOSC									
	Unimplemen CLKSEL[1:0]: Clock Select I								

REGISTER 22-3: RTCCON2L: RTCC CONTROL REGISTER 2 (LOW)

22.3.2 RTCVAL REGISTER MAPPINGS

REGISTER 22-4: RTCCON2H: RTCC CONTROL REGISTER 2 (HIGH)⁽¹⁾

R/W-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
		DIV[15:8]			
						bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
		DIV	[7:0]			
						bit 0
			DIV[R/W-1 R/W-1 R/W-1	DIV[15:8]	DIV[15:8] R/W-1 R/W-1 R/W-1 R/W-1	DIV[15:8] R/W-1 R/W-1 R/W-1 R/W-1 R/W-1

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ıd as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 DIV[15:0]: Clock Divide bits

Sets the period of the clock divider counter; value should cause a nominal 1/2-second underflow.

Note 1: A write to this register is only allowed when WRLOCK = 1.

^{© 2015-2019} Microchip Technology Inc.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PWCSA	MP[7:0]			
bit 15							bi
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PWCST	AB[7:0]			
bit 7							bi
Legend:							
R = Readab	ole bit	W = Writable bit		U = Unimplem	ented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown
bit 7-0	11111110 = • • • • • • • • • • • • • • • • • • •	Sample window is Sample window is No sample window ':0]: Power Contro Stability window is Stability window is	254 TPWCCLK 1 TPWCCLK d v ol Stability Wi s 255 TPWCCl	clock periods ock period ndow Timer bits LK clock periods	(1)		
		Stability window is No stability windo			en the alarm e	event triggers	

Note 1: The sample window always starts when the stability window timer expires, except when its initial value is 00h.

bit 8

bit 0

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	_	_	_		_	_
bit 15							bit
U-0	U-0	R/C-0	U-0	R/C-0	R-0	R-0	R-0
—	—	ALMEVT		TSAEVT ⁽¹⁾	SYNC	ALMSYNC	HALFSEC ⁽²
bit 7							bit
Legend:		C = Clearable	e bit				
R = Readal	ble bit	W = Writable	bit	U = Unimpleme	ented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unki	nown
bit 15-6	Unimplemer	nted: Read as '	0'				
bit 5	ALMEVT: Ala	arm Event bit					
	1 = An alarm	event has occu	ırred				
	0 = An alarm	event has not o	occurred				
bit 4	Unimplemer	nted: Read as '	0'				
bit 3	TSAEVT: Tim	nestamp A Ever	nt bit ⁽¹⁾				
		imp event has c					
	0 = A timesta	imp event has r	ot occurred				
bit 2	•	hronization Stat					
		sters may chan	0 0	tware read			
	0	sters may be re	,				
bit 1		Alarm Synchror					
				IDATE) and Alar RMEN, ALMRPT[
				s may be written/			ware reau
bit 0		alf Second Sta		o may so mator.		.,	
		nalf period of a s					
		period of a sec					
		•	this location t	o initiate a Timest	tamp A event	; timestamp ca	pture is not
,	valid until TSAE\	/T reads as '1'.					

REGISTER 22-6: RTCSTATL: RTCC STATUS REGISTER (LOW)

2: This bit is read-only; it is cleared to '0' on a write to the SECONE[3:0] bits.

22.3.3 RTCC VALUE REGISTERS

REGISTER 22-7: TIMEL: RTCC TIME REGISTER (LOW)

U-0	R/W-x						
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0

Legen	d
-------	---

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	SECTEN[2:0]: Binary Coded Decimal Value of Seconds '10' Digit bits
	Contains a value from 0 to 5.
bit 11-8	SECONE[3:0]: Binary Coded Decimal Value of Seconds '1' Digit bits
	Contains a value from 0 to 9.
bit 7-0	Unimplemented: Read as '0'

REGISTER 22-8: TIMEH: RTCC TIME REGISTER (HIGH)

U-0	U-0	R/W-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-12	HRTEN[1:0]: Binary Coded Decimal Value of Hours '10' Digit bits
	Contains a value from 0 to 2.
bit 11-8	HRONE[3:0]: Binary Coded Decimal Value of Hours '1' Digit bits
	Contains a value from 0 to 9.
bit 7	Unimplemented: Read as '0'
bit 6-4	MINTEN[2:0]: Binary Coded Decimal Value of Minutes '10' Digit bits
	Contains a value from 0 to 5.
bit 3-0	MINONE[3:0]: Binary Coded Decimal Value of Minutes '1' Digit bits
	Contains a value from 0 to 9.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
	—	_	_	_		WDAY[2:0]	
bit 7							bit 0
Legend:							

REGISTER 22-9: DATEL: RTCC DATE REGISTER (LOW)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-12	DAYTEN[1:0]: Binary Coded Decimal Value of Days '10' Digit bits
	Contains a value from 0 to 3.
bit 11-8	DAYONE[3:0]: Binary Coded Decimal Value of Days '1' Digit bits
	Contains a value from 0 to 9.
bit 7-3	Unimplemented: Read as '0'
bit 2-0	WDAY[2:0]: Binary Coded Decimal Value of Weekdays '1' Digit bits
	Contains a value from 0 to 6.

REGISTER 22-10: DATEH: RTCC DATE REGISTER (HIGH)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	R/W-x	R/W-x	R/W-x
YRTEN3	YRTEN2	YRTEN1	YRTEN0	YRONE3	YRONE2	YRONE1	YRONE0
bit 15							bit 8
U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—			MTHTEN	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12	YRTEN[3:0]: Binary Coded Decimal Value of Years '10' Digit bits
bit 11-8	YRONE[3:0]: Binary Coded Decimal Value of Years '1' Digit bits
bit 7-5	Unimplemented: Read as '0'
bit 4	MTHTEN: Binary Coded Decimal Value of Months '10' Digit bit
	Contains a value from 0 to 1.
bit 3-0	MTHONE[3:0]: Binary Coded Decimal Value of Months '1' Digit bits
	Contains a value from 0 to 9.

^{© 2015-2019} Microchip Technology Inc.

22.3.4 ALARM VALUE REGISTERS

Γ.

REGISTER 22-11: ALMTIMEL: RTCC ALARM TIME REGISTER (LOW)

U-0	R/W-0						
	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_		_	_	_		_
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	SECTEN[2:0]: Binary Coded Decimal Value of Seconds '10' Digit bits
	Contains a value from 0 to 5.
bit 11-8	SECONE[3:0]: Binary Coded Decimal Value of Seconds '1' Digit bits
	Contains a value from 0 to 9.
bit 7-0	Unimplemented: Read as '0'

REGISTER 22-12: ALMTIMEH: RTCC ALARM TIME REGISTER (HIGH)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—		HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 15	•				•	•	bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 7					•	•	bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at l	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-14	Unimplemented: Read as '0'
bit 13-12	HRTEN[1:0]: Binary Coded Decimal Value of Hours '10' Digit bits Contains a value from 0 to 2.
bit 11-8	HRONE[3:0]: Binary Coded Decimal Value of Hours '1' Digit bits Contains a value from 0 to 9.
bit 7	Unimplemented: Read as '0'
bit 6-4	MINTEN[2:0]: Binary Coded Decimal Value of Minutes '10' Digit bits Contains a value from 0 to 5.
bit 3-0	MINONE[3:0]: Binary Coded Decimal Value of Minutes '1' Digit bits Contains a value from 0 to 9.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	—	—	—	—		WDAY[2:0]	
bit 7							bit 0
Logond							

REGISTER 22-13: ALMDATEL: RTCC ALARM DATE REGISTER (LOW)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-12	DAYTEN[1:0]: Binary Coded Decimal Value of Days '10' Digit bits
	Contains a value from 0 to 3.
bit 11-8	DAYONE[3:0]: Binary Coded Decimal Value of Days '1' Digit bits
	Contains a value from 0 to 9.
bit 7-3	Unimplemented: Read as '0'
bit 2-0	WDAY[2:0]: Binary Coded Decimal Value of Weekdays '1' Digit bits
	Contains a value from 0 to 6.

REGISTER 22-14: ALMDATEH: RTCC ALARM DATE REGISTER (HIGH)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
YRTEN3	YRTEN2	YRTEN1	YRTEN0	YRONE3	YRONE2	YRONE1	YRONE0
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—	MTHTEN	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-12	YRTEN[3:0]: Binary Coded Decimal Value of Years '10' Digit bits
-----------	---

- bit 11-8YRONE[3:0]: Binary Coded Decimal Value of Years '1' Digit bitsbit 7-5Unimplemented: Read as '0'
- bit 4 MTHTEN: Binary Coded Decimal Value of Months '10' Digit bit Contains a value from 0 to 1.
- bit 3-0 MTHONE[3:0]: Binary Coded Decimal Value of Months '1' Digit bits Contains a value from 0 to 9.

^{© 2015-2019} Microchip Technology Inc.

22.3.5 TIMESTAMP REGISTERS

REGISTER 22-15: TSATIMEL: RTCC TIMESTAMP A TIME REGISTER (LOW)⁽¹⁾

U-0	R/W-0						
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	_	—	_
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14-12 SECTEN[2:0]: Binary Coded Decimal Value of Seconds '10' Digit bits Contains a value from 0 to 5.

bit 11-8 **SECONE[3:0]:** Binary Coded Decimal Value of Seconds '1' Digit bits Contains a value from 0 to 9.

bit 7-0 Unimplemented: Read as '0'

Note 1: If TSAEN = 0, bits[15:0] can be used for persistent storage throughout a non-Power-on Reset (MCLR, WDT, etc.).

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0			
bit 15	-					•	bit 8			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0			
bit 7	-			-			bit 0			
Legend:										
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15-14	Unimplemen	ted: Read as ') '							
bit 13-12	HRTEN[1:0]:	Binary Coded	Decimal Value	of Hours '10' D	igit bits					
	Contains a va	lue from 0 to 2								
bit 11-8	HRONE[3:0]:	Binary Coded	Decimal Value	of Hours '1' Di	git bits					
	Contains a va	lue from 0 to 9								
bit 7	Unimplemen	ted: Read as '	כ'							
bit 6-4	MINTEN[2:0]	: Binary Coded	Decimal Value	e of Minutes '10)' Digit bits					
	Contains a value from 0 to 5.									

REGISTER 22-16: TSATIMEH: RTCC TIMESTAMP A TIME REGISTER (HIGH)⁽¹⁾

bit 3-0	MINONE[3:0]: Binary Coded Decimal Value of Minutes '1' Digit bits
	Contains a value from 0 to 9.

Note 1: If TSAEN = 0, bits[15:0] can be used for persistence storage throughout a non-Power-on Reset (MCLR, WDT, etc.).

^{© 2015-2019} Microchip Technology Inc.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—		—	—		WDAY[2:0]	
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemented bit, read		l as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-14	Unimplemen	ted: Read as ')'				
bit 13-12	DAYTEN[1:0]	: Binary Codeo	d Decimal Valu	e of Days '10' [Digit bits		
	Contains a va	lue from 0 to 3					
bit 11-8	DAYONE[3:0	: Binary Code	d Decimal Valu	e of Days '1' D	igit bits		
	Contains a va	lue from 0 to 9					
bit 7-3	Unimplemen	ted: Read as '	כ'				
bit 2-0	WDAY[2:0]: E	Binary Coded D	ecimal Value o	of Weekdays '1	' Digit bits		
	Contains a va	lue from 0 to 6					

REGISTER 22-17: TSADATEL: RTCC TIMESTAMP A DATE REGISTER (LOW)⁽¹⁾

Note 1: If TSAEN = 0, bits[15:0] can be used for persistence storage throughout a non-Power-on Reset (MCLR, WDT, etc.).

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
YRTEN3	YRTEN2	YRTEN1	YRTEN0	YRONE3	YRONE2	YRONE1	YRONE0	
bit 15						•	bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	—	MTHTEN	MTHONE3	MTHONE2	MTHONE1	MTHONE0	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplem	U = Unimplemented bit, read as '0'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
<u> </u>								
bit 15-12	YRTEN[3:0]:	Binary Coded I	Decimal Value	of Years '10' D	igit bits			

REGISTER 22-18: TSADATEH: RTCC TIMESTAMP A DATE REGISTER (HIGH)⁽¹⁾

- bit 11-8 **YRONE[3:0]:** Binary Coded Decimal Value of Years '1' Digit bits
- bit 7-5 Unimplemented: Read as '0'
- bit 4 MTHTEN: Binary Coded Decimal Value of Months '10' Digit bit Contains a value from 0 to 1.
- bit 3-0 MTHONE[2:0]: Binary Coded Decimal Value of Months '1' Digit bits Contains a value from 0 to 9.
- **Note 1:** If TSAEN = 0, bits[15:0] can be used for persistence storage throughout a non-Power-on Reset (MCLR, WDT, etc.).

^{© 2015-2019} Microchip Technology Inc.

22.4 Calibration

22.4.1 CLOCK SOURCE CALIBRATION

A crystal oscillator that is connected to the RTCC may be calibrated to provide an accurate 1-second clock in two ways. First, coarse frequency adjustment is performed by adjusting the value written to the DIV[15:0] bits. Secondly, a 5-bit value can be written to the FDIV[4:0] control bits to perform a fine clock division.

The DIVx and FDIVx values can be concatenated and considered as a 21-bit prescaler value. If the oscillator source is slightly faster than ideal, the FDIV[4:0] value can be increased to make a small decrease in the RTC frequency. The value of DIV[15:0] should be increased to make larger decreases in the RTC frequency. If the oscillator source is slower than ideal, FDIV[4:0] may be decreased for small calibration changes and DIV[15:0] may need to be decreased to make larger calibration changes.

Before calibration, the user must determine the error of the crystal. This should be done using another timer resource on the device or an external timing reference. It is up to the user to include in the error value, the initial error of the crystal, drift due to temperature and drift due to crystal aging.

22.5 Alarm

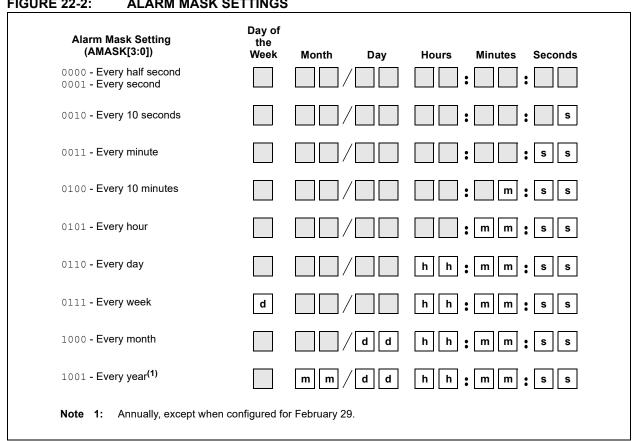
- · Configurable from half second to one year
- Enabled using the ALRMEN bit (RTCCON1H[15])
- One-time alarm and repeat alarm options are available

22.5.1 CONFIGURING THE ALARM

The alarm feature is enabled using the ALRMEN bit. This bit is cleared when an alarm is issued. Writes to ALRMVAL should only take place when ALRMEN = 0.

As shown in Figure 22-2, the interval selection of the alarm is configured through the AMASK[3:0] bits (RTCCON1H[11:8]). These bits determine which and how many digits of the alarm must match the clock value for the alarm to occur.

The alarm can also be configured to repeat based on a preconfigured interval. The amount of times this occurs, once the alarm is enabled, is stored in the ALMRPT[7:0] bits (RTCCON1H[7:0]). When the value of the ALMRPTx bits equals 00h and the CHIME bit (RTCCON1H[14]) is cleared, the repeat function is disabled and only a single alarm will occur. The alarm can be repeated, up to 255 times by loading ALMRPT[7:0] with FFh.


After each alarm is issued, the value of the ALMRPTx bits is decremented by one. Once the value has reached 00h, the alarm will be issued one last time, after which, the ALRMEN bit will be cleared automatically and the alarm will turn off.

Indefinite repetition of the alarm can occur if the CHIME bit = 1. Instead of the alarm being disabled when the value of the ALMRPTx bits reaches 00h, it rolls over to FFh and continues counting indefinitely while CHIME is set.

22.5.2 ALARM INTERRUPT

At every alarm event, an interrupt is generated. This output is completely synchronous to the RTCC clock and can be used as a Trigger clock to the other peripherals.

Note:	Changing any of the register bits, other than the RTCOE bit (RTCCON1L[7]), the
	ALMRPT[7:0] bits (RTCCON1H[7:0] and
	the CHIME bit, while the alarm is enabled
	(ALRMEN = 1), can result in a false alarm
	event leading to a false alarm interrupt. To
	avoid a false alarm event, the timer and
	alarm values should only be changed
	while the alarm is disabled (ALRMEN = 0).

FIGURE 22-2: ALARM MASK SETTINGS

22.6 **Power Control**

The RTCC includes a power control feature that allows the device to periodically wake-up an external device, wait for the device to be stable before sampling wake-up events from that device and then shut down the external device. This can be done completely autonomously by the RTCC, without the need to wake-up from the current lower power mode.

To use this feature:

- 1. Enable the RTCC (RTCEN = 1).
- Set the PWCEN bit (RTCCON1L[10]). 2.
- Configure the RTCC pin to drive the PWC control 3. signal (RTCOE = 1 and OUTSEL[2:0] = 011).

The polarity of the PWC control signal may be chosen using the PWCPOL bit (RTCCON1L[9]). An active-low or active-high signal may be used with the appropriate external switch to turn on or off the power to one or more external devices. The active-low setting may also be used in conjunction with an open-drain setting on the RTCC pin, in order to drive the ground pin(s) of the external device directly (with the appropriate external VDD pull-up device), without the need for external switches. Finally, the CHIME bit should be set to enable the PWC periodicity.

Once the RTCC and PWC are enabled and running, the PWC logic will generate a control output and a sample gate output. The control output is driven out on the RTCC pin (when RTCOE = 1 and OUTSEL[2:0] = 011) and is used to power up or down the device, as described above.

Once the control output is asserted, the stability window begins, in which the external device is given enough time to power up and provide a stable output.

Once the output is stable, the RTCC provides a sample gate during the sample window. The use of this sample gate depends on the external device being used, but typically, it is used to mask out one or more wake-up signals from the external device.

Finally, both the stability and the sample windows close after the expiration of the sample window and the external device is powered down.

^{© 2015-2019} Microchip Technology Inc.

22.6.1 POWER CONTROL CLOCK SOURCE

The stability and sample windows are controlled by the PWCSAMPx and PWCSTABx bit fields in the RTCCON3L register (RTCCON3L[15:8] and [7:0], respectively). As both the stability and sample windows are defined in terms of the RTCC clock, their absolute values vary by the value of the PWC clock base period (TPWCCLK). For example, using a 32.768 kHz SOSC input clock would produce a TPWCCLK of 1/32768 = 30.518 µs. The 8-bit magnitude of PWCSTABx and PWCSAMPx allows for a window size of 0 to 255 TPWCCLK. The period of the PWC clock can also be adjusted with a 1:1, 1:16, 1:64 or 1:256 prescaler, determined by the PWCPS[1:0] bits (RTCCON2L[7:6]).

In addition, certain values for the PWCSTABx and PWCSAMPx fields have specific control meanings in determining power control operations. If either bit field is 00h, the corresponding window is inactive. In addition, if the PWCSTABx field is FFh, the stability window remains active continuously, even if power control is disabled.

22.7 Event Timestamping

The RTCC includes a set of Timestamp registers that may be used for the capture of Time and Date register values when an external input signal is received. The RTCC will trigger a timestamp event when a low pulse occurs on the TMPR pin.

22.7.1 TIMESTAMP OPERATION

The event input is enabled for timestamping using the TSAEN bit (RTCCON1L[0]). When the timestamp event occurs, the present time and date values will be stored in the TSATIMEL/H and TSADATEL/H registers, the TSAEVT status bit (RTCSTATL[3]) will be set and an RTCC interrupt will occur. A new timestamp capture event cannot occur until the user clears the TSAEVT status bit.

Note 1:	The TSATIMEL/H and TSADATEL/H regis-
	ter pairs can be used for data storage when
	TSAEN = 0. The values of TSATIMEL/H
	and TSADATEL/H will be maintained
	throughout all types of non-Power-on
	Resets (MCLR, WDT, etc).

22.7.2 MANUAL TIMESTAMP OPERATION

The current time and date may be captured in the TSATIMEL/H and TSADATEL/H registers by writing a '1' to the TSAEVT bit location while the timestamp functionality is enabled (TSAEN = 1). This write will not set the TSAEVT bit, but it will initiate a timestamp capture. The TSAEVT bit will be set when the capture operation is complete. The user must poll the TSAEVT bit to determine when the capture operation is complete.

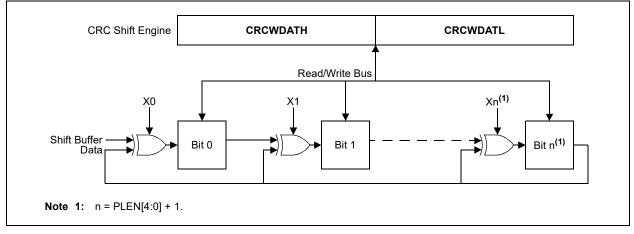
After the Timestamp registers have been read, the TSAEVT bit should be cleared to allow further hardware or software timestamp capture events.

23.0 32-BIT PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "32-Bit Programmable Cyclic Redundancy Check (CRC)" (www.microchip.com/DS30009729) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

CRC BLOCK DIAGRAM

FIGURE 23-1:


The 32-bit programmable CRC generator provides a hardware implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

- User-Programmable CRC Polynomial Equation, up to 32 bits
- Programmable Shift Direction (little or big-endian)
- · Independent Data and Polynomial Lengths
- Configurable Interrupt Output
- Data FIFO

Figure 23-1 displays a simplified block diagram of the CRC generator. A simple version of the CRC shift engine is displayed in Figure 23-2.

CRCDATH CRCDATL **FIFO Empty** Variable FIFO (4x32, 8x16 or 16x8) Event CRCISEL CRCWDATH CRCWDATL CRC Interrupt LENDIAN Shift Buffer 1 **CRC Shift Engine** Shift 0 Complete Event Shifter Clock 2 * FCY

FIGURE 23-2: CRC SHIFT ENGINE DETAIL

© 2015-2019 Microchip Technology Inc.

23.1 User Interface

23.1.1 POLYNOMIAL INTERFACE

The CRC module can be programmed for CRC polynomials of up to the 32^{nd} order, using up to 32 bits.

Polynomial length, which reflects the highest exponent in the equation, is selected by the PLEN[4:0] bits (CRCCON2[4:0]).

The CRCXORL and CRCXORH registers control which exponent terms are included in the equation. Setting a particular bit includes that exponent term in the equation. Functionally, this includes an XOR operation on the corresponding bit in the CRC engine. Clearing the bit disables the XOR.

For example, consider two CRC polynomials, one a 16-bit and the other a 32-bit equation.

EQUATION 23-1: 16-BIT, 32-BIT CRC POLYNOMIALS

X16 + X12 + X5 + 1

and

 $\begin{array}{c} X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + \\ X8 + X7 + X5 + X4 + X2 + X + 1 \end{array}$

To program these polynomials into the CRC generator, set the register bits, as shown in Table 23-1.

Note that the appropriate positions are set to '1' to indicate that they are used in the equation (for example, X26 and X23). The '0' bit required by the equation is always XORed; thus, X0 is a don't care. For a polynomial of length 32, it is assumed that the 32^{nd} bit will be used. Therefore, the X[31:1] bits do not have the 32^{nd} bit.

23.1.2 DATA INTERFACE

The module incorporates a FIFO that works with a variable data width. Input data width can be configured to any value between 1 and 32 bits using the DWIDTH[4:0] bits (CRCCON2[12:8]). When the data width is greater than 15, the FIFO is 4 words deep. When the DWIDTHx bits are between 15 and 8, the FIFO is 8 words deep. When the DWIDTHx bits are less than 8, the FIFO is 16 words deep.

The data for which the CRC is to be calculated must first be written into the FIFO. Even if the data width is less than eight, the smallest data element that can be written into the FIFO is 1 byte. For example, if the DWIDTHx bits are 5, then the size of the data is DWIDTH[4:0] + 1 or 6. The data are written as a whole byte; the two unused upper bits are ignored by the module.

Once data are written into the MSb of the CRCDAT registers (that is, the MSb as defined by the data width), the value of the VWORD[4:0] bits (CRCCON1[12:8]) increments by one. For example, if the DWIDTHx bits are 24, the VWORDx bits will increment when bit 7 of CRCDATH is written. Therefore, CRCDATL must always be written to before CRCDATH.

The CRC engine starts shifting data when the CRCGO bit (CRCCON1[4]) is set and the value of the VWORDx bits is greater than zero.

Each word is copied out of the FIFO into a buffer register, which decrements the VWORDx bits. The data are then shifted out of the buffer. The CRC engine continues shifting at a rate of two bits per instruction cycle, until the VWORDx bits reach zero. This means that for a given data width, it takes half that number of instructions for each word to complete the calculation. For example, it takes 16 cycles to calculate the CRC for a single word of 32-bit data.

When the VWORDx bits reach the maximum value for the configured value of the DWIDTHx bits (4, 8 or 16), the CRCFUL bit (CRCCON1[7]) becomes set. When the VWORDx bits reach zero, the CRCMPT bit (CRCCON1[6]) becomes set. The FIFO is emptied and the VWORD[4:0] bits are set to '00000' whenever CRCEN is '0'.

At least one instruction cycle must pass after a write to CRCWDAT before a read of the VWORDx bits is done.

TABLE 23-1: CRC SETUP EXAMPLES FOR 16 AND 32-BIT POLYNOMIALS

CRC Control Bits	Bit Values					
	16-Bit Polynomial	32-Bit Polynomial				
PLEN[4:0]	01111	11111				
X[31:16]	0000 0000 0000 0001	0000 0100 1100 0001				
X[15:1]	0001 0000 0010 000	0001 1101 1011 011				

23.1.3 DATA SHIFT DIRECTION

The LENDIAN bit (CRCCON1[3]) is used to control the shift direction. By default, the CRC will shift data through the engine, MSb first. Setting LENDIAN (= 1) causes the CRC to shift data, LSb first. This setting allows better integration with various communication schemes and removes the overhead of reversing the bit order in software. Note that this only changes the direction the data are shifted into the engine. The result of the CRC calculation will still be a normal CRC result, not a reverse CRC result.

23.1.4 INTERRUPT OPERATION

The module generates an interrupt that is configurable by the user for either of two conditions.

If CRCISEL is '0', an interrupt is generated when the VWORD[4:0] bits make a transition from a value of '1' to '0'. If CRCISEL is '1', an interrupt will be generated after the CRC operation finishes and the module sets the CRCGO bit to '0'. Manually setting CRCGO to '0' will not generate an interrupt. Note that when an interrupt occurs, the CRC calculation would not yet be complete. The module will still need (PLENx + 1)/2 clock cycles after the interrupt is generated until the CRC calculation is finished.

23.1.5 TYPICAL OPERATION

To use the module for a typical CRC calculation:

- 1. Set the CRCEN bit to enable the module.
- 2. Configure the module for desired operation:
 - a) Program the desired polynomial using the CRCXOR registers and PLEN[4:0] bits.
 - b) Configure the data width and shift direction using the DWIDTH[4:0] and LENDIAN bits.
- 3. Set the CRCGO bit to start the calculations.
- 4. Set the desired CRC non-direct initial value by writing to the CRCWDAT registers.
- Load all data into the FIFO by writing to the CRCDAT registers as space becomes available (the CRCFUL bit must be zero before the next data loading).
- 6. Wait until the data FIFO is empty (CRCMPT bit is set).
- Read the result: If the data width (DWIDTH[4:0] bits) is more than the polynomial length (PLEN[4:0] bits):
 - a) Wait (DWIDTH[4:0] + 1)/2 instruction cycles to make sure that shifts from the shift buffer are finished.
 - b) Change the data width to the polynomial length (DWIDTH[4:0] = PLEN[4:0]).
 - c) Write one dummy data word to the CRCDAT registers.
 - d) Wait two instruction cycles to move the data from the FIFO to the shift buffer and (PLEN[4:0] + 1)/2 instruction cycles to shift out the result.

Or, if the data width (DWIDTH[4:0] bits) is less than the polynomial length (PLEN[4:0] bits):

- Clear the CRC Interrupt Selection bit (CRCISEL = 0) to get the interrupt when all shifts are done. Clear the CRC interrupt flag. Write dummy data in the CRCDAT registers and wait until the CRC interrupt flag is set.
- 2. Read the final CRC result from the CRCWDAT registers.
- Restore the data width (DWIDTH[4:0] bits) for further calculations (OPTIONAL). If the data width (DWIDTH[4:0] bits) is equal to, or less than, the polynomial length (PLEN[4:0] bits):
 - a) Clear the CRC Interrupt Selection bit (CRCISEL = 0) to get the interrupt when all shifts are done.
 - b) Suspend the calculation by setting CRCGO = 0.
 - c) Clear the CRC interrupt flag.
 - d) Write the dummy data with the total data length equal to the polynomial length in the CRCDAT registers.
 - e) Resume the calculation by setting CRCGO = 1.
 - f) Wait until the CRC interrupt flag is set.
 - g) Read the final CRC result from the CRCWDAT registers.

There are eight registers used to control programmable CRC operation:

- CRCCON1
- CRCCON2
- CRCXORL
- CRCXORH
- CRCDATL
- CRCDATH
- CRCWDATL
- CRCWDATH

The CRCCON1 and CRCCON2 registers (Register 23-1 and Register 23-2) control the operation of the module and configure the various settings.

The CRCXOR registers (Register 23-3 and Register 23-4) select the polynomial terms to be used in the CRC equation. The CRCDAT and CRCWDAT registers are each register pairs that serve as buffers for the double-word input data, and CRC processed output, respectively.

^{© 2015-2019} Microchip Technology Inc.

R/W-0	U-0	R/W-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0		
CRCEN	CSIDL VWORD4 VWORD3 VWORD2 VWORD1 VWC								
bit 15							bit 8		
HSC/R-0	HSC/R-1	R/W-0	HC/R/W-0	R/W-0	U-0	U-0	U-0		
CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	—	—			
bit 7							bit (
<u> </u>			<u> </u>						
Legend:		HC = Hardware	-	HSC = Hardw					
R = Readal		W = Writable b	t	U = Unimplem					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15	CRCEN: CE	RC Enable bit							
	1 = Enables	-							
		s module; all st	ate machines, p	pointers and C	RCWDAT/CRO	DATH register	rs reset, othe		
		re NOT reset				Ū.			
bit 14	Unimpleme	nted: Read as '	o'						
bit 13	CSIDL: CRO	C Stop in Idle Mo	ode bit						
		inues module op			e mode				
	0 = Continu	ies module opera	ation in Idle mod	le					
bit 12-8	-)]: CRC Pointer							
	Indicates the when PLEN	e number of valio [4:0] ≤ 7.	d words in the F	IFO. Has a max	kimum value o	f 8 when PLEN	l[4:0] ≥ 7 or 16		
bit 7	CRCFUL: C	RC FIFO Full bi	t						
	1 = FIFO is	full							
	0 = FIFO is	not full							
		notrai							
bit 6	CRCMPT: C	RC FIFO Empty	' bit						
bit 6	1 = FIFO is	RC FIFO Empty empty	[,] bit						
	1 = FIFO is 0 = FIFO is	CRC FIFO Empty empty not empty							
bit 6 bit 5	1 = FIFO is 0 = FIFO is CRCISEL: (CRC FIFO Empty empty not empty CRC Interrupt Se	election bit	-1 - f -1 - 4- 1 411	- 1. 2011				
	1 = FIFO is 0 = FIFO is CRCISEL: (1 = Interrupt	CRC FIFO Empty empty not empty CRC Interrupt Set t on FIFO is emp	election bit ity; the final wor		shifting throug	h the CRC			
bit 5	1 = FIFO is 0 = FIFO is CRCISEL: (1 = Interrup 0 = Interrup	CRC FIFO Empty empty not empty CRC Interrupt Set t on FIFO is emp t on shift is comp	election bit ity; the final wor		shifting throug	h the CRC			
	1 = FIFO is 0 = FIFO is CRCISEL: (1 = Interrup 0 = Interrup CRCGO: St	CRC FIFO Empty empty not empty CRC Interrupt Set t on FIFO is emp t on shift is comp art CRC bit	election bit ty; the final wor lete and results		shifting throug	h the CRC			
bit 5	1 = FIFO is 0 = FIFO is CRCISEL: (1 = Interrup 0 = Interrup CRCGO: St 1 = Starts (CRC FIFO Empty empty not empty CRC Interrupt Set t on FIFO is emp t on shift is comp	election bit ty; the final wore lete and results		shifting throug	h the CRC			
bit 5	1 = FIFO is 0 = FIFO is CRCISEL: (1 1 = Interrupi 0 = Interrupi CRCGO: St 1 = Starts (2) 0 = CRC se	CRC FIFO Empty empty not empty CRC Interrupt Set t on FIFO is emp t on shift is comp art CRC bit CRC serial shifter	election bit ity; the final word lete and results ned off		shifting throug	h the CRC			
bit 5 bit 4	1 = FIFO is 0 = FIFO is CRCISEL: (1 1 = Interrupi 0 = Interrupi CRCGO: St 1 = Starts (2 0 = CRC se LENDIAN: [CRC FIFO Empty empty not empty CRC Interrupt Set t on FIFO is emp t on shift is comp art CRC bit CRC serial shifter erial shifter is turn	election bit ity; the final word lete and results ned off on Select bit	are ready					
bit 5 bit 4	1 = FIFO is 0 = FIFO is CRCISEL: (1 1 = Interrupi 0 = Interrupi CRCGO: St 1 = Starts (0 0 = CRC se LENDIAN: [1 1 = Data wo	CRC FIFO Empty empty not empty CRC Interrupt Set t on FIFO is emp t on shift is comp art CRC bit CRC serial shifter erial shifter is turn Data Shift Directi	election bit ity; the final word lete and results ned off on Select bit o the CRC, starti	are ready ng with the LSb	o (little-endian)				

REGISTER 23-1: CRCCON1: CRC CONTROL 1 REGISTER

REGISTER 23-2: CRCCON2: CRC CONTROL 2 REGISTER	REGISTER 23-2:	CRCCON2: CRC CONTROL 2 REGISTER
--	----------------	---------------------------------

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	_			DWIDTH[4:0]]	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			PLEN[4:0]		
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit U = Unimplemented bit, read as '0'				
-n = Value at POR '		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	nown
bit 15-13	Unimplomor	ited: Read as '	o '				
	-						
bit 12-8	-]: CRC Data W		•			
	Configures th	e width of the o	data word (Da	ta Word Width –	1).		
bit 7-5	Unimplemen	ted: Read as '	0'				
bit 4-0	PLEN[4:0]: F	olynomial Leng	gth Configurat	tion bits			
	Configures th	e length of the	polynomial (F	olynomial Lengt	h – 1).		
	5	0		, 0	,		

^{© 2015-2019} Microchip Technology Inc.

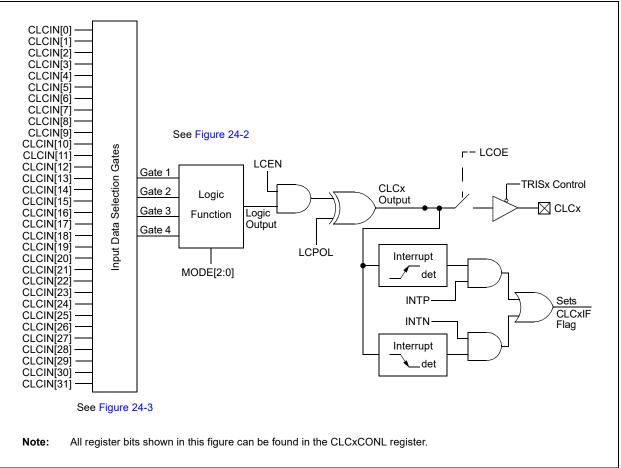
REGISTER 23-3: CRCXORL: CRC XOR POLYNOMIAL REGISTER, LOW BYTE

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			Х	[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
			X[7:1]				_
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-1 X[15:1]: XOR of Polynomial Term xⁿ Enable bits

bit 0 Unimplemented: Read as '0'

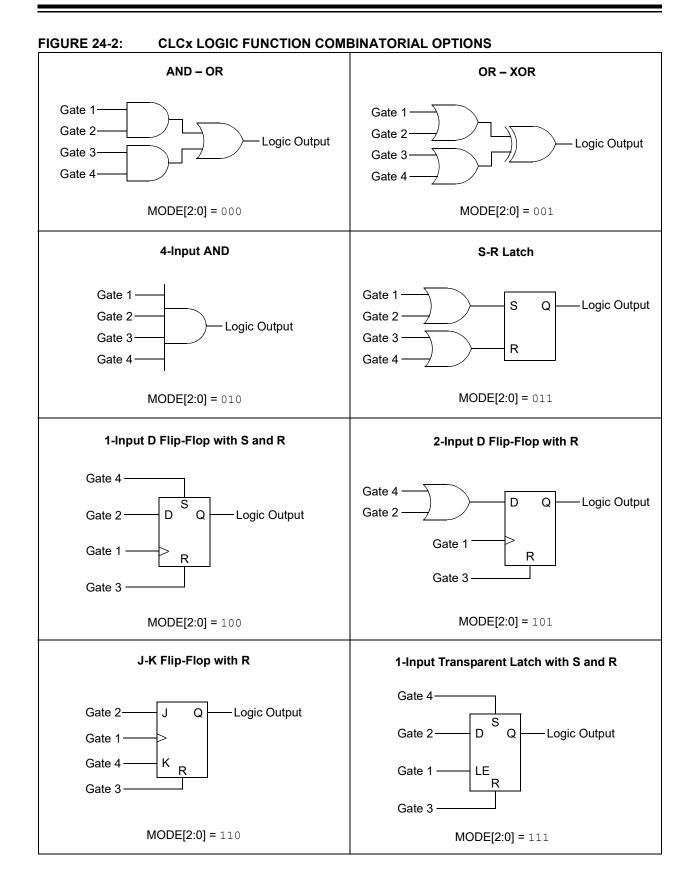
REGISTER 23-4: CRCXORH: CRC XOR POLYNOMIAL REGISTER, HIGH BYTE


R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			X[:	31:24]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			X[2	23:16]			
bit 7							bit C
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, r		d as '0'		
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-0 **X[31:16]:** XOR of Polynomial Term xⁿ Enable bits

24.0 CONFIGURABLE LOGIC CELL (CLC)

Note: This data sheet summarizes the features of the PIC24FJ1024GA610/GB610 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Configurable Logic Cell (CLC)" (www.microchip.com/DS70005298) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM. The Configurable Logic Cell (CLC) module allows the user to specify combinations of signals as inputs to a logic function and to use the logic output to control other peripherals or I/O pins. This provides greater flexibility and potential in embedded designs, since the CLC module can operate outside the limitations of software execution and supports a vast amount of output designs.


There are four input gates to the selected logic function. These four input gates select from a pool of up to 32 signals that are selected using four data source selection multiplexers. Figure 24-1 shows an overview of the module. Figure 24-3 shows the details of the data source multiplexers and logic input gate connections.

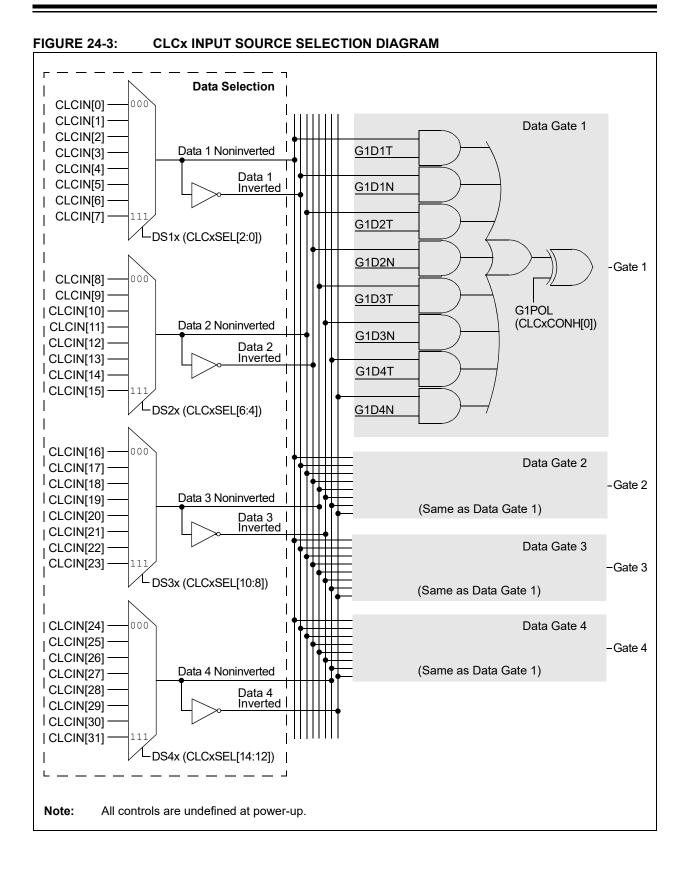


FIGURE 24-1: CLCx MODULE

 $\ensuremath{\textcircled{}^\circ}$ 2015-2019 Microchip Technology Inc.

PIC24FJ1024GA610/GB610 FAMILY

^{© 2015-2019} Microchip Technology Inc.

24.1 Control Registers

The CLCx module is controlled by the following registers:

- CLCxCONL
- CLCxCONH
- CLCxSEL
- CLCxGLSL
- CLCxGLSH

The CLCx Control registers (CLCxCONL and CLCxCONH) are used to enable the module and interrupts, control the output enable bit, select output polarity and select the logic function. The CLCx Control registers also allow the user to control the logic polarity of not only the cell output, but also some intermediate variables. The CLCx Input MUX Select register (CLCxSEL) allows the user to select up to four data input sources using the four data input selection multiplexers. Each multiplexer has a list of eight data sources available.

The CLCx Gate Logic Input Select registers (CLCxGLSL and CLCxGLSH) allow the user to select which outputs from each of the selection MUXes are used as inputs to the input gates of the logic cell. Each data source MUX outputs both a true and a negated version of its output. All of these eight signals are enabled, ORed together by the logic cell input gates.

REGISTER 24-1: CLCxCONL: CLCx CONTROL REGISTER (LOW)

R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0			
LCEN	—	—		INTP	INTN	—				
bit 15							bit 8			
R/W-0	R-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
LCOE	LCOUT	LCPOL	—		MODE2	MODE1	MODE0			
bit 7							bit 0			
Legend:										
R = Readable	e hit	W = Writable	hit	II = I Inimplen	nented bit, read	1 as 'O'				
-n = Value at		'1' = Bit is set	JI	'0' = Bit is clea		x = Bit is unkn	0.000			
	FOR	I – DILIS SEL			areu		OWIT			
bit 15	LCEN: CLCx	Enable bit								
		enabled and mi	xing input sign	als						
		disabled and ha								
bit 14-12	Unimplement	ted: Read as ')'							
bit 11	INTP: CLCx F	Positive Edge Ir	nterrupt Enable	e bit						
		will be generate		ig edge occurs	on LCOUT					
		will not be gene								
bit 10		Vegative Edge								
		 Interrupt will be generated when a falling edge occurs on LCOUT Interrupt will not be generated 								
bit 9-8		ted: Read as '								
bit 7	LCOE: CLCx	Port Enable bit								
		t pin output is e								
	•	t pin output is d								
bit 6		x Data Output S	Status bit							
	1 = CLCx output									
bit 5		yut low x Output Polari	ty Control hit							
DIL D		ut of the modul	•							
		ut of the modul		d						
bit 4-3		ted: Read as '								
	-									

REGISTER 24-1: CLCxCONL: CLCx CONTROL REGISTER (LOW) (CONTINUED)

- bit 2-0 **MODE[2:0]:** CLCx Mode bits
 - 111 = Cell is a 1-input transparent latch with S and R
 - 110 = Cell is a JK flip-flop with R
 - 101 = Cell is a 2-input D flip-flop with R
 - 100 = Cell is a 1-input D flip-flop with S and R
 - 011 = Cell is an SR latch
 - 010 = Cell is a 4-input AND
 - 001 = Cell is an OR-XOR
 - 000 = Cell is a AND-OR

REGISTER 24-2: CLCxCONH: CLCx CONTROL REGISTER (HIGH)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—					—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—	G4POL	G3POL	G2POL	G1POL
bit 7							bit 0

Legend:

Logona.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-4	Unimplemented: Read as '0'
bit 3	G4POL: Gate 4 Polarity Control bit
	1 = The output of Channel 4 logic is inverted when applied to the logic cell0 = The output of Channel 4 logic is not inverted
bit 2	G3POL: Gate 3 Polarity Control bit
	1 = The output of Channel 3 logic is inverted when applied to the logic cell0 = The output of Channel 3 logic is not inverted
bit 1	G2POL: Gate 2 Polarity Control bit
	1 = The output of Channel 2 logic is inverted when applied to the logic cell0 = The output of Channel 2 logic is not inverted
bit 0	G1POL: Gate 1 Polarity Control bit
	1 = The output of Channel 1 logic is inverted when applied to the logic cell0 = The output of Channel 1 logic is not inverted

U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0				
_		DS4[2:0]				DS3[2:0]					
bit 15							bit 8				
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0				
_		DS2[2:0]		_		DS1[2:0]					
bit 7							bit (
Legend:	la hit		.:+	II – Unimplor	monted hit rea	d ee 'O'					
R = Readab		W = Writable k	DIL	•	nented bit, rea						
-n = Value a	IT POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own				
bit 15	Unimpleme	nted: Read as '0	,								
bit 14-12	DS4[2:0]: D	ata Selection ML	IX 4 Signal S	election bits							
	111 = MCCF	⊃3 Compare Eve	nt Interrupt F	lag (CCP3IF)							
		P1 Compare Eve	nt Interrupt F	lag (CCP1IF)							
	101 = Unimp	Jemented									
		Input (SDIx) corr	esponding to	the CLCx modu	ule (see Table 2	24-1)					
		parator 3 output									
	001 = Modu 000 = CLCI	le-specific CLCx	output (see	lable 24-1)							
bit 11		nted: Read as '0	,								
bit 10-8	-			election bits							
	DS3[2:0]: Data Selection MUX 3 Signal Selection bits 111 = MCCP3 Compare Event Interrupt Flag (CCP3IF)										
	110 = MCCF	110 = MCCP2 Compare Event Interrupt Flag (CCP2IF)									
		Channel 1 interro x RX output corr	•	the CLCy mod		24 1)					
		Output (SDOx) c									
	010 = Comp	arator 2 output			,	,					
		output (see Tabl	e 24-1)								
bit 7		nted: Read as '0	3								
bit 6-4	-	ata Selection ML		election bits							
		P2 Compare Eve	-								
	110 = MCCP1 Compare Event Interrupt Flag (CCP1IF)										
	101 = DMA Channel 0 interrupt 100 = A/D conversion done interrupt										
	100 = A/D conversion done interrupt 011 = UARTx TX input corresponding to the CLCx module (see Table 24-1)										
	010 = Comparator 1 output										
	001 = CLCx 000 = CLCI	output (see Tabl	e 24-1)								
bit 3		nted: Read as '0	3								
bit 2-0	-	ata Selection ML		election bits							
		3 match event	0								
		2 match event									
	101 = Unimp 100 = REFC										
		C/LPRC clock so	urce								
	010 = SOSC	C clock source									
	-	m clock (TCY)									
	000 = CLCI	va I/O pin									

Bit Field Value		Input Source							
		CLC1	CLC2	CLC3	CLC4				
DS4[2:0]	011	SDI1	SDI2	SDI3	Unimplemented				
	001	CLC2 Output	CLC1 Output	CLC4 Output	CLC3 Output				
DS3[2:0]	100	U1RX	U2RX	U3RX	U4RX				
	011	SDO1	SDO2	SDO3	Unimplemented				
	001	CLC1 Output	CLC2 Output	CLC3 Output	CLC4 Output				
DS2[2:0]	011	U1TX	U2TX	U3TX	U4TX				
	001	CLC2 Output	CLC1 Output	CLC4 Output	CLC3 Output				

TABLE 24-1: MODULE-SPECIFIC INPUT DATA SOURCES

REGISTER 24-4: CLCxGLSL: CLCx GATE LOGIC INPUT SELECT LOW REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| G1D4T | G1D4N | G1D3T | G1D3N | G1D2T | G1D2N | G1D1T | G1D1N |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	G2D4T: Gate 2 Data Source 4 True Enable bit
	 1 = The Data Source 4 signal is enabled for Gate 2 0 = The Data Source 4 signal is disabled for Gate 2
bit 14	G2D4N: Gate 2 Data Source 4 Negated Enable bit
	1 = The Data Source 4 inverted signal is enabled for Gate 20 = The Data Source 4 inverted signal is disabled for Gate 2
bit 13	G2D3T: Gate 2 Data Source 3 True Enable bit
	1 = The Data Source 3 signal is enabled for Gate 20 = The Data Source 3 signal is disabled for Gate 2
bit 12	G2D3N: Gate 2 Data Source 3 Negated Enable bit
	 1 = The Data Source 3 inverted signal is enabled for Gate 2 0 = The Data Source 3 inverted signal is disabled for Gate 2
bit 11	G2D2T: Gate 2 Data Source 2 True Enable bit
	1 = The Data Source 2 signal is enabled for Gate 20 = The Data Source 2 signal is disabled for Gate 2
bit 10	G2D2N: Gate 2 Data Source 2 Negated Enable bit
	 1 = The Data Source 2 inverted signal is enabled for Gate 2 0 = The Data Source 2 inverted signal is disabled for Gate 2
bit 9	G2D1T: Gate 2 Data Source 1 True Enable bit
	1 = The Data Source 1 signal is enabled for Gate 20 = The Data Source 1 signal is disabled for Gate 2

© 2015-2019 Microchip Technology Inc.

REGISTER 24-4: CLCxGLSL: CLCx GATE LOGIC INPUT SELECT LOW REGISTER (CONTINUED)

bit 8	G2D1N: Gate 2 Data Source 1 Negated Enable bit
	1 = The Data Source 1 inverted signal is enabled for Gate 20 = The Data Source 1 inverted signal is disabled for Gate 2
bit 7	G1D4T: Gate 1 Data Source 4 True Enable bit
	1 = The Data Source 4 signal is enabled for Gate 10 = The Data Source 4 signal is disabled for Gate 1
bit 6	G1D4N: Gate 1 Data Source 4 Negated Enable bit
	 1 = The Data Source 4 inverted signal is enabled for Gate 1 0 = The Data Source 4 inverted signal is disabled for Gate 1
bit 5	G1D3T: Gate 1 Data Source 3 True Enable bit
	1 = The Data Source 3 signal is enabled for Gate 10 = The Data Source 3 signal is disabled for Gate 1
bit 4	G1D3N: Gate 1 Data Source 3 Negated Enable bit
	 1 = The Data Source 3 inverted signal is enabled for Gate 1 0 = The Data Source 3 inverted signal is disabled for Gate 1
bit 3	G1D2T: Gate 1 Data Source 2 True Enable bit
	1 = The Data Source 2 signal is enabled for Gate 10 = The Data Source 2 signal is disabled for Gate 1
bit 2	G1D2N: Gate 1 Data Source 2 Negated Enable bit
	 1 = The Data Source 2 inverted signal is enabled for Gate 1 0 = The Data Source 2 inverted signal is disabled for Gate 1
bit 1	G1D1T: Gate 1 Data Source 1 True Enable bit
	1 = The Data Source 1 signal is enabled for Gate 10 = The Data Source 1 signal is disabled for Gate 1
bit 0	G1D1N: Gate 1 Data Source 1 Negated Enable bit
	1 = The Data Source 1 inverted signal is enabled for Gate 10 = The Data Source 1 inverted signal is disabled for Gate 1

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 G4D4T G4D4N G4D3T G4D3N G4D2T G4D2N G4D1T G4D1N bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 G3D4N G3D4T G3D3T G3D3N G3D2T G3D2N G3D1T G3D1N bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '0' = Bit is cleared '1' = Bit is set x = Bit is unknown bit 15 G4D4T: Gate 4 Data Source 4 True Enable bit 1 = The Data Source 4 signal is enabled for Gate 4 0 = The Data Source 4 signal is disabled for Gate 4 bit 14 G4D4N: Gate 4 Data Source 4 Negated Enable bit 1 = The Data Source 4 inverted signal is enabled for Gate 4 0 = The Data Source 4 inverted signal is disabled for Gate 4 bit 13 G4D3T: Gate 4 Data Source 3 True Enable bit 1 = The Data Source 3 signal is enabled for Gate 4 0 = The Data Source 3 signal is disabled for Gate 4 bit 12 G4D3N: Gate 4 Data Source 3 Negated Enable bit 1 = The Data Source 3 inverted signal is enabled for Gate 4 0 = The Data Source 3 inverted signal is disabled for Gate 4 bit 11 G4D2T: Gate 4 Data Source 2 True Enable bit 1 = The Data Source 2 signal is enabled for Gate 4 0 = The Data Source 2 signal is disabled for Gate 4 bit 10 G4D2N: Gate 4 Data Source 2 Negated Enable bit 1 = The Data Source 2 inverted signal is enabled for Gate 4 0 = The Data Source 2 inverted signal is disabled for Gate 4 bit 9 G4D1T: Gate 4 Data Source 1 True Enable bit 1 = The Data Source 1 signal is enabled for Gate 4 0 = The Data Source 1 signal is disabled for Gate 4 bit 8 G4D1N: Gate 4 Data Source 1 Negated Enable bit 1 = The Data Source 1 inverted signal is enabled for Gate 4 0 = The Data Source 1 inverted signal is disabled for Gate 4 bit 7 G3D4T: Gate 3 Data Source 4 True Enable bit 1 = The Data Source 4 signal is enabled for Gate 3 0 = The Data Source 4 signal is disabled for Gate 3 bit 6 G3D4N: Gate 3 Data Source 4 Negated Enable bit 1 = The Data Source 4 inverted signal is enabled for Gate 3 0 = The Data Source 4 inverted signal is disabled for Gate 3 bit 5 G3D3T: Gate 3 Data Source 3 True Enable bit 1 = The Data Source 3 signal is enabled for Gate 3 0 = The Data Source 3 signal is disabled for Gate 3 bit 4 G3D3N: Gate 3 Data Source 3 Negated Enable bit 1 = The Data Source 3 inverted signal is enabled for Gate 3 0 = The Data Source 3 inverted signal is disabled for Gate 3

REGISTER 24-5: CLCxGLSH: CLCx GATE LOGIC INPUT SELECT HIGH REGISTER

 $\ensuremath{\textcircled{}^\circ}$ 2015-2019 Microchip Technology Inc.

REGISTER 24-5: CLCxGLSH: CLCx GATE LOGIC INPUT SELECT HIGH REGISTER (CONTINUED)

bit 3	G3D2T: Gate 3 Data Source 2 True Enable bit
	1 = The Data Source 2 signal is enabled for Gate 3
	0 = The Data Source 2 signal is disabled for Gate 3
bit 2	G3D2N: Gate 3 Data Source 2 Negated Enable bit
	1 = The Data Source 2 inverted signal is enabled for Gate 3
	$_{\rm 0}$ = The Data Source 2 inverted signal is disabled for Gate 3
bit 1	G3D1T: Gate 3 Data Source 1 True Enable bit
	1 = The Data Source 1 signal is enabled for Gate 3
	0 = The Data Source 1 signal is disabled for Gate 3
bit 0	G3D1N: Gate 3 Data Source 1 Negated Enable bit
	1 = The Data Source 1 inverted signal is enabled for Gate 3
	0 = The Data Source 1 inverted signal is disabled for Gate 3

25.0 12-BIT A/D CONVERTER WITH THRESHOLD DETECT

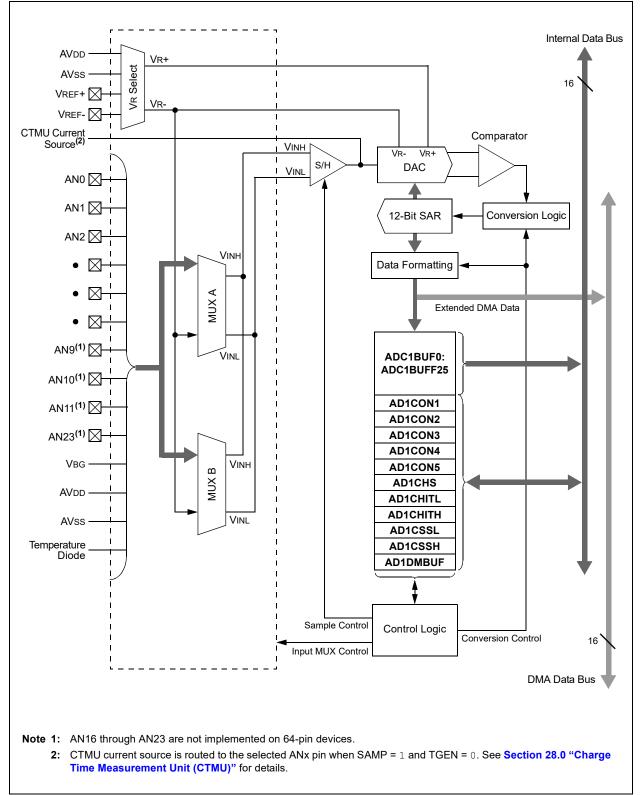
Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the 12-Bit A/D Converter, refer to "12-Bit A/D Converter with Threshold Detect" (www.microchip.com/DS39739) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The A/D Converter has the following key features:

- Successive Approximation Register (SAR)
 Conversion
- Selectable 10-Bit or 12-Bit (default) Conversion Resolution
- · Conversion Speeds of up to 200 ksps (12-bit)
- Up to 24 Analog Input Channels (internal and external)
- Multiple Internal Reference Input Channels
- External Voltage Reference Input Pins
- Unipolar Differential Sample-and-Hold (S/H)
 Amplifier
- Automated Threshold Scan and Compare
 Operation to Pre-Evaluate Conversion Results
- Selectable Conversion Trigger Source
- Fixed Length (one word per channel), Configurable Conversion Result Buffer
- Four Options for Results Alignment
- Configurable Interrupt Generation
- Enhanced DMA Operations with Indirect Address Generation
- · Operation During CPU Sleep and Idle modes

The 12-bit A/D Converter module is an enhanced version of the 10-bit module offered in earlier PIC24 devices. It is a Successive Approximation Register (SAR) Converter, enhanced with 12-bit resolution, a wide range of automatic sampling options, tighter integration with other analog modules and a configurable results buffer.

It also includes a unique Threshold Detect feature that allows the module itself to make simple decisions based on the conversion results.


A simplified block diagram for the module is shown in Figure 25-1.

25.1 Basic Operation

To perform a standard A/D conversion:

- 1. Configure the module:
 - a) Configure port pins as analog inputs by setting the appropriate bits in the ANSx registers (see Section 11.2 "Configuring Analog Port Pins (ANSx)" for more information).
 - b) Select the voltage reference source to match the expected range on analog inputs (AD1CON2[15:13]).
 - c) Select the positive and negative multiplexer inputs for each channel (AD1CHS[15:0]).
 - Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3[7:0]).
 - e) Select the appropriate sample/ conversion sequence (AD1CON1[7:4] and AD1CON3[12:8]).
 - For Channel A scanning operations, select the positive channels to be included (AD1CSSH and AD1CSSL registers).
 - g) Select how conversion results are presented in the buffer (AD1CON1[9:8] and AD1CON5 register).
 - h) Select the interrupt rate (AD1CON2[5:2]).
 - i) Turn on A/D module (AD1CON1[15]).
- 2. Configure the A/D interrupt (if required):
 - a) Clear the AD1IF bit (IFS0[13]).
 - b) Enable the AD1IE interrupt (IEC0[13]).
 - c) Select the A/D interrupt priority (IPC3[6:4]).
- If the module is configured for manual sampling, set the SAMP bit (AD1CON1[1]) to begin sampling.

^{© 2015-2019} Microchip Technology Inc.

25.2 Registers

The 12-bit A/D Converter is controlled through a total of 13 registers:

- AD1CON1 through AD1CON5 (Register 25-1 through Register 25-4)
- AD1CHS (Register 25-5)
- AD1CHITH and AD1CHITL (Register 25-7 and Register 25-8)
- AD1CSSH and AD1CSSL (Register 25-9 and Register 25-10)
- AD1CTMENH and AD1CTMENL (Register 25-11 and Register 25-12)

25.3 Achieving Maximum A/D Converter (ADC) Performance

In order to get the shortest overall conversion time (called the "throughput") while maintaining accuracy, several factors must be considered. These are described in detail below.

- Dependence of AVDD If the AVDD supply is < 2.7V, the Charge Pump Enable bit (PUMPEN, AD1CON3[13]) should be set to '1'. The input channel multiplexer has a varying resistance with AVDD (the lower AVDD, the higher the internal switch resistance). The charge pump provides a higher internal AVDD to keep the switch resistance as low as possible.
- Dependence on TAD The ADC timing is driven by TAD, not TCYC. Selecting the TAD time correctly is critical to getting the best ADC throughput. It is important to note that the overall ADC throughput is not simply the 'Conversion Time' of the SAR; it is the combination of the Conversion Time, the Sample Time and additional TAD delays for internal synchronization logic.
- Relationship between TCYC and TAD There is not a fixed 1:1 timing relationship between TCYC and TAD. The fastest possible throughput is fundamentally set by TAD (min), not by TCYC. The TAD time is set as a programmable integer multiple of TCYC by the ADCS[7:0] bits. Referring to Table 33-35, the TAD (min) time is greater than the 4 MHz period of the dedicated ADC RC clock generator. Therefore, TAD must be 2 TCYC in order to use the RC clock for fastest throughput. The TAD (min) is a multiple of 3.597 MHz as opposed to 4 MHz. To run as fast as possible, TCYC must be a multiple of TAD (min) because values of ADCSx are integers. For example, if a standard "color burst" crystal of 14.31818 MHz is used, TCYC is 279.4 ns, which is very close to TAD (min) and the ADC throughput is optimal. Running at 16 MHz will actually reduce the throughput, because TAD will have to be 500 ns as the TCYC of 250 ns violates TAD (min).

 Dependence on driving Source Resistance (Rs) – Certain transducers have high output impedance $(> 2.5 \text{ k}\Omega)$. Having a high Rs will require longer sampling time to charge the S/H capacitor through the resistance path (see Figure 25-2). The worst case scenario is a full-range voltage step of AVss to AVDD, with the sampling cap at AVss. The capacitor time constant is (Rs + RIC + Rss) (CHOLD) and the sample time needs to be six time constants minimum (eight preferred). Since the ADC logic timing is TAD-based, the sample time (in TAD) must be long enough, over all conditions, to charge/discharge CHOLD. Do not assume one TAD is sufficient sample time; longer times may be required to achieve the accuracy needed by the application. The value of CHOLD is 40 pF.

A small amount of charge is present at the ADC input pin when the sample switch is closed. If Rs is high, this will generate a DC error exceeding one LSB. Keeping Rs < 50 Ω is recommended for best results. The error can also be reduced by increasing sample time (a 2 k Ω value of Rs requires a 3 μ S sample time to eliminate the error).

• Calculating Throughput – The throughput of the ADC is based on TAD. The throughput is given by:

where:

Sample Time is the calculated TAD periods for the application.

SAR Conversion Time is 14 TAD for 10-bit and 16 TAD for 12-bit conversions.

For example, using an 8 MHz FRC means the TCYC = 250 ns. This requires: TAD = 2 TCYC = 500 ns. Therefore, the throughput is:

Throughput =
$$\left(\frac{1}{500 \text{ ns} + 16 \cdot 500 \text{ ns}}\right) = 117.65 \text{ KS/sec}$$

If a certain transducer has a 20 $k\Omega$ output impedance, the maximum sample time is determined by:

Sample Time =
$$6 \cdot (RS + RIC + RSS) \cdot CHOLD$$

= $6 \cdot (20K + 250 + 350) \cdot 40 \, pF$
= $4.95 \, \mu S$

If TAD = 500 ns, this requires a Sample Time of 4.95 us/500 ns = 10 TAD (for a full-step voltage on the transducer output).

^{© 2015-2019} Microchip Technology Inc.

R/W-0	U-0	R/W-0	r-0	r-0	R/W-0	R/W-0	R/W-0			
ADON		ADSIDL			MODE12	FORM1	FORM0			
bit 15							bit 8			
		R/W-0	D/M/ 0		R/W-0					
R/W-0	R/W-0		R/W-0	U-0		HSC/R/W-0	HSC/R/C-0			
SSRC3 bit 7	SSRC2	SSRC1	SSRC0	_	ASAM	SAMP	DONE bit			
							DI			
Legend:		r = Reserved	bit	U = Unimpler	mented bit, read	d as '0'				
R = Readab	le bit	W = Writable	bit	HSC = Hardv	vare Settable/C	learable bit				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	C = Clearable	bit			
bit 15	ADON: A/D	Operating Mode	e bit							
	1 = A/D Con 0 = A/D Con	verter is operati verter is off	ng							
bit 14	Unimpleme	nted: Read as '	0'							
bit 13	ADSIDL: A/[D Stop in Idle M	ode bit							
		nues module op es module opera			lle mode					
bit 12-11	Reserved: N	/laintain as '0'								
bit 10	MODE12: A/	/D 12-Bit Operat	tion Mode bit							
	1 = 12-bit A/ 0 = 10-bit A/									
bit 9-8	FORM[1:0]:	Data Output Fo	rmat bits (see f	formats followir	ng)					
		nal result, signe								
		e fractional resu I result, signed,	•	eft justified						
		e decimal result		ht justified						
bit 7-4		Sample Clock S		-						
		IP is cleared by								
	0010 = Time									
	0100 = CTMU Trigger 0101 = Timer1 (will not trigger during Sleep mode)									
		er1 (will not trigg er1 (may trigger								
		-Convert mode		louc)						
bit 3	Unimpleme	nted: Read as '	0'							
bit 2	•	Sample Auto-St								
	1 = Sampling	g begins immed g begins when S	iately after last		AMP bit is auto	-set				
bit 1		Sample Enable		,						
	1 = A/D Sam	ple-and-Hold an ple-and-Hold an	mplifiers are sa							
bit 0		Conversion Stat	•							
2.00		version cycle ha								
	0 = A/D conv									

REGISTER 25-1: AD1CON1: A/D CONTROL REGISTER 1

	25-2: AD10			EGISTER 2			
R/W-0	R/W-0	R/W-0	r-0	R/W-0	R/W-0	U-0	U-0
PVCFG1	PVCFG0	NVCFG0		BUFREGEN	CSCNA		
bit 15							bit 8
R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS	SMPI4	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS
bit 7							bit 0
Legend:		r = Reserved b	pit				
R = Readable	e bit	W = Writable k	bit	U = Unimplem	ented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-14		emented, do not		age Reference C	onfiguration bi	ts	
bit 13	NVCFG0: A/I 1 = External V		gative Voltag	e Reference Con	figuration bit		
	0 = AVss						
bit 12	Reserved: M	laintain as '0'					
bit 11	BUFREGEN:	A/D Buffer Reg	jister Enable	bit			
		on result is load t buffer is treate		uffer location dete	ermined by the	converted cha	nnel
bit 10	CSCNA: Sca	n Input Selectio	ns for CH0+	During Sample A	A bit		
	1 = Scans inp 0 = Does not						
bit 9-8	Unimplemen	ted: Read as '0	,				
bit 7	BUFS: Buffer	⁻ Fill Status bit					
	1 = A/D is cu [buffer st [buffer st 0 = A/D is cu User sho <u>When DMAE</u> 1 = A/D is cu ADC1BU 0 = A/D is cu	eart + (buffer size art + (buffer size urrently filling the uld access data N = 0: urrently filling AD JF0-ADC1BUF1	e destination e – 1)]. User e/2) – 1]. e destination located from 0C1BUF13-A 2 0C1BUF0-AE	buffer from [buffe should access da buffer from [buffe [buffer start + (bu DC1BUF25, use DC1BUF12, user	ata located fror er start] to [buff ffer size/2)] to [r should acces	n [buffer start] t fer start + (buffe buffer start + (bi s data in	er size/2) – 1].
bit 6-2				ent Rate Select b			
				e conversion for le conversion for			
	00000 = Inte	rrupts at the cor	npletion of th	ne conversion for ne conversion for		mple	
bit 1	1 = Starts buf	r Fill Mode Sele ffer filling at ADC tarts filling buffe	C1BUF0 on fi	irst interrupt and . IF0	ADC1BUF13 c	on next interrup	t
bit 0	-	ate Input Sampl					
	1 = Uses cha	ato input Gampi					

REGISTER 25-2: AD1CON2: A/D CONTROL REGISTER 2

© 2015-2019 Microchip Technology Inc.

R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC ⁽¹⁾	EXTSAM	PUMPEN ⁽²⁾	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ADC	S[7:0]			
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable b	it	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 14	0 = Clock der EXTSAM: Ex 1 = A/D is stil	d ADC RC clock rived from syster tended Samplin I sampling after ished sampling	n clock g Time bit	MHz nominal)			
bit 13	1 = Charge p	narge Pump Ena ump for switche ump for switche	s is enabled				
bit 12-8	SAMC[4:0]: / 11111 = 31 T 00001 = 1 TA 00000 = 0 TA	١D	ne Select bits				
bit 7-0			Clock Select I	bits			
Note 1: Se	lasting the inte			hat ADCSx be '	1 ['] an ana stan C		0

REGISTER 25-3: AD1CON3: A/D CONTROL REGISTER 3

2: Enable the charge pump if AVDD is < 2.7V. Longer sample times are required due to the increase of the internal resistance of the MUX if the charge pump is disabled.

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0			
ASEN	LPEN	CTMREQ	BGREQ			ASINT1	ASINT0			
bit 15							bit			
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
—		—	—	WM1	WM0	CM1	CM0			
bit 7							bit			
Legend:										
R = Readab	le bit	W = Writable	oit	U = Unimplem	ented bit, rea	d as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
L:1 4 C										
bit 15	-	Scan Enable bi								
	1 = Auto-scan 0 = Auto-scan									
bit 14	• • • • • • • • • • • • •	ower Enable bi	t							
		er is enabled af								
	•	r is enabled aft								
bit 13	CTMREQ: CT	MU Request b	it							
		enabled when t not enabled by		oled and active						
bit 12	BGREQ: Ban	d Gap Reques	bit							
		is enabled whe		nabled and acti	ve					
bit 11-10	Unimplement	ted: Read as ')'							
bit 9-8	ASINT[1:0]: A	Auto-Scan (Thr	eshold Detect)	Interrupt Mode	bits					
	10 = Interrupt	after valid com after Threshol	pare has occu	ence has compl irred ence has compl		l compare has o	occurred			
bit 7-4	Unimplement	ted: Read as ')'							
bit 3-2	WM[1:0]: Writ	te Mode bits								
		11 = Reserved								
	10 = Auto-compare only (conversion results are not saved, but interrupts are generated when a valid									
	match occurs, as defined by the CMx and ASINTx bits) 01 = Convert and save (conversion results are saved to locations as determined by the register bits									
		match occurs, a					ie register bi			
	00 = Legacy o	operation (conv	ersion data are	e saved to a loc	ation determir	ned by the Buffe	er register bit			
bit 1-0	CM[1:0]: Com	npare Mode bit	6							
	defined l	by the correspo	nding buffer p							
	the corre	esponding buffe	er pair	curs if the conve						
		Than mode: Va		rs if the result is	greater than t	the value in the	correspondir			
			match occurs i	f the result is les	s than the val	ue in the corres	ponding Buff			

REGISTER 25-4: AD1CON5: A/D CONTROL REGISTER 5

© 2015-2019 Microchip Technology Inc.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NB2	CH0NB1	CH0NB0	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0
bit 15				·			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NA2	CH0NA1	CH0NA0	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'	
-n = Value at		'1' = Bit is set	~	'0' = Bit is clea		x = Bit is unkn	own
bit 15-13	CH0NB[2:0]:	Sample B Cha	nnel 0 Negativ	e Input Select I	oits		
	1xx = Unimpl	-	C C	·			
	01x = Unimpl						
	001 = Unimpl	emented					
	000 = AV ss						
bit 12-8			nnel 0 Positive	e Input Select bi	ts		
	11110 = AVD						
	11101 = AVs	s ⁽¹⁾ d Gap Referen	(1/PC)(1)				
	11011 = Res						
	11010 = Res						
	11001 = No c	hannels conne	cted (used for	CTMU)			
			cted (used for	CTMU tempera	ature sensor)		
	10111 = AN2						
	10110 = AN2						
	10101 = AN2 10100 = AN2						
	10011 = AN1						
	10010 = AN1						
	10001 = AN1	7					
	10000 = AN1						
	01111 = AN1	-					
	01110 = AN1 01101 = AN1						
	01101 – AN1 01100 – AN1						
	01011 = AN1						
	01010 = AN1	0					
	01001 = AN9	1					
	01000 = AN8						
	00111 = AN7						
	00110 = AN6 00101 = AN5						
	00101 – AN3						
	00011 = AN3						
	00010 = AN2						
	00001 = AN1						
	00000 = AN0	1					
bit 7-5		-	-	e Input Select I	oits		
	Same definition	ons as for CHO	NB[2:0]				
bit 4-0	CH0SA[4:0]:			e Input Select bi	its		

REGISTER 25-5: AD1CHS: A/D CHANNEL SELECT REGISTER

REGISTER 25-6: ANCFG: A/D BAND GAP REFERENCE CONFIGURATION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—	VBGUSB ⁽¹⁾	VBGADC ⁽¹⁾	VBGCMP ⁽¹⁾	VBGEN ⁽¹⁾
bit 7							bit 0

edend.	

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-4	Unimplemented: Read as '0'
bit 3	VBGUSB: Band Gap Reference Enable for USB bit ⁽¹⁾
	1 = Band gap reference is enabled
	0 = Band gap reference is disabled
bit 2	VBGADC: Band Gap Reference Enable for A/D bit ⁽¹⁾
	1 = Band gap reference is enabled
	0 = Band gap reference is disabled
bit 1	VBGCMP: Band Gap Reference Enable for CTMU and Comparator bit ⁽¹⁾
	1 = Band gap reference is enabled
	0 = Band gap reference is disabled
bit 0	VBGEN: Band Gap Reference Enable for VREG, BOR, HLVD, FRC, DCO, NVM and A/D Boost bit ⁽¹⁾
	1 = Band gap reference is enabled
	0 = Band gap reference is disabled

Note 1: When a module requests a band gap reference voltage, that reference will be enabled automatically after a brief start-up time. The user can manually enable the band gap references using the ANCFG register before enabling the module requesting the band gap reference to avoid this startup time (~1 ms).

^{© 2015-2019} Microchip Technology Inc.

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
	_	—	—	_	_	CHH[25:24]	
bit 15					·	•	bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			CHH[2	23:16]				
bit 7							bit 0	
Legend:								
R = Readab	ole bit	W = Writable b	it	U = Unimplen	nented bit, read	d as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 15-10	Unimplemer	nted: Read as '0'						
bit 9-0	CHH[25:16]:	A/D Compare H	it bits					
	If CM[1:0] = 1	.1:						

REGISTER 25-7: AD1CHITH: A/D SCAN COMPARE HIT REGISTER (HIGH WORD)⁽¹⁾

bit 9-0 **CHH[25:16]:** A/D Compare Hit bits <u>If CM[1:0] = 11:</u> 1 = A/D Result Buffer n has been written with data or a match has occurred 0 = A/D Result Buffer n has not been written with data <u>For All Other Values of CM[1:0]:</u> 1 = A match has occurred on A/D Result Channel n

0 = No match has occurred on A/D Result Channel n

Note 1: AD1CHITH is not available on 64-pin parts.

REGISTER 25-8: AD1CHITL: A/D SCAN COMPARE HIT REGISTER (LOW WORD)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CH	H[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			СН	H[7:0]			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable bit		U = Unimplem	nented bit, rea	ıd as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unknown	

1 = A/D Result Buffer n has been written with data or a match has occurred

0 = A/D Result Buffer n has not been written with data

For All Other Values of CM[1:0]:

- ${\tt 1}$ = A match has occurred on A/D Result Channel n
- 0 = No match has occurred on A/D Result Channel n

Note 1: AD1CHITL is not available on 64-pin parts.

REGISTER 25-9: AD1CSSH: A/D INPUT SCAN SELECT REGISTER (HIGH WORD)

U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0		
_	CSS[30:28]			—		CSS[26:24]			
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			CSS[23:16]					
bit 7							bit 0		
Legend:									
R = Readabl	e bit	W = Writable I	W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15	Unimpleme	nted: Read as '0)'						
bit 14-12	CSS[30:28]	A/D Input Scan	Selection bits						
	1 = Includes corresponding channel for input scan								
		annel for input s							
bit 11	Unimpleme	nted: Read as 'o)'						
bit 10-0	CSS[26:16]	A/D Input Scan	Selection bits						
	 1 = Includes corresponding channel for input scan 0 = Skips channel for input scan 								

REGISTER 25-10: AD1CSSL: A/D INPUT SCAN SELECT REGISTER (LOW WORD)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CSS	[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CSS	5[7:0]			
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 CSS[15:0]: A/D Input Scan Selection bits

1 = Includes corresponding channel for input scan

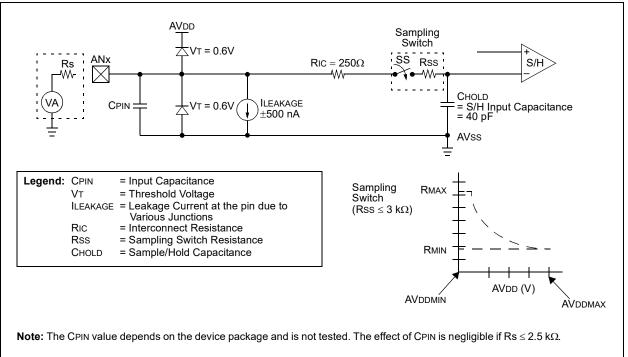
0 = Skips channel for input scan

^{© 2015-2019} Microchip Technology Inc.

U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	
	CTMEN[30:28]			—	—	CTMEN	N[25:24]	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			CTMEN	J[23:16] ⁽¹⁾				
bit 7							bit 0	
Legend:								
R = Readab	ole bit	W = Writable b	bit	U = Unimplemented bit, read as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15	Unimpleme	nted: Read as '0	,					
bit 14-12	CTMEN[30:	28]: CTMU Enab	led During Co	onversion bits				
		enabled and co			nel during conv	ersion		
	0 = CTMU is	s not connected t	o this channel					
bit 11-10	Unimpleme	nted: Read as '0	,					
bit 9-0	CTMEN[25:	16]: CTMU Enab	led During Co	onversion bits ⁽¹⁾				
	1 = CTMU is	enabled and co	nnected to the	e selected chani	nel during conv	ersion		
	0 = CTMU is	s not connected t	o this channel	l	-			

REGISTER 25-11: AD1CTMENH: A/D CTMU ENABLE REGISTER (HIGH WORD)

Note 1: CTMEN[23:16] bits are not available on 64-pin parts.

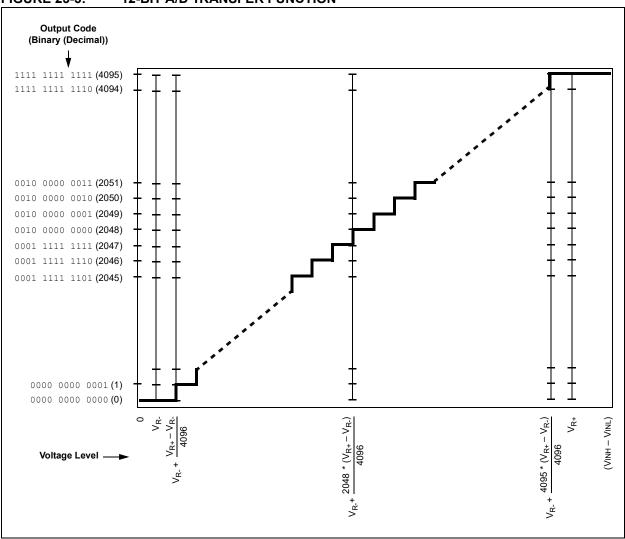

REGISTER 25-12: AD1CTMENL: A/D CTMU ENABLE REGISTER (LOW WORD)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CT	/IEN[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			СТ	MEN[7:0]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is s		'1' = Bit is set		'0' = Bit is cleared x = Bit is			nown

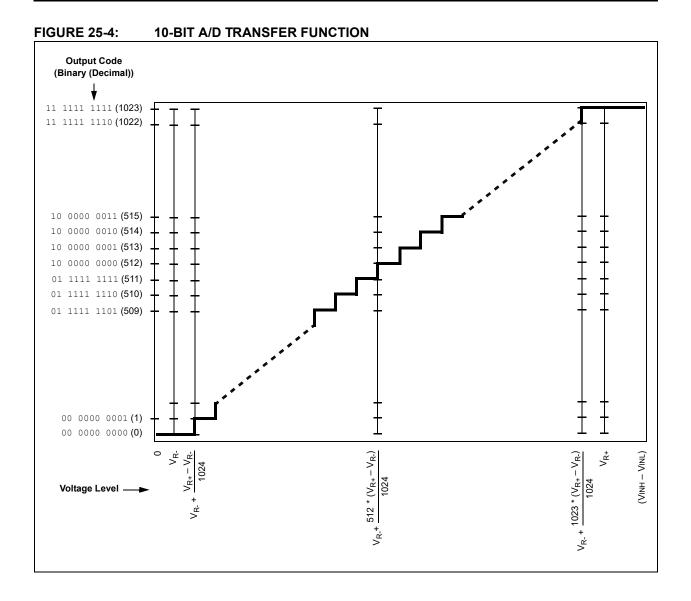
bit 15-0 **CTMEN[15:0]:** CTMU Enabled During Conversion bits 1 = CTMU is enabled and connected to the selected channel during conversion

0 = CTMU is not connected to this channel

EQUATION 25-1: A/D CONVERSION CLOCK PERIOD


 $T_{AD} = T_{CY} (ADCS + 1)$

$$ADCS = \frac{TAD}{TCY} - 1$$


Note: Based on Tcy = 2/Fosc; Doze mode and PLL are disabled.

 $[\]ensuremath{\textcircled{}^{\odot}}$ 2015-2019 Microchip Technology Inc.

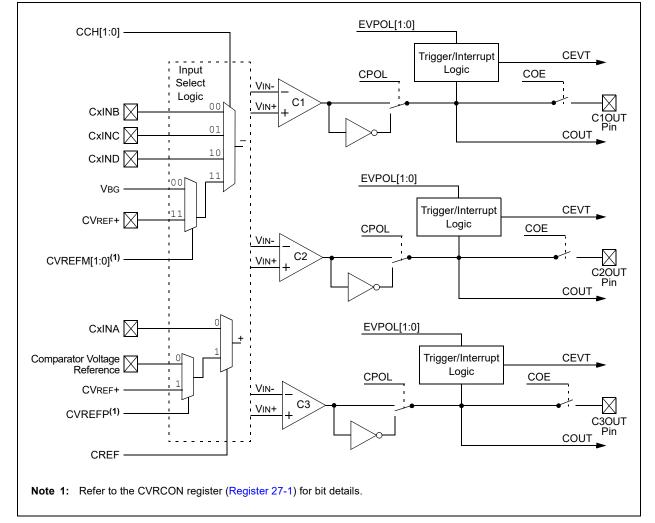
PIC24FJ1024GA610/GB610 FAMILY

FIGURE 25-3: 12-BIT A/D TRANSFER FUNCTION

© 2015-2019 Microchip Technology Inc.

NOTES:

26.0 TRIPLE COMPARATOR MODULE


Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "Scalable Comparator Module" (www.microchip.com/DS39734) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The triple comparator module provides three dual input comparators. The inputs to the comparator can be configured to use any one of five external analog inputs (CxINA, CxINB, CxINC, CxIND and CVREF+) and a voltage reference input from one of the internal band gap references or the comparator voltage reference generator (VBG and CVREF).

The comparator outputs may be directly connected to the CxOUT pins. When the respective COE bit equals '1', the I/O pad logic makes the unsynchronized output of the comparator available on the pin.

A simplified block diagram of the module in shown in Figure 26-1. Diagrams of the possible individual comparator configurations are shown in Figure 26-2 through Figure 26-4.

Each comparator has its own control register, CMxCON (Register 26-1), for enabling and configuring its operation. The output and event status of all three comparators is provided in the CMSTAT register (Register 26-2).

FIGURE 26-1: TRIPLE COMPARATOR MODULE BLOCK DIAGRAM

^{© 2015-2019} Microchip Technology Inc.

PIC24FJ1024GA610/GB610 FAMILY

FIGURE 26-2: INDIVIDUAL COMPARATOR CONFIGURATIONS WHEN CREF = 0

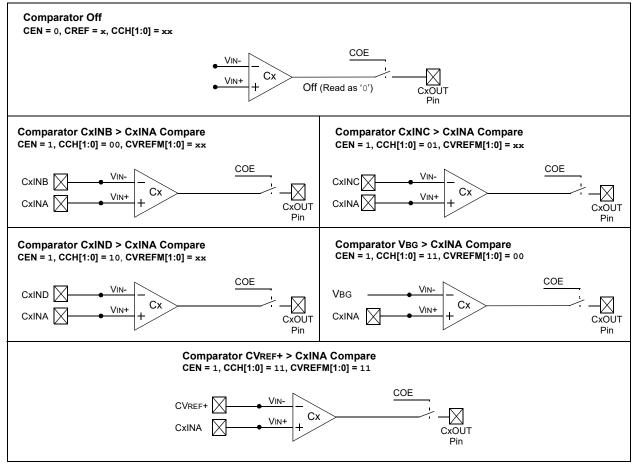
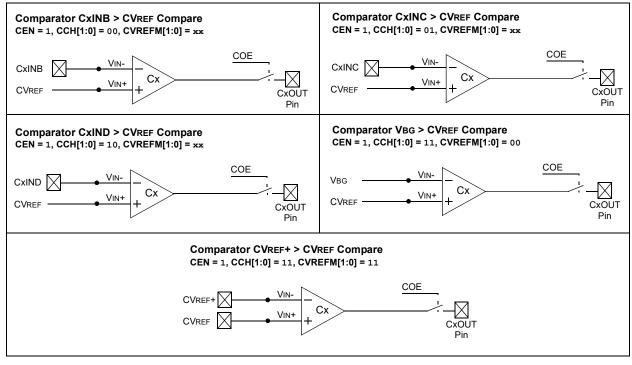
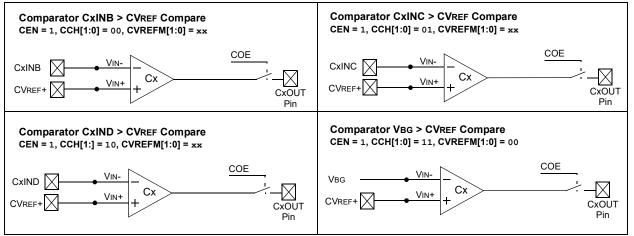




FIGURE 26-3: INDIVIDUAL COMPARATOR CONFIGURATIONS WHEN CREF = 1 AND CVREFP = 0

^{© 2015-2019} Microchip Technology Inc.

REGISTER 26-1: CMxCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1 THROUGH 3)

	•			,			
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	HS/R/W-0	HSC/R-0
CEN	COE	CPOL	—	_		CEVT	COUT
bit 15				·		·	bit 8
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
EVPOL1	EVPOL0	—	CREF	_		CCH1	CCH0
bit 7	-	-					bit 0
Legend:		HS = Hardware	Settable bit	HSC = Hardv	vare Settable	/Clearable bit	
R = Readab	le bit	W = Writable b	it	U = Unimpler	mented bit, re	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	CEN: Compa	arator Enable bit					
	1 = Compar	ator is enabled					
	0 = Compar	ator is disabled					
bit 14	COE: Compa	arator Output En	able bit				
		ator output is pre		kOUT pin			
1:140	•	ator output is inte		.,			
bit 13		parator Output P ator output is inv	•	DIT			
		ator output is not					
bit 12-10	-	nted: Read as '0					
bit 9	-	parator Event bit					
		ator event that is	defined by EV	POL[1:0] has o	curred; subs	equent Triggers	and interrupts
	are disa	bled until the bit	is cleared				
	-	ator event has no					
bit 8		parator Output bi	t				
	$\frac{\text{When CPOL}}{1 = \text{VIN} + > \text{V}}$						
	1 = VIN + > V $0 = VIN + < V$						
	When CPOL						
	1 = VIN+ < \						
	0 = VIN+ > \	/IN-					
bit 7-6		: Trigger/Event/Ir	-	-			
		/event/interrupt is					CEVT = 0)
		/event/interrupt is	•	i transition of th	e comparator	output:	
		L = 0 (noninverte -low transition or					
	-	L = 1 (inverted po	•				
		high transition o					
	01 = Trigger	/event/interrupt is	s generated or	transition of co	mparator out	put:	
		<u> </u>					
		high transition of					
	IT CPOI High-to	L = 1 (inverted po -low transition or	<u>piarity):</u> Nv				
	Ũ	/event/interrupt g		sabled			
bit 5		nted: Read as '0					
	pioino						

REGISTER 26-1: CMxCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1 THROUGH 3) (CONTINUED)

- bit 4 **CREF:** Comparator Reference Select bit (noninverting input)
 - 1 = Noninverting input connects to the internal CVREF voltage
 - 0 = Noninverting input connects to the CxINA pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH[1:0]: Comparator Channel Select bits
 - 11 = Inverting input of the comparator connects to the internal selectable reference voltage specified by the CVREFM[1:0] bits in the CVRCON register
 - 10 = Inverting input of the comparator connects to the CxIND pin
 - 01 = Inverting input of the comparator connects to the CxINC pin
 - 00 = Inverting input of the comparator connects to the CxINB pin

REGISTER 26-2: CMSTAT: COMPARATOR MODULE STATUS REGISTER

R/W-0	U-0	U-0	U-0	U-0	HSC/R-0	HSC/R-0	HSC/R-0
CMIDL	—	—	—	—	C3EVT	C2EVT	C1EVT
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	HSC/R-0	HSC/R-0	HSC/R-0
—	—		—	—	C3OUT	C2OUT	C1OUT
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

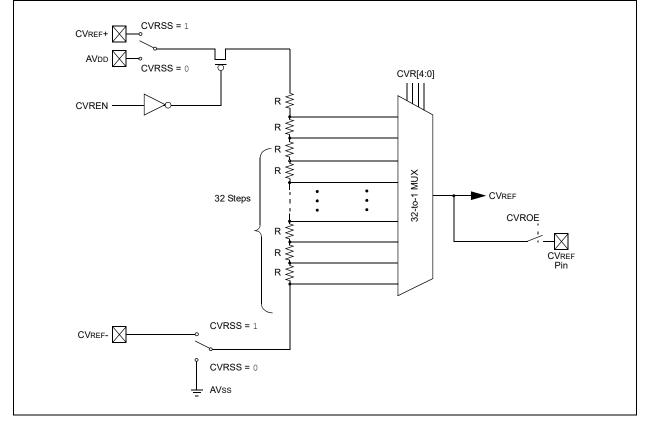
bit 15	CMIDL: Comparator Stop in Idle Mode bit
	 1 = Discontinues operation of all comparators when device enters Idle mode 0 = Continues operation of all enabled comparators in Idle mode
bit 14-11	Unimplemented: Read as '0'
bit 10	C3EVT: Comparator 3 Event Status bit (read-only)
	Shows the current event status of Comparator 3 (CM3CON[9]).
bit 9	C2EVT: Comparator 2 Event Status bit (read-only)
	Shows the current event status of Comparator 2 (CM2CON[9]).
bit 8	C1EVT: Comparator 1 Event Status bit (read-only)
	Shows the current event status of Comparator 1 (CM1CON[9]).
bit 7-3	Unimplemented: Read as '0'
bit 2	C3OUT: Comparator 3 Output Status bit (read-only)
	Shows the current output of Comparator 3 (CM3CON[8]).
bit 1	C2OUT: Comparator 2 Output Status bit (read-only)
	Shows the current output of Comparator 2 (CM2CON[8]).
bit 0	C1OUT: Comparator 1 Output Status bit (read-only)
	Shows the current output of Comparator 1 (CM1CON[8]).

^{© 2015-2019} Microchip Technology Inc.

NOTES:

27.0 COMPARATOR VOLTAGE REFERENCE

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to **"Dual Comparator Module"** (www.microchip.com/DS39710) in the *"dsPIC33/PIC24 Family Reference Manual"*, which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.


27.1 Configuring the Comparator Voltage Reference

The voltage reference module is controlled through the CVRCON register (Register 27-1). The comparator voltage reference provides two ranges of output voltage, each with 32 distinct levels.

The comparator reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON[5]).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

				-			-
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_		_		_	CVREFP	CVREFM1	CVREFM0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CVREN	CVROE	CVRSS	CVR4	CVR3	CVR2	CVR1	CVR0
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit read	d as '0'	
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown						nown	
	• Value at POR •1 = Bit is set •0 = Bit is cleared X = Bit is unknown						
bit 15-11	Unimplemen	ted: Read as ')'				
bit 10	CVREFP: Co	mparator Volta	ge Reference S	Select bit (valid	only when CR	EF is '1')	
				to the compara			
				-		ce voltage to the	-
bit 9-8	_		-			l only when CCI	H[1:0] = 11)
	00 = Band ga 01 = Reserve		ovided as an in	put to the comp	parators		
	10 = Reserve						
	11 = CVREF+	is provided as	an input to the	comparators			
bit 7		nparator Voltag		nable bit			
		cuit is powered					
bit 6		cuit is powered		hit.			
		ltage level is ou	•				
				om the CVREF p	bin		
bit 5	CVRSS: Corr	nparator VREF S	Source Selectic	on bit			
				= CVREF+ - C			
				= AVDD – AVS			
bit 4-0		•	Value Selection	$on 0 \le CVR[4:0]$] ≤ 31 bits		
	$\frac{\text{When CVRSS}}{\text{CVRFF}} = (CVRFF)$	<u>5 = ⊥:</u> REF-) + (CVR[4	·01/32) ● (CVRF	$E_{F+} = CV_{REE}$			
	When CVRS	, ,					
		ss) + (CVR[4:0]	/32) • (AVDD -	AVss)			
	CVREF = (AVS	ss) + (CVR[4:0]	/32) • (AVDD –	AVss)			

REGISTER 27-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

28.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Charge Time Measurement Unit, refer to "Charge Time Measurement Unit (CTMU) and CTMU Operation with Threshold Detect" (www.microchip.com/ DS30009743) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Charge Time Measurement Unit (CTMU) is a flexible analog module that provides charge measurement, accurate differential time measurement between pulse sources and asynchronous pulse generation. Its key features include:

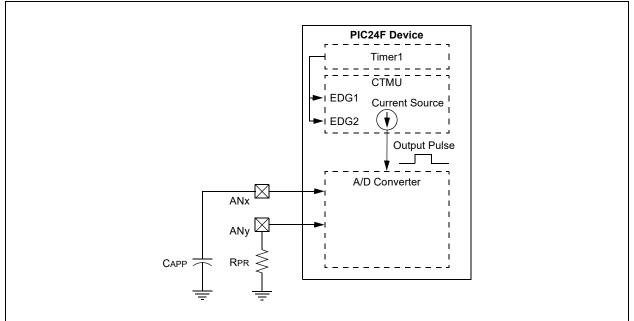
- Thirteen External Edge Input Trigger Sources
- · Polarity Control for Each Edge Source
- Control of Edge Sequence
- Control of Response to Edge Levels or Edge
 Transitions
- Time Measurement Resolution of One Nanosecond
- Accurate Current Source Suitable for Capacitive Measurement

Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses that are independent of the system clock. The CTMU module is ideal for interfacing with capacitive-based touch sensors.

The CTMU is controlled through three registers: CTMUCON1L, CTMUCON1H and CTMUCON2L. CTMUCON1L enables the module, controls the mode of operation of the CTMU, controls edge sequencing, selects the current range of the current source and trims the current. CTMUCON1H controls edge source selection and edge source polarity selection. The CTMUCON2L register selects the current discharge source.

28.1 Measuring Capacitance

The CTMU module measures capacitance by generating an output pulse, with a width equal to the time between edge events, on two separate input channels. The pulse edge events to both input channels can be selected from four sources: two internal peripheral modules (OC1 and Timer1) and up to 13 external pins (CTED1 through CTED13). This pulse is used with the module's precision current source to calculate capacitance according to the relationship:


EQUATION 28-1:

$$I = C \bullet \frac{dV}{dT}$$

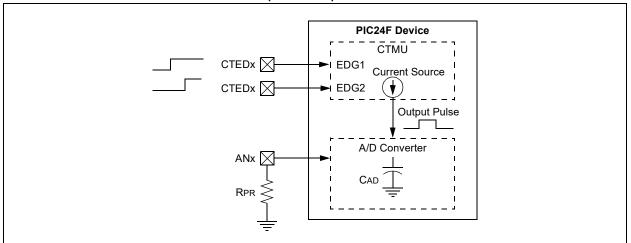
For capacitance measurements, the A/D Converter samples an external Capacitor (CAPP) on one of its input channels, after the CTMU output's pulse. A Precision Resistor (RPR) provides current source calibration on a second A/D channel. After the pulse ends, the converter determines the voltage on the capacitor. The actual calculation of capacitance is performed in software by the application.

Figure 28-1 illustrates the external connections used for capacitance measurements, and how the CTMU and A/D modules are related in this application. This example also shows the edge events coming from Timer1, but other configurations using external edge sources are possible. A detailed discussion on measuring capacitance and time with the CTMU module is provided in **"Charge Time Measurement Unit (CTMU) and CTMU Operation with Threshold Detect"** (www.microchip.com/DS30009743) in the *"dsPIC33/PIC24 Family Reference Manual"*.

FIGURE 28-1: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR CAPACITANCE MEASUREMENT

28.2 Measuring Time/Routing Current Source to A/D Input Pin

Time measurements on the pulse width can be similarly performed using the A/D module's Internal Capacitor (CAD) and a precision resistor for current calibration. Figure 28-2 displays the external connections used for time measurements, and how the CTMU and A/D modules are related in this application. This example also shows both edge events coming from the external CTEDx pins, but other configurations using internal edge sources are possible.


This mode is enabled by clearing the TGEN bit (CTMUCON1L[12]). The current source is tied to the input of the A/D after the sampling switch. Therefore, the A/D bit, SAMP, must be set to '1' in order for the current to be routed through the channel selection MUX to the desired pin.

28.3 Pulse Generation and Delay

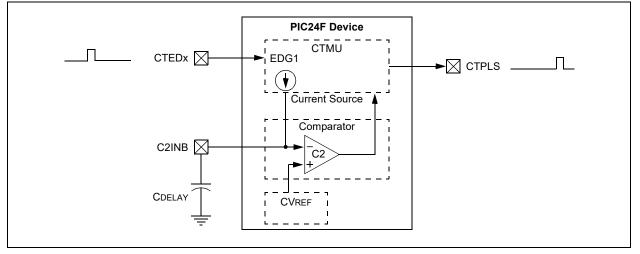

The CTMU module can also generate an output pulse with edges that are not synchronous with the device's system clock. More specifically, it can generate a pulse with a programmable delay from an edge event input to the module. When the module is configured for pulse generation delay by setting the TGEN bit (CTMUCON1[12]), the internal current source is connected to the B input of Comparator 2. A Capacitor (CDELAY) is connected to the Comparator 2 pin, C2INB, and the Comparator Voltage Reference, CVREF, is connected to C2INA. CVREF is then configured for a specific trip point. The module begins to charge CDELAY when an edge event is detected. When CDELAY charges above the CVREF trip point, a pulse is output on CTPLS. The length of the pulse delay is determined by the value of CDELAY and the CVREF trip point.

Figure 28-3 illustrates the external connections for pulse generation, as well as the relationship of the different analog modules required. While CTED1 is shown as the input pulse source, other options are available. A detailed discussion on pulse generation with the CTMU module is provided in the "dsPIC33/ PIC24 Family Reference Manual".

FIGURE 28-2: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR TIME MEASUREMENT (TGEN = 0)

FIGURE 28-3: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR PULSE DELAY GENERATION (TGEN = 1)

^{© 2015-2019} Microchip Technology Inc.

28.4 Measuring Die Temperature

The CTMU can be configured to use the A/D to measure the die temperature using dedicated A/D Channel 24. Perform the following steps to measure the diode voltage:

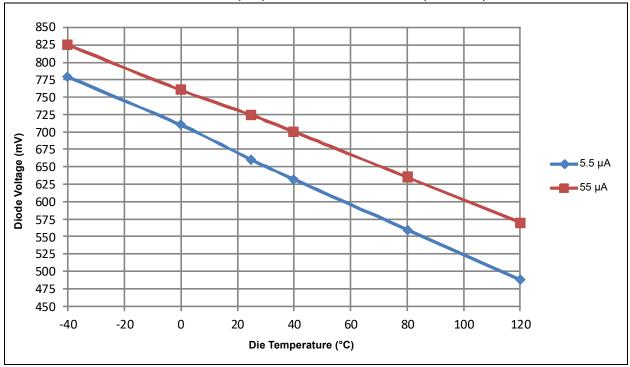
- The internal current source must be set for either 5.5 μ A (IRNG[1:0] = 0x2) or 55 μ A (IRNG[1:0] = 0x3).
- In order to route the current source to the diode, the EDG1STAT and EDG2STAT bits must be equal (either both '0' or both '1').
- The CTMREQ bit (AD1CON5[13]) must be set to '1'.
- The A/D Channel Select bits must be 24 (0x18) using a single-ended measurement.

The voltage of the diode will vary over temperature according to the graphs shown below (Figure 28-4). Note that the graphs are different, based on the magnitude of

the current source selected. The slopes are nearly linear over the range of -40°C to +100°C and the temperature can be calculated as follows:

EQUATION 28-2:

For 5.5 µA Current Source:


$$Tdie = \frac{710 \ mV - V diode}{1.8}$$

where Vdiode is in mV, Tdie is in °C

For 55 µA Current Source:

$$Tdie = \frac{760 \ mV - V diode}{1.55}$$

where *Vdiode* is in *mV*, *Tdie* is in °C

FIGURE 28-4: DIODE VOLTAGE (mV) vs. DIE TEMPERATURE (TYPICAL)

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG
bit 15					J .		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0
bit 7							bit (
<u> </u>							
Legend:						(0)	
R = Readable		W = Writable t	Dit	-	mented bit, read a		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared >	k = Bit is unkn	own
bit 15	CTMUEN: C	TMU Enable bit					
	1 = Module is	-					
	0 = Module is						
bit 14	Unimplemer	nted: Read as '0	,				
bit 13	CTMUSIDL:	CTMU Stop in Id	dle Mode bit				
		ues module ope			dle mode		
		s module operat		de			
bit 12	-	Generation Ena					
		• • •			it source to the co nt source to the so		unut nin
bit 11	EDGEN: Edg						iput piri
DIC 11	-	e not blocked					
	0 = Edges ar						
bit 10	EDGSEQEN	: Edge Sequend	e Enable bit				
		vent must occur sequence is nee		2 event can oc	cur		
bit 9	IDISSEN: An	alog Current So	urce Control b	bit			
	0	urrent source ou					
		urrent source ou		ounded			
bit 8		MU Trigger Con					
		utput is enabled utput is disablec					
bit 7-2		Current Source					
		aximum positive	change from	nominal currer	nt		
	011110 •						
	•						
	•						
				nominal curren			
	000000 = Nc	ominal current o	utput specified	by IRNG[1:0]			
	000000 = Nc		utput specified	by IRNG[1:0]			
	000000 = Nc	ominal current o	utput specified	by IRNG[1:0]			
	000000 = Nc	ominal current o	utput specified	by IRNG[1:0]			

REGISTER 28-1: CTMUCON1L: CTMU CONTROL REGISTER 1 LOW

REGISTER 28-1: CTMUCON1L: CTMU CONTROL REGISTER 1 LOW (CONTINUED)

bit 1-0 IRNG[1:0]: Current Source Range Select bits If IRNGH = 0: $11 = 55 \ \mu A \text{ range}$ $10 = 5.5 \ \mu A \text{ range}$ $01 = 550 \ \mu A \text{ range}$ $00 = 550 \ \mu A \text{ range}$ If IRNGH = 1: 11 = Reserved 10 = Reserved 10 = Reserved $01 = 2.2 \ \text{mA range}$ $00 = 550 \ \mu A \text{ range}$

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 EDG1MOD EDG1POL EDG1SEL3 EDG1SEL2 EDG1SEL1 EDG1SEL0 EDG2STAT EDG1STAT bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 EDG2MOD EDG2POL EDG2SEL3 EDG2SEL2 EDG2SEL1 EDG2SEL0 IRNGH ____ bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 EDG1MOD: Edge 1 Edge-Sensitive Select bit 1 = Input is edge-sensitive 0 = Input is level-sensitive bit 14 EDG1POL: Edge 1 Polarity Select bit 1 = Edge 1 is programmed for a positive edge response 0 = Edge 1 is programmed for a negative edge response bit 13-10 EDG1SEL[3:0]: Edge 1 Source Select bits 1111 = CMP C3OUT 1110 = CMP C2OUT 1101 = CMP C1OUT 1100 = IC3 interrupt 1011 = IC2 interrupt 1010 = IC1 interrupt 1001 = CTED8 pin 1000 = CTED7 pin⁽¹⁾ 0111 = CTED6 pin 0110 = CTED5 pin 0101 = CTED4 pin 0100 = CTED3 pin⁽¹⁾ 0011 = CTED1 pin 0010 = CTED2 pin 0001 = OC1 0000 = Timer1 match bit 9 EDG2STAT: Edge 2 Status bit Indicates the status of Edge 2 and can be written to control current source. 1 = Edge 2 has occurred 0 = Edge 2 has not occurred bit 8 EDG1STAT: Edge 1 Status bit Indicates the status of Edge 1 and can be written to control current source. 1 = Edge 1 has occurred 0 = Edge 1 has not occurred bit 7 EDG2MOD: Edge 2 Edge-Sensitive Select bit 1 = Input is edge-sensitive 0 = Input is level-sensitive bit 6 EDG2POL: Edge 2 Polarity Select bit 1 = Edge 2 is programmed for a positive edge response

REGISTER 28-2: CTMUCON1H: CTMU CONTROL REGISTER 1 HIGH

Note 1: CTED3, CTED7, CTED10 and CTED11 are not available on 64-pin packages.

0 = Edge 2 is programmed for a negative edge response

© 2015-2019 Microchip Technology Inc.

REGISTER 28-2: CTMUCON1H: CTMU CONTROL REGISTER 1 HIGH (CONTINUED)

- bit 5-2 EDG2SEL[3:0]: Edge 2 Source Select bits
 - 1111 = CMP C3OUT 1110 = CMP C2OUT 1101 = CMP C1OUT 1100 = Peripheral clock 1011 = IC3 interrupt 1010 = IC2 interrupt 1001 = IC1 interrupt 1000 = CTED13 pin 0111 = CTED12 pin 0110 = CTED11 pin⁽¹⁾ 0101 = CTED10 pin⁽¹⁾ 0100 = CTED9 pin 0011 = CTED1 pin 0010 = CTED2 pin 0001 = OC1 0000 = Timer1 match
- bit 1 Unimplemented: Read as '0'
- bit 0 IRNGH: High-Current Range Select bit
 - 1 = Uses the higher current ranges (550 μ A-2.2 mA)
 - 0 = Uses the lower current ranges (550 nA-50 μ A)
 - Current output is set by the IRNG[1:0] bits in the CTMUCON1L register.
- **Note 1:** CTED3, CTED7, CTED10 and CTED11 are not available on 64-pin packages.

REGISTER 28-3: CTMUCON2L: CTMU CONTROL REGISTER 2 LOW

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—		_	—	—	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
—			IRSTEN			DSCHS[2:0]	
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-5	Unimplemen	ted: Read as '	o'				
bit 4	IRSTEN: CTM	MU Current Sou	urce Reset Ena	able bit			
				or IDISSEN co	ontrol bit will re	set CTMU edge	e detect logic
		lge detect logic					
bit 3	Unimplemen	ted: Read as '	כ'				
bit 2-0	DSCHS[2:0]:	Discharge Sou	urce Select bits	;			
	111 = CLC2	out					
	110 = CLC1						
	101 = Disable						
		d of conversior					
		3 auxiliary outp 2 auxiliary outp					
		2 auxiliary outp					

- 001 = MCCP1 auxiliary output
- 000 = Disabled

NOTES:

29.0 HIGH/LOW-VOLTAGE DETECT (HLVD)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the High/ Low-Voltage Detect, refer to "High-Level Integration with Programmable High/ Low-Voltage Detect (HLVD)" (www.microchip.com/DS39725) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The High/Low-Voltage Detect (HLVD) module is a programmable circuit that allows the user to specify both the device voltage trip point and the direction of change.

An interrupt flag is set if the device experiences an excursion past the trip point in the direction of change. If the interrupt is enabled, the program execution will branch to the interrupt vector address and the software can then respond to the interrupt. The HLVDIF flag may be set during a POR or BOR event. The firmware should clear the flag before the application uses it for the first time, even if the interrupt was disabled.

The HLVD Control register (see Register 29-1) completely controls the operation of the HLVD module. This allows the circuitry to be "turned off" by the user under software control, which minimizes the current consumption for the device. The HLVDEN bit (HLVDCON[15]) should be cleared when writing data to the HLVDCON register. Once the register is configured, the module is enabled from power-down by setting HLVDEN. The application must wait a minimum of 5 μ S before clearing the HLVDIF flag and using the module after HLVDEN has been set.

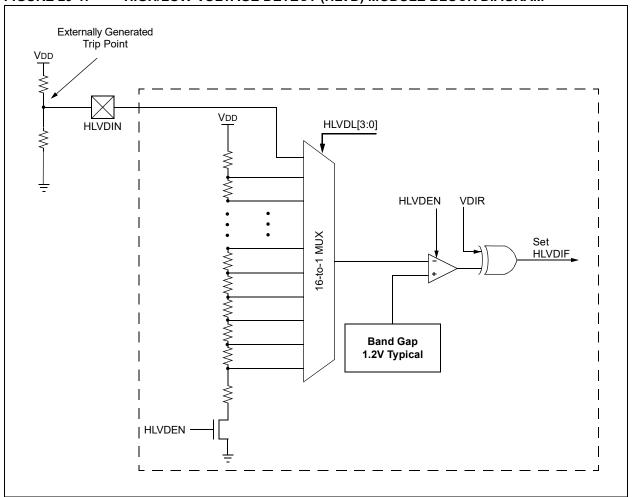


FIGURE 29-1: HIGH/LOW-VOLTAGE DETECT (HLVD) MODULE BLOCK DIAGRAM

© 2015-2019 Microchip Technology Inc.

R/W-0	U-0	R/W-0	U-0	R/W-0	r-1	r-1	HC/HS/R-0
HLVDEN	_	LSIDL	—	VDIR	BGVST	IRVST	LVDEVT ⁽²⁾
bit 15							bit 8
				D/// 0	D/M/ O	R/W-0	DAMO
U-0	U-0	U-0	U-0	R/W-0	R/W-0	DL[3:0]	R/W-0
bit 7						JE[0.0]	bit 0
							5110
Legend:		HS = Hardwar	e Settable bit	HC = Hardwa	re Clearable bit	r = Reserved	bit
R = Readabl	e bit	W = Writable	bit	'0' = Bit is cle	ared	x = Bit is unk	nown
-n = Value at	POR	'1' = Bit is set		U = Unimpler	nented bit, read	as '0'	
bit 15		ligh/Low-Voltage	Detect Power	Enable bit			
	1 = HLVD i 0 = HLVD i						
bit 14		ented: Read as '					
oit 13	-	/D Stop in Idle M					
JIC 10		tinues module op		device enters l	dle mode		
		les module opera					
bit 12	Unimpleme	ented: Read as '	C'				
bit 11	VDIR: Volta	ge Change Direc	tion Select bit	:			
		ccurs when volta ccurs when volta					
bit 10	BGVST: Re	served bit (value	is always '1')				
bit 9	IRVST: Res	erved bit (value i	s always '1')				
bit 8		ow-Voltage Even					
		ent is true during ent is not true du					
bit 7-4	Unimpleme	ented: Read as '	D'				
bit 3-0	HLVDL[3:0]	: High/Low-Volta	ge Detection	Limit bits			
	1110 = VDE 1101 = VDE 1001 = VDE 1011 = VDE 1010 = VDE 1000 = VDE 0111 = VDE 0110 = VDE 0110 = VDE 0101 = VDE	ernal analog input b trip point is 2.11 b trip point is 2.21 b trip point is 2.20 b trip point is 2.30 b trip point is 2.40 b trip point is 2.52 b trip point is 2.63 b trip point is 2.82 b trip point is 2.92 b trip point is 3.13 b trip point is 3.44 = Reserved; do	$\bigvee(1)$ $\bigvee(1)$	omes from the H	ILVDIN pin and i	s compared with	n 1.2V band gap)

REGISTER 29-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER

- Note 1: The voltage is typical. It is for design guidance only and not tested. Refer to Table 33-13 in Section 33.0 "Electrical Characteristics" for minimum and maximum values.
 - 2: The HLVDIF flag cannot be cleared by software unless LVDEVT = 0. The voltage must be monitored so that the HLVD condition (as set by VDIR and HLVDL[3:0]) is not asserted.

30.0 SPECIAL FEATURES

- Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the following sections of the "dsPIC33/PIC24 Family Reference Manual", which are available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.
 "Watchdog Timer (WDT)"
 - (www.microchip.com/DS39697)
 - "High-Level Device Integration" (www.microchip.com/DS39719)
 - "Programming and Diagnostics" (www.microchip.com/DS39716)

PIC24FJ1024GA610/GB610 family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™]
- In-Circuit Emulation

30.1 Configuration Bits

The Configuration bits are stored in the last page location of implemented program memory. These bits can be set or cleared to select various device configurations. There are two types of Configuration bits: system operation bits and code-protect bits. The system operation bits determine the power-on settings for system-level components, such as the oscillator and the Watchdog Timer. The code-protect bits prevent program memory from being read and written.

In Dual Partition modes, each partition has its own set of Flash Configuration Words. The full set of Configuration registers in the Active Partition is used to determine the device's configuration; the Configuration Words in the Inactive Partition are used to determine the device's configuration when that partition becomes active. However, some of the Configuration registers in the Inactive Partition (FSEC, FBSLIM and FSIGN) may be used to determine how the Active Partition is able or allowed to access the Inactive Partition.

30.1.1 CONSIDERATIONS FOR CONFIGURING PIC24FJ1024GA610/ GB610 FAMILY DEVICES

In PIC24FJ1024GA610/GB610 family devices, the Configuration bytes are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data are stored in the three words at the top of the on-chip program memory space, known as the Flash Configuration Words. Their specific locations are shown in Table 30-1. The configuration data are automatically loaded from the Flash Configuration Words to the proper Configuration registers during device Resets. After a Reset, configuration reads are performed in the following order:

- Device Calibration Information
- Partition Mode Configuration (FBOOT)
- If Single Partition mode:
- User Configuration Words

If Dual Partition mode:

- Partition 1 Boot Sequence Number
- · Partition 2 Boot Sequence Number
- User Configuration Words from the Active Partition
- Code Protection User Configuration Words from the Inactive Partition
- Note: Configuration data are reloaded on all types of device Resets.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration Word for configuration data. This is to make certain that program code is not stored in this address when the code is compiled.

The upper byte of all Flash Configuration Words in program memory should always be '0000 0000'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '0's to these locations has no effect on device operation.

TABLE 30-1.	CONTIGURATION WORD ADDRESSES							
Configuration		Single Par	tition Mode					
Registers	PIC24FJ1024GX6XX	PIC24FJ512GX6XX	PIC24FJ256GX6XX	PIC24FJ128GX6XX				
FSEC	0ABF00h	055F00h	02AF00h	015F00h				
FBSLIM	0ABF10h	055F10h	02AF10h	015F10h				
FSIGN	0ABF14h	055F14h	02AF14h	015F14h				
FOSCSEL	0ABF18h	055F18h	02AF18h	015F18h				
FOSC	0ABF1Ch	055F1Ch	02AF1Ch	015F1Ch				
FWDT	0ABF20h	055F20h	02AF20h	015F20h				
FPOR	0ABF24h	055F24h	02AF24h	015F24h				
FICD	0ABF28h	055F28h	02AF28h	015F28h				
FDEVOPT1	0ABF2Ch	055F2Ch	02AF2Ch	015F2Ch				
FBOOT		801800h						
		Dual Partiti	on Modes ⁽¹⁾					
FSEC ⁽²⁾	055F00h/455F00h	02AF00h/42AF00h	015700h/415700h	00AF00h/40AF00h				
FBSLIM ⁽²⁾	055F10h/455F10h	02AF10h/42AF10h	015710h/415710h	00AF10h/40AF10h				
FSIGN ⁽²⁾	055F14h/455F14h	02AF14h/42AF14h	015714h/ 415714h	00AF14h/40AF14h				
FOSCSEL	055F18h/455F18h	02AF18h/42AF18h	015718h/415718h	00AF18h/40AF18h				
FOSC	055F1Ch/455F1Ch	02AF1Ch/42AF1Ch	01571Ch/41571Ch	00AF1Ch/40AF1Ch				
FWDT	055F20h/455F20h	02AF20h/42AF20h	015720h/415720h	00AF20h/40AF20h				
FPOR	055F24h/ 455F24h	02AF24h/42AF24h	015724h/415724h	00AF24h/40AF24h				
FICD	055F28h/455F28h	02AF28h/42AF28h	015728h/415728h	00AF28h/40AF28h				
FDEVOPT1	055F2Ch/455F2Ch	02AF2Ch/42AF2Ch	01572Ch/41572Ch	00AF2Ch/40AF2Ch				
FBTSEQ ⁽³⁾	055FFCh/455FFCh	02AFFCh/42AFFCh	0157FCh/4157FCh	00AFFCh/40AFFCh				
FBOOT		8018	800h					

TABLE 30-1: CONFIGURATION WORD ADDRESSES

Note 1: Addresses shown for Dual Partition modes are for the Active/Inactive Partitions, respectively.

2: Changes to these Inactive Partition Configuration Words affect how the Active Partition accesses the Inactive Partition.

3: FBTSEQ is a 24-bit Configuration Word, using all three bytes of the program memory width.

REGISTER 30-1: FBOOT CONFIGURATION REGISTER

01		01	01	01	01		
U-1	U-1	U-1	U-1	U-1	U-1	R/PO-1	R/PO-1
bit 15							bit 8
_			_			_	
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1

	—	—	—		BTMODE[1:0]
bit 7					

Legend:	PO = Program Once bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '1'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-2 Unimplemented: Read as '1'

bit 1-0 BTMODE[1:0]: Device Partition Mode Configuration Status bits

- 11 = Single Partition mode
- 10 = Dual Partition mode
- 01 = Protected Dual Partition mode (Partition 1 is write-protected when inactive)
- 00 = Reserved; do not use

REGISTER 30-2: FBTSEQ CONFIGURATION REGISTER

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
			IBSEC	Q[11:4]			
bit 23							bit 16
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
IBSEQ[3:0]					BSEC	2[11:8]	
bit 15							bit 8
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
			BSE	Q[7:0]			
bit 7							bit 0

Legend:	PO = Program Once bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '1'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 23-12 **IBSEQ[11:0]:** Inverse Boot Sequence Number bits (Dual Partition modes only) The one's complement of BSEQ[11:0]; must be calculated by the user and written into device

programming.
 bit 11-0 BSEQ[11:0]: Boot Sequence Number bits (Dual Partition modes only)
 Relative value defining which partition will be active after a device Reset; the partition containing a lower boot number will be active.

bit 0

^{© 2015-2019} Microchip Technology Inc.

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1			
_	—	—	_	—	—	—	_			
bit 23							bit 16			
R/PO-1	11.4	11.4	11.4							
AIVTDIS	U-1	U-1	U-1	R/PO-1 CSS2	R/PO-1 CSS1	R/PO-1 CSS0	R/PO-1 CWRP			
bit 15				0332	0331	0330	bit 8			
							bit 0			
R/PO-1	R/PO-1	R/PO-1	U-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1			
GSS1	GSS0	GWRP		BSEN	BSS1	BSS0	BWRP			
bit 7							bit 0			
Legend:		PO = Progran	n Onco hit							
R = Readab	le hit	W = Writable		U = Unimpler	nented hit rea	d as '1'				
-n = Value at		'1' = Bit is set		0' = Bit is clea		x = Bit is unkr	own			
							IOWIT			
bit 23-16	Unimpleme	nted: Read as '	L'							
bit 15	AIVTDIS: Alt	ternate Interrupt	Vector Table	Disable bit						
				bit is not availal	ble					
		AIVT; INTCON2		bit is available						
bit 14-12	Unimplemented: Read as '1' CSS[2:0]: Configuration Segment Code Protection Level bits									
bit 11-9				rotection Level t	DIts					
	111 = No pro 110 = Stand	otection (other th ard security	ian GWRP)							
	10x = Enha r	nced security								
	0xx = High s	$0 \times x =$ High security								
bit 8		•	•	Write Protection	bit					
		ation Segment is ation Segment is								
bit 7-6	•	eneral Segment	•							
		ection (other that								
	10 = Standa	•	,							
	0x = High se	-								
bit 5		eral Segment P	-							
		Segment is not Segment is write		D						
bit 4		nted: Read as '	-							
bit 3	BSEN: Boot	Segment Contro	ol bit							
		1 = No Boot Segment is enabled								
	-	gment size is de	-							
bit 2-1		oot Segment Co		Level bits						
	11 = No prot 10 = Standa	tection (other that rd security	an BWRP)							
	0x = High set	•								
bit 0	-	t Segment Progr	am Write Pro	tection bit						
	1 = Boot Seg	gment can be wr	itten							
	0 = Boot Seg	gment is write-pr	otected							
Note 1: F	or information a	about the code p	rotection feat	ure, refer to "Co	deGuard™ Ir	ntermediate Se	curity"			

REGISTER 30-3: FSEC CONFIGURATION REGISTER⁽¹⁾

Note 1: For information about the code protection feature, refer to "CodeGuard™ Intermediate Security" (www.microchip.com/DS70005182) in the "dsPIC33/PIC24 Family Reference Manual".

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
	_	—	—		—	_	—
bit 23		-					bit 16
U-1	U-1	U-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
	—	—	BSLIM[12:8]				
bit 15							bit 8
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
			BSLI	M[7:0]			
bit 7							bit 0
Legend:		PO = Program	n Once bit				
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '1'			

REGISTER 30-4: FBSLIM CONFIGURATION REGISTER⁽¹⁾

'1' = Bit is set

bit 23-13 Unimplemented: Read as '1'

-n = Value at POR

bit 12-0 **BSLIM[12:0]:** Active Boot Segment Code Flash Page Address Limit (Inverted) bits This bit field contains the last active Boot Segment Page + 1 (i.e., first page address of GS). The value is stored as an inverted page address, such that programming additional '0's can only increase the size of BS. If BSLIM[12:0] is set to all '1's (unprogrammed default), active Boot Segment size is zero.

'0' = Bit is cleared

x = Bit is unknown

Note 1: For information about the code protection feature, refer to "CodeGuard™ Intermediate Security" (www.microchip.com/DS70005182) in the "dsPIC33/PIC24 Family Reference Manual".

^{© 2015-2019} Microchip Technology Inc.

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—		—	—
bit 23							bit 16
r-0	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	_	—	—	—		—	—
bit 15							bit 8
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—		—	—	_	—	—
bit 7							bit 0
Legend:		PO = Progran	n Once bit	r = Reserved bit			
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '1'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			

REGISTER 30-5: FSIGN CONFIGURATION REGISTER

bit 23-16 Unimplemented: Read as '1'

bit 15 Reserved: Maintain as '0'

bit 14-0 Unimplemented: Read as '1'

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23	·	•					bit 16
U-1	U-1	U-1	U-1	U-1	U-1	r-0	r-0
	—	—	—	—		—	—
bit 15							bit 8
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
IESO	PLLMODE3	PLLMODE2	PLLMODE1	PLLMODE0	FNOSC2	FNOSC1	FNOSC0
bit 7	-	-					bit 0

REGISTER 30-6: FOSCSEL CONFIGURATION REGISTER

Legend:	PO = Program Once bit	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '1'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

Unimplemented: Read as '1'
Reserved: Maintain as '0'
IESO: Two-Speed Oscillator Start-up Enable bit 1 = Starts up the device with FRC, then automatically switches to the user-selected oscillator when ready 0 = Starts up the device with the user-selected oscillator source
PLLMODE[3:0]: Frequency Multiplier Select bits
 1111 = No PLL is used (PLLEN bit is unavailable) 1110 = 8x PLL is selected 1101 = 6x PLL is selected 1100 = 4x PLL is selected 0111 = 96 MHz USB PLL is selected (Input Frequency = 48 MHz) 0110 = 96 MHz USB PLL is selected (Input Frequency = 32 MHz) 0101 = 96 MHz USB PLL is selected (Input Frequency = 24 MHz) 0100 = 96 MHz USB PLL is selected (Input Frequency = 20 MHz) 0011 = 96 MHz USB PLL is selected (Input Frequency = 16 MHz) 0010 = 96 MHz USB PLL is selected (Input Frequency = 12 MHz) 0010 = 96 MHz USB PLL is selected (Input Frequency = 8 MHz) 0001 = 96 MHz USB PLL is selected (Input Frequency = 4 MHz)
FNOSC[2:0]: Oscillator Selection bits
 111 = Oscillator with Frequency Divider (OSCFDIV) 110 = Digitally Controlled Oscillator (DCO) 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (SOSC) 011 = Primary Oscillator with PLL (XTPLL, HSPLL, ECPLL) 010 = Primary Oscillator (XT, HS, EC) 001 = Fast RC Oscillator with PLL (FRCPLL) 000 = Fast RC Oscillator (FRC)

REGISTER 30-7: FOSC CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
_	—	—		—	—	_	—
bit 23							bit 16
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 15							bit 8
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
FCKSM1	FCKSM0	IOL1WAY	PLLSS ⁽¹⁾	SOSCSEL	OSCIOFNC	POSCMD1	POSCMD0
bit 7							bit 0

Legend:	PO = Program Once bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '1'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 23-8	Unimplemented: Read as '1'
bit 7-6	FCKSM[1:0]: Clock Switching and Monitor Selection bits
	 1x = Clock switching and the Fail-Safe Clock Monitor are disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching and the Fail-Safe Clock Monitor are enabled
bit 5	IOL1WAY: Peripheral Pin Select Configuration bit
	 1 = The IOLOCK bit can be set only once (with unlock sequence). 0 = The IOLOCK bit can be set and cleared as needed (with unlock sequence)
bit 4	PLLSS: PLL Source Selection Configuration bit ⁽¹⁾
	 1 = PLL is fed by the Primary Oscillator (EC, XT or HS mode) 0 = PLL is fed by the on-chip Fast RC (FRC) Oscillator
bit 3	SOSCSEL: SOSC Selection Configuration bit
	1 = Crystal (SOSCI/SOSCO) mode 0 = Digital (SOSCI) mode
bit 2	OSCIOFNC: CLKO Enable Configuration bit
	 1 = CLKO output signal is active on the OSCO pin (when the Primary Oscillator is disabled or configured for EC mode)
	0 = CLKO output is disabled
bit 1-0	POSCMD[1:0]: Primary Oscillator Configuration bits
	11 = Primary Oscillator mode is disabled10 = HS Oscillator mode is selected (10 MHz-32 MHz)
	01 = XT Oscillator mode is selected (1.5 MHz-10 MHz) 00 = External Clock mode is selected

Note 1: When the primary clock source is greater than 8 MHz, this bit must be set to '0' to prevent overclocking the PLL.

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1		
_	—			_			—		
bit 23							bit 16		
U-1	R/PO-1	R/PO-1	U-1	R/PO-1	U-1	R/PO-1	R/PO-1		
	WDTCLK1	WDTCLK0		WDTCMX		WDTWIN1	WDTWIN0		
bit 15							bit 8		
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1		
WINDIS	FWDTEN1	FWDTEN0	FWPSA	WDTPS3	WDTPS2	WDTPS1	WDTPS0		
bit 7							bit 0		
Legend:		PO = Progran	n Onco hit						
R = Readabl	le hit	W = Writable		= Inimplem	nented bit, read	1 ae '1'			
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	NOWN		
bit 23-15	Unimplemen	ted: Read as '	L'						
bit 14-13	WDTCLK[1:0)]: Watchdog Ti	mer Clock Sel	ect bits (when V	VDTCMX = 1)				
	11 = Always								
			OIS = 0, syster	n clock is not L	PRC and devi	ce is not in Sle	ep; otherwise,		
	uses LP 01 = Always								
	00 = Uses pe		/hen system c	lock is not LPRC	C and device is	not in Sleep; o	therwise, uses		
	LPRC								
bit 12	•	ted: Read as '							
bit 11		DT Clock MUX	-	:					
	 1 = Enables WDT clock MUX; WDT clock is selected by WDTCLK[1:0] 0 = WDT clock is LPRC 								
bit 10		ted: Read as '	L'						
bit 9-8	•								
	11 = WDT window is 25% of the WDT period								
	10 = WDT window is 37.5% of the WDT period								
01 = WDT window is 50% of the WDT period 00 = WDT window is 75% of the WDT period									
bit 7		dowed Watchd							
-		d WDT is disab	-						
	0 = Windowe	d WDT is enab	ed						

REGISTER 30-8: F	WDT CONFIGURATION REGISTER
------------------	----------------------------

11 = WDT is enabled
10 = WDT is disabled (control is placed on the SWDTEN bit)
01 = WDT is enabled only while device is active and disabled in Sleep; SWDTEN bit is disabled
00 = WDT and SWDTEN are disabled
EW/DSA: Watchdog Timer Prescaler hit

FWPSA: Watchdog Timer Prescaler bit 1 = WDT prescaler ratio of 1:128

0 = WDT prescaler ratio of 1:32

FWDTEN[1:0]: Watchdog Timer Enable bits

bit 6-5

bit 4

REGISTER 30-8: FWDT CONFIGURATION REGISTER (CONTINUED)

bit 3-0 WDTPS[3:0]: Watchdog Timer Postscale Select bits 1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:1,024 1001 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:8

> 0010 = 1:4 0001 = 1:2 0000 = 1:1

REGISTER 30-9: FPOR CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
_	—	—	—	—	—	—	—
bit 23							bit 16
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
	—	—	—			—	—
bit 15							bit 8
U-1	U-1	U-1	U-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
_	—	—	—	DNVPEN	LPCFG	BOREN1	BOREN0
bit 7	·						bit 0

Legend:	PO = Program Once bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '1'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 23-4	Unimplemented: Read as '1'
bit 3	DNVPEN: Downside Voltage Protection Enable bit
	 1 = Downside protection is enabled when BOR is inactive; POR can be re-armed as needed (can result in extra POR monitoring current once POR is re-armed) 0 = Downside protection is disabled when BOR is inactive
bit 2	LPCFG: Low-Power Regulator Control bit
	1 = Retention feature is not available
	0 = Retention feature is available and controlled by RETEN during Sleep
bit 1-0	BOREN[1:0]: Brown-out Reset Enable bits
	 11 = Brown-out Reset is enabled in hardware; SBOREN bit is disabled 10 = Brown-out Reset is enabled only while device is active and is disabled in Sleep; SBOREN bit is disabled
	 01 = Brown-out Reset is controlled with the SBOREN bit setting 00 = Brown-out Reset is disabled in hardware; SBOREN bit is disabled

^{© 2015-2019} Microchip Technology Inc.

REGISTER 30-10: FICD CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	
—	—	—	—	—	—	—	—	
bit 23							bit 16	
R/PO-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	
BTSWP		—	—	—	—	—	—	
bit 15							bit 8	
		D/D0 4				D/D0 4		
r-1	U-1	R/PO-1	U-1	U-1	U-1	R/PO-1	R/PO-1	
	_	JTAGEN		_	—	ICS		
bit 7							bit 0	
Legend:		PO = Progran	n Once bit	r = Reserved	bit			
R = Readable	e bit	W = Writable			nented bit, read	l as '1'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	iown	
L							,	
bit 23-16	Unimplement	ted: Read as '	1'					
bit 15	BTSWP: BOO	TSWP Instructio	on Enable bit					
		instruction is d instruction is e						
bit 14-8	Unimplement	ted: Read as '	l'					
bit 7	Reserved: Ma	aintain as '1'						
bit 6	Unimplement	ted: Read as '	l'					
bit 5	JTAGEN: JTA	G Port Enable	bit					
	1 = JTAG port is enabled 0 = JTAG port is disabled							
bit 4-2	Unimplemented: Read as '1'							
bit 1-0	ICS[1:0]: ICD Communication Channel Select bits							
	11 = Communicates on PGEC1/PGED1 10 = Communicates on PGEC2/PGED2 01 = Communicates on PGEC3/PGED3							
	00 = Reserved; do not use							

PIC24FJ1024GA610/GB610 FAMILY

REGISTER 30-11: FDEVOPT1 CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	
_			—	—	— —		—	
bit 23						·	bit 16	
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	
_		_	_	—	—	—	_	
bit 15						•	bit 8	
U-1	U-1	U-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	U-1	
		_	ALTVREF	SOSCHP ⁽¹⁾	SOSCHP ⁽¹⁾ TMPRPIN		_	
bit 7						•	bit 0	
Legend:		PO = Progran	n Once bit					
R = Readable bit		W = Writable	bit	U = Unimplemented bit, read as '1'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		
bit 23-5	Unimplemen	ted: Read as '	1'					
	-							

bit 4	ALTVREF: Alternate Voltage Reference Location Enable bit (100-pin and 121-pin devices only)
	1 = VREF+ and CVREF+ on RA10, VREF- and CVREF- on RA9
	0 = VREF+ and CVREF+ on RB0, VREF- and CVREF- on RB1
bit 3	SOSCHP: SOSC High-Power Enable bit (valid only when SOSCSEL = 1) ⁽¹⁾
	1 = SOSC High-Power mode is enabled
	0 = SOSC Low-Power mode is enabled
bit 2	TMPRPIN: Tamper Pin Enable bit
	1 = TMPR pin function is disabled
	0 = TMPR pin function is enabled
bit 1	ALTCMPI: Alternate Comparator Input Enable bit
	1 = C1INC, C2INC and C3INC are on their standard pin locations
	0 = C1INC, C2INC and C3INC are on RG9
bit 0	Unimplemented: Read as '1'

Note 1: High-Power mode is for crystals with 35K ESR (typical). Low-Power mode is for crystals with more than 65K ESR.

© 2015-2019 Microchip Technology Inc.

Address	s Name Bit																
Address	Name	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
FF0000h	DEVID		FAMID[7:0]							DEV[7:0]							
FF0002h	DEVREV		— REV[3:0]														

TABLE 30-2: DEVICE ID REGISTERS

TABLE 30-3: DEVICE ID BIT FIELD DESCRIPTIONS

Bit Field	Register	Description
FAMID[7:0]	DEVID	Encodes the family ID of the device.
DEV[7:0]	DEVID	Encodes the individual ID of the device.
REV[3:0]	DEVREV	Encodes the sequential (numerical) revision identifier of the device.

TABLE 30-4:PIC24FJ1024GA610/GB610FAMILY DEVICE IDs

Device	DEVID
PIC24FJ128GA606	6000h
PIC24FJ256GA606	6008h
PIC24FJ512GA606	6010h
PIC24FJ1024GA606	6018h
PIC24FJ128GA610	6001h
PIC24FJ256GA610	6009h
PIC24FJ512GA610	6011h
PIC24FJ1024GA610	6019h
PIC24FJ128GB606	6004h
PIC24FJ256GB606	600Ch
PIC24FJ512GB606	6014h
PIC24FJ1024GB606	601Ch
PIC24FJ128GB610	6005h
PIC24FJ256GB610	600Dh
PIC24FJ512GB610	6015h
PIC24FJ1024GB610	601Dh

30.2 Unique Device Identifier (UDID)

All PIC24FJ1024GA610/GB610 family devices are individually encoded during final manufacturing with a Unique Device Identifier, or UDID. The UDID cannot be erased by a bulk erase command or any other useraccessible means. This feature allows for manufacturing traceability of Microchip Technology devices in applications where this is a requirement. It may also be used by the application manufacturer for any number of things that may require unique identification, such as:

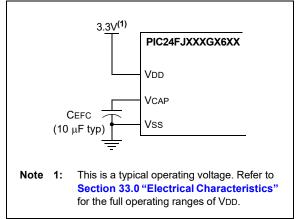
- · Tracking the device
- · Unique serial number
- Unique security key

The UDID comprises five 24-bit program words. When taken together, these fields form a unique 120-bit identifier.

The UDID is stored in five read-only locations, located between 801600h and 801608h in the device configuration space. Table 30-5 lists the addresses of the identifier words.

UDID	Address	Description
UDID1	801600	UDID Word 1
UDID2	801602	UDID Word 2
UDID3	801604	UDID Word 3
UDID4	801606	UDID Word 4
UDID5	801608	UDID Word 5

TABLE 30-5: UDID ADDRESSES


30.3 On-Chip Voltage Regulator

All PIC24FJ1024GA610/GB610 family devices power their core digital logic at a nominal 1.8V. This may create an issue for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the PIC24FJ1024GA610/ GB610 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

This regulator is always enabled. It provides a constant voltage (1.8V nominal) to the digital core logic, from a VDD of about 2.1V, all the way up to the device's VDDMAX. It does not have the capability to boost VDD levels. In order to prevent "brown-out" conditions when the voltage drops too low for the regulator, the Brown-out Reset occurs. Then, the regulator output follows VDD with a typical voltage drop of 300 mV.

A low-ESR capacitor (such as ceramic) must be connected to the VCAP pin (Figure 30-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor (CEFC) is provided in Section 33.1 "DC Characteristics".

FIGURE 30-1: CONNECTIONS FOR THE ON-CHIP REGULATOR

30.3.1 ON-CHIP REGULATOR AND POR

The voltage regulator takes approximately 10 µs for it to generate output. During this time, designated as TVREG, code execution is disabled. TVREG is applied every time the device resumes operation after any power-down, including Sleep mode. TVREG is determined by the status of the VREGS bit (RCON[8]) and the WDTWIN[1:0] Configuration bits (FWDT[9:8]). Refer to Section 33.0 "Electrical Characteristics" for more information on TVREG.

Note:	For more information, see Section 33.0
	"Electrical Characteristics". The infor-
	mation in this data sheet supersedes the information in the FRM.

30.3.2 VOLTAGE REGULATOR STANDBY MODE

The on-chip regulator always consumes a small incremental amount of current over IDD/IPD, including when the device is in Sleep mode, even though the core digital logic does not require power. To provide additional savings in applications where power resources are critical, the regulator can be made to enter Standby mode on its own whenever the device goes into Sleep mode. This feature is controlled by the VREGS bit (RCON[8]). Clearing the VREGS bit enables the Standby mode. When waking up from Standby mode, the regulator needs to wait for TVREG to expire before wake-up.

30.3.3 LOW-VOLTAGE/RETENTION REGULATOR

When in Sleep mode, PIC24FJ1024GA610/GB610 family devices may use a separate low-power, low-voltage/retention regulator to power critical circuits. This regulator, which operates at 1.2V nominal, main-tains power to data RAM and the RTCC while all other core digital logic is powered down. The low-voltage/retention regulator is described in more detail in Section 10.2.4 "Low-Voltage Retention Regulator".

^{© 2015-2019} Microchip Technology Inc.

30.4 Watchdog Timer (WDT)

For PIC24FJ1024GA610/GB610 family devices, the WDT is driven by the LPRC Oscillator, the Secondary Oscillator (SOSC) or the system timer. When the device is in Sleep mode, the LPRC Oscillator will be used. When the WDT is enabled, the clock source is also enabled.

The nominal WDT clock source from LPRC is 31 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the FWPSA Configuration bit. With a 31 kHz input, the prescaler yields a nominal WDT Time-out (TWDT) period of 1 ms in 5-bit mode or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPS[3:0] Configuration bits (FWDT[3:0]), which allows the selection of a total of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler time-out periods, ranges from 1 ms to 131 seconds, can be achieved.

The WDT, prescaler and postscaler are reset:

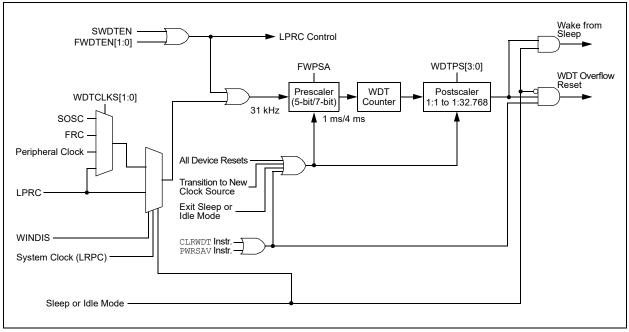
- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSCx bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE (RCON[3:2]) bits will need to be cleared in software after the device wakes up. The WDT Flag bit, WDTO (RCON[4]), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

Note:	The CLRWDT and PWRSAV instructions
	clear the prescaler and postscaler counts
	when executed.

30.4.1 WINDOWED OPERATION

The Watchdog Timer has an optional Fixed Window mode of operation. In this Windowed mode, CLRWDT instructions can only reset the WDT during the last 1/4 of the programmed WDT period. A CLRWDT instruction executed before that window causes a WDT Reset, similar to a WDT time-out.


Windowed WDT mode is enabled by programming the WINDIS Configuration bit (FWDT[7]) to '0'.

30.4.2 CONTROL REGISTER

The WDT is enabled or disabled by the FWDTEN[1:0] Configuration bits (FWDT[6:5]). When the Configuration bits, FWDTEN[1:0] = 11, the WDT is always enabled.

The WDT can be optionally controlled in software when the Configuration bits, FWDTEN[1:0] = 10. When FWDTEN[1:0] = 00, the Watchdog Timer is always disabled. The WDT is enabled in software by setting the SWDTEN control bit (RCON[5]). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user to enable the WDT for critical code segments and disable the WDT during non-critical code segments for maximum power savings.

^{© 2015-2019} Microchip Technology Inc.

30.5 Program Verification and Code Protection

PIC24FJ1024GA610/GB610 family devices offer basic implementation of CodeGuard[™] Security that supports General Segment (GS) security and Boot Segment (BS) security. This feature helps protect individual Intellectual Property.

Note:	For more information on usage, con-
	figuration and operation, refer to
	"CodeGuard™ Intermediate Security"
	(www.microchip.com/DS70005182) in the
	"dsPIC33/PIC24 Family Reference
	Manual".

30.6 JTAG Interface

PIC24FJ1024GA610/GB610 family devices implement a JTAG interface, which supports boundary scan device testing.

30.7 In-Circuit Serial Programming

PIC24FJ1024GA610/GB610 family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock (PGECx) and data (PGEDx), and three other lines for power (VDD), ground (VSS) and MCLR. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

30.8 Customer OTP Memory

PIC24FJ1024GA610/GB610 family devices provide 256 bytes of One-Time-Programmable (OTP) memory, located at addresses, 801700h through 8017FEh. This memory can be used for persistent storage of application-specific information that will not be erased by reprogramming the device. This includes many types of information, such as (but not limited to):

- Application checksums
- Code revision information
- Product information
- Serial numbers
- System manufacturing dates
- Manufacturing lot numbers

OTP memory can be written by program execution (i.e., $\tt TBLWT$ instructions), and during device programming. Data are not cleared by a chip erase.

Note: Data in the OTP memory section MUST NOT be programmed more than once.

30.9 In-Circuit Debugger

This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pins.

To use the in-circuit debugger function of the device, the design must implement $ICSP^{TM}$ connections to MCLR, VDD, Vss and the PGECx/PGEDx pin pair, designated by the ICS[1:0] Configuration bits. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

31.0 DEVELOPMENT SUPPORT

Move a design from concept to production in record time with Microchip's award-winning development tools. Microchip tools work together to provide state of the art debugging for any project with easy-to-use Graphical User Interfaces (GUIs) in our free MPLAB[®] X and Atmel Studio Integrated Development Environments (IDEs), and our code generation tools. Providing the ultimate ease-of-use experience, Microchip's line of programmers, debuggers and emulators work seamlessly with our software tools. Microchip development boards help evaluate the best silicon device for an application, while our line of third party tools round out our comprehensive development tool solutions.

Microchip's MPLAB X and Atmel Studio ecosystems provide a variety of embedded design tools to consider, which support multiple devices, such as $PIC^{@}$ MCUs, $AVR^{@}$ MCUs, SAM MCUs and $dsPIC^{@}$ DSCs. MPLAB X tools are compatible with Windows[®], Linux[®] and Mac[®] operating systems while Atmel Studio tools are compatible with Windows.

Go to the following website for more information and details:

https://www.microchip.com/development-tools/

PIC24FJ1024GA610/GB610 FAMILY

NOTES:

32.0 INSTRUCTION SET SUMMARY

Note: This chapter is a brief summary of the PIC24F Instruction Set Architecture (ISA) and is not intended to be a comprehensive reference source.

The PIC24F instruction set adds many enhancements to the previous PIC[®] MCU instruction sets, while maintaining an easy migration from previous PIC MCU instruction sets. Most instructions are a single program memory word. Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction. The instruction set is highly orthogonal and is grouped into four basic categories:

- Word or byte-oriented operations
- Bit-oriented operations
- · Literal operations
- Control operations

Table 32-1 shows the general symbols used in describing the instructions. The PIC24F instruction set summary in Table 32-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register, 'Wb', without any address modifier
- The second source operand, which is typically a register, 'Ws', with or without an address modifier
- The destination of the result, which is typically a register, 'Wd', with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- The file register specified by the value, 'f'
- The destination, which could either be the file register, 'f', or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register, 'Wb')

The literal instructions that involve data movement may use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by the value of 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register, 'Wb', without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register, 'Wd', with or without an address modifier

The control instructions may use some of the following operands:

- · A program memory address
- The mode of the Table Read and Table Write instructions

All instructions are a single word, except for certain double-word instructions, which were made double-word instructions so that all the required information is available in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the Program Counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all Table Reads and Table Writes, and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles.

Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles.

^{© 2015-2019} Microchip Technology Inc.

TABLE 32-1:	SYMBOLS USED IN OPCODE DESCRIPTIONS
-------------	-------------------------------------

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{ }	Optional field or operation
[n:m]	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.W	Word mode selection (default)
bit4	4-bit Bit Selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0000h1FFFh}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {016383}
lit16	16-bit unsigned literal ∈ {065535}
lit23	23-bit unsigned literal ∈ {08388607}; LSB must be '0'
None	Field does not require an entry, may be blank
PC	Program Counter
Slit10	10-bit signed literal ∈ {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal \in {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor Working register pair (direct addressing)
Wn	One of 16 Working registers ∈ {W0W15}
Wnd	One of 16 destination Working registers ∈ {W0W15}
Wns	One of 16 source Working registers ∈ {W0W15}
WREG	W0 (Working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
ADD	ADD	f	f = f + WREG	1	1	C, DC, N, OV, Z
	ADD	f,WREG	WREG = f + WREG	1	1	C, DC, N, OV, Z
	ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C, DC, N, OV, Z
	ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C, DC, N, OV, Z
	ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C, DC, N, OV, 2
ADDC	ADDC	f	f = f + WREG + (C)	1	1	C, DC, N, OV, 2
	ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C, DC, N, OV, 2
	ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C, DC, N, OV, 2
	ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C, DC, N, OV, 2
	ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C, DC, N, OV, 2
AND	AND	f	f = f .AND. WREG	1	1	N, Z
	AND	f,WREG	WREG = f .AND. WREG	1	1	N, Z
	AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N, Z
	AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N, Z
	AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N, Z
ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C, N, OV, Z
	ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N, Z
	ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N, Z
BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
	BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
	BRA	GE,Expr	Branch if Greater Than or Equal	1	1 (2)	None
	BRA	GEU, Expr	Branch if Unsigned Greater Than or Equal	1	1 (2)	None
	BRA	GT,Expr	Branch if Greater Than	1	1 (2)	None
	BRA	GTU, Expr	Branch if Unsigned Greater Than	1	1 (2)	None
	BRA	LE,Expr	Branch if Less Than or Equal	1	1 (2)	None
	BRA	LEU, Expr	Branch if Unsigned Less Than or Equal	1	1 (2)	None
	BRA	LT,Expr	Branch if Less Than	1	1 (2)	None
	BRA	LTU, Expr	Branch if Unsigned Less Than	1	1 (2)	None
	BRA	N,Expr	Branch if Negative	1	1 (2)	None
	BRA	NC,Expr	Branch if Not Carry	1	1 (2)	None
	BRA	NN, Expr	Branch if Not Negative	1	1 (2)	None
	BRA	NOV, Expr	Branch if Not Overflow	1	1 (2)	None
	BRA	NZ,Expr	Branch if Not Zero	1	1 (2)	None
	BRA	OV,Expr	Branch if Overflow	1	1 (2)	None
	BRA	Expr	Branch Unconditionally	1	2	None
	BRA	Z,Expr	Branch if Zero	1	1 (2)	None
	BRA	Wn	Computed Branch	1	2	None
BSET	BSET	f,#bit4	Bit Set f	1	1	None
0001	BSET	Ws,#bit4	Bit Set Ws	1	1	None
BSW	BSW.C	Ws, Wb	Write C bit to Ws[Wb]	1	1	None
50m	BSW.Z	Ws,Wb	Write Z bit to Ws[Wb]	1	1	None
BTG	BSW.Z BTG	f,#bit4	Bit Toggle f	1	1	None
519	-		Bit Toggle Ws	1	1	None
BTSC	BTG BTSC	Ws,#bit4 f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
	BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	(2 or 3)	None

TABLE 32-2: INSTRUCTION SET OVERVIEW

© 2015-2019 Microchip Technology Inc.

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
	BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
BTST	BTST	f,#bit4	Bit Test f	1	1	Z
	BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
	BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
	BTST.C	Ws,Wb	Bit Test Ws[Wb] to C	1	1	С
	BTST.Z	Ws,Wb	Bit Test Ws[Wb] to Z	1	1	Z
BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
	BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
	BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
CALL	CALL	lit23	Call Subroutine	2	2	None
	CALL	Wn	Call Indirect Subroutine	1	2	None
CLR	CLR	f	f = 0x0000	1	1	None
	CLR	WREG	WREG = 0x0000	1	1	None
	CLR	Ws	Ws = 0x0000	1	1	None
CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO, Sleep
COM	COM	f	f = f	1	1	N, Z
	COM	f,WREG	WREG = f	1	1	N, Z
	COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N, Z
CP	CP	f	Compare f with WREG	1	1	C, DC, N, OV, Z
01	CP	Wb,#lit5	Compare Wb with lit5	1	1	C, DC, N, OV, Z
	CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C, DC, N, OV, Z
CP0	CPO	f	Compare f with 0x0000	1	1	C, DC, N, OV, Z
010	CPO	Ws	Compare Vs with 0x0000	1	1	C, DC, N, OV, Z
CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C, DC, N, OV, Z
CID	CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C, DC, N, OV, Z
	CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$	1	1	C, DC, N, OV, Z
CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None
CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None
CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None
CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, Skip if ≠	1	1 (2 or 3)	None
DAW	DAW.B	Wn	Wn = Decimal Adjust Wn	1	1	С
DEC	DEC	f	f = f -1	1	1	C, DC, N, OV, Z
	DEC	f,WREG	WREG = f -1	1	1	C, DC, N, OV, Z
	DEC	Ws,Wd	Wd = Ws - 1	1	1	C, DC, N, OV, Z
DEC2	DEC2	f	f = f - 2	1	1	C, DC, N, OV, Z
	DEC2	f,WREG	WREG = f – 2	1	1	C, DC, N, OV, Z
	DEC2	Ws,Wd	Wd = Ws - 2	1	1	C, DC, N, OV, Z
DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None
DIV	DIV.SW	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UW	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N, Z, C, OV
EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С

TABLE 32-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
GOTO	GOTO	Expr	Go to Address	2	2	None
	GOTO	Wn	Go to Indirect	1	2	None
INC	INC	f	f = f + 1	1	1	C, DC, N, OV, Z
	INC	f,WREG	WREG = f + 1	1	1	C, DC, N, OV, Z
	INC	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
INC2	INC2	f	f = f + 2	1	1	C, DC, N, OV, Z
	INC2	f,WREG	WREG = f + 2	1	1	C, DC, N, OV, Z
	INC2	Ws,Wd	Wd = Ws + 2	1	1	C, DC, N, OV, Z
IOR	IOR	f	f = f .IOR. WREG	1	1	N, Z
	IOR	f,WREG	WREG = f .IOR. WREG	1	1	N, Z
	IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N, Z
	IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N, Z
	IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N, Z
LNK	LNK	#lit14	Link Frame Pointer	1	1	None
LSR	LSR	f	f = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	f,WREG	WREG = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C, N, OV, Z
	LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N, Z
	LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N, Z
MOV	MOV	f,Wn	Move f to Wn	1	1	None
	MOV	[Wns+Slit10],Wnd	Move [Wns+Slit10] to Wnd	1	1	None
	MOV	f	Move f to f	1	1	N, Z
	MOV	f,WREG	Move f to WREG	1	1	N, Z
	MOV	#lit16,Wn	Move 16-bit Literal to Wn	1	1	None
	MOV.b	#lit8,Wn	Move 8-bit Literal to Wn	1	1	None
	MOV	Wn,f	Move Wn to f	1	1	None
	MOV	Wns, [Wns+Slit10]	Move Wns to [Wns+Slit10]	1	1	None
	MOV	Wso,Wdo	Move Ws to Wd	1	1	None
	MOV	WREG, f	Move WREG to f	1	1	N, Z
	MOV.D	Wns,Wd	Move Double from W(ns):W(ns+1) to Wd	1	2	None
	MOV.D	Ws,Wnd	Move Double from Ws to W(nd+1):W(nd)	1	2	None
MUL	MUL.SS	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Signed(Ws)	1	1	None
	MUL.SU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(Ws)	1	1	None
	MUL.US	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Signed(Ws)	1	1	None
	MUL.UU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(Ws)	1	1	None
	MUL.SU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(lit5)	1	1	None
	MUL.UU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(lit5)	1	1	None
	MUL	f	W3:W2 = f * WREG	1	1	None
NEG	NEG	f	$f = \overline{f} + 1$	1	1	C, DC, N, OV, Z
	NEG	f,WREG	WREG = \overline{f} + 1	1	1	C, DC, N, OV, Z
			$Wd = \overline{Ws} + 1$			C, DC, N, OV, Z
NOD	NEG	Ws,Wd		1	1	None
NOP	NOP		No Operation	1	1	ł
	NOPR	£	No Operation Pop f from Top-of-Stack (TOS)	1	1	None
POP	POP	f		1	1	None
	POP D	Wdo	Pop from Top-of-Stack (TOS) to Wdo		-	None
	POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd+1)	1	2	None
	POP.S		Pop Shadow Registers	1	1	All
PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
	PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
	PUSH.D	Wns	Push W(ns):W(ns+1) to Top-of-Stack (TOS)	1	2	None
	PUSH.S		Push Shadow Registers	1	1	None

© 2015-2019 Microchip Technology Inc.

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO, Sleep
RCALL	RCALL	Expr	Relative Call	1	2	None
	RCALL	Wn	Computed Call	1	2	None
REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 Times	1	1	None
	REPEAT	Wn	Repeat Next Instruction (Wn) + 1 Times	1	1	None
RESET	RESET		Software Device Reset	1	1	None
RETFIE	RETFIE		Return from Interrupt	1	3 (2)	None
RETLW	RETLW	#lit10,Wn	Return with Literal in Wn	1	3 (2)	None
RETURN	RETURN		Return from Subroutine	1	3 (2)	None
RLC	RLC	f	f = Rotate Left through Carry f	1	1	C, N, Z
	RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C, N, Z
	RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C, N, Z
RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N, Z
RRC	RRC	f	f = Rotate Right through Carry f	1	1	C, N, Z
	RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C, N, Z
	RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C, N, Z
RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N, Z
SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C, N, Z
SETM	SETM	f	f = FFFFh	1	1	None
	SETM	WREG	WREG = FFFFh	1	1	None
	SETM	Ws	Ws = FFFh	1	1	None
SL	SL	f	f = Left Shift f	1	1	C, N, OV, Z
51	SL	f,WREG	WREG = Left Shift f	1	1	C, N, OV, Z
	SL	Ws,Wd	Wd = Left Shift Ws	1	1	C, N, OV, Z
	SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N, Z
	SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N, Z
SUB	SUB	f	f = f - WREG	1	1	C, DC, N, OV, 2
000	SUB	f,WREG	WREG = f – WREG	1	1	C, DC, N, OV, 2
	SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C, DC, N, OV, 2
	SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C, DC, N, OV, 2
	SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C, DC, N, OV, 2
2000			_			
SUBB	SUBB	f	f = f - WREG - (C)	1	1	C, DC, N, OV, 2
	SUBB	f,WREG	WREG = f - WREG - (C)	1	1	C, DC, N, OV, 2
	SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C, DC, N, OV, 2
	SUBB	Wb,Ws,Wd	Wd = Wb - Ws - (C)	1	1	C, DC, N, OV, 2
	SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C, DC, N, OV, 2
SUBR	SUBR	f	f = WREG – f	1	1	C, DC, N, OV, 2
	SUBR	f,WREG	WREG = WREG – f	1	1	C, DC, N, OV, 2
	SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C, DC, N, OV, 2
	SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C, DC, N, OV, 2
SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C, DC, N, OV, 2
	SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C, DC, N, OV, 2
	SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C, DC, N, OV, 2
	SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C, DC, N, OV, 2
SWAP	SWAP.b	Wn	Wn = Nibble Swap Wn	1	1	None
	SWAP	Wn	Wn = Byte Swap Wn	1	1	None

TABLE 32-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
TBLRDH	TBLRDH	Ws,Wd	Read Prog[23:16] to Wd[7:0]	1	2	None
TBLRDL	TBLRDL	Ws,Wd	Read Prog[15:0] to Wd	1	2	None
TBLWTH	TBLWTH	Ws,Wd	Write Ws[7:0] to Prog[23:16]	1	2	None
TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog[15:0]	1	2	None
ULNK	ULNK		Unlink Frame Pointer	1	1	None
XOR	XOR	f	f = f .XOR. WREG	1	1	N, Z
	XOR	f,WREG	WREG = f .XOR. WREG	1	1	N, Z
	XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N, Z
	XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N, Z
	XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N, Z
ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C, Z, N

TABLE 32-2: INSTRUCTION SET OVERVIEW (CONTINUED)

^{© 2015-2019} Microchip Technology Inc.

NOTES:

33.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC24FJ1024GA610/GB610 family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC24FJ1024GA610/GB610 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient industrial temperature range under bias	40°C to +85°C
Ambient extended temperature range under bias	
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽³⁾	
Voltage on any 5V tolerant pin with respect to Vss ⁽³⁾	-0.3V to +5.5V
Maximum current sunk/sourced by an I/O pin	
Maximum current out of Vss pin:	
for industrial range (-40°C to +85°C)	
for extended range (-40°C to +125°C)	
Maximum current into VDD pin ⁽²⁾ :	
for industrial range (-40°C to +85°C)	300 mA
for extended range (-40°C to +125°C	
Maximum current sunk by a group of I/Os between two Vss pins: ⁽⁴⁾	
for industrial range (-40°C to +85°C)	300 mA
for extended range (-40°C to +125°C)	250 mA
Maximum current sourced by a group of I/Os between two VDD pins: ⁽⁴⁾	
for industrial range (-40°C to +85°C)	300 mA
for extended range (-40°C to +125°C)	
Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause perr	nanent damage to the

iote 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those, or any other conditions above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

2: Maximum allowable current is a function of device maximum power dissipation (see Table 33-2).

3: See the **"Pin Diagrams**⁽²⁾" section for the 5V tolerant pins.

4: Not applicable to AVDD and AVss pins.

33.1 DC Characteristics

TABLE 33-1: MCU CLOCK FREQUENCY VS. TEMPERATURE

Temperature Range	VDD Range ⁽¹⁾	Maximum Oscillator Frequency	Maximum CPU Clock Frequency
-40°C to +85°C	2.0V to 3.6V	32 MHz	16 MHz
+85°C to +125°C	2.0V to 3.6V	32 MHz	16 MHz

Note 1: Lower operating boundary is 2.0V or VBOR (when BOR is enabled). For best analog performance, operation of 2.2V is suggested, but not required.

TABLE 33-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Max	Unit
Industrial Temperature Devices:				
Operating Junction Temperature Range	TJ	-40	+125	°C
Operating Ambient Temperature Range	TA	-40	+85	°C
Extended Temperature Devices:				
Operating Junction Temperature Range	TJ	-40	+130	°C
Operating Ambient Temperature Range	TA	-40	+125	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$		PINT + PI/O		W
I/O Pin Power Dissipation: $PI/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$				
Maximum Allowed Power Dissipation	PDMAX	(TJ – ⁻	ΓΑ)/θЈΑ	W

TABLE 33-3: THERMAL PACKAGING CHARACTERISTICS⁽¹⁾

Characteristic	Symbol	Тур	Unit
Package Thermal Resistance, 9x9x0.9 mm QFN	θJA	33.7	°C/W
Package Thermal Resistance, 10x10x1 mm TQFP	θJA	28	°C/W
Package Thermal Resistance, 12x12x1 mm TQFP	θJA	39.3	°C/W
Package Thermal Resistance, 10x10x1.1 mm TFBGA	θJA	40.2	°C/W

Note 1: Junction to ambient thermal resistance; Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 33-4: OPERATING VOLTAGE SPECIFICATIONS

-40°C ≤	Operating Conditions (unless otherwise stated): -40°C \leq TA \leq +85°C for Industrial, -40°C \leq TA \leq +125°C for Extended						
Param No.	Symbol	Characteristics	Min	Мах	Units	Conditions	
DC10	Vdd	Supply Voltage	2.0	3.6	V	BOR is disabled	
			VBOR	3.6	V	BOR is enabled	
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	Vss	—	V		
DC17A	SVDD	Recommended VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.05	_	V/mS	0-3.3V in 66 ms, 0-2.0V in 40 ms	
DC18	VBOR	Brown-out Reset	2.0	2.2	V	-40°C < TA < +85°C	
		Voltage on VDD Transition, High-to-Low	1.95 ⁽¹⁾	2.2	V	-40°C < Ta < +125°C	

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules (ADC and comparators) may have a degraded performance.

^{© 2015-2019} Microchip Technology Inc.

TABLE 33-5: OPERATING CURRENT (IDD)⁽²⁾

Operating Conditions (unless otherwise stated): -40°C \leq TA \leq +85°C for Industrial, -40°C \leq TA \leq +125°C for Extended								
Parameter No.	Typical ⁽¹⁾	Мах	Units	VDD	Conditions			
DC19	230	510	μA	2.0V	0.5 MIPS,			
	250	510	μA	3.3V	Fosc = 1 MHz			
DC20	430	700	μA	2.0V	1 MIPS,			
	440	700	μA	3.3V	Fosc = 2 MHz			
DC23	1.5	2.4	mA	2.0V	4 MIPS,			
	1.65	2.4	mA	3.3V	Fosc = 8 MHz			
DC24	6.1	7.8	mA	2.0V	16 MIPS,			
	6.3	7.8	mA	3.3V	Fosc = 32 MHz			
DC31	43	400	μA	2.0V	LPRC (15.5 KIPS),			
	46	400	μA	3.3V	Fosc = 31 kHz			
DC32	1.63	2.5	mA	2.0V	FRC (4 MIPS),			
	1.65	2.5	mA	3.3V	Fosc = 8 MHz			
DC33	1.9	3.0	mA	2.0V	DCO (4 MIPS),			
	2.0	3.0	mA	3.3V	Fosc = 8 MHz			

Note 1: Data in the "Typical" column are at +25°C unless otherwise stated. Typical parameters are for design guidance only and are not tested.

2: Base IDD current is measured with:

 Oscillator is configured in EC mode without PLL (FNOSC[2:0] (FOSCSEL[2:0]) = 010, PLLMODE[3:0] (FOSCSEL[6:3]) = 1111 and POSCMOD[1:0] (FOSC[1:0]) = 00)

- OSC1 pin is driven with external square wave with levels from 0.3V to VDD 0.3V
- OSC2 is configured as an I/O in the Configuration Words (OSCIOFNC (FOSC[2]) = 0)
- FSCM is disabled (FCKSM[1:0] (FOSC[7:6]) = 11)
- Secondary Oscillator circuit is disabled (SOSCSEL (FOSC[3]) = 0)
- Main and low-power BOR circuits are disabled (BOREN[1:0] (FPOR[1:0]) = 00 and DNVPEN (FPOR[3]) = 0)
- Watchdog Timer is disabled (FWDTEN[1:0] (FWDT[6:5]) = 00)
- · All I/O pins (except OSC1) are configured as outputs and driving low
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
- JTAG is disabled (JTAGEN (FICD[5]) = 0)
- NOP instructions are executed

Operating Conditions (unless otherwise stated): -40°C \leq TA \leq +85°C for Industrial, -40°C \leq TA \leq +125°C for Extended						
Parameter No.	Typical ⁽¹⁾	Max	Units	VDD	Conditions	
DC40	95	260	μA	2.0V	1 MIPS,	
	105	260	μA	3.3V	Fosc = 2 MHz	
DC43	290	720	μA	2.0V	4 MIPS,	
	315	750	μA	3.3V	Fosc = 8 MHz	
DC47	1.05	2.7	mA	2.0V	16 MIPS,	
	1.16	2.8	mA	3.3V	Fosc = 32 MHz	
DC50	350	820	μA	2.0V	FRC (4 MIPS),	
	360	850	μA	3.3V	Fosc = 8 MHz	
DC51	26	190	μA	2.0V	LPRC (15.5 KIPS),	
	30	190	μA	3.3V	Fosc = 31 kHz	

TABLE 33-6: IDLE CURRENT (lidle)⁽²⁾

Note 1: Data in the "Typical" column are at +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IIDLE current is measured with:

 Oscillator is configured in EC mode without PLL (FNOSC[2:0] (FOSCSEL[2:0]) = 010, PLLMODE[3:0] (FOSCSEL[6:3]) = 1111 and POSCMOD[1:0] (FOSC[1:0]) = 00)

- OSC1 pin is driven with external square wave with levels from 0.3V to $V\mbox{DD}-0.3V$
- OSC2 is configured as an I/O in Configuration Words (OSCIOFNC (FOSC[2]) = 0)
- FSCM is disabled (FCKSM[1:0] (FOSC[7:6]) = 11)
- Secondary Oscillator circuit is disabled (SOSCSEL (FOSC[3]) = 0)
- Main and low-power BOR circuits are disabled (BOREN[1:0] (FPOR[1:0]) = 00 and DNVPEN (FPOR[3]) = 0)
- Watchdog Timer is disabled (FWDTEN[1:0] (FWDT[6:5]) = 00)
- · All I/O pins (except OSC1) are configured as outputs and driving low
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
- JTAG is disabled (JTAGEN (FICD[5]) = 0)

Parameter No.	Typical ⁽¹⁾	Max	Units	Operating Temperature	VDD	Conditions		
DC60	2.5	10	μA	-40°C				
	3.2	10	μA	+25°C	2.0V			
	11.5	45	μA	+85°C	2.00	Sleep with main voltage regulator in		
	56	90	μA	+125°C		Standby mode (VREGS (RCON[8]) = 0,		
	3.2	10	μA	-40°C		$\frac{RETEN}{RETEN} (RCON[12]) = 0,$		
	4	10	μA	+25°C	2 2)/	LPCFG (FPOR[2]) = 1)		
	12.2	45	μA	+85°C	3.3V			
	57	90	μA	+125°C				
DC61	165	_	nA	-40°C				
	190	_	nA	+25°C				
	14.5	_	μA	+85°C	2.0V	Sleep with enabled retention voltage		
	45	_	μA	+125°C		regulator (VREGS (RCON[8]) = 0,		
	220	_	nA	-40°C		RETEN (RCON[12]) = 1,		
	300	_	nA	+25°C	3.3V	$\overline{LPCFG} (FPOR[2]) = 0)$		
	15	_	μA	+85°C	3.3V			
	45	_	μA	+125°C				

TABLE 33-7: POWER-DOWN CURRENT (IPD)⁽²⁾

Note 1: Parameters are for design guidance only and are not tested.

2: Base IPD current is measured with:

- Oscillator is configured in FRC mode without PLL (FNOSC[2:0] (FOSCSEL[2:0]) = 000, PLLMODE[3:0] (FOSCSEL[6:3]) = 1111 and POSCMOD[1:0] (FOSC[1:0]) = 11)
- OSC2 is configured as an I/O in Configuration Words (OSCIOFNC (FOSC[2]) = 0)
- FSCM is disabled (FCKSM[1:0] (FOSC[7:6]) = 11)
- Secondary Oscillator circuit is disabled (SOSCSEL (FOSC[3]) = 0)
- Main and low-power BOR circuits are disabled (BOREN[1:0] (FPOR[1:0]) = 00 and DNVPEN (FPOR[3]) = 0)
- Watchdog Timer is disabled (FWDTEN[1:0] (FWDT[6:5]) = 00)
- · All I/O pins are configured as outputs and driving low
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
- JTAG is disabled (JTAGEN (FICD[5]) = 0)
- The currents are measured on the device containing the most memory in this family

TABLE 33-8:	INCREMEN	TAL PERIPH	ERAL \triangle CUR	RENT ⁽²⁾	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	5°C for Industri	al,	ted):		
Parameter No.	Typical ⁽¹⁾	Max	Units	Vdd	Conditions
Incremental Cur	rrent Brown-o	ut Reset (∆BO	R)		
DC25	3	19	μA	2.0V	
	4	19	μA	3.3V	
Incremental Cu	rent Watchdo	g Timer (∆WD	Т)		
DC71	0.22	15	μA	2.0V	
	0.3	15	μA	3.3V	
Incremental Cu	rent High/Lov	v-Voltage Dete	ect (∆HLVD)		_
DC75	1.3	20	μA	2.0V	
	1.9	20	μA	3.3V	
Incremental Cu	rent Real-Tim	e Clock and C	alendar (△RT	CC)	
DC77	1.1	—	μA	2.0V	With SOSC enabled in Low-Power
	1.2		μA	3.3V	mode
DC77A	0.35	16	μA	2.0V	With LPRC enabled
	0.45	16	μA	3.3V	

(2)

Note 1: Data in the "Typical" column are at +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current. The current includes the selected clock source enabled for WDT and RTCC.

^{© 2015-2019} Microchip Technology Inc.

TABLE 33-9: I/O PIN INPUT SPECIFICATIONS

-40°C ≤	Operating Conditions (unless otherwise stated): -40°C \leq TA \leq +85°C for Industrial, -40°C \leq TA \leq +125°C for Extended					
Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
	VIL ⁽³⁾	Input Low Voltage ⁽²⁾				
DI10		I/O Pins with ST Buffer	Vss	0.2 Vdd	V	
DI11		I/O Pins with TTL Buffer	Vss	0.15 VDD	V	
DI15		MCLR	Vss	0.2 Vdd	V	
DI16		OSCI (XT mode)	Vss	0.2 Vdd	V	
DI17		OSCI (HS mode)	Vss	0.2 Vdd	V	
DI18		I/O Pins with I ² C Buffer	Vss	0.3 VDD	V	
DI19		I/O Pins with SMBus Buffer	Vss	0.8	V	SMBus is enabled
	Vih(3)	Input High Voltage ⁽²⁾				
DI20		I/O Pins with ST Buffer: with Analog Functions, Digital Only	0.8 Vdd 0.8 Vdd	Vdd 5.5	V V	
DI21		I/O Pins with TTL Buffer: with Analog Functions, Digital Only	0.25 Vdd + 0.8 0.25 Vdd + 0.8	Vdd 5.5	V V	
DI25		MCLR	0.8 Vdd	Vdd	V	
DI26		OSCI (XT mode)	0.7 Vdd	Vdd	V	
DI27		OSCI (HS mode)	0.7 Vdd	Vdd	V	
DI28		I/O Pins with I ² C Buffer	0.7 Vdd	5.5	V	
DI29		I/O Pins with SMBus Buffer	2.1	5.5	V	
DI30	ICNPU	CNx Pull-up Current	150	500	μA	VDD = 3.3V, VPIN = VSS
DI30A	ICNPD	CNx Pull-Down Current	150	500	μA	VDD = 3.3V, VPIN = VDD
	lı∟	Input Leakage Current ⁽¹⁾				
DI50		I/O Ports	_	±1	μA	$Vss \le VPIN \le VDD,$ pin at high-impedance
DI51		Analog Input Pins ⁽³⁾	_	±1	μA	$Vss \le VPIN \le VDD$, pin at high-impedance
DI55		MCLR	_	±1	μA	$VSS \le VPIN \le VDD$
DI56		OSCI/CLKI ⁽³⁾	—	±1	μA	$Vss \le VPIN \le VDD,$ EC, XT and HS modes

Note 1: Negative current is defined as current sourced by the pin.

2: Refer to Table 1-1 for I/O pin buffer types.

3: Characterized, but not production tested.

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
	Vol	Output Low Voltage				
DO10		I/O Ports	—	0.4	V	IOL = 6.6 mA, VDD = 3.6V
			—	0.8	V	IOL = 18 mA, VDD = 3.6V
			—	0.35	V	IOL = 5.0 mA, VDD = 2V
DO16		OSCO/CLKO	—	0.18	V	IOL = 6.6 mA, VDD = 3.6V
			_	0.2	V	IOL = 5.0 mA, VDD = 2V
	Vон	Output High Voltage				
DO20		I/O Ports	3.4	—	V	Іон = -3.0 mA, Vdd = 3.6V
			3.25	—	V	Іон = -6.0 mA, VDD = 3.6V
			2.8	—	V	ІОН = -18 mA, VDD = 3.6V
			1.65	—	V	Іон = -1.0 mA, VDD = 2V
			1.4	—	V	Юн = -3.0 mA, VDD = 2V
DO26		OSCO/CLKO	3.3	—	V	Юн = -6.0 mA, VDD = 3.6V
			1.85		V	Юн = -1.0 mA, VDD = 2V

TABLE 33-10: I/O PIN OUTPUT SPECIFICATIONS⁽¹⁾

Note 1: Data in the table are at +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 33-11: PROGRAM FLASH MEMORY SPECIFICATIONS

	O			n
Operating	Conditions	uniess	otherwise	stated):

Operating Conditions (unless otherwise
2.0V < VDD < 3.6V,
-40°C \leq TA \leq +85°C for Industrial,
-40°C \leq TA \leq +125°C for Extended

Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions			
		Program Flash Memory								
D130	Eр	Cell Endurance	10000	20000	_	E/W				
D131	VICSP	VDD for In-Circuit Serial Programming™ (ICSP™)	2.0	—	3.6	V				
D132	VRTSP	VDD for Run-Time Self-Programming (RTSP)	2.0	—	3.6	V				
D133	Tiw	Self-Timed Double-Word Write Time	—	20	—	μs	2 instructions, not all '1's			
D134	Trw	Self-Timed Row Write Time		1.5	—	ms	128 instructions, not all '1's			
D135	TIE	Self-Timed Page Erase Time	20		40	ms	1024 instructions			
D136	TCE	Self-Timed Chip Erase Time	20	—	40	ms				
D137	TRETD	Characteristic Retention	20	—	—	Year				

Note 1: Data in the "Typ" column are at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 33-12: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Operating Conditions (unless otherwise stated): $2.0V < V_{DD} < 3.6V$, $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial, $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended									
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments		
DVR	TVREG	Voltage Regulator Start-up Time		10	—	μs	POR or BOR		
DVR10	Vbg	Internal Band Gap Reference	1.14	1.2	1.26	V			
DVR11	Tbg	Band Gap Reference Start-up Time	_	1	—	ms			
DVR20	Vrgout	Regulator Output Voltage	1.6	1.8	2	V	VDD > 2.1V		
DVR21	Cefc	External Filter Capacitor Value	10	_	—	μF	Series resistance < 3Ω recommended; < 5Ω required		

TABLE 33-13: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS

2.0V < V -40°C ≤	DD < 3.6V, TA ≤ +85°C f	ns (unless otherwise stated or Industrial, for Extended):							
Param No.	Symbol	Charao	Characteristic Min Typ ⁽²⁾ Max Unit							
DC18	VHLVD ⁽¹⁾	HLVD Voltage on VDD	HLVDL[3:0] = 0101	3.21	_	3.58	V			
		Transition	HLVDL[3:0] = 0110	2.9	_	3.25	V			
			HLVDL[3:0] = 0111	2.72	—	3.04	V			
			HLVDL[3:0] = 1000	2.61	—	2.93	V			
			HLVDL[3:0] = 1001	2.42	—	2.75	V			
			HLVDL[3:0] = 1010	2.33	—	2.64	V			
			HLVDL[3:0] = 1011	2.23	—	2.50	V			
			HLVDL[3:0] = 1100	2.12	_	2.39	V			
			HLVDL[3:0] = 1101	2.04	—	2.28	V			
			HLVDL[3:0] = 1110	2.00	—	2.20	V			
DC101	VTHL	Transition Voltage on HLVDIN Pin	HLVDL[3:0] = 1111	-	1.20	_	V			
DC105	TONLVD	HLVD Module Enable Time		_	5	_	μS			

Note 1: Trip points for values of HLVD[3:0], from '0000' to '0100', are not implemented.

2: Data in the "Typ" column are at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 33-14: COMPARATOR DC SPECIFICATIONS

Operating Conditions (unless otherwise stated):
2.0V < VDD < 3.6V,

2.00 < 000 < 3.00

 $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial,

$-40^{\circ}C \le T/$	$-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended								
Param No.	Symbol	Characteristic	Min	Typ ⁽³⁾	Max	Units			
D300	VIOFF	Input Offset Voltage	—	12	60	mV			
D301	VICM ⁽¹⁾	Input Common-Mode Voltage	0		Vdd	V			
D302	CMRR ⁽¹⁾	Common-Mode Rejection Ratio	55			dB			
D306	IQCMP	AVDD Quiescent Current per Comparator	_	27		μA			
D307	Tresp ⁽²⁾	Response Time	—	300		ns			
D308	TMC2OV	Comparator Mode Change to Valid Output			10	μs			
D309	Idd	Operating Supply Current	_	30	_	μA			

Note 1: Parameters are characterized but not tested.

- 2: Measured with one input at VDD/2 and the other transitioning from VSS to VDD.
- **3:** Data in the "Typ" column are at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 33-15: COMPARATOR VOLTAGE REFERENCE DC SPECIFICATIONS

Operating Conditions (unless otherwise stated):

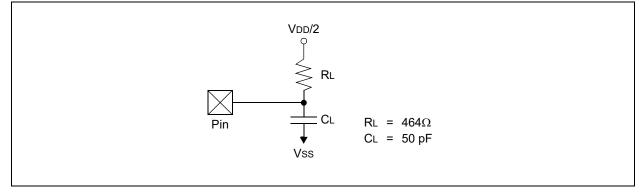
2.0V < VDD < 3.6V,

-40°C \leq TA \leq +85°C for Industrial, -40°C \leq TA \leq +125°C for Extended

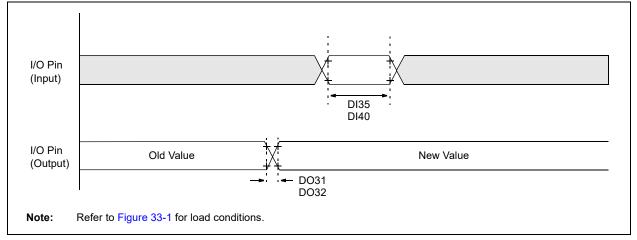
Param No.	Symbol	Characteristic	Min	Typ ⁽²⁾	Max	Units
VR310	Tset ⁽¹⁾	Settling Time		_	10	μs
VRD311	CVRAA	Absolute Accuracy	-100	_	+100	mV
VRD312	CVRur	Unit Resistor Value (R)	_	4.5	_	kΩ

Note 1: Measures the interval while CVR[4:0] transitions from '11111' to '00000'.

2: Data in the "Typ" column are at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.


TABLE 33-16: CTMU CURRENT SOURCE SPECIFICATIONS

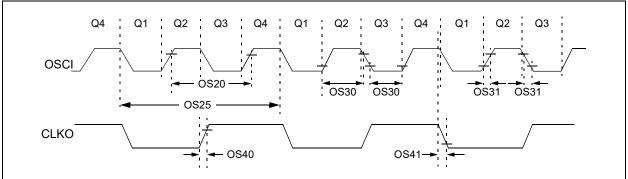
2.0V < V -40°C ≤	Operating Conditions (unless otherwise stated): $2.0V < V_{DD} < 3.6V$, $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial, $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended										
Param No.	Sym	Characteristic	Typ ⁽¹⁾	Мах	Units	Comments	Conditions				
DCT10	Ιουτ1	CTMU Current Source, Base Range	550	850	nA	CTMUCON1L[1:0] = 00 ⁽²⁾					
DCT11	Ιουτ2	CTMU Current Source, 10x Range	5.5	—	μA	CTMUCON1L[1:0] = 01					
DCT12	Ιουτ3	CTMU Current Source, 100x Range	55	—	μA	CTMUCON1L[1:0] = 10	2.5V < VDD < VDDMAX				
DCT13	Ιουτ4	CTMU Current Source, 1000x Range	550	—	μA	CTMUCON1L[1:0] = $11^{(2)}$, CTMUCON1H[0] = 0					
DCT14	Ιουτ5	CTMU Current Source, High Range	2.2	—	mA	CTMUCON1L[1:0] = 01, CTMUCON1H[0] = 1					
DCT21	VDELTA1	Temperature Diode Voltage Change per Degree Celsius	-1.8	—	mV/°C	Current = 5.5 μA					
DCT22	VDELTA2	Temperature Diode Voltage Change per Degree Celsius	-1.55	_	mV/°C	Current = 55 μA					
DCT23	VD1	Forward Voltage	710	—	mV	At 0⁰C, 5.5 µA					
DCT24	VD2	Forward Voltage	760		mV	At 0°C, 55 μΑ					


Note 1: Nominal value at center point of current trim range (CTMUCON1L[7:2] = 000000). Data in the "Typ" column are at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Do not use this current range with the internal temperature sensing diode.

33.2 AC Characteristics and Timing Parameters

FIGURE 33-2: CLKO AND I/O TIMING CHARACTERISTICS


TABLE 33-17: CLKO AND I/O TIMING REQUIREMENTS

Operating Conditions (unless otherwise stated): $2.0V < V_{DD} < 3.6V$, $-40^{\circ}C \le T_A \le +85^{\circ}C$ for Industrial, $-40^{\circ}C \le T_A \le +125^{\circ}C$ for Extended							
Param No.	Symbol	Characteristic	Min	Мах	Units		
DO31	TIOR	Port Output Rise Time		25	ns		
DO32	TIOF	Port Output Fall Time	—	25	ns		
DI35	TINP	INTx Pin High or Low Time (input) 1 — Tcy					
DI40	TRBP CNx High or Low Time (input) 1 — TCY						

 $[\]ensuremath{\textcircled{}^\circ}$ 2015-2019 Microchip Technology Inc.

PIC24FJ1024GA610/GB610 FAMILY

FIGURE 33-3: EXTERNAL CLOCK TIMING

TABLE 33-18: EXTERNAL CLOCK TIMING REQUIREMENTS

2.0V < VDD < 3.6V,

-40°C \leq TA \leq +85°C for Industrial,

-40°C \leq TA \leq +125°C for Extended

Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions			
OS10	Fosc	External CLKI Frequency (External clocks allowed only in EC mode)	DC 4		32 48	MHz MHz	EC ECPLL ⁽²⁾			
		Oscillator Frequency	3.5 4 10 12 31		10 8 32 24 33	MHz MHz MHz MHz kHz	XT XTPLL HS HSPLL SOSC			
OS25	Тсү	Instruction Cycle Time ⁽³⁾	62.5	_	DC	ns				
OS30	TosL, TosH	External Clock in (OSCI) High or Low Time	0.45 x Tosc	—	—	ns	EC			
OS31	TosR, TosF	External Clock in (OSCI) Rise or Fall Time	—	—	20	ns	EC			
OS40	TckR	CLKO Rise Time ⁽⁴⁾	—	15	30	ns				
OS41	TckF	CLKO Fall Time ⁽⁴⁾	—	15	30	ns				

Note 1: Data in the "Typ" column are at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Represents input to the system clock prescaler. PLL dividers and postscalers must still be configured so that the system clock frequency does not exceed the maximum frequency.

3: Instruction cycle period (TCY) equals two times the MCU oscillator period.

4: Measurements are taken in EC mode.

TABLE 33-19: PLL CLOCK TIMING SPECIFICATIONS

Operating Conditions (unless otherwise stated): $2.0V < V_{DD} < 3.6V$, $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial, $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended									
Param No.	Symbol	Characteristic	Min	Мах	Units	Conditions			
PLL1	Fin	Input Frequency Range	2	24	MHz				
PLL2	FMIN	Minimum Output Frequency from the Frequency Multiplier	—	16	MHz	4 MHz FIN with 4x feedback ratio, 2 MHz FIN with 8x feedback ratio			
PLL3	FMAX	Maximum Output Frequency from the Frequency Multiplier	96	_	MHz	4 MHz FIN with 24x net multiplication ratio, 24 MHz FIN with 4x net multiplication ratio			
PLL4	FSLEW	Maximum Step Function of FIN at which the PLL will be Ensured to Maintain Lock	-4	+4	%	Full input range of FIN			
PLL5	ТLОСК	Lock Time for VCO	_	24	μs	With the specified minimum, TREF, and a lock timer count of one cycle, this is the maximum VCO lock time supported			
PLL6	JFM8	Cumulative Jitter of Frequency Multiplier Over Voltage and Temperature During Any Eight Consecutive Cycles of the PLL Output	_	±0.12	%	External 8 MHz crystal and 96 MHz PLL mode			

TABLE 33-20: FRC OSCILLATOR SPECIFICATIONS

2.0V < Vi -40°C ≤ 1	g Conditions DD < $3.6V$, TA $\leq +85^{\circ}C$ for TA $\leq +125^{\circ}C$ for	,					
Param No.	Symbol	Characteristic	Min	Typ ⁽³⁾	Max	Units	Conditions
F20	AFRC	FRC Accuracy @ 8 MHz ⁽¹⁾	-1.5	+0.15	1.5	%	$0^{\circ}C \le TA \le +85^{\circ}C$
			-2.0	_	2.0	%	$-40^\circ C \le T A \le 85^\circ C$
			-2.0	_	2.0	%	$-40^{\circ}C \leq TA \leq +125^{\circ}C$
F20A	AFRCTUNE	FRC Accuracy @ 8 MHz with Enabled Self-Tune Feature	-0.20	+0.05	-0.20	%	$0^{\circ}C \le TA \le +85^{\circ}C$
FR0	TFRC	FRC Oscillator Start-up Time		2		μS	
F22	STUNE	OSCTUN Step-Size	_	0.05	_	%/bit	
F23	TLOCK	FRC Self-Tune Lock Time ⁽²⁾	_	5	8	ms	

Note 1: To achieve this accuracy, physical stress applied to the microcontroller package (ex., by flexing the PCB) must be kept to a minimum.

2: Time from reference clock stable, and in range, to FRC tuned within range specified by F20 (with self-tune).

3: Data in the "Typ" column are at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

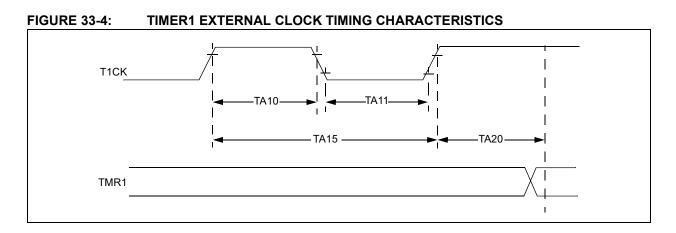
TABLE 33-21: LPRC OSCILLATOR SPECIFICATIONS

2.0V < V⊑ -40°C ≤ T	Operating Conditions (unless otherwise stated): $2.0V < V_{DD} < 3.6V$, $-40^{\circ}C \le T_A \le +85^{\circ}C$ for Industrial, $-40^{\circ}C \le T_A \le +125^{\circ}C$ for Extended								
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units			
F21	Alprc	LPRC Accuracy @ 31 kHz	-20	—	20	%			
FR1	TLPRC	LPRC Oscillator Start-up Time	—	50	_	μS			

Note 1: Data in the "Typ" column are at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

^{© 2015-2019} Microchip Technology Inc.

TABLE 33-22: DCO OSCILLATOR SPECIFICATIONS


2.0V < \ -40°C ≤	$\begin{array}{l} \textbf{Operating Conditions (unless otherwise stated):} \\ 2.0V < V_{DD} < 3.6V, \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \text{ for Industrial,} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \text{ for Extended} \end{array}$								
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions		
F30	FDCO	DCO Frequency	6.96	8.00	8.74	MHz	DCOFSEL[3:0] = 0111		
				16.0		MHz	DCOFSEL[3:0] = 1110		
				32.0		MHz	DCOFSEL[3:0] = 1111		
F31	DCOsu	DCO Start-up Time		1.0	2.0	μs			
F35	DCODC	DCO Duty Cycle	48	50	52	%			

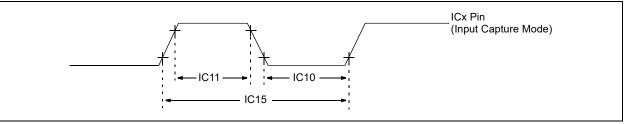
Note 1: Data in the "Typ" column are at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 33-23: RESET AND BROWN-OUT RESET REQUIREMENTS

2.0V < -40°C	Operating Conditions (unless otherwise stated): $2.0V < VDD < 3.6V$, $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial, $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended									
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions			
SY10	TMCL	MCLR Pulse Width (Low)	2	—	_	μs				
SY12	TPOR	Power-on Reset Delay		2		μs				
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	_	(3 Tcy + 2)	_	μs				
SY25	TBOR	Brown-out Reset Pulse Width	1	_		μs	$VDD \leq VBOR$			
SY45	Trst	Internal State Reset Time		50		μs				
SY71	Twakeup	Wake-up Time from Sleep Mode	_	28	_	μs	VREGS (RCON[8]) = 1, <u>RETEN</u> (RCON[12]) = 0, <u>LPCFG</u> (FPOR[2]) = 1			
			_	10	_	μs	VREGS (RCON[8]) = 0, <u>RETEN</u> (RCON[12]) = 0, <u>LPCFG</u> (FPOR[2]) = 1			
			_	308	—	μs	VREGS (RCON[8]) = 1, <u>RETEN</u> (RCON[12]) = 1, <u>LPCFG</u> (FPOR[2]) = 0			
			—	174	—	μs	VREGS (RCON[8]) = 0, <u>RETEN</u> (RCON[12]) = 1, <u>LPCFG</u> (FPOR[2]) = 0			

Note 1: Data in the "Typ" column are at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 33-24: TIMER1 EXTERNAL CLOCK TIMING CHARACTERISTICS


2.0V < V -40°C ≤	Operating Conditions (unless otherwise stated): $2.0V < V_{DD} < 3.6V$, $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial, $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended								
Param. No. Symbol Characteristics ⁽¹⁾ Min Max Units Conditions									
TA10	Тскн	T1CK High Time	Synchronous	1		TCY	Must also meet Parameter TA15		
			Asynchronous	10	_	ns			
TA11	TCKL	T1CK Low Time	Synchronous	1	—	TCY	Must also meet Parameter TA15		
			Asynchronous	10	_	ns			
TA15	Тскр	T1CK Input	Synchronous	2	—	TCY			
		Period	Asynchronous	20	_	ns			
TA20	TCKEXTMRL	Delay from Exterr Edge to Timer Inc		3	Тсү	Synchronous mode			

Note 1: These parameters are characterized but not tested in manufacturing.

© 2015-2019 Microchip Technology Inc.

PIC24FJ1024GA610/GB610 FAMILY

FIGURE 33-5: INPUT CAPTURE x TIMINGS

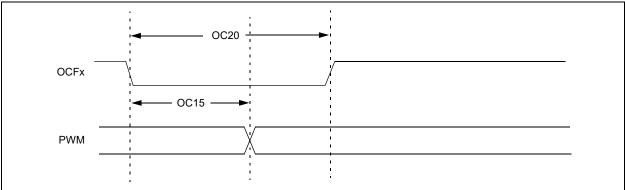


TABLE 33-25: INPUT CAPTURE x CHARACTERISTICS

2.0V < \ -40°C ≤	Operating Conditions (unless otherwise stated): $2.0V < V_{DD} < 3.6V$, $-40^{\circ}C \le T_A \le +85^{\circ}C$ for Industrial, $-40^{\circ}C \le T_A \le +125^{\circ}C$ for Extended								
Param. No.	Symbol	Characteri	stic ⁽¹⁾	Min	Мах	Units	Conditions		
IC10	TccL	ICx Input Low Time –	No Prescaler	Tcy + 20	_	ns	Must also meet		
		Synchronous Timer	With Prescaler	20	_	ns	Parameter IC15		
IC11	TccH	ICx Input Low Time –	No Prescaler	Tcy + 20	_	ns	Must also meet		
		Synchronous Timer With Prescaler		20	_	ns	Parameter IC15		
IC15	TccP	ICx Input Period – Synd	chronous Timer	<u>2 * Tcy + 40</u> N	_	ns	N = Prescale value (1, 4, 16)		

Note 1: These parameters are characterized but not tested in manufacturing.

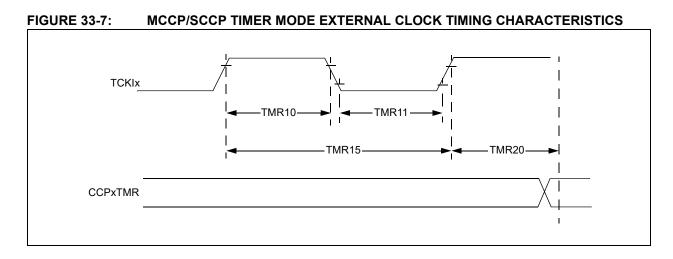
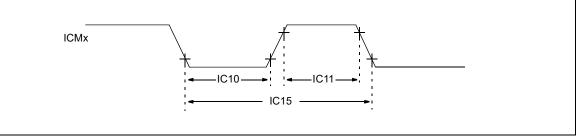

FIGURE 33-6: PWM MODULE TIMING REQUIREMENTS

TABLE 33-26: PWM TIMING REQUIREMENTS

2.0V < VDD - -40°C ≤ TA ≤	Operating Conditions (unless otherwise stated): $2.0V < V_{DD} < 3.6V$, $-40^{\circ}C \le T_A \le +85^{\circ}C$ for Industrial, $-40^{\circ}C \le T_A \le +125^{\circ}C$ for Extended							
Param. No.	Symbol	Characteristic ⁽¹⁾	Min	Мах				
OC15	Tfd	Fault Input to PWM I/O Change	_	25	ns			
OC20	TFH Fault Input Pulse Width 50 — ns							

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 33-27: MCCP/SCCP TIMER MODE TIMING REQUIREMENTS


$\begin{array}{l} \textbf{Operating Conditions (unless otherwise stated):}\\ 2.0V < V_{DD} < 3.6V,\\ -40^{\circ}C \leq TA \leq +85^{\circ}C \text{ for Industrial,}\\ -40^{\circ}C \leq TA \leq +125^{\circ}C \text{ for Extended} \end{array}$									
Param. No.	Symbol	Charact	eristics ⁽¹⁾	Min	Мах	Units	Conditions		
TMR10	Тскн	TCKIx High Time	Synchronous	1		Тсү	Must also meet Parameter TMR15		
			Asynchronous	10	_	ns			
TMR11	TCKL	TCKIx Low Time	Synchronous	1	_	Тсү	Must also meet Parameter TMR15		
			Asynchronous	10	_	ns			
TMR15	Тскр	TCKIx Input	Synchronous	2	_	Тсү			
		Period	Asynchronous	20	_	ns			
TMR20	TCKEXTMRL			_	1	Тсү			

Note 1: These parameters are characterized but not tested in manufacturing.

© 2015-2019 Microchip Technology Inc.

PIC24FJ1024GA610/GB610 FAMILY

FIGURE 33-8: MCCP/SCCP INPUT CAPTURE x MODE TIMING CHARACTERISTICS

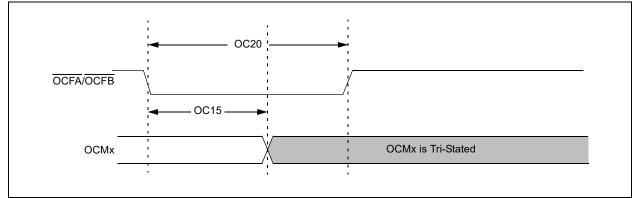


TABLE 33-28: MCCP/SCCP INPUT CAPTURE x MODE TIMING REQUIREMENTS

Operating Conditions (unless otherwise stated): $2.0V < V_{DD} < 3.6V$, $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial, $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended								
Param. No.	Symbol	Characteristics ⁽¹⁾	Min	Мах	Units	Conditions		
IC10	TICL	ICMx Input Low Time	25		ns	Must also meet Parameter IC15		
IC11	Тісн	ICMx Input High Time	25		ns	Must also meet Parameter IC15		
IC15	TICP	ICMx Input Period	50	_	ns			

Note 1: These parameters are characterized but not tested in manufacturing.

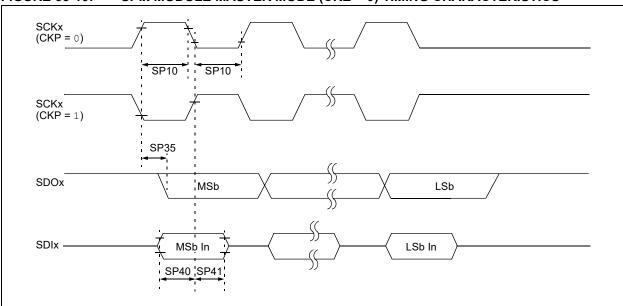
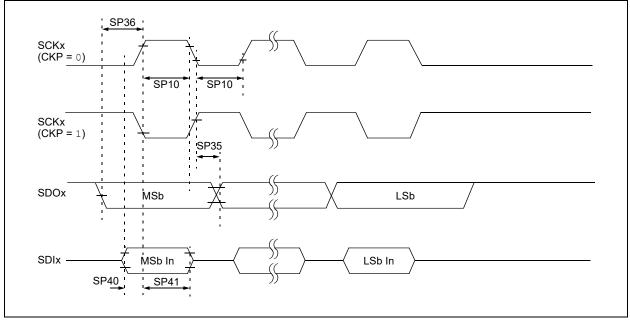

FIGURE 33-9: MCCP/SCCP PWM MODE TIMING CHARACTERISTICS

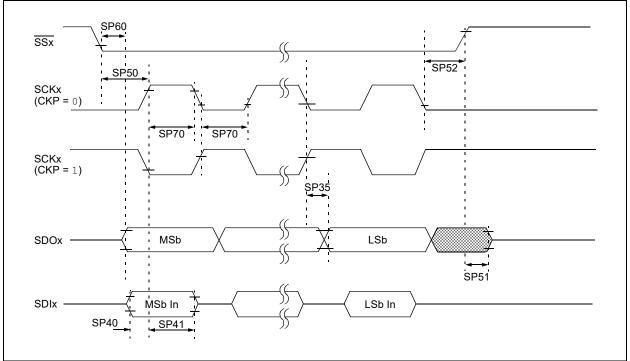
TABLE 33-29: MCCP/SCCP PWM MODE TIMING REQUIREMENTS


Operating Conditions (unless otherwise stated): $2.0V < V_{DD} < 3.6V$, $-40^{\circ}C \le T_A \le +85^{\circ}C$ for Industrial, $-40^{\circ}C \le T_A \le +125^{\circ}C$ for Extended							
Param No.	Symbol	Characteristics ⁽¹⁾	Min	Мах	Units		
OC15	Tfd	Fault Input to PWM I/O Change		30	ns		
OC20	TFLT Fault Input Pulse Width 10 — ns						

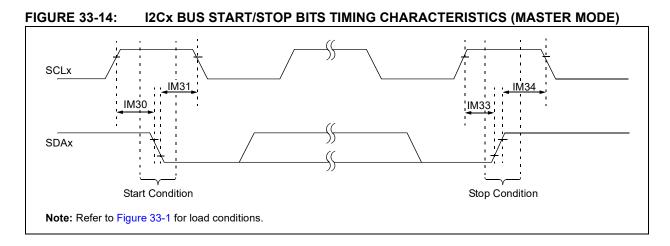
Note 1: These parameters are characterized but not tested in manufacturing.



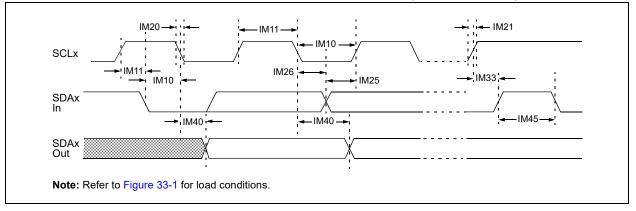
TABLE 33-30: SPIX MODULE MASTER MODE TIMING REQUIREMENTS


2.0V < VDE -40°C ≤ TA	Operating Conditions (unless otherwise stated): $2.0V < V_{DD} < 3.6V$, $-40^{\circ}C \le T_A \le +85^{\circ}C$ for Industrial, $-40^{\circ}C \le T_A \le +125^{\circ}C$ for Extended								
Param. No.	Symbol	Characteristics ⁽¹⁾	Min	Мах	Units				
SP10	TscL, TscH	SCKx Output Low or High Time	20		ns				
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	7	ns				
SP36	TDOV2sc, TDOV2scL	SDOx Data Output Setup to First SCKx Edge	7	—	ns				
SP40	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	7	—	ns				
SP41	TscH2dlL, TscL2dlL	Hold Time of SDIx Data Input to SCKx Edge	7	—	ns				

Note 1: These parameters are characterized but not tested in manufacturing.



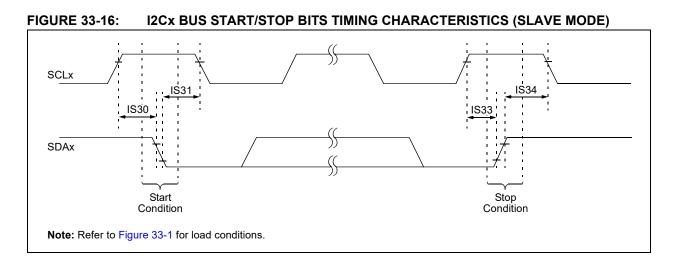
^{© 2015-2019} Microchip Technology Inc.


TABLE 33-31: SPIX MODULE SLAVE MODE TIMING REQUIREMENTS

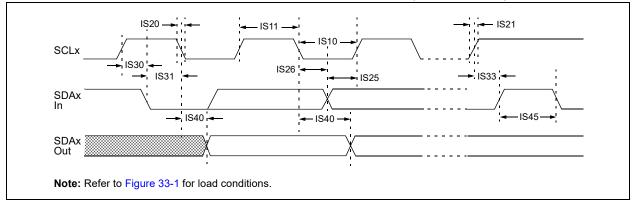
2.0V < VDD -40°C ≤ TA	•	,			
Param.No.	Symbol	Characteristics ⁽¹⁾	Min	Max	Units
SP70	TscL, TscH	SCKx Input Low Time or High Time	20	—	ns
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	10	ns
SP40	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	0	—	ns
SP41	TscH2DIL, TscL2DIL	Hold Time of SDIx Data Input to SCKx Edge	7	-	ns
SP50	TssL2scH, TssL2scL	$\overline{\text{SSx}} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	40	—	ns
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	2.5	12	ns
SP52	TscH2ssH TscL2ssH	SSx	10	_	ns
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	_	12.5	ns

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 33-15: I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE)



^{© 2015-2019} Microchip Technology Inc.


TABLE 33-32: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

		ditions (unless o	otherwise stated	d):			
	VDD < 3.						
		5°C for Industrial 25°C for Extende					
Param No.				Min. ⁽¹⁾	Max.	Units	Conditions
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy * (BRG + 2)	_	μs	
			400 kHz mode	TCY * (BRG + 2)	_	μs	1
			1 MHz mode	Tcy * (BRG + 2)	_	μs	1
IM11	THI:SCL	Clock High Time		Tcy * (BRG + 2)		μs	
	_	5	400 kHz mode	Tcy * (BRG + 2)	_	μs	1
			1 MHz mode	TCY * (BRG + 2)		μs	1
IM20	TF:SCL	SDAx and SCLx			300	ns	
	_	Fall Time	400 kHz mode	20 + 0.1 Cв	300	ns	-
			1 MHz mode		100	ns	-
IM21	TR:SCL	SDAx and SCLx			1000	ns	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	-
			1 MHz mode		300	ns	-
IM25	TSU:DAT	Data Input	100 kHz mode	250	_	ns	
		Setup Time	400 kHz mode	100		ns	-
			1 MHz mode	100		ns	-
IM26	THD:DAT	Data Input	100 kHz mode	0		μs	
	1110.0711	Hold Time	400 kHz mode	0	0.9	μs	-
			1 MHz mode	0	0.3	μs	-
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy * (BRG + 2)		μs	Only relevant for Repeated
		Setup Time	400 kHz mode	Tcy * (BRG + 2)	_	μs	Start condition
			1 MHz mode	Tcy * (BRG + 2)		μs	-
IM31	THD:STA	Start Condition	100 kHz mode	Tcy * (BRG + 2)		μs	After this period, the first clock
		Hold Time	400 kHz mode	Tcy * (BRG + 2)		μs	pulse is generated
			1 MHz mode	Tcy * (BRG + 2)		μs	-
IM33	Τςυ:ςτο	Stop Condition	100 kHz mode	Tcy * (BRG + 2)		µs	
		Setup Time	400 kHz mode	Tcy * (BRG + 2)		μs	-
			1 MHz mode	Tcy * (BRG + 2)	_	μs	-
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy * (BRG + 2)		ns	
		Hold Time	400 kHz mode	Tcy * (BRG + 2)		ns	-
			1 MHz mode	Tcy * (BRG + 2)		ns	-
IM40	TAA:SCL	Output Valid	100 kHz mode		3500	ns	
		from Clock	400 kHz mode		1000	ns	-
			1 MHz mode		350	ns	-
IM45	TBE:SDA	Bus Free Time	100 kHz mode	4.7	_	μs	The amount of time the bus
			400 kHz mode	1.3		μs	must be free before a new
			1 MHz mode	0.5	_	μs	transmission can start
IM50	Св	Bus Capacitive	100 kHz mode		400	pF	
		Loading	400 kHz mode		400	pF	-
		-	1 MHz mode		10	pF	-
IM51	Tpgd	Pulse Gobbler D		52	312	ns	
1101	1.1.00		, sidy	52	012	15	L

Note 1: BRG is the value of the I²C Baud Rate Generator.

^{© 2015-2019} Microchip Technology Inc.

TABLE 33-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Operating Conditions (unless otherwise stated):

2.0V < VDD < 3.6V,

 $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial, $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended

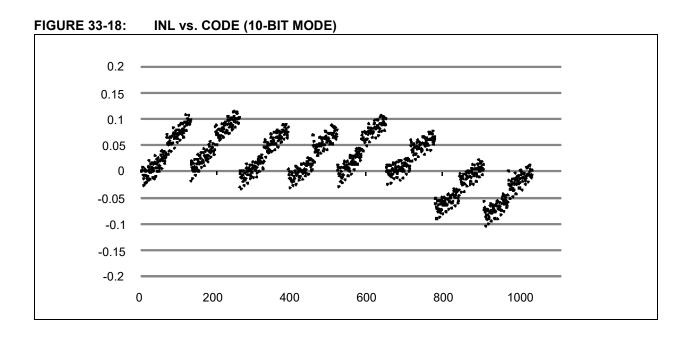
-40°C :	\leq TA \leq +12	25°C for Extende	ed				
Param No.	Symbol	Charact	teristics	Min.	Max.	Units	Conditions
IS10	TLO:SCL	Clock Low	100 kHz mode	4.7		μs	CPU clock must be a minimum 800 kHz
		Time	400 kHz mode	1.3		μs	CPU clock must be a minimum 3.2 MHz
			1 MHz mode	0.5	_	μs	
IS11	THI:SCL	Clock High	100 kHz mode	4.0		μs	CPU clock must be a minimum 800 kHz
	Time	Time	400 kHz mode	0.6		μs	CPU clock must be a minimum 3.2 MHz
			1 MHz mode	0.5	_	μs	
IS20	TF:SCL	SDAx and	100 kHz mode	_	300	ns	
		SCLx Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	
			1 MHz mode	—	100	ns	
IS21	TR:SCL	SDAx and	100 kHz mode	—	1000	ns	
		SCLx Rise	400 kHz mode	20 + 0.1 Св	300	ns	
		Time	1 MHz mode	—	300	ns	
IS25	TSU:DAT	Data Input	100 kHz mode	250	_	ns	
		Setup Time	400 kHz mode	100	_	ns	
			1 MHz mode	100	_	ns	
IS26	THD:DAT	Data Input	100 kHz mode	0	_	ns	
		Hold Time	400 kHz mode	0	0.9	μs	
			1 MHz mode	0	0.3	μs	
IS30	Tsu:sta	Start Condition	100 kHz mode	4700	_	ns	Only relevant for Repeated Start
		Setup Time	400 kHz mode	600	_	ns	condition
			1 MHz mode	250	—	ns	
IS31	THD:STA	Start Condition	100 kHz mode	4000	_	ns	After this period, the first clock pulse is
		Hold Time	400 kHz mode	600	_	ns	generated
			1 MHz mode	250	—	ns	
IS33	Tsu:sto	Stop Condition	100 kHz mode	4000	_	ns	
		Setup Time	400 kHz mode	600	_	ns	
			1 MHz mode	600	_	ns	
IS34	THD:STO	Stop Condition	100 kHz mode	4000	—	ns	
		Hold Time	400 kHz mode	600	_	ns	
			1 MHz mode	250	_	ns	
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns	
		from Clock	400 kHz mode	0	1000	ns	
			1 MHz mode	0	350	ns	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μs	The amount of time the bus must be
			400 kHz mode	1.3	_	μs	free before a new transmission can
			1 MHz mode	0.5	_	μs	start
IS50	Св	Bus Capacitive	100 kHz mode		400	pF	
		Loading	400 kHz mode		400	pF	1
			1 MHz mode		10	pF	1

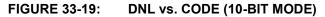
TABLE 33-34: A/D MODULE SPECIFICATIONS

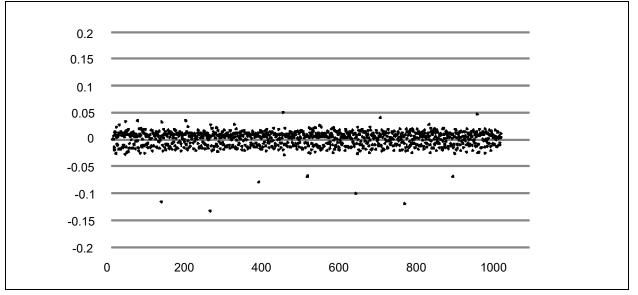
		VD MODULE SPECIFICA					
	0	ions (unless otherwise sta	ted):				
	Vdd < 3.6\ ≤ Ta < +85°	/, C for Industrial,					
		°C for Extended					
Param				- (1)			
No.	Symbol	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Conditions
			Device	Supply			
AD01	AVDD	Module VDD Supply	Greater of:		Lesser of:	V	
			VDD – 0.3		VDD + 0.3		
			or 2.2		or 3.6		
AD02	AVss	Module Vss Supply	Vss – 0.3	—	Vss + 0.3	V	
	[Referenc	e Inputs			1
AD05	VREFH	Reference Voltage High	AVss + 1.7		AVDD	V	
AD06	VREFL	Reference Voltage Low	AVss	—	AVDD – 1.7	V	
AD07	VREF	Absolute Reference Voltage	AVss – 0.3	_	AVDD + 0.3	V	
			Analog	Inputs			
AD10	VINH-VINL	Full-Scale Input Span	VREFL	—	VREFH	V	The external VREF+ and VREF- used as the A/D voltage reference
AD11	VIN	Absolute Input Voltage	AVss - 0.3	—	AVDD + 0.3	V	
AD12	VINL	Absolute VINL Input Voltage	AVss – 0.3	—	AVDD/3	V	
AD13		Leakage Current	_	_	±610	nA	VINL = AVSS = VREFL = 0V, AVDD = VREFH = $3V$, Source Impedance = $2.5 \text{ k}\Omega$
AD17	Rin	Recommended Impedance of Analog Voltage Source	—	—	2.5K	Ω	
			A/D Acc	curacy			·
AD20B	Nr	Resolution		12		bits	
AD21B	INL	Integral Nonlinearity	_	±1	< <u>+</u> 2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V
AD22B	DNL	Differential Nonlinearity	—		< ±1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V
AD23B	Gerr	Gain Error		±1	±4	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V
AD24B	EOFF	Offset Error	_	±1	±2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V
AD25B		Monotonicity	—	—	_		Guaranteed

Note 1: Data in the "Typ" column are at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 33-35: A/D CONVERSION TIMING REQUIREMENTS⁽¹⁾


2.0V < -40°C ≤	VDD < 3.6 ≤ TA ≤ +85°	tions (unless otherwise stated): V, °C for Industrial, 5°C for Extended					
Param No.	Symbol	Characteristic	Min.	Typ ⁽³⁾	Max.	Units	Conditions
		Clock	Paramete	ers			
AD50	TAD	A/D Clock Period	278			ns	
AD51	tRC	A/D Internal RC Oscillator Period	_	250	_	ns	
		Conve	ersion Ra	te			
AD55	t CONV	SAR Conversion Time, 12-Bit Mode	_	14	_	TAD	
AD55A		SAR Conversion Time, 10-Bit Mode	_	12	_	TAD	
AD56	FCNV	Throughput Rate ⁽²⁾	_		200	ksps	AVDD > 2.7V
AD57	tSAMP	Sample Time	_	1		TAD	
		Clock Sy	nchroniz	ation			
AD61	tpss	Sample Start Delay from Setting Sample bit (SAMP)	1.5	_	2.5	Tad	


Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.


2: Throughput rate is based on AD55 + AD57 + AD61 and the period of TAD.

3: Data in the "Typ" column are at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

PIC24FJ1024GA610/GB610 FAMILY

PIC24FJ1024GA610/GB610 FAMILY

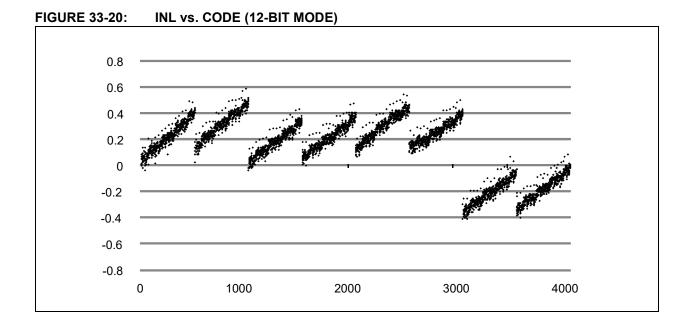
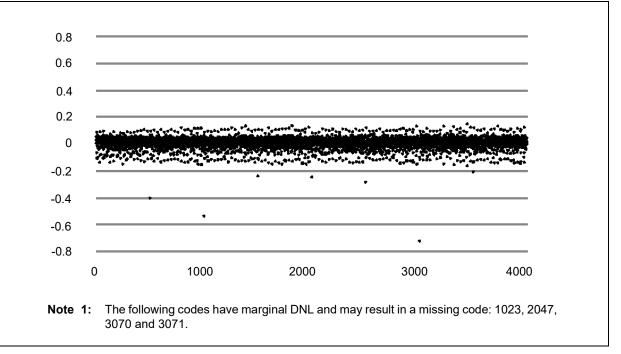
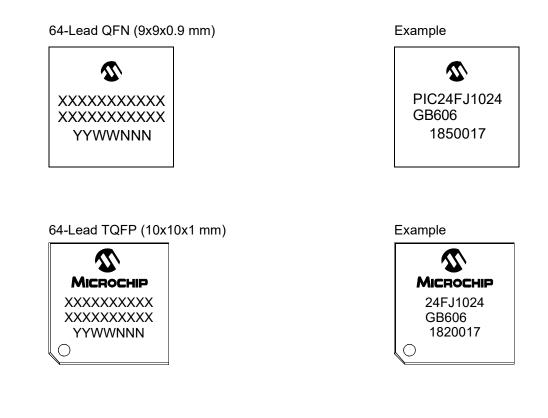




FIGURE 33-21: DNL vs. CODE (12-BIT MODE)⁽¹⁾

34.0 PACKAGING INFORMATION

34.1 Package Marking Information

Leger	nd: XXX Y YY WW NNN	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

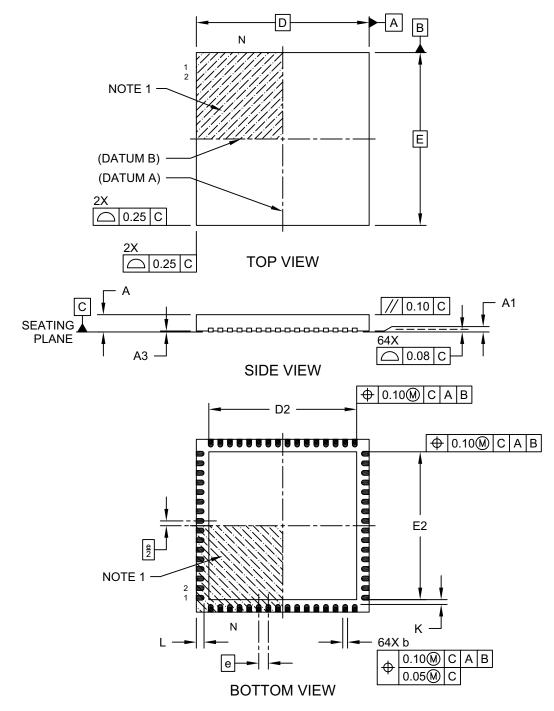
© 2015-2019 Microchip Technology Inc.

34.1 Package Marking Information (Continued)

100-Lead TQFP (12x12x1 mm)

121-TFBGA (10x10x1.1 mm)

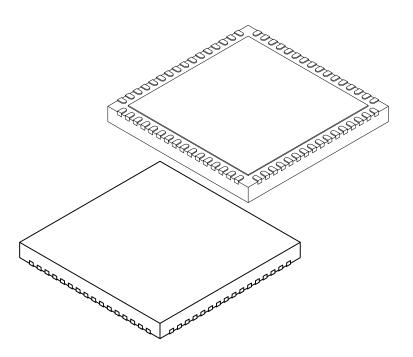
Example



34.2 Package Details

The following sections give the technical details of the packages.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.70 x 7.70 Exposed Pad [QFN]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-213B Sheet 1 of 2

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.70 x 7.70 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

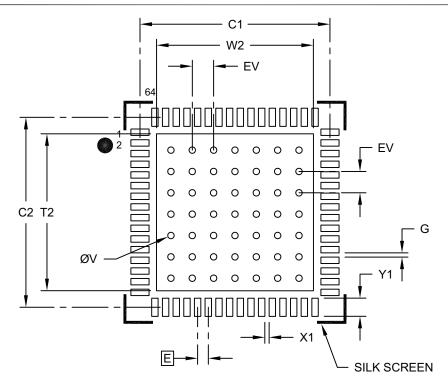
	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Number of Pins	N		64	
Pitch	е		0.50 BSC	
Overall Height	Α	0.80	0.85	0.90
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	Е	9.00 BSC		
Exposed Pad Width	E2	7.60	7.70	7.80
Overall Length	D	9.00 BSC		
Exposed Pad Length	D2	7.60	7.70	7.80
Contact Width	b	0.20	0.25	0.30
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-213B Sheet 2 of 2

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length and 7.70x7.70mm Exposed Pad

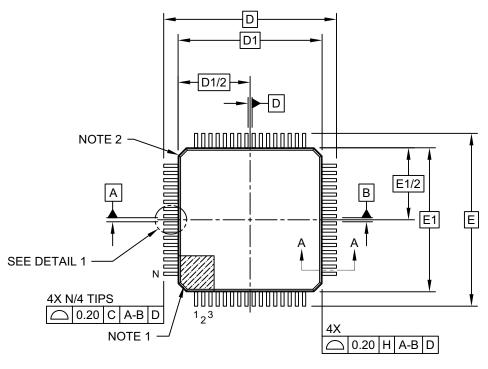
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

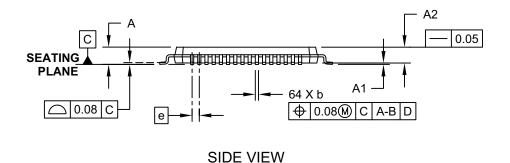
	Ν	IILLIMETER	S	
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.50 BSC	
Optional Center Pad Width	W2			7.50
Optional Center Pad Length	T2			7.50
Contact Pad Spacing	C1		8.90	
Contact Pad Spacing	C2		8.90	
Contact Pad Width (X20)	X1			0.30
Contact Pad Length (X20)	Y1			0.90
Contact Pad to Center Pad (X20)	G	0.20		
Thermal Via Diameter	V		0.30	
Thermal Via Pitch	EV		1.00	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process


Microchip Technology Drawing No. C04-2213B

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW

Microchip Technology Drawing C04-085C Sheet 1 of 2

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

DETAIL 1

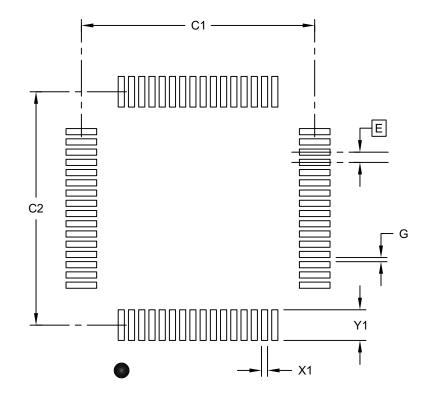
	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Leads	N		64		
Lead Pitch	е		0.50 BSC		
Overall Height	Α	-	-	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	ø	0°	3.5°	7°	
Overall Width	E	12.00 BSC			
Overall Length	D		12.00 BSC		
Molded Package Width	E1		10.00 BSC		
Molded Package Length	D1		10.00 BSC		
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.17	0.22	0.27	
Mold Draft Angle Top	α	11°	12°	13°	
Mold Draft Angle Bottom	β	11°	12°	13°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.


- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085C Sheet 2 of 2

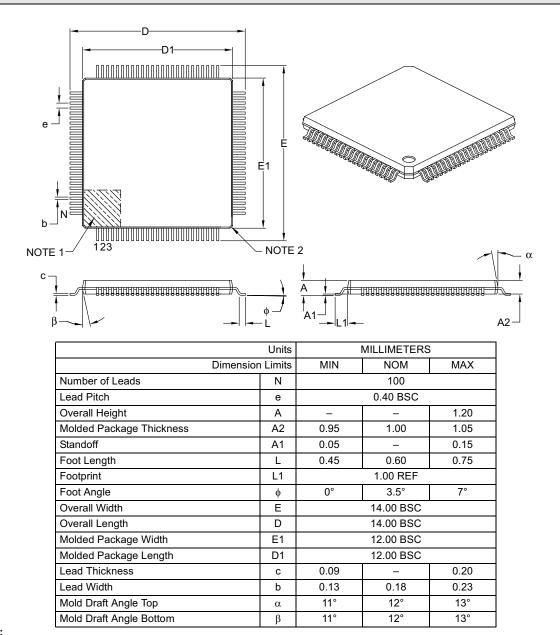
64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units			MILLIMETERS			
Dimension	Dimension Limits		NOM	MAX			
Contact Pitch	E	0.50 BSC					
Contact Pad Spacing	C1		11.40				
Contact Pad Spacing	C2		11.40				
Contact Pad Width (X28)	X1			0.30			
Contact Pad Length (X28)	Y1			1.50			
Distance Between Pads	G	0.20					

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2085B Sheet 1 of 1

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

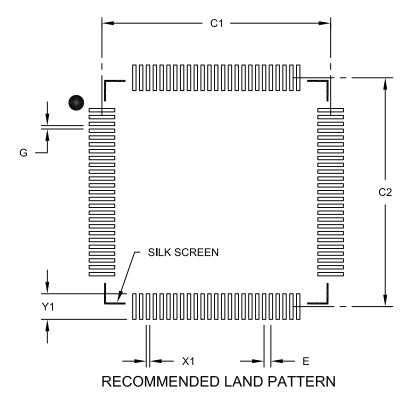
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.


- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

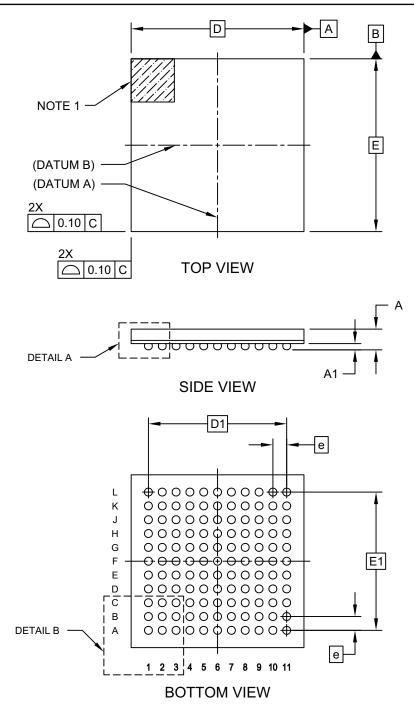
Microchip Technology Drawing C04-100B

100-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			S
Dimensior	n Limits	MIN	NOM	MAX
Contact Pitch	E	0.40 BSC		
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X100)	X1			0.20
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

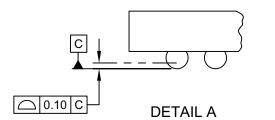
Notes:

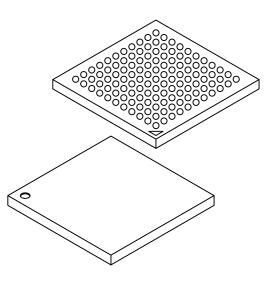

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100B

121-Ball Plastic Thin Profile Fine Pitch Ball Grid Array (BG) - 10x10x1.10 mm Body [TFBGA]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-148 Rev F Sheet 1 of 2

121-Ball Plastic Thin Profile Fine Pitch Ball Grid Array (BG) -10x10x1.10 mm Body [TFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

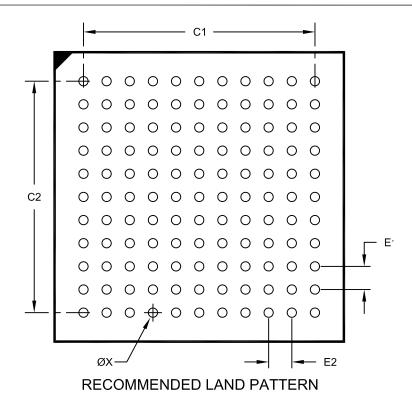
Ο NX Øb 0000.15M C A B O O CΦ 0.08M С

DETAIL B

 \cap

(

	Units	MILLIMETERS			
Dimension	n Limits	MIN	NOM	MAX	
Number of Contacts	Ν		121		
Contact Pitch	е	0.80 BSC			
Overall Height	Α	1.00 1.10 1.20			
Ball Height	A1	0.25	0.30	0.35	
Overall Width	E		10.00 BSC		
Array Width	E1		8.00 BSC		
Overall Length	D	10.00 BSC			
Array Length	D1	8.00 BSC			
Contact Diameter	b	0.35 0.40 0.45			


Notes:

- 1. Ball A1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 3. The outer rows and colums of balls are located with respect to datums A and B.
- 4. Ball interface to package body: 0.37mm nominal diameter.

Microchip Technology Drawing C04-148 Rev F Sheet 2 of 2

121-Lead Plastic Thin Profile Ball Grid Array (BG) - 10x10x1.10 mm Body [TFBGA--Formerly XBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E1		0.80 BSC	
Contact Pitch	E2		0.80 BSC	
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Diameter (X121)	X			0.32

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2148 Rev D

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (March 2015)

Original data sheet for the PIC24FJ1024GA610/ GB610 family of devices.

Revision B (November 2015)

This revision incorporates the following updates:

- · Sections:
 - Changed 12-bit conversion rate to 200 ksps in the Analog Features section on Page 1.
 - Added Smart Card support (ISO 7816) information to the Peripheral Features section on Page 2.
 - Added Section 9.3.1 "DCO Overview".
 - Added Section 25.3 "Achieving Maximum A/D Converter (ADC) Performance".
 - Added Section 30.2 "Unique Device Identifier (UDID)".
 - Updated Section 6.6 "Programming Operations", Section 9.6 "PLL Oscillator Modes and USB Operation", Section 9.6.1 "Considerations for USB Operation", Section 9.7 "Reference Clock Output", Section 9.8 "Secondary Oscillator", Section 10.2 "Instruction-Based Power-Saving Modes", Section 10.2.2 "Idle Mode", Section 12.0 "Timer1", Section 16.1 "Time Base Generator" and Section 33.0 "Electrical Characteristics"
- Registers
 - Updated Register 5-1, Register 6-1, Register 7-1, Register 9-4, Register 9-5, Register 18-1, Register 22-3, Register 25-2, Register 25-3, Register 25-5, Register 25-6, Register 30-1, Register 30-5, Register 30-7, Register 30-8 and Register 30-9
- · Figures:
 - Updated Figure 2-1, Figure 9-2 and Figure 25-2
 - Added Figure 33-18, Figure 33-19, Figure 33-20 and Figure 33-21
- Tables:
 - Updated Table 2-1, Table 4-1, Table 4-2, Table 4-3, Table 4-10, Table 9-2, Table 9-3, Table 30-1, Table 33-4, Table 33-5, Table 33-5, Table 33-7, Table 33-8, Table 33-9, Table 33-10, Table 33-12, Table 33-13, Table 33-14, Table 33-16, Table 33-19, Table 33-23, Table 33-34 and Table 33-35.
- · Examples:
 - Updated Example 15-1.
- Other minor typographic changes and updates throughout the document.

Revision C (November 2015)

This revision incorporates the following updates:

- Tables:
 - Updated Table 33-5 and Table 33-20.
- Figures:
 - Updated Figure 33-21.

Revision D (December 2016)

This revision incorporates the following updates:

- · Sections:
 - Added Section 8.1.1 "Alternate Interrupt Vector Table", Section 8.4.1 "INTCON1-INTCON4" and Section 10.2.5 "Exiting from Low-Voltage Retention Sleep".
 - Updated the "Referenced Sources" section. Updated Section 4.1.2 "Dual Partition Flash Program Memory Organization" Section 4.1.5 "Code-Protect Configuration Bits", Section 8.1.1 "Alternate Interrupt Vector Table", Section 8.4 "Interrupt Control and Status Registers", Section 9.0 "Oscillator Configuration", Section 10.2.4 "Low-Voltage Retention Regulator", Section 11.3 "Interrupt-on-Change (IOC)", Section 11.4.2 "Available Peripherals", Section 17.0 "Serial Peripheral Interface (SPI)", Section 22.0 "Real-Time Clock and Calendar with Timestamp" and Section 22.2.2 "Write Lock".
- Tables:
 - Added Table 8-1.
 - Updated Table 4, Table 5, Table 6, Table 7, Table 1-3, Table 8-1, Table 9-1, Table 9-2, Table 9-3, Table 11-4, Table 33-5, Table 33-5, Table 33-7 and Table 33-8.
- · Figures:
 - Updated Figure 8-1, Figure 9-1, Figure 9-2 and Figure 22-1.
- Examples:
 - Updated Example 11-3, Example 15-1 and Example 22-1.
- Equations:
 - Updated Equation 15-2.
- · Registers:
 - Updated Register 7-1, Register 9-8, Register 17-1, Register 27-1 and Register 30-10.

 $[\]ensuremath{\textcircled{}^{\circ}}$ 2015-2019 Microchip Technology Inc.

Revision E (July 2017)

This revision incorporates the following updates:

- · Sections:
 - Updated "Referenced Sources" section and Section 11.0 "I/O Ports" with correct "I/O Ports with Interrupt-on-Change (IOC)" (DS70005186) document reference.
- Pin Diagrams:
 - Updated 64-Pin TQFP/QFN PIC24FJXXXXGA606 Diagram on Page 4, 64-Pin TQFP/QFN
 PIC24FJXXXXGB606 Diagram on Page 6, 100-Pin TQFP PIC24FJXXXXGA610 Diagram on Page 8, 100-Pin TQFP PIC24FJXXXGB610 Diagram on
 Page 10, 121-Pin BGA PIC24FJXXXGA610
 Diagram on Page 12 and 121-Pin BGA
 PIC24FJXXXGB610 Diagram on Page 15.
- Tables:
 - Updated Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 4-7, Table 4-8 and Table 33-22.

Revision F (February 2018)

This revision incorporates the following updates:

- · Sections:
 - Updated clock sync time calculations in Section 25.3 "Achieving Maximum A/D Converter (ADC) Performance".
- Figures:
 - Updated Figure 9-1.
 - Added Figure 33-4.
- · Examples:
 - Updated Example 6-3.
- · Registers:
 - Updated Register 9-5, Register 25-1, Register 25-2, Register 29-1, Register 30-3 and Register 30-4.
- · Tables:
 - Updated Table 33-4 through Table 33-24 and Table 33-32 through Table 33-35.
 - Added Table 33-24 through Table 33-33.
- Removes all references to Peripheral Indirect Addressing (PIA).

Revision G (October 2019)

This revision incorporates the following updates:

- Sections:
 - Added +125°C information to Section 33.0 "Electrical Characteristics".
 - Updated Section 7.0 "Resets", Section 9.7 "Reference Clock Output" and Section 10.2 "Instruction-Based Power-Saving Modes".
- · Figures:
 - Updated Figure 9-3, Figure 13-1, Figure 13-2 and Figure 17-1.
 - Removed Figure 13-3 and Figure 33-1.
- Examples:
 - Updated Example 10-1.
- Registers:
 - Updated Register 16-1, Register 17-1 and Register 25-5, and removed Register 9-10.
- Tables:
 - Updated Table 4-5, Table 8-2, Table 16-2, Table 33-4, Table 33-5, Table 33-7, Table 33-8, Table 33-9, Table 33-22 and Table 33-34.
 - Added Table 33-1.
- Equations:
 - Updated Equation 9-1.

INDEX

Α

A/D	
Achieving Maximum Performance	349
Control Registers	
Operation	347
Transfer Functions	
10-Bit	361
12-Bit	360
AC Characteristics	
A/D Conversion Timing Requirements	440
A/D Specifications	439
and Timing Parameters	
CLKO and I/O Timing Requirements	423
DCO Oscillator Specifications	426
External Clock Timing Requirements	424
FRC Oscillator Specifications	425
I2Cx Bus Data Requirements (Master Mode)	436
I2Cx Bus Data Requirements (Slave Mode)	438
Input Capture x Characteristics	428
LPRC Oscillator Specifications	425
MCCP/SCCP Input Capture x	
Mode Requirements	430
MCCP/SCCP PWM Mode Requirements	430
MCCP/SCCP Timer Mode Requirements	429
PLL Clock Timing Specifications	425
PWM Timing Requirements	428
Reset and Brown-out Reset Requirements	426
SPIx Master Mode Requirements	
SPIx Module Slave Mode Timing Requirements	434
Timer1 External Clock Timing	

В

Block Diagrams	
12-Bit A/D Converter	
12-Bit A/D Converter Analog Input Model	359
16-Bit Timer1 Module	185
16-Bit Timer2-Timer5	189
32-Bit Timer Mode	212
Accessing Program Memory Using	
Table Instructions	78
Addressing for Table Registers	89
BDT Mapping for Endpoint Buffering Modes	270
CALL Stack Frame	75
CLCx Input Source Selection	
CLCx Logic Function Combinatorial Options	338
CLCx Module	
Comparator Voltage Reference	369
Conceptual MCCPx/SCCPx Modules	209
CPU Programmer's Model	
CRC Module	331
CRC Shift Engine Detail	331
CTMU Connections and Internal Configuration for	
Capacitance Measurement	372
CTMU Typical Connections and Internal	
Configuration for Pulse Delay Generation	373
CTMU Typical Connections and Internal	
Configuration for Time Measurement	373
Data Access from Program Space Address	
Generation	77
DMA Module	
Dual 16-Bit Timer Mode	
EDS Address Generation for Read	73

EDS Address Generation for Write
Individual Comparator Configurations, CREF = 0
Individual Comparator Configurations, CREF = 1, CVREFP = 0 Individual Comparator Configurations, CREF = 1, CVREFP = 1 365 Input Capture x Module MCLR Pin Connection Example 42 On-Chip Regulator Connections 397 Oscillator Circuit Placement 45 Output Compare x (16-Bit Mode) 200 Output Compare x (Double-Buffered, 16-Bit PWM Mode) 202 Output Compare x Module 213 PIC24F CPU Core 48 PIC24FJ1024GA610/GB610 Family (General) 25 PLL Module 131 PSV Operation (Lower Word)
CREF = 1, CVREFP = 0
Individual Comparator Configurations, CREF = 1, CVREFP = 1 365 Input Capture x Module 193, 214 MCLR Pin Connection Example 42 On-Chip Regulator Connections 397 Oscillator Circuit Placement 45 Output Compare x (16-Bit Mode) 200 Output Compare x (Double-Buffered, 16-Bit PWM Mode) 202 Output Compare x Module 213 PIC24F CPU Core 48 PIC24FJ1024GA610/GB610 Family (General) 25 PLL Module 131 PSV Operation (Lower Word) 80
CREF = 1, CVREFP = 1 365 Input Capture x Module 193, 214 MCLR Pin Connection Example 42 On-Chip Regulator Connections 397 Oscillator Circuit Placement 45 Output Compare x (16-Bit Mode) 200 Output Compare x (Double-Buffered, 16-Bit PWM Mode) 202 Output Compare x Module 213 PIC24F CPU Core 48 PIC24FJ1024GA610/GB610 Family (General) 25 PLL Module 131 PSV Operation (Lower Word) 80
Input Capture x Module 193, 214 MCLR Pin Connection Example 42 On-Chip Regulator Connections 397 Oscillator Circuit Placement 45 Output Compare x (16-Bit Mode) 200 Output Compare x (Double-Buffered, 16-Bit PWM Mode) 16-Bit PWM Mode) 202 Output Compare x Module 213 PIC24F CPU Core 48 PIC24FJ1024GA610/GB610 Family (General) 25 PLL Module 131 PSV Operation (Lower Word) 80
MCLR Pin Connection Example 42 On-Chip Regulator Connections 397 Oscillator Circuit Placement 45 Output Compare x (16-Bit Mode) 200 Output Compare x (Double-Buffered, 16-Bit PWM Mode) 16-Bit PWM Mode) 202 Output Compare x Module 213 PIC24F CPU Core 48 PIC24FJ1024GA610/GB610 Family (General) 25 PLL Module 131 PSV Operation (Lower Word) 80
On-Chip Regulator Connections
Oscillator Circuit Placement
Output Compare x (16-Bit Mode) 200 Output Compare x (Double-Buffered, 202 16-Bit PWM Mode) 202 Output Compare x Module 213 PIC24F CPU Core 48 PIC24FJ1024GA610/GB610 Family (General) 25 PLL Module 131 PSV Operation (Lower Word) 80
Output Compare x (Double-Buffered, 16-Bit PWM Mode) 202 Output Compare x Module 213 PIC24F CPU Core 48 PIC24FJ1024GA610/GB610 Family (General) 25 PLL Module 131 PSV Operation (Lower Word) 80
16-Bit PWM Mode) 202 Output Compare x Module 213 PIC24F CPU Core 48 PIC24FJ1024GA610/GB610 Family (General) 25 PLL Module 131 PSV Operation (Lower Word) 80
Output Compare x Module213PIC24F CPU Core48PIC24FJ1024GA610/GB610 Family (General)25PLL Module131PSV Operation (Lower Word)80
PIC24F CPU Core 48 PIC24FJ1024GA610/GB610 Family (General) 25 PLL Module 131 PSV Operation (Lower Word) 80
PIC24FJ1024GA610/GB610 Family (General) 25 PLL Module 131 PSV Operation (Lower Word) 80
PLL Module 131 PSV Operation (Lower Word) 80
PSV Operation (Lower Word) 80
Recommended Minimum Connections
Reference Clock Generator
Reset System
RTCC Module
Shared I/O Port Structure
SPIx Master, Frame Master Connection
SPIx Master, Frame Slave Connection
SPIx Master/Slave Connection
(Enhanced Buffer Modes)
SPIx Master/Slave Connection (Standard Mode) 243
SPIx Module (Enhanced Mode)
SPIx Slave, Frame Master Connection
SPIx Slave, Frame Slave Connection
System Clock 117
Timer Clock Generator
Timer2/3 and Timer4/5 (32-Bit) 188
Triple Comparator Module 363
UARTx (Simplified)256
USB OTG Bus-Powered Interface Example
USB OTG Dual Power Mode Example 267
USB OTG Host Interface Example 268
USB OTG Interface Example 268
USB OTG Interrupt Funnel 274
USB OTG Module
USB OTG Self-Power Only Mode
Watchdog Timer (WDT) 399

С

215
211
214
212
219
210
209
340
343

© 2015-2019 Microchip Technology Inc.

Code Examples	
Basic Clock Switching	129
Configuring UART1 Input/Output Functions	163
Double-Word Flash Programming (C Language)	
EDS Read from Program Memory in Assembly	
EDS Read in Assembly	
EDS Write in Assembly	
Erasing a Program Memory Block (C Language)	
Initiating a Programming Sequence	
IOC Status Read/Clear in Assembly	
Port Read/Write in Assembly	
Port Read/Write in C	
PWRSAV Instruction Syntax	
Setting WRLOCK Bit	
Code Memory Programming Example	
Double-Word Programming	95
Page Erase	93
Code Protection	
Comparator Voltage Reference	
Configuring	
Configurable Logic Cell (CLC)	
Configurable Logic Cell. See CLC.	557
Configuration Bits	383
Configuration Word Addresses	
Core Features	
CPU	
Arithmetic Logic Unit (ALU)	
Clocking Scheme	
Control/Status Registers	
Core Registers Programmer's Model	
-	47
CRC Data Shift Direction	
Interrupt Operation	
Polynomials	
Setup Examples for 16 and 32-Bit Polynomials	
User Interface	332
CTMU	~ - /
Measuring Capacitance	
Measuring Die Temperature	374
Measuring Time/Routing Current to	
A/D Input Pin	
Pulse Generation and Delay	
Customer Change Notification Service	
Customer Notification Service	
Customer OTP Memory	
Customer Support	465
Cyclic Redundancy Check. See CRC.	

D

Data Memory Space	59
Extended Data Space (EDS)	72
Memory Map	59
Near Data Space	60
Organization, Alignment	60
SFR Space	60
Implemented Regions	60
Map, 0000h Block	61
Map, 0100h Block	62
Map, 0200h Block	63
Map, 0300h Block	
Map, 0400h Block	67
Map, 0500h Block	69
Map, 0600h Block	70
Map, 0700h Block	71
Software Stack	75

DC Characteristics	
Comparator Specifications	. 421
Comparator Voltage Reference Specifications	
CTMU Current Source	
High/Low-Voltage Detect	. 420
I/O Pin Input Specifications	418
I/O Pin Output Specifications	. 419
Idle Current (IIDLE)	
Incremental Peripheral Δ Current	
Internal Voltage Regulator Specifications	
MCU Clock Frequency vs. Temperature	. 412
Operating Current (IDD)	
Operating Voltage Specifications	
Power-Down Current (IPD)	
Program Flash Memory Specifications	
Thermal Operating Conditions	
Thermal Packaging	
Development Support	
Device Features	
100 and 121-Pin Devices	24
64-Pin Devices	23
Device ID	
Bit Field Descriptions	. 396
Registers	
Direct Memory Access Controller. See DMA.	
DMA	
Channel Trigger Sources	88
Control Registers	84
Peripheral Module Disable (PMD) Registers	84
Summary of Operations	82
Types of Data Transfers	83
Typical Setup	84
DMA Controller	22
DNL	. 442

Е

Electrical Characteristics	
Absolute Maximum Ratings	411
Enhanced Parallel Master Port (EPMP)	299
Enhanced Parallel Master Port. See EPMP.	
EPMP	
Key Features	299
Package Variations	299
Pin Descriptions	300
PMDIN1, PMDIN2 Registers	299
PMDOUT1, PMDOUT2 Registers	299
Equations	
16-Bit, 32-Bit CRC Polynomials	332
A/D Conversion Clock Period	359
Baud Rate Reload Calculation	249
Calculating Frequency Output	133
Calculating the PWM Period	202
Calculation for Maximum PWM Resolution	203
Estimating USB Transceiver	
Current Consumption	269
Relationship Between Device and	
SPIx Clock Speed	246
UARTx Baud Rate with BRGH = 0	257
UARTx Baud Rate with BRGH = 1	257
Errata	19
Extended Data Space (EDS)	299

PIC24FJ1024GA610/GB610 FAMILY

F

Flash Program Memory	
and Table Instructions	
Control Registers	
Double-Word Programming	
Enhanced ICSP Operation	
JTAG Operation	
Operations	
Programming Algorithm	
RTSP Operation	

G

Guidelines for Getting Started with 16-Bit MCUs	41
Analog/Digital Pins Configuration During ICSP	46
External Oscillator Pins	45
ICSP Pins	44
Master Clear (MCLR) Pin	42
Power Supply Pins	42
Unused I/Os	46
Voltage Regulator Pin (VCAP)	43

Н

High/Low-Voltage Detect (HLVD)	381
High/Low-Voltage Detect. See HLVD.	

I

I/O Ports	149
Analog Port Pins Configuration (ANSx)	150
Configuring Analog/Digital Function of I/O Pins.	
Input Voltage Levels for Port/Pin Tolerated	
Description Input	150
Open-Drain Configuration	
Parallel (PIO)	
Peripheral Pin Select	159
Write/Read Timing	
l ² C	
Clock Rates	249
Communicating as Master in Single	
Master Environment	247
Reserved Addresses	249
Setting Baud Rate as Bus Master	
Slave Address Masking	
In-Circuit Debugger	400
Input Capture	
32-Bit Cascaded Mode	194
Operations	194
Synchronous and Trigger Modes	193
Input Capture with Dedicated Timers	
Instruction Set	
Overview	405
Summary	403
Symbols Used in Opcode Descriptions	404
Interfacing Program and Data Memory Spaces	
Inter-Integrated Circuit. See I ² C.	
Internet Address	465
Interrupt Controller	105
Alternate Interrupt Vector Table	105
Control/Status Registers	110
Interrupt Vector Details	107
Interrupt Vector Table (IVT)	105
Reset Sequence	105
Resources	110
Trap Vectors	106
Vector Tables	106
Interrupt-on-Change (IOC)	154

J JTAG Interface 400 Κ L Μ Memory Organization 53 Program Memory Space...... 53 Microchip Internet Web Site...... 465 Ν Near Data Space 60 0 Standby Mode 397 Oscillator Configuration 117 Clock Switching 128 Sequence 128 Configuration Bit Values for Clock Selection 118 Control Registers 119 FRC Active Clock Tuning 129 Initial Configuration on POR 118 Reference Clock Output 132 Secondary Oscillator Operation...... 133 Out

tput Compare with Dedicated Timers	199
Operating Modes	199
32-Bit Cascaded Mode	199
Synchronous and Trigger Modes	199
Operations	200

Ρ

Packaging	
Details	445
Marking	443
Peripheral Enable Bits	139
Peripheral Module Disable Bits	139
Peripheral Pin Select (PPS)	
Available Peripherals and Pins	159
Configuration Control	
Considerations for Selection	163
Control Registers	164
Input Mapping	
Mapping Exceptions	162
Output Mapping	161
Peripheral Priority	159
Selectable Input Sources	160
Selectable Output Sources	161
PIC24FJ1024GA610/GB610 Family	
Pinout Descriptions	
Pin Descriptions	
PIC24FJXXXGA606 TQFP/QFN	5
PIC24FJXXXGA610 BGA	13
PIC24FJXXXGA610 TQFP	g
PIC24FJXXXGB606 TQFP/QFN	7
PIC24FJXXXGB610 BGA	16
PIC24FJXXXGB610 TQFP	11

© 2015-2019 Microchip Technology Inc.

Power-Saving Features
Clock Frequency, Clock Switching
Doze Mode139
Instruction-Based Modes137
Idle
Sleep137
Interrupts Coincident with Instructions
Low-Voltage Retention Regulator
Selective Peripheral Power Control
Program Memory Space
Access Using Table Instructions
Addressing
Configuration Bits
Code-Protect58
Overview
Configuration Word Addresses57
Customer OTP Memory58
Dual Partition Configuration Words58
Dual Partition Flash Memory Organization55
Hard Memory Vectors55
Memory Map54
Organization55
Reading Data Using EDS79
Sizes and Boundaries54
Program Verification
Pulse-Width Modulation (PWM) Mode
Pulse-Width Modulation. See PWM.
PWM
Duty Cycle and Period202

R

Real-Time Clock and Calendar (RTCC)
with Timestamp311
Real-Time Clock and Calendar. See RTCC.
Referenced Sources
Register Summary
Peripheral Module Disable (PMD)140
Registers
AD1CHITH (A/D Scan Compare Hit, High Word) 356
AD1CHITL (A/D Scan Compare Hit, Low Word)356
AD1CHS (A/D Sample Select)
AD1CON1 (A/D Control 1)
AD1CON2 (A/D Control 2)
AD1CON3 (A/D Control 3)
AD1CON5 (A/D Control 5)
AD1CSSH (A/D Input Scan Select, High Word)357
AD1CSSL (A/D Input Scan Select, Low Word)
AD1CTMENH (A/D CTMU Enable, High Word)358
AD1CTMENL (A/D CTMU Enable, Low Word)
ALMDATEH (RTCC Alarm Date High)
ALMDATEL (RTCC Alarm Date Low)
ALMTIMEH (RTCC Alarm Time High)
ALMTIMEL (RTCC Alarm Time Low)
ANCFG (A/D Band Gap
Reference Configuration)
ANSA (PORTA Analog Function Selection)151
ANSB (PORTB Analog Function Selection)151
ANSC (PORTC Analog Function Selection)
ANSD (PORTD Analog Function Selection)
ANSE (PORTE Analog Function Selection)153
ANSG (PORTG Analog Function Selection)
BDnSTAT (Buffer Descriptor n Status Prototype, CPU
Mode (BD0STAT Through BD63STAT))273
BDnSTAT (Buffer Descriptor n Status Prototype, USB
Mode (BD0STAT Through BD63STAT))272
CCPxCON1H (CCPx Control 1 High)

CCPxCON1L (CCPx Control 1 Low)	216
CCPxCON2H (CCPx Control 2 High)	
CCPxCON2L (CCPx Control 2 Low)	
CCPxCON3H (CCPx Control 3 High)	. 223
CCPxCON3L (CCPx Control 3 Low)	. 222
CCPxSTATH (CCPx Status High)	
CCPxSTATL (CCPx Status Low)	
CLCxCONH (CLCx Control High)	
CLCxCONL (CLCx Control Low)	. 340
CLCxGLSH (CLCx Gate Logic Input	
Select High)	. 345
CLCxGLSL (CLCx Gate Logic Input Select Low)	
CLCxSEL (CLCx Input MUX Select)	
CLKDIV (Clock Divider)	
CMSTAT (Comparator Module Status)	. 367
CMxCON (Comparator x Control,	
Comparators 1 Through 3)	366
CORCON (CPU Core Control)	110
CRCCON1 (CRC Control 1)	
CRCCON2 (CRC Control 2)	. 335
CRCXORH (CRC XOR Polynomial, High Byte)	. 336
CRCXORL (CRC XOR Polynomial, Low Byte)	
CTMUCON1H (CTMU Control 1 High)	
CTMUCON1L (CTMU Control 1 Low)	
CTMUCON2L (CTMU Control 2 Low)	. 379
CVRCON (Comparator Voltage	
Reference Control)	370
DATEH (RTCC Date High)	
DATEL (RTCC Date Low)	. 321
DCOCON (Digitally Controlled	
Oscillator Enable)	. 125
DCOTUN (Digitally Controlled Oscillator Tune)	
DMACHn (DMA Channel n Control)	86
DMACHn (DMA Channel n Control) DMACON (DMA Engine Control)	86 85
DMACHn (DMA Channel n Control) DMACON (DMA Engine Control) DMAINTn (DMA Channel n Interrupt)	86 85 87
DMACHn (DMA Channel n Control) DMACON (DMA Engine Control)	86 85 87
DMACHn (DMA Channel n Control) DMACON (DMA Engine Control) DMAINTn (DMA Channel n Interrupt) FBOOT Configuration	86 85 87 . 385
DMACHn (DMA Channel n Control) DMACON (DMA Engine Control) DMAINTn (DMA Channel n Interrupt) FBOOT Configuration FBSLIM Configuration	86 85 87 . 385 . 387
DMACHn (DMA Channel n Control) DMACON (DMA Engine Control) DMAINTn (DMA Channel n Interrupt) FBOOT Configuration FBSLIM Configuration FBTSEQ Configuration	86 85 87 . 385 . 387 . 385
DMACHn (DMA Channel n Control) DMACON (DMA Engine Control) DMAINTn (DMA Channel n Interrupt) FBOOT Configuration FBSLIM Configuration FBTSEQ Configuration FDEVOPT1 Configuration	86 85 87 . 385 . 387 . 385 . 395
DMACHn (DMA Channel n Control) DMACON (DMA Engine Control) DMAINTn (DMA Channel n Interrupt) FBOOT Configuration FBSLIM Configuration FBTSEQ Configuration FDEVOPT1 Configuration FICD Configuration	86 85 . 385 . 385 . 387 . 385 . 395 . 394
DMACHn (DMA Channel n Control) DMACON (DMA Engine Control) DMAINTn (DMA Channel n Interrupt) FBOOT Configuration FBSLIM Configuration FBTSEQ Configuration FDEVOPT1 Configuration FICD Configuration FOSC Configuration	86 85 . 385 . 385 . 387 . 385 . 395 . 394 . 390
DMACHn (DMA Channel n Control) DMACON (DMA Engine Control) DMAINTn (DMA Channel n Interrupt) FBOOT Configuration FBSLIM Configuration FBTSEQ Configuration FDEVOPT1 Configuration FICD Configuration FOSC Configuration	86 85 . 385 . 385 . 387 . 385 . 395 . 394 . 390
DMACHn (DMA Channel n Control) DMACON (DMA Engine Control) DMAINTn (DMA Channel n Interrupt) FBOOT Configuration FBSLIM Configuration FBTSEQ Configuration FDEVOPT1 Configuration FICD Configuration FOSC Configuration FOSC Configuration FOSC Configuration	86 85 87 . 385 . 387 . 385 . 395 . 394 . 390 . 389
DMACHn (DMA Channel n Control) DMACON (DMA Engine Control) DMAINTn (DMA Channel n Interrupt) FBOOT Configuration FBSLIM Configuration FBTSEQ Configuration FDEVOPT1 Configuration FICD Configuration FOSC Configuration FOSC SEL Configuration FPOR Configuration	86 85 87 . 385 . 387 . 385 . 395 . 394 . 390 . 389 . 389
DMACHn (DMA Channel n Control) DMACON (DMA Engine Control) DMAINTn (DMA Channel n Interrupt) FBOOT Configuration FBSLIM Configuration FBTSEQ Configuration FDEVOPT1 Configuration FICD Configuration FOSC Configuration FOSC SEL Configuration FOR Configuration FSEC Configuration	86 85 . 385 . 385 . 385 . 395 . 394 . 390 . 389 . 389 . 383 . 386
DMACHn (DMA Channel n Control) DMACON (DMA Engine Control) DMAINTn (DMA Channel n Interrupt) FBOOT Configuration FBSLIM Configuration FBTSEQ Configuration FDEVOPT1 Configuration FICD Configuration FOSC Configuration FOSC Configuration FOSC Configuration FOSC Configuration FOSC Configuration FOR Configuration FSEC Configuration FSEC Configuration FSIGN Configuration	86 87 . 385 . 387 . 385 . 395 . 394 . 390 . 389 . 389 . 388 . 388
DMACHn (DMA Channel n Control) DMACON (DMA Engine Control) DMAINTn (DMA Channel n Interrupt) FBOOT Configuration FBSLIM Configuration FBTSEQ Configuration FDEVOPT1 Configuration FICD Configuration FOSC Configuration FOSC SEL Configuration FOR Configuration FSEC Configuration FSEC Configuration FSIGN Configuration FSIGN Configuration FWDT Configuration	86 87 . 385 . 387 . 385 . 395 . 394 . 390 . 393 . 386 . 388 . 391
DMACHn (DMA Channel n Control) DMACON (DMA Engine Control) DMAINTn (DMA Channel n Interrupt) FBOOT Configuration FBSLIM Configuration FBTSEQ Configuration FDEVOPT1 Configuration FICD Configuration FOSC Configuration FOSC SEL Configuration FOR Configuration FSEC Configuration FSEC Configuration FSIGN Configuration FSIGN Configuration FWDT Configuration	86 87 . 385 . 387 . 385 . 395 . 394 . 390 . 393 . 386 . 388 . 391
DMACHn (DMA Channel n Control) DMACON (DMA Engine Control) DMAINTn (DMA Channel n Interrupt) FBOOT Configuration FBSLIM Configuration FBTSEQ Configuration FDEVOPT1 Configuration FICD Configuration FOSC Configuration FOSC SEL Configuration FOR Configuration FSEC Configuration FSIGN Configuration FSIGN Configuration FVDT Configuration FWDT Configuration HLVDCON (High/Low-Voltage Detect Control)	86 85 . 385 . 387 . 385 . 395 . 394 . 390 . 389 . 389 . 388 . 388 . 388 . 391 . 382
DMACHn (DMA Channel n Control) DMACON (DMA Engine Control) DMAINTn (DMA Channel n Interrupt) FBOOT Configuration FBSLIM Configuration FBTSEQ Configuration FDEVOPT1 Configuration FICD Configuration FOSC Configuration FOSC SEL Configuration FOR Configuration FSEC Configuration FSIGN Configuration FSIGN Configuration FVDT Configuration FWDT Configuration HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High)	86 85 . 385 . 387 . 385 . 395 . 394 . 390 . 389 . 389 . 388 . 388 . 388 . 391 . 382 . 252
DMACHn (DMA Channel n Control) DMACON (DMA Engine Control) DMAINTn (DMA Channel n Interrupt) FBOOT Configuration FBSLIM Configuration FBTSEQ Configuration FDEVOPT1 Configuration FICD Configuration FOSC Configuration FOSC SEL Configuration FOR Configuration FSEC Configuration FSIGN Configuration FSIGN Configuration FVDT Configuration FUDT Configuration FVDT Configuration HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low)	86 85 87 . 385 . 387 . 385 . 395 . 394 . 390 . 389 . 393 . 388 . 391 . 382 . 252 . 250
DMACHn (DMA Channel n Control) DMACON (DMA Engine Control) DMAINTn (DMA Channel n Interrupt) FBOOT Configuration FBSLIM Configuration FBTSEQ Configuration FDEVOPT1 Configuration FICD Configuration FOSC Configuration FOSC SEL Configuration FOR Configuration FSEC Configuration FSIGN Configuration FSIGN Configuration FVDT Configuration FUDT Configuration FWDT Configuration HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low)	86 85 . 387 . 385 . 395 . 395 . 394 . 390 . 389 . 393 . 386 . 388 . 391 . 382 . 252 . 250 . 254
DMACHn (DMA Channel n Control) DMACON (DMA Engine Control) DMAINTn (DMA Channel n Interrupt) FBOOT Configuration FBSLIM Configuration FBTSEQ Configuration FDEVOPT1 Configuration FICD Configuration FOSC Configuration FOSC SEL Configuration FOSC Configuration FOR Configuration FSEC Configuration FSIGN Configuration FSIGN Configuration FVDT Configuration HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status)	86 85 87 . 385 . 387 . 385 . 394 . 395 . 394 . 390 . 389 . 393 . 386 . 388 . 391 . 382 . 252 . 255 . 254 . 253
DMACHn (DMA Channel n Control) DMACON (DMA Engine Control) DMAINTn (DMA Channel n Interrupt) FBOOT Configuration FBSLIM Configuration FBTSEQ Configuration FDEVOPT1 Configuration FICD Configuration FOSC Configuration FOSC Configuration FOSCSEL Configuration FSEC Configuration FSEC Configuration FSIGN Configuration FSIGN Configuration FVDT Configuration HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxCON1 (Input Capture x Control 1)	86 85 87 . 385 . 387 . 385 . 394 . 390 . 389 . 393 . 386 . 388 . 391 . 382 . 252 . 250 . 254 . 253 . 195
DMACHn (DMA Channel n Control) DMACON (DMA Engine Control) DMAINTn (DMA Channel n Interrupt) FBOOT Configuration FBSLIM Configuration FBTSEQ Configuration FDEVOPT1 Configuration FICD Configuration FOSC Configuration FOSC Configuration FOSCSEL Configuration FSEC Configuration FSEC Configuration FSIGN Configuration FSIGN Configuration FVDT Configuration HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxCON1 (Input Capture x Control 1)	86 85 87 . 385 . 387 . 385 . 394 . 390 . 389 . 393 . 386 . 388 . 391 . 382 . 252 . 250 . 254 . 253 . 195
DMACHn (DMA Channel n Control) DMACON (DMA Engine Control) DMAINTn (DMA Channel n Interrupt) FBOOT Configuration FBSLIM Configuration FBTSEQ Configuration FDEVOPT1 Configuration FICD Configuration FOSC Configuration FOSC Configuration FOSC Configuration FOR Configuration FSIGN Configuration FSIGN Configuration FSIGN Configuration FVDT Configuration FWDT Configuration HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxCON1 (Input Capture x Control 1).	86 85 87 . 385 . 387 . 385 . 394 . 390 . 389 . 393 . 386 . 388 . 391 . 382 . 252 . 2550 . 254 . 253 . 195 . 196
DMACHn (DMA Channel n Control) DMACON (DMA Engine Control) DMAINTn (DMA Channel n Interrupt) FBOOT Configuration FBSLIM Configuration FBTSEQ Configuration FDEVOPT1 Configuration FICD Configuration FOSC Configuration FOSC Configuration FOSC Configuration FOR Configuration FSEC Configuration FSIGN Configuration FSIGN Configuration FVDT Configuration FUDT CON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control High) I2CxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) INTCON1 (Interrupt Control 1)	86 85 87 . 385 . 387 . 385 . 394 . 390 . 393 . 386 . 393 . 388 . 391 . 382 . 252 . 255 . 254 . 255 . 195 . 196 . 113
DMACHn (DMA Channel n Control) DMACON (DMA Engine Control) DMAINTn (DMA Channel n Interrupt) FBOOT Configuration FBSLIM Configuration FBTSEQ Configuration FDEVOPT1 Configuration FICD Configuration FOSC Configuration FOSC Configuration FOSC Configuration FOR Configuration FSIGN Configuration FSIGN Configuration FSIGN Configuration FUDT CON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control High) I2CxCONL (I2Cx Status) ICXCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 2)	86 85 87 . 385 . 387 . 385 . 394 . 390 . 389 . 393 . 386 . 388 . 391 . 382 . 252 . 250 . 254 . 253 . 195 . 196 . 113 . 114
DMACHn (DMA Channel n Control) DMACON (DMA Engine Control) DMAINTn (DMA Channel n Interrupt) FBOOT Configuration FBSLIM Configuration FBTSEQ Configuration FDEVOPT1 Configuration FICD Configuration FOSC Configuration FOSC Configuration FOSC SEL Configuration FSEC Configuration FSEC Configuration FSEC Configuration FSEC Configuration FSIGN Configuration FVDT Configuration HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control High) I2CxCONL (I2Cx Status) ICXCON1 (Input Capture x Control 1). ICXCON2 (Input Capture x Control 2). INTCON1 (Interrupt Control 2). INTCON4 (Interrupt Control 4).	86 85 87 . 385 . 387 . 385 . 395 . 394 . 390 . 389 . 388 . 393 . 386 . 388 . 393 . 386 . 388 . 391 . 252 . 250 . 254 . 253 . 195 . 196 . 113 . 114 . 115
DMACHn (DMA Channel n Control) DMACON (DMA Engine Control) DMAINTn (DMA Channel n Interrupt) FBOOT Configuration FBSLIM Configuration FBTSEQ Configuration FDEVOPT1 Configuration FICD Configuration FOSC Configuration FOSC SEL Configuration FSEC Configuration FSEC Configuration FSEC Configuration FSEC Configuration FSEC Configuration FSEC Configuration FVDT Configuration HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxCON1 (Input Capture x Control 1). ICxCON2 (Input Capture x Control 2). INTCON1 (Interrupt Control 1). INTCON2 (Interrupt Control 4). INTTREG (Interrupt Control 4).	86 85 87 . 385 . 387 . 385 . 395 . 394 . 390 . 389 . 389 . 388 . 391 . 388 . 252 . 250 . 254 . 253 . 195 . 196 . 113 . 114 . 115 . 116
DMACHn (DMA Channel n Control) DMACON (DMA Engine Control) DMAINTn (DMA Channel n Interrupt) FBOOT Configuration FBSLIM Configuration FBTSEQ Configuration FDEVOPT1 Configuration FICD Configuration FOSC Configuration FOSC Configuration FOSC SEL Configuration FSEC Configuration FSEC Configuration FSEC Configuration FSEC Configuration FSIGN Configuration FVDT Configuration HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control High) I2CxCONL (I2Cx Status) ICXCON1 (Input Capture x Control 1). ICXCON2 (Input Capture x Control 2). INTCON1 (Interrupt Control 2). INTCON4 (Interrupt Control 4).	86 85 87 . 385 . 387 . 385 . 395 . 394 . 390 . 389 . 389 . 388 . 391 . 388 . 252 . 250 . 254 . 253 . 195 . 196 . 113 . 114 . 115 . 116
DMACHn (DMA Channel n Control) DMACON (DMA Engine Control) DMAINTn (DMA Channel n Interrupt) FBOOT Configuration FBSLIM Configuration FBTSEQ Configuration FDEVOPT1 Configuration FICD Configuration FOSC Configuration FOSC Configuration FOSC SEL Configuration FSEC Configuration FSEC Configuration FSEC Configuration FSEC Configuration FSIGN Configuration FVDT Configuration HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CXMSK (I2Cx Status) ICXCON1 (Input Capture x Control 1). INTCON2 (Interrupt Control 2). INTCON4 (Interrupt Control 4). INTTREG (Interrupt Control and Status) IOCFx (Interrupt-on-Change Flag x).	86 85 87 . 385 . 387 . 385 . 395 . 394 . 390 . 389 . 388 . 393 . 386 . 388 . 391 . 388 . 252 . 250 . 254 . 253 . 195 . 196 . 113 . 114 . 115 . 116
DMACHn (DMA Channel n Control) DMACON (DMA Engine Control) DMAINTn (DMA Channel n Interrupt) FBOOT Configuration FBSLIM Configuration FBTSEQ Configuration FDEVOPT1 Configuration FICD Configuration FOSC Configuration FOSC SEL Configuration FOSC SEL Configuration FSEC Configuration FSEC Configuration FSEC Configuration FSIGN Configuration FVDT Configuration HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control High) I2CxCONL (I2Cx Control High) I2CxCONL (I2Cx Status) ICxCON1 (Input Capture x Control 1). ICXCON2 (Input Capture x Control 2). INTCON1 (Interrupt Control 2). INTCON4 (Interrupt Control 4). INTTREG (Interrupt Control 4). INTTREG (Interrupt-on-Change Flag x). IOCNx (Interrupt-on-Change Negative Edge x).	86 85 87 . 385 . 387 . 385 . 395 . 394 . 390 . 389 . 389 . 388 . 391 . 388 . 391 . 252 . 250 . 254 . 253 . 195 . 195 . 196 . 113 . 114 . 115 . 158 . 157
DMACHn (DMA Channel n Control) DMACON (DMA Engine Control) DMAINTn (DMA Channel n Interrupt) FBOOT Configuration FBSLIM Configuration FBTSEQ Configuration FDEVOPT1 Configuration FICD Configuration FOSC Configuration FOSC SEL Configuration FOR Configuration FSEC Configuration FSEC Configuration FSEC Configuration FVDT Configuration FWDT Configuration HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control High) I2CxCONL (I2Cx Control High) I2CxCONL (I2Cx Status) ICxCON1 (Input Capture x Control 1). IXTCON1 (Interrupt Control 2). INTCON4 (Interrupt Control 2). INTCON4 (Interrupt Control 4). INTTREG (Interrupt Control 4). IOCFx (Interrupt-on-Change Flag x). IOCNx (Interrupt-on-Change Positive Edge x)	86 85 87 . 385 . 387 . 385 . 395 . 394 . 390 . 389 . 389 . 388 . 393 . 386 . 388 . 391 . 382 . 252 . 250 . 254 . 195 . 196 . 113 . 114 . 115 . 116 . 157 . 157
DMACHn (DMA Channel n Control) DMACON (DMA Engine Control) DMAINTn (DMA Channel n Interrupt) FBOOT Configuration FBSLIM Configuration FBTSEQ Configuration FDEVOPT1 Configuration FICD Configuration FOSC Configuration FOSC Configuration FOSC Configuration FSEC Configuration FSEC Configuration FVDT Configuration FWDT Configuration HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control High) I2CxCONL (I2Cx Control High) I2CxCONL (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 1) INTCON2 (Interrupt Control 4) INTCON4 (Interrupt Control 4) INTTREG (Interrupt Control 4) IOCXX (Interrupt-on-Change Flag x) IOCNX (Interrupt-on-Change Positive Edge x) IOCSTAT (Interrupt-on-Change Status)	86 85 87 . 385 . 387 . 385 . 394 . 390 . 389 . 389 . 388 . 393 . 386 . 388 . 391 . 382 . 252 . 253 . 195 . 196 . 113 . 114 . 115 . 116 . 157 . 156
DMACHn (DMA Channel n Control) DMACON (DMA Engine Control) DMAINTn (DMA Channel n Interrupt) FBOOT Configuration FBSLIM Configuration FBTSEQ Configuration FDEVOPT1 Configuration FICD Configuration FOSC Configuration FOSC Configuration FOSC Configuration FSEC Configuration FSEC Configuration FVDT Configuration FWDT Configuration HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control High) I2CxCONL (I2Cx Control High) I2CxCONL (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 1) INTCON3 (Interrupt Control 1) INTCON4 (Interrupt Control 2) INTCON4 (Interrupt Control 4) INTTREG (Interrupt Control 4) IOCFx (Interrupt-on-Change Flag x) IOCNX (Interrupt-on-Change Positive Edge x) IOCSTAT (Interrupt-on-Change Status) NVMCON (Flash Memory Control)	86 85 87 . 385 . 387 . 385 . 394 . 390 . 389 . 388 . 393 . 386 . 388 . 393 . 386 . 388 . 391 . 382 . 252 . 253 . 195 . 196 . 113 . 114 . 115 . 116 . 157 . 156 91
DMACHn (DMA Channel n Control) DMACON (DMA Engine Control) DMAINTn (DMA Channel n Interrupt) FBOOT Configuration FBSLIM Configuration FBTSEQ Configuration FDEVOPT1 Configuration FOC Configuration FOSC Configuration FOSC Configuration FOSC Configuration FOSC Configuration FSEC Configuration FSEC Configuration FVDT Configuration FWDT Configuration HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONH (I2Cx Control High) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) INTCON1 (Interrupt Control 2) INTCON4 (Interrupt Control 2) INTCON4 (Interrupt Control 4) INTTREG (Interrupt Control 4) INTTREG (Interrupt-on-Change Negative Edge x) IOCFx (Interrupt-on-Change Positive Edge x) IOCFx (Interrupt-on-Change Status) NVMCON (Flash Memory Control) OCxCON1 (Output Compare x Control 1) OCxCON1 (Output Compare x Control 1)	86 85 87 . 385 . 387 . 385 . 394 . 390 . 389 . 393 . 386 . 388 . 391 . 388 . 391 . 382 . 252 . 250 . 254 . 253 . 196 . 113 . 114 . 115 . 116 . 158 . 157 . 156 91 . 204
DMACHn (DMA Channel n Control) DMACON (DMA Engine Control) DMAINTn (DMA Channel n Interrupt) FBOOT Configuration FBSLIM Configuration FBTSEQ Configuration FDEVOPT1 Configuration FICD Configuration FOSC Configuration FOSC Configuration FOSC Configuration FSEC Configuration FSEC Configuration FVDT Configuration FWDT Configuration HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control High) I2CxCONL (I2Cx Control High) I2CxCONL (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 1) INTCON3 (Interrupt Control 1) INTCON4 (Interrupt Control 2) INTCON4 (Interrupt Control 4) INTTREG (Interrupt Control 4) IOCFx (Interrupt-on-Change Flag x) IOCNX (Interrupt-on-Change Positive Edge x) IOCSTAT (Interrupt-on-Change Status) NVMCON (Flash Memory Control)	86 85 87 . 385 . 387 . 385 . 394 . 390 . 389 . 393 . 386 . 388 . 391 . 382 . 252 . 250 . 254 . 253 . 195 . 195 . 113 . 114 . 115 . 157 . 156 91 . 204 . 206

OSCDIV (Oscillator Divisor) 126
OSCFDIV (Oscillator Fractional Divisor)
OSCTUN (FRC Oscillator Tune)
PADCON (Pad Configuration Control)
PADCON (Port Configuration) 155
PMCON1 (EPMP Control 1)
PMCON2 (EPMP Control 2)
PMCON3 (EPMP Control 3)
PMCON4 (EPMP Control 4) 304
PMCSxBS (EPMP Chip Select x Base Address) 306
PMCSxCF (EPMP Chip Select x Configuration) 305
PMCSxMD (EPMP Chip Select x Mode)
PMD1 (Peripheral Module Disable 1)
PMD1 (Peripheral Module Disable 1)
PMD2 (Peripheral Module Disable 2) 142
PMD3 (Peripheral Module Disable 3)143
PMD4 (Peripheral Module Disable 4) 144
PMD5 (Peripheral Module Disable 5) 145
PMD6 (Peripheral Module Disable 6)
PMD7 (Peripheral Module Disable 7) 146
PMD8 (Peripheral Module Disable 8) 147
PMSTAT (EPMP Status, Slave Mode)
RCON (Reset Control)
REFOCONH (Reference Oscillator Control High) 135
REFOCONL (Reference Oscillator Control Low) 134
RPINR0 (Peripheral Pin Select Input 0)164
RPINR1 (Peripheral Pin Select Input 1)164
RPINR11 (Peripheral Pin Select Input 11)
RPINR12 (Peripheral Pin Select Input 12)
RPINR14 (Peripheral Pin Select Input 14)
RPINR15 (Peripheral Pin Select Input 15) 170
RPINR17 (Peripheral Pin Select Input 17) 170
RPINR18 (Peripheral Pin Select Input 18) 171
RPINR19 (Peripheral Pin Select Input 19)
RPINR2 (Peripheral Pin Select Input 2)
RPINR20 (Peripheral Pin Select Input 20)
RPINR21 (Peripheral Pin Select Input 21) 172
RPINR22 (Peripheral Pin Select Input 22) 173
RPINR23 (Peripheral Pin Select Input 23) 173
RPINR25 (Peripheral Pin Select Input 25) 174
RPINR27 (Peripheral Pin Select Input 27) 174
RPINR28 (Peripheral Pin Select Input 28) 175
RPINR29 (Peripheral Pin Select Input 29) 175
RPINR3 (Peripheral Pin Select Input 3)165
RPINR4 (Peripheral Pin Select Input 4) 166
RPINR5 (Peripheral Pin Select Input 5)
RPINR6 (Peripheral Pin Select Input 6)
RPINR7 (Peripheral Pin Select Input 7)
RPINR8 (Peripheral Pin Select Input 8)168
RPOR0 (Peripheral Pin Select Output 0) 176
RPOR1 (Peripheral Pin Select Output 1) 176
RPOR10 (Peripheral Pin Select Output 10)
RPOR11 (Peripheral Pin Select Output 11)
RPOR12 (Peripheral Pin Select Output 12)
RPOR13 (Peripheral Pin Select Output 13) 182
RPOR14 (Peripheral Pin Select Output 14)183
RPOR15 (Peripheral Pin Select Output 15)
RPOR2 (Peripheral Pin Select Output 2)
RPOR3 (Peripheral Pin Select Output 3)
RPOR4 (Peripheral Pin Select Output 3)
RPOR5 (Peripheral Pin Select Output 5) 178
RPOR6 (Peripheral Pin Select Output 6) 179
RPOR7 (Peripheral Pin Select Output 7) 179

RPOR8 (Peripheral Pin Select Output 8)	
RPOR9 (Peripheral Pin Select Output 9)	
RTCCON1H (RTCC Control 1 High)	315
RTCCON1L (RTCC Control 1 Low)	
RTCCON2H (RTCC Control 2 High)	
RTCCON2L (RTCC Control 2 Low)	
RTCCON3L (RTCC Control 3 Low)	
RTCSTATL (RTCC Status Low)	
SPIxBRGL (SPIx Baud Rate Generator Low)	
SPIxBUFH (SPIx Buffer High)	238
SPIxBUFL (SPIx Buffer Low)	238
SPIxCON1H (SPIx Control 1 High)	
SPIxCON1L (SPIx Control 1 Low)	
SPIxCON2L (SPIx Control 2 Low)	
SPIxIMSKH (SPIx Interrupt Mask High)	
SPIxIMSKL (SPIx Interrupt Mask Low)	
SPIxSTATH (SPIx Status High)	
SPIxSTATL (SPIx Status Low)	235
SPIxURDTH (SPIx Underrun Data High)	
SPIxURDTL (SPIx Underrun Data Low)	
SR (ALU STATUS)	50, 111
T1CON (Timer1 Control)	
TIMEH (RTCC Time High)	
TIMEL (RTCC Time Low)	
TSADATEH (RTCC Timestamp A Date High)	327
TSADATEL (RTCC Timestamp A Date Low)	326
TSATIMEH (RTCC Timestamp A Time High)	
TSATIMEL (RTCC Timestamp A Time Low)	
TxCON (Timer2/Timer4 Control)	
TyCON (Timer3/Timer5 Control)	
U10TGSTAT (USB OTG Status, Host Mode)	
U1ADDR (USB Address)	
U1CNFG1 (USB Configuration 1)	288
U1CNFG2 (USB Configuration 2)	
U1CON (USB Control, Device Mode)	
U1CON (USB Control, Host Mode)	285
U1EIE (USB Error Interrupt Enable)	
U1EIR (USB Error Interrupt Status)	
U1EPn (USB Endpoint n Control)	297
U1IE (USB Interrupt Enable, All Modes)	
U1IR (USB Interrupt Status, Device Mode)	
U1IR (USB Interrupt Status, Host Mode)	
U1OTGCON (USB OTG Control)	281
U1OTGIE (USB OTG Interrupt Enable,	004
Host Mode)	291
U1OTGIR (USB OTG Interrupt Status,	200
Host Mode) U1PWRC (USB Power Control)	
U1SOF (USB OTG Start-of-Token Threshold,	282
Host Mode)	297
U1STAT (USB Status)	201
U1TOK (USB Token, Host Mode)	
UxADMD (UARTx Address Detect and Match)	
UxBRG (UARTx Baud Rate Generator)	
UxMODE (UARTx Mode)	
UxRXREG (UARTx Receive,	209
Normally Read-Only)	263
UxSTA (UARTx Status and Control)	261
UxTXREG (UARTx Transmit,	201
Normally Write-Only)	263
, ,,	

Resets

BOR (Brown-out Reset)	
Brown-out Reset (BOR)	
Clock Source Selection	
CM (Configuration Mismatch Reset)	
Delay Times	
Device Times	
IOPUWR (Illegal Opcode Reset)	
MCLR (Master Clear Pin Reset)	
POR (Power-on Reset)	
RCON Flags, Operation	100
SFR States	
SWR (RESET Instruction)	
TRAPR (Trap Conflict Reset)	
UWR (Uninitialized W Register Reset)	
WDT (Watchdog Timer Reset)	
Revision History	
RTCC	
Alarm Configuration	
Alarm Mask Settings (figure)	
Alarm Value Registers	
Calibration	
Clock Source Selection	
Control Registers	
Event Timestamping	
Power Control	
Register Mapping	
RTCVAL Register Mappings	
Source Clock	
Timestamp Registers	
Value Registers	
Write Lock	

S

Serial Peripheral Interface (SPI)	
Serial Peripheral Interface. See SPI.	
Software Stack	75
Special Features	
Special Features of the CPU	
SPI	
Audio Mode Operation	
Control/Status Registers	230
Master Mode Operation	
Slave Mode Operation	

Т

Timer1	185
Timer2/3 and Timer4/5	187
Timing Diagrams	
CLKO and I/O Characteristics	423
DNL vs. Code (10-Bit Mode)	441
DNL vs. Code (12-Bit Mode)	442
External Clock	424
I2Cx Bus Data (Master Mode)	435
I2Cx Bus Data (Slave Mode)	437
I2Cx Bus Start/Stop Bits (Master Mode)	435
I2Cx Bus Start/Stop Bits (Slave Mode)	437
INL vs. Code (10-Bit Mode)	
INL vs. Code (12-Bit Mode)	442
Input Capture x	428
MCCP/SCCP Input Capture x Mode	430
MCCP/SCCP PWM Mode Characteristics	430
MCCP/SCCP Timer Mode External Clock	429
PWM Requirements	
SPIx Master Mode (CKE = 0)	431
SPIx Master Mode (CKE = 1)	431

SPIx Slave Mode (CKE = 0)	433
SPIx Slave Mode (CKE = 1)	
Timer1 External Clock Characteristics	427
Triple Comparator	363
Triple Comparator Module	363

U UART

UART	
Baud Rate Generator (BRG)	257
Infrared Support	258
Infrared Support Operation of UxCTS and UxRTS Pins	258
Receiving	
8-Bit or 9-Bit Data Mode	258
Transmitting	
8-Bit Data Mode	258
9-Bit Data Mode	258
Break and Sync Sequence	258
Unique Device Identifier (UDID)	396
Addresses	396
Universal Asynchronous Receiver Transmitter. See UAR	Г.
Universal Serial Bus. See USB OTG.	
USB OTG	265
Buffer Descriptors	
Assignment in Different Buffering Modes	271
Buffer Descriptors and BDT	270
Control Registers	279
Device Mode Operation	275
DMA Interface	271
Hardware	
Calculating	
Transceiver Power Requirements	269
Hardware Configuration	267
Device Mode	267
Host and OTG Modes	268
Host Mode Operation	276
Interrupts	274
Interrupts and USB Transactions	275
Operation	278
HNP	279
SRP	278
W	

398
398
465

THE MICROCHIP WEBSITE

Microchip provides online support via our WWW site at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://microchip.com/support

DSPIC33EP CORE

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device	[<u>X1</u> ⁽¹⁾ Tape and Reel Option	X Temperature Range	/XX Package	XXX Pattern	b) F	I ples: PIC24FJ1024GB606-I/MR = Industrial femperature, 64-Pin QFN Package. PIC24FJ1024GB610-I/PT = Industrial femperature, 100-Pin TQFP package.		
Device:	PIC24FJ1024GA6	10/GB610 Family			c) F	PIC24FJ1024GB610-I/BG = Industrial Temperature, 121-Pin TFBGA package.		
Tape and Reel Option:	Blank = Standar T = Tape ar	rd Packaging (tube nd Reel ⁽¹⁾	or tray)					
Temperature Range:		o +85°C (Industrial) o +125°C (Industria						
Package:	PT = TQFP ((Plastic Quad Flat) P (Plastic Thin Quad Flatpack) GA (Plastic Thin Profile)			Note 1	I: Tape and Reel identifier only appears in the catalog part number description. This identi- fier is used for ordering purposes and is not printed on the device package. Check with		
Pattern:	QTP, SQTP, Code (blank otherwise)	or Special Require	nents			your Microchip Sales Office for package availability with the Tape and Reel option.		

^{© 2015-2019} Microchip Technology Inc.

NOTES:

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2015-2019, Microchip Technology Incorporated, All Rights Reserved.

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

ISBN: 978-1-5224-5190-7

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138 China - Zhuhai

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141 Japan - Osaka

Tel: 81-6-6152-7160 Japan - Tokyo

Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301 Korea - Seoul

Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu

Tel: 886-3-577-8366 **Taiwan - Kaohsiung** Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

Tel: 31-416-690399 Fax: 31-416-690340

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Tel: 45-4450-2828

Fax: 45-4485-2829

Tel: 358-9-4520-820

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching

Tel: 49-2129-3766400

Germany - Heilbronn

Germany - Karlsruhe

Tel: 49-7131-72400

Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Germany - Rosenheim

Tel: 49-8031-354-560

Israel - Ra'anana

Italy - Milan

Italy - Padova

Tel: 972-9-744-7705

Tel: 39-0331-742611

Fax: 39-0331-466781

Tel: 39-049-7625286

Netherlands - Drunen

Tel: 49-8931-9700

Germany - Haan

Finland - Espoo

France - Paris

Fax: 43-7242-2244-393

Denmark - Copenhagen

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

© 2015-2019 Microchip Technology Inc. 05/14/19 单击下面可查看定价,库存,交付和生命周期等信息

>>Microchip Technology