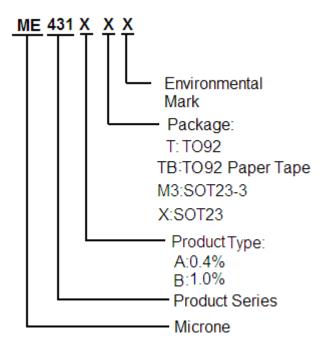


Adjustable Precision Shunt Regulator


General Description

The ME431 series ICs are three-terminal adjustable shunt regulators with guaranteed thermal stability over a full operation range. These ICs feature sharp turn-on characteristics, low temperature coefficient and low output impedance, which make them ideal substitutes for Zener diodes in applications such as switching power supply, charger and other adjustable regulators.

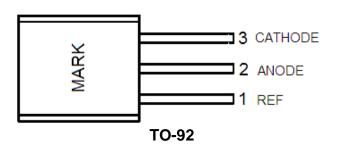
The ME431 voltage type is 40V. The output voltage can be set to any value between V_{REF} (2.5V) and the corresponding maximum cathode voltage.

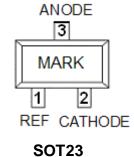
The ME431 precision reference is offered in two band gap tolerance: 0.4% and 1.0%.

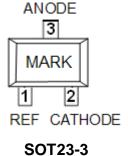
Selection Guide

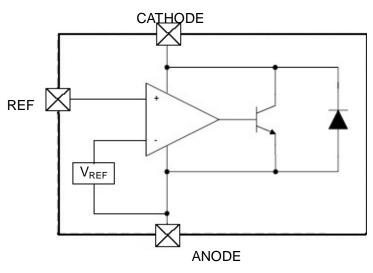
Features

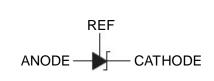
- Programmable Precise Output Voltage from 2.5V to 36V
- •Very Accurate Reference Voltage: Typical 0.15%
- •High Stability under Capacitive Load
- •Low Temperature Deviation: Typical 4.5mV
- Low Equivalent Full-range Temperature
 Coefficient with 20PPM/°C Typical
- •Low Dynamic Output Resistance: Typical 0.2Ω
- Sink Current Capacity from 1mA to 100 mA
- Low Output Noise
- \bullet Wide Operating Range of -40 to 150 $^\circ\!\!\mathrm{C}$
- •TO-92, SOT23-3, SOT23 package


Typical Application


- Charger
- Voltage Adapter
- •Switching Power Supply
- •Graphic Card
- Precision Voltage Reference


www.microne.com.cn


PIN Configuration

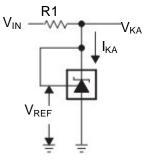


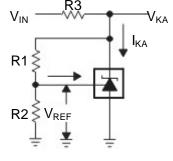
Block Diagram and symbol

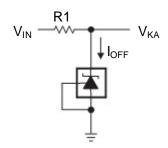
Absolute Maximum Ratings

PARAMETER	SYMBAL	RATING	UNIT
Cathode voltage	V _{KA}	40	V
Cathode current range (continuous)	I _{KA}	-100 to +130	mA
Reference input current range	I _{REF}	10	mA
		TO-92 Package: 770	
Power Dissipation	P _D	SOT23-3 Package:370	mW
		SOT23 Package:300	
Junction temperature	ΤJ	160	°C
Storage Temperature range	T _{STG}	-65~+150	°C
		TO-92 package:150	
Package thermal impedance	θ_{JA}	SOT23-3 package:330	°Сл
		SOT23 package:350	

Note: Use this IC within the stated maximum ratings. Operation beyond these limits may cause degrading or permanent damage to the device.

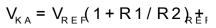

Recommended Operating Conditions

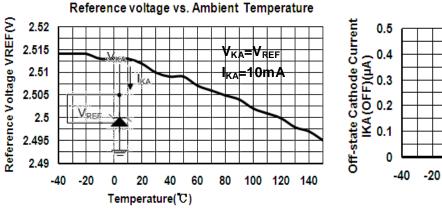

Parameter	Symbol	Min	Мах	Unit
Cathode Voltage	V _{KA}	V _{REF}	36	V
Cathode Current	I _{KA}	1.0	100	mA
Operating Ambient Temperature Range		-40	125	°C

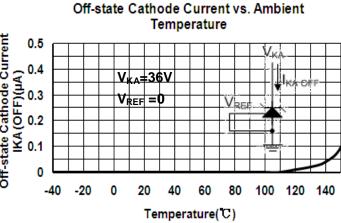

Electrical Characteristics ($T_A=25^{\circ}C$, unless otherwise noted)

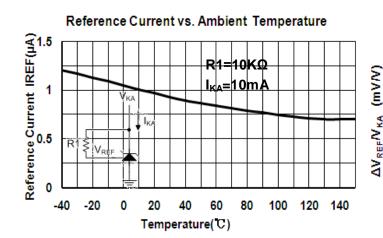
Parameter		Symbol	Conditions		Min	Тур.	Max	Unit	Test circuit
Reference	0.4%	V	V _{KA} =V _{REF,} I _{KA} =10mA		2.490	2.50	2.510	V	Fig.1
voltage	1.0%	V _{REF}			2.475	2.50	2.525		
Deviation of	reference	A) (V _{KA} =V _{REF,}	0 to 70 ℃	-	3	10	mV	Fig.1
voltage over-tem	nperature	ΔV_{REF}	I _{KA} =10mA	-40 to 150 ℃	-	3	15		
Dynamic impedance		Z _{ka}	V_{KA} = V_{REF} , I_{KA} =1 to 100mA, f≤1.0KHz		-	0.15	0.5	Ω	Fig.1
Minimum cathode regulatio		I _{KA} (MIN)	V _{KA} =V _{REF}		-	0.4	1.0	mA	Fig.1
Ratio of change in		ΔV_{REF} = 10mA	1.050	$\Delta V_{KA} = 10V$ to V_{REF}	-	-0.8	-2.5 mV/V	Fig 2	
reference voltage change in cathoo	-	ΔV_{KA}	ΔV_{KA} I _{KA} =10mA	ΔV _{KA} =36V to 10V	-	-0.6	-1.5	mv/v	Fig.2
Reference	current	I _{REF}	I _{KA} =10mA, R1=10KΩ, R2=∝			0.7	3	μA	Fig.2
Deviation of over full temperat		ΔI_{REF}	I _{KA} =10mA, R1=10KΩ, R2=∝,T _A =40 to 150℃			0.1	1.2	μA	Fig.2
Off-state cathod	e current	I _{KA} (OFF)	V _{KA} =36V, V _{REF} =0			0.03	0.3	μA	Fig.3

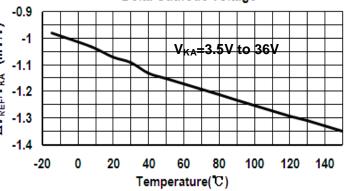
Note:The dynamic impedance is defined as: $~~|~Z_{KA}~|$ = $\bigtriangleup V_{KA}/\bigtriangleup I_{KA}$

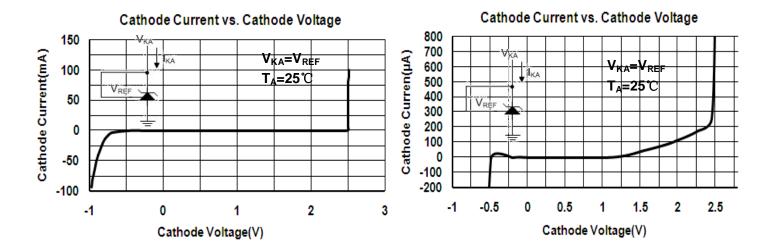


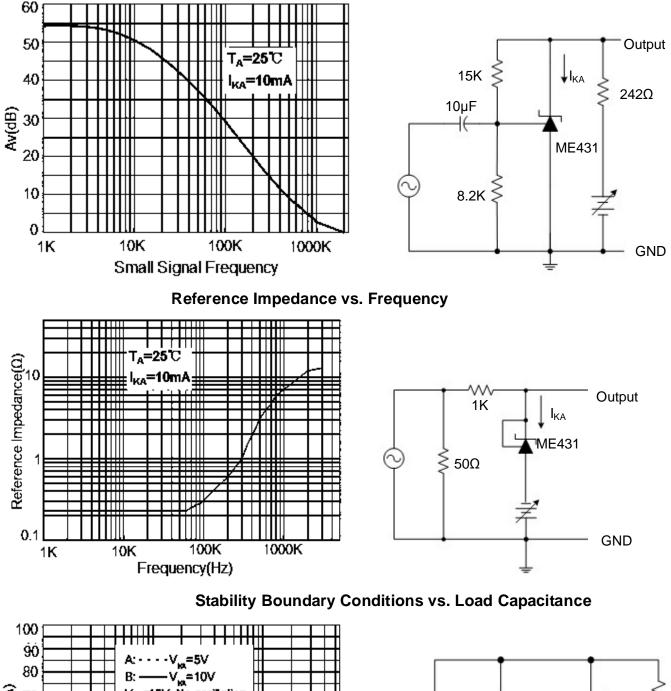

Fig.1: for $V_{KA} = V_{REF}$

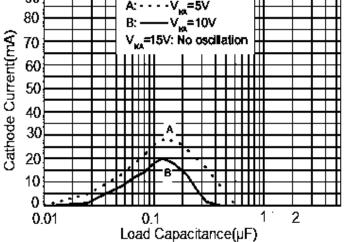

Fig.2: for V_{KA}> V_{REF}

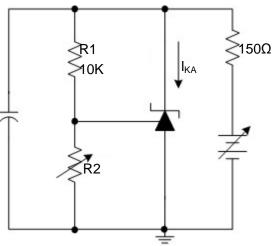

Fig.3: for I_{OFF}


Typical Performance Characteristics

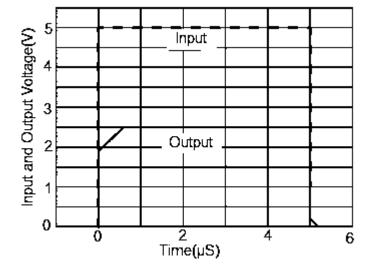


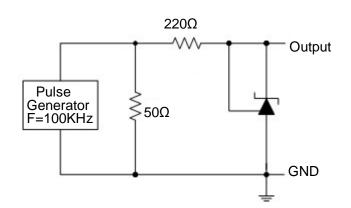

Ratio of Delta Reference Voltage to the Ratio of Delta Cathode Voltage



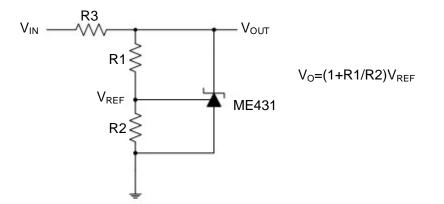


Small Signal Voltage Gain vs. Frequency

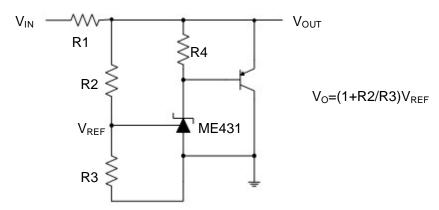




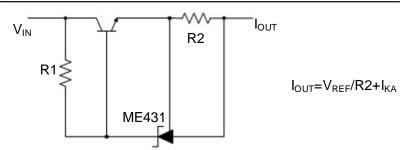
www.microne.com.cn

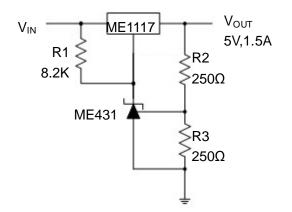


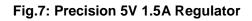
Pulse Response of Input and Output Voltage

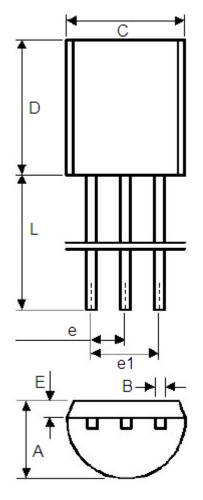


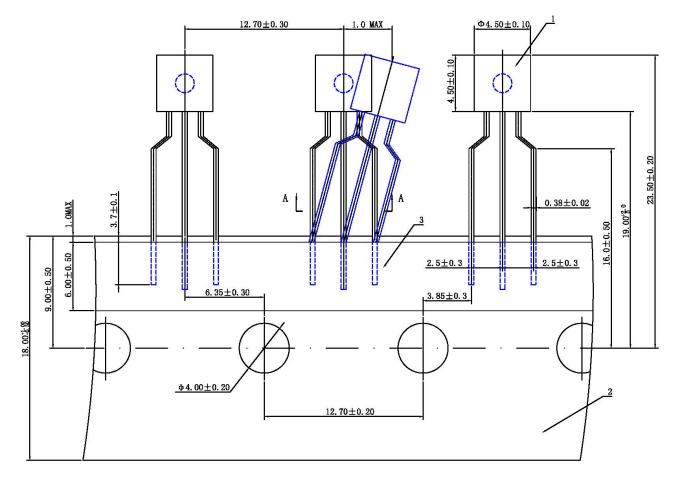
Typical Application

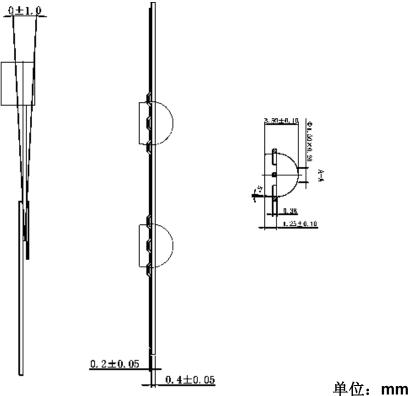




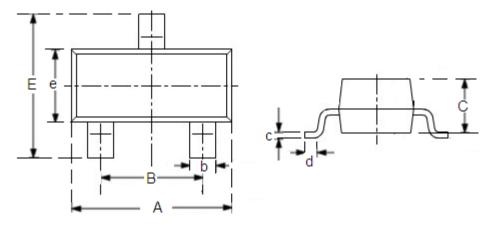


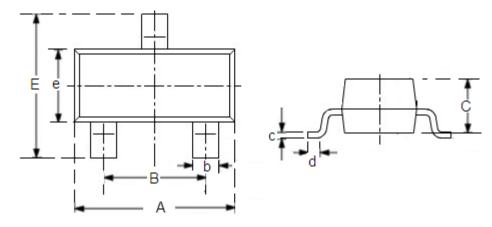



Packaging Type: TO-92



	Min	Max	Min	Max
А	3.4	3.8	0.13386	0.1496
В	0.3	0.5	0.0118	0.0197
С	4.4	4.8	0.1732	0.189
D	4.4	4.8	0.1732	0.189
E	0.9	1.5	0.0354	0.059
е	1.17	1.37	0.046	0.0539
e1	2.39	2.69	0.094	0.1059
L	12	16	0.4724	0.6299


Packaging Type: TO-92 (Paper Tape)


Packaging Type: SOT23-3

DIM	Millim	eters	Inches		
	Min	Max	Min	Мах	
А	2.7	3.1	0.1063	0.122	
В	1.7	2.1	0.0669	0.0827	
b	0.35	0.5	0.0138	0.0197	
С	1.0	1.2	0.0394	0.0472	
С	0.1	0.25	0.0039	0.0098	
d	0.2	-	0.0079	-	
E	2.6	3.0	0.1023	0.1181	
е	1.5	1.8	0.059	0.0708	

Packaging Type: SOT23

DIM	Millim	eters	Inches		
	Min	Max	Min	Мах	
А	2.7	3.1	0.1063	0.122	
В	1.7	2.1	0.0669	0.0827	
b	0.35	0.5	0.0138	0.0197	
С	1.0	1.2	0.0394	0.0472	
С	0.1	0.25	0.0039	0.0098	
d	0.2	-	0.0079	-	
E	2.1	2.64	0.0827	0.1039	
е	1.2	1.4	0.0472	0.0551	

- The information described herein is subject to change without notice.
- Nanjing Micro One Electronics Inc is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design.
- Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Nanjing Micro One Electronics Inc is strictly prohibited.
- The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Nanjing Micro One Electronics Inc.
- Although Nanjing Micro One Electronics Inc exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.

单击下面可查看定价,库存,交付和生命周期等信息

>>MICRONE(南京微盟)