# MSKSEMI 美森科













ESD

TVS

TSS

MOV

GDT

PLED

# 20N04-MS

# **Product specification**



# 20N04-MS

www.msksemi.com

# Description

The 20N04-MS is the high cell density trenched N-ch MOSFETs, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.

The 20N04-MS meet the RoHS and Green Product requirement, 100% EAS guaranteed with full

### FEATURE

- 100% EAS Guaranteed
- Green Device Available
- Super Low Gate Charge
- Excellent CdV/dt effect decline
- Advanced high cell density Trench technology

### **Reference News**

| PACKAGE OUTLINE | PIN CONFIGURATION | Marking |
|-----------------|-------------------|---------|
| SOT-89          | G                 | 20N04   |

### Absolute Maximum Ratings

| Symbol     | Parameter                                                    | Rating     | Units |
|------------|--------------------------------------------------------------|------------|-------|
| Vds        | Drain-Source Voltage                                         | 60         | V     |
| Vgs        | Gate-Source Voltage                                          | ±20        | V     |
| lo@Ta=25°C | Continuous Drain Current, V <sub>GS</sub> @ 10V <sup>1</sup> | 15         | А     |
| lo@Ta=70°C | Continuous Drain Current, V <sub>GS</sub> @ 10V <sup>1</sup> | 7.5        | A     |
| Ідм        | Pulsed Drain Current <sup>2</sup>                            | 22         | A     |
| EAS        | Single Pulse Avalanche Energy <sup>3</sup>                   | 22         | mJ    |
| las        | Avalanche Current                                            | 23         | A     |
| PD@Ta=25°C | Total Power Dissipation <sup>4</sup>                         | 1.5        | W     |
| Тѕтс       | Storage Temperature Range                                    | -55 to 150 | °C    |
| TJ         | Operating Junction Temperature Range                         | -55 to 150 | °C    |

Downloaded From Oneyac.com

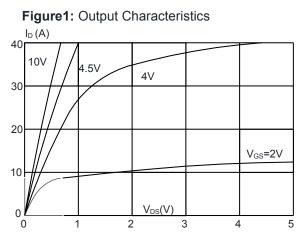
# **Product Summary**

| BVDSS | 40V  |
|-------|------|
| RDSON | 15mΩ |
| ID    | 20A  |

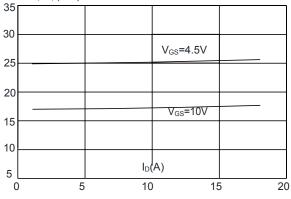


# SEMICONDUCTOR

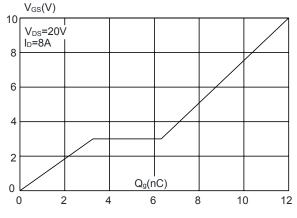
### Thermal Data


| Symbol | Parameter                                        | Тур. | Max. | Unit |
|--------|--------------------------------------------------|------|------|------|
| Reja   | Thermal Resistance Junction-ambient <sup>1</sup> |      | 62   | °C/W |
| Rejc   | Thermal Resistance Junction-Case <sup>1</sup>    |      | 2.8  | °C/W |

#### N-Channel Electrical Characteristics (TJ=25°Cunless otherwise specified)


| Symbol               | Parameter                                                                 | Test Condition                                           | Min. | Тур. | Max. | Units |
|----------------------|---------------------------------------------------------------------------|----------------------------------------------------------|------|------|------|-------|
| Off Charact          | teristic                                                                  |                                                          |      |      |      |       |
| V <sub>(BR)DSS</sub> | Drain-Source Breakdown Voltage V <sub>GS</sub> =0V, I <sub>D</sub> =250µA |                                                          | 40   | -    | -    | V     |
| DSS                  | Zero Gate Voltage Drain Current                                           | V <sub>DS</sub> =40V, V <sub>GS</sub> =0V                | -    | -    | 1.0  | μA    |
| lgss                 | Gate to Body Leakage Current                                              | V <sub>DS</sub> =0V, V <sub>GS</sub> =±20V               | -    | -    | ±100 | nA    |
| On Charact           | teristics                                                                 |                                                          |      |      |      |       |
| $V_{GS(th)}$         | Gate Threshold Voltage                                                    | V <sub>DS</sub> =V <sub>GS</sub> , I <sub>D</sub> =250µA | 1.0  | 1.5  | 2.5  | V     |
| <b>D</b>             | Static Drain-Source on-Resistance                                         | Vgs=10V, ID=8A                                           | -    | 15   | 20   | mΩ    |
| $R_{DS(on)}$         | note3                                                                     | V <sub>GS</sub> =4.5V, I <sub>D</sub> =5A                | -    | 18   | 25   | mΩ    |
| Dynamic C            | haracteristics                                                            |                                                          |      |      |      |       |
| Ciss                 | Input Capacitance                                                         |                                                          | -    | 633  | -    | pF    |
| Coss                 | Output Capacitance                                                        | V <sub>DS</sub> =20V, V <sub>GS</sub> =0V,<br>f=1.0MHz   | -    | 67   | -    | pF    |
| Crss                 | Reverse Transfer Capacitance                                              |                                                          | -    | 58   | -    | pF    |
| Qg                   | Total Gate Charge                                                         | VDS=20V, ID=8A,                                          | -    | 12   | -    | nC    |
| Qgs                  | Gate-Source Charge                                                        | $V_{GS}=20V$ , ID-6A,<br>$V_{GS}=10V$                    | -    | 3.2  | -    | nC    |
| $Q_{gd}$             | Gate-Drain("Miller") Charge                                               |                                                          | -    | 3.1  | -    | nC    |
| Switching            | Characteristics                                                           |                                                          |      |      |      |       |
| t <sub>d(on)</sub>   | Turn-on Delay Time                                                        |                                                          | -    | 4    | -    | ns    |
| tr                   | Turn-on Rise Time                                                         | $V_{DD}$ = 20V, R <sub>L</sub> =2.5 $\Omega$             | -    | 3    | -    | ns    |
| $t_{d(off)}$         | Turn-off Delay Time                                                       | $V_{GS}$ = 10V, $R_{REN}$ = 3 $\Omega$                   | -    | 15   | -    | ns    |
| t <sub>f</sub>       | Turn-off Fall Time                                                        |                                                          | -    | 2    | -    | ns    |
| Drain-Sour           | ce Diode Characteristics and Maximu                                       | m Ratings                                                |      |      |      |       |
| ls                   | Maximum Continuous Drain to Source Diode Forward<br>Current               |                                                          | -    | -    | 35   | А     |
| Іѕм                  | Maximum Pulsed Drain to Source Diode Forward Current                      |                                                          | -    | -    | 40   | Α     |
| Vsd                  | Drain to Source Diode Forward<br>Voltage                                  |                                                          | -    | -    | 1.2  | V     |




### **Typical Performance Characteristics-N**



**Figure 3:**On-resistance vs. Drain Current RDS(ON) (mΩ)







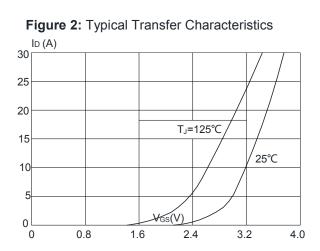
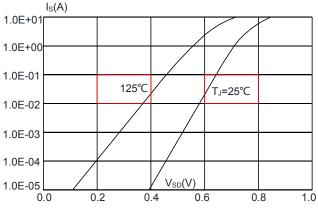




Figure 4: Body Diode Characteristics





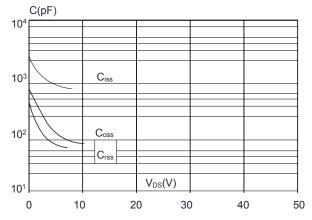





Figure 7: Normalized Breakdown Voltage vs.

Junction Temperature

Figure 9: Maximum Safe Operating Area

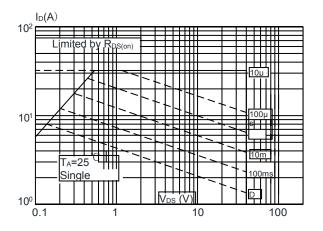
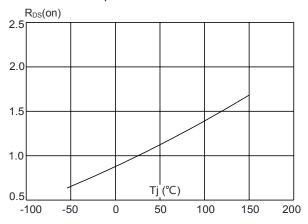
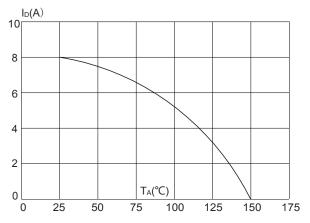
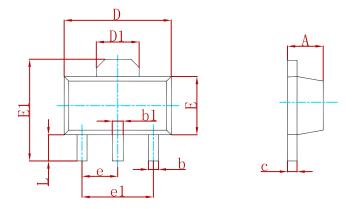




Figure.11: Maximum Effective


Transient Thermal Impedance, Junction-to-Ambient

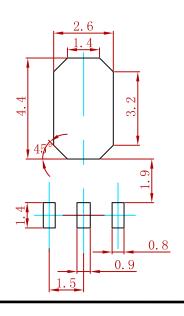


**Figure 8:** Normalized on Resistance vs. Junction Temperature




**Figure 10:** Maximum Continuous Drain Current vs. Ambient Temperature






#### PACKAGE MECHANICAL DATA



| Symbol | Dimensions In Millimeters |       | Dimensions In Inches  |       |
|--------|---------------------------|-------|-----------------------|-------|
| Symbol | Min                       | Max   | Min                   | Max   |
| A      | 1.400                     | 1.600 | 0.055                 | 0.063 |
| b      | 0.320                     | 0.520 | 0.013                 | 0.020 |
| b1     | 0.400                     | 0.580 | 0.016                 | 0.023 |
| С      | 0.350                     | 0.440 | 0.014                 | 0.017 |
| D      | 4.400                     | 4.600 | 0.173                 | 0.181 |
| D1     | 1.550 REF.                |       | 0.061 REF.            |       |
| E      | 2.300                     | 2.600 | 0.091                 | 0.102 |
| E1     | 3.940                     | 4.250 | 0.155                 | 0.167 |
| е      | 1.500 TYP.                |       | 1.500 TYP. 0.060 TYP. |       |
| e1     | 3.000 TYP.                |       | 0.118                 | STYP. |
| L      | 0.900                     | 1.200 | 0.035                 | 0.047 |

### Suggested Pad Layout



Note:

1.Controlling dimension:in millimeters.

2.General tolerance:±0.05mm.

3. The pad layout is for reference purposes only.

### **REEL SPECIFICATION**

| P/N      | PKG    | QTY  |
|----------|--------|------|
| 20N04-MS | SOT-89 | 1000 |

### Attention

■ Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.

MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all MSKSEMI Semiconductor products described or contained herein.

Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuits for safedesign, redundant design, and structural design.

■ In the event that any or all MSKSEMI Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.

■ No part of this publication may be reproduced or transmitted in any form or by any means, electronic or

mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.

Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements intellectual property rights or other rights of third parties.

Any and all information described or contained herein are subject to change without notice due to

product/technology improvement, etc. Whendesigning equipment, referto the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.

单击下面可查看定价,库存,交付和生命周期等信息

>>MSKSEMI (美森科)