
MSKSEMI

ESD

TVS

TSS

MOV

GDT

PLED

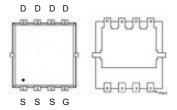
Brodnet data speet

www.msksemi.com

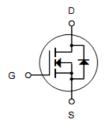
The MSK80N03NF uses advanced trench technology and design to provide excellent RDS(ON) with low gatecharge. It can be used in a wide variety of applications.

General Features

VDS=30V,ID=80A


RDS(ON)<5mΩ@ VGS=10V

RDS(ON)<8m Ω @ VGS=4.5V


- •High density cell design for ultra low Rdson
- •Fully characterized Avalanche voltage and current
- •Good stability and uniformity with high EAS

Application

- Power switching application
- Hard Switched and High Frequency Circuits
- Uninterruptible Power Supply

DFN5X6-8L

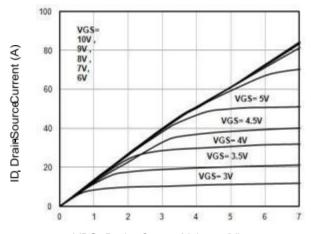
N-Channel MOSFET

Maximum ratings, at TA =25°C, unless otherwise specified

Symbol	Parameter	Rating	Unit	
V(BR)DSS	Drain-Source breakdown voltage		30	V
Is	Diode continuous forward current	Tc =25°C	80	А
1-		Tc =25°C	80	Α
l _D	Continuous drain current@VGS=10V	Tc =100°C	45	Α
IDM	Pulse drain current tested ①	Tc =25°C	280	Α
EAS	Avalanche energy, single pulsed ②		56	mJ
PD	Maximum power dissipation	Tc =25°C	37	W
VGS	Gate-Source voltage		±20	V
TSTG TJ	Storage and operating temperature range		-55 to 150	°C

Thermal Characteristics

Symbol	Parameter	Typical	Unit
Rejc	Thermal Resistance-Junction to Case	3.4	°C/W
Rеja	Thermal Resistance Junction-Ambient	30	°C/W



Compiance

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Static Ele	□ ectrical Characteristics @ Tj=25°C (unle	ss otherwise stated)			
V _{(BR)DSS}	Drain-Source Breakdown Voltage	Vgs=0V Ip=250µA	30			V
	Zero Gate Voltage Drain Current	V _{DS} =30V,V _{GS} =0V			0.1	μA
loss	Zero Gate Voltage Drain Current(T _j =125℃)	V _{DS} =30V,V _{GS} =0V			100	μA
lgss	Gate-Body Leakage Current	Vgs=±20V,Vps=0V			±100	nA
V _{GS(TH)}	Gate Threshold Voltage	V _{DS} =V _{GS} ,I _D =250µA	1.0	1.7	2.5	٧
R _{DS(ON)}	Drain-Source On-State Resistance③	V _G S=10V, I _D =20A		3	4	mΩ
R _{DS(ON)}	Drain-Source On-State Resistance③	Vgs=4.5V, ID=16A		5.4	8	mΩ
Dynamic	Electrical Characteristics @ T _j = 25°C (unless otherwise st	ated)			
Ciss	Input Capacitance			1930		pF
Coss	Output Capacitance	VDS=15V,VGS=0V, f=1MHz		310		pF
Crss	Reverse Transfer Capacitance			260		pF
Rg	Gate Resistance	f=1MHz		0.85		
Q_g	Total Gate Charge			38		nC
Q _{gs}	Gate-Source Charge	VDS=15V,ID=20A, VGS=10V		5.1		nC
Qgd	Gate-Drain Charge	VGS-10V		12		nC
Switching	Characteristics		1			
t d(on)	Turn-on Delay Time			8.5		nS
t _r	Turn-on Rise Time	V _{DD} =15V,		9		nS
t d(off)	Turn-Off Delay Time	ID=20A,		31		nS
t _f	Turn-Off Fall Time	Rg=3, Vgs=10V		9		nS
Source- I	Drain Diode Characteristics@ T _j = 25°C	unless otherwise s	tated)	I	I	<u> </u>
V _{SD}	Forward on voltage	Isp=20A,Vgs=0V		0.8	1.2	V
t _{rr}	Reverse Recovery Time	Tj=25°C,Isd=20A, VGS=0V		16		nS
Qrr	Reverse Recovery Charge	di/dt=500A/µs		42		nC

NOTE:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Limited by T_{Jmax}, starting T_J = 25°C, L = 0.5mH,R_G = 25 , I_{AS} = 15A, V_{GS} =10V. Part not recommended for use above this value
- ③ Pulse width ≤ 300 μ s; duty cycle≤ 2%.

VDS, Drain -Source Voltage (V) **Fig1.** Typical Output Characteristics

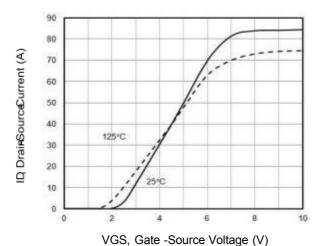
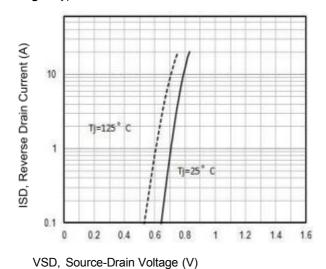



Fig3. Typical Transfer Characteristics

Fig6. Maximum Safe Operating Area Voltage

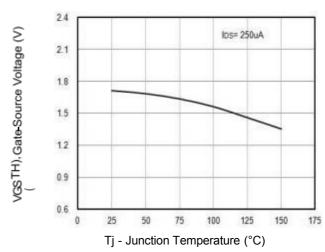


Fig2. VGS(TH) Gate -Source Voltage Vs.Tj

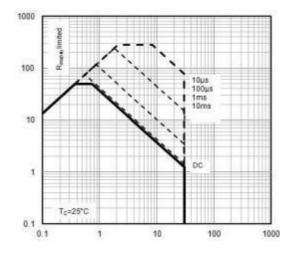



Fig4. Normalized On-Resistance Vs. Tj

VDS, Drain -Source Voltage (V)

Fig5. Typical Source-Drain Diode Forward

Normalized On Resistance

D Drain Current (A)

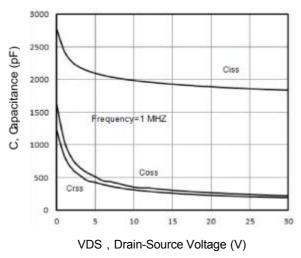


Fig7. Typical Capacitance Vs.Drain-Source Voltage

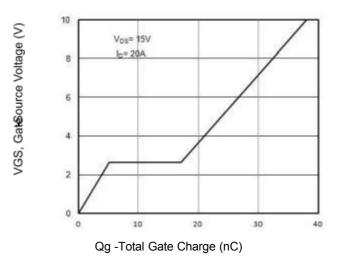


Fig8. Typical Gate Charge Vs.Gate-Source Voltage

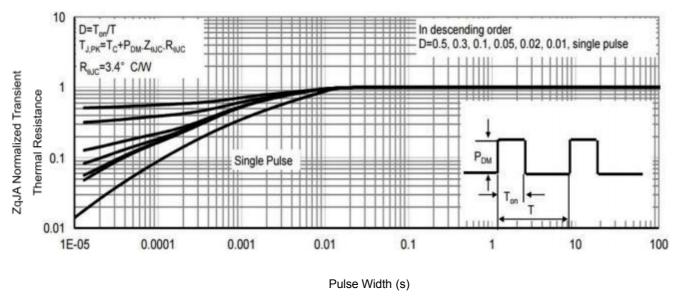


Fig9. Normalized Maximum Transient Thermal Impedance

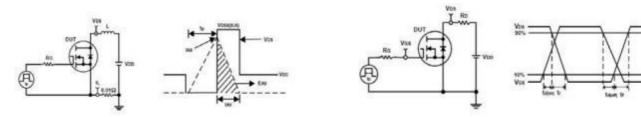
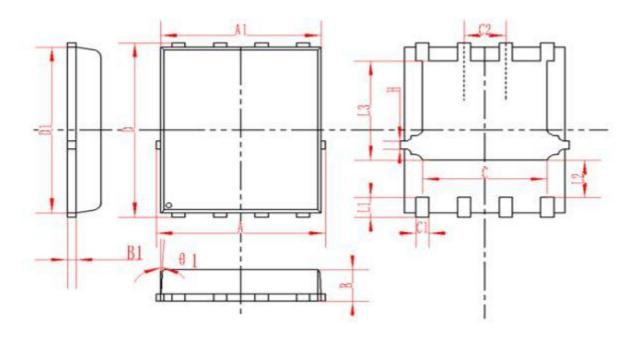



Fig10. Unclamped Inductive Test Circuit and waveforms

Fig11. Switching Time Test Circuit and waveforms

DFN5X6-8L Package Information

SYMBOL		MM			INCH	
STIVIDOL	MIN	NOM	MAX	MIN	NOM	MAX
Α	4.95	5	5.05	0.195	0.197	0.199
A1	4.82	4.9	4.98	0.190	0.193	0.196
D	5.98	6	6.02	0.235	0.236	0.237
D1	5.67	5.75	5.83	0.223	0.226	0.230
В	0.9	0.95	1	0.035	0.037	0.039
B1	0.254REF			0.010REF		
С	3.95	4	4.05	0.156	0.157	0.159
C1	0.35	0.4	0.45	0.014	0.016	0.018
C2		1.27TYP			0.5TYP	
θ1	8°	10°	12°	8°	10°	12°
L1	0.63	0.64	0.65	0.025	0.025	0.026
L2	1.2	1.3	1.4	0.047	0.051	0.055
L3	3.415	3.42	3.425	0.134	0.135	0.135
Н	0.24	0.25	0.26	0.009	0.010	0.010

REEL SPECIFICATION

P/N	PKG	QTY
MSK80N03NF	DFN5X6-8L	5000

Semiconductor

Attention

- Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.
- MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all MSKSEMI Semiconductor products described or contained herein.
- Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possiblethat these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuitsfor safedesign, redundant design, and structural design.
- In the event that any or all MSKSEMI Semiconductor products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringementsof intellectual property rights or other rightsof third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. Whendesigning equipment, refer to the "Delivery Specification" for the MSKSEMI Semiconductor product that you intend to use.

单击下面可查看定价,库存,交付和生命周期等信息

>>MSKSEMI (美森科)