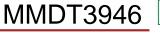

MSKSEMI

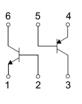
ESD

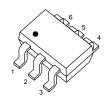
TVS

TSS


MOV

GDT


PLED


Brodnet data speet

www.msksemi.com

SOT-363

MAKING: K46 •

MMDT3946

DUAL TRANSISTOR (NPN+PNP)

FEATURES

- Complementary Pair
- One 3904-Type NPN
 One 3906-Type PNP
- Epitaxial Planar Die Construction
- Ideal for Low Power Amplification and Switching

MAXIMUM RATINGS (T_a=25℃ unless otherwise noted)

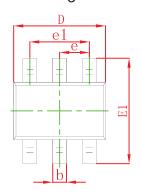
Symbol	Parameter	Value	Units
V _{CBO}	Collector-Base Voltage	60	V
V _{CEO}	Collector-Emitter Voltage	40	V
V _{EBO}	Emitter-Base Voltage	5	V
Ic	Collector Current -Continuous	0.2	Α
Pc	Collector Power Dissipation	0.2	W
TJ	Junction Temperature	150	$^{\circ}\!\mathbb{C}$
T _{stg}	Storage Temperature	-55-150	$^{\circ}\!\mathbb{C}$

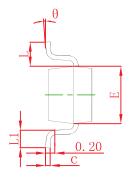
NPN 3904 ELECTRICAL CHARACTERISTICS (Ta=25℃ unless otherwise specified)

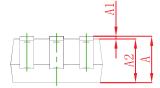
Parameter	Symbol	Test conditions	Min	Max	Unit
Collector-base breakdown voltage	V _{(BR)CBO}	I_{CBO} $I_{C} = 10\mu A$, $I_{E} = 0$			V
Collector-emitter breakdown voltage	V _{(BR)CEO}	I _C = 1mA, I _B =0	40		V
Emitter-base breakdown voltage	V _{(BR)EBO}	I _E = 10μA, I _C =0	5		V
Collector cut-off current	I _{CBO}	V _{CB} = 30 V , I _E =0		0.05	μA
Collector cut-off current	I _{CEO}	V _{CE} = 30 V , I _B =0		0.5	μA
Emitter cut-off current	I _{EBO}	V _{EB} = 5V , I _C =0		0.05	μA
	h _{FE(1)}	V_{CE} = 1V, I_{C} = 0.1mA	40		
	h _{FE(2)}	V _{CE} = 1V, I _C = 1mA	70		
DC current gain	h _{FE(3)}	V _{CE} = 1V, I _C = 10mA	100	300	
	h _{FE(4)}	V _{CE} = 1V, I _C = 50mA	60		
	h _{FE(5)}	V _{CE} = 1V, I _C = 100mA	30		
Collector-emitter saturation voltage	V _{CE(sat)1}	I _C =10 mA, I _B = 1mA		0.2	V
Conector-entitler saturation voltage	V _{CE(sat)2}	I_C =50 mA, I_B = 5mA		0.3	V
Base-emitter saturation voltage	V _{BE(sat)1}	I _C = 10 mA, I _B = 1mA	0.65	0.85	V
Dase-enlitter saturation voltage	V _{BE(sat)2}	I _C = 50 mA, I _B = 5mA		0.95	V
Transition frequency	f⊤	V _{CE} =20V,I _C =20mA, f=100MHz	300		MHz
Noise figure	NF	V_{CE} =5V, I_c =0.1mA, f=1KHz,Rg=1K Ω		5	dB
Output capacitance	C _{ob}	V _{CB} =5V,I _E =0,f=1MHz		4	pF
Delay time	t _d	V _{CC} =3V, V _{BE} =0.5V		35	nS
Rise time	t _r	I _C =10mA , I _{B1} =- I _{B2} =1mA		35	nS
Storage time	ts	V _{CC} =3V, I _C =10mA		200	nS
Fall time	t _f	I _{B1} =-I _{B2} = 1mA		50	nS

MAXIMUM RATINGS(T_a=25°C unless otherwise noted)

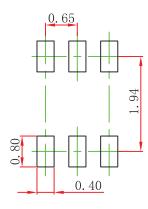
Symbol	Parameter	Value	Units	
V _{CBO}	Collector-Base Voltage	-40	V	
V _{CEO}	Collector-Emitter Voltage	-40	V	
V _{EBO}	Emitter-Base Voltage	-5	V	
Ic	Collector Current -Continuous	-0.2	Α	
Pc	Collector Power Dissipation	0.2	W	
TJ	Junction Temperature	150	°C	
T _{stg}	Storage Temperature	-55-150	°C	


PNP 3906 ELECTRICAL CHARACTERISTICS (Ta=25°C unless otherwise specified)


Parameter	Symbol	Test conditions	Min	Тур	Max	Unit
Collector-base breakdown voltage	V _{(BR)CBO}	I _C =-10μA,I _E =0	-40			V
Collector-emitter breakdown voltage	V _{(BR)CEO}	I _C =-1mA,I _B =0	-40			V
Emitter-base breakdown voltage	V _{(BR)EBO}	I _E =-10μA,I _C =0	-5			V
Collector cut-off current	I _{CBO}	V _{CB} =-30V,I _E =0			-0.05	μΑ
Emitter cut-off current	I _{EBO}	V _{EB} =-5V,I _C =0			-0.05	μΑ
	h _{FE(1)}	V _{CE} =-1V,I _C =-0.1mA	60			
	h _{FE(2)}	V _{CE} =-1V,I _C =-1mA	80			
DC current gain	h _{FE(3)}	V _{CE} =-1V,I _C =-10mA	100		300	
	h _{FE(4)}	V _{CE} =-1V,I _C =-50mA	60			
	h _{FE(5)}	V _{CE} =-1V,I _C =-100mA	30			
Collector-emitter saturation voltage	V _{CE(sat)1}	I _C =-10mA,I _B =-1mA			-0.25	V
Conector-entitler saturation voltage	V _{CE(sat)2}	I _C =-50mA,I _B =-5mA			-0.4	V
Page emitter acturation voltage	V _{BE(sat)1}	I _C =-10mA,I _B =-1mA	-0.65		-0.85	V
Base-emitter saturation voltage	V _{BE(sat)2}	I _C =-50mA,I _B =-5mA			-0.95	V
Transition frequency	f _T	V _{CE} =-20V,I _C =-10mA,f=100MHz	250			MHz
Collector output capacitance	C _{ob}	V _{CB} =-5V,I _E =0,f=1MHz			4.5	pF
Noise figure	NF	V_{CE} =-5V,I _c =-0.1mA, f=1KHz,Rg=1K Ω			4	dB
Delay time	t _d	V _{CC} =-3V, V _{BE} =-0.5V			35	nS
Rise time	t _r	I _C =-10mA , I _{B1} =-I _{B2} =-1mA			35	nS
Storage time	ts	V _{CC} =-3V, I _C =-10mA			225	nS
Fall time	t _f	I _{B1} =-I _{B2} =- 1mA			75	nS



SOT-363 Package Outline Dimensions



Symbol	Dimensions In Millimeters		Dimension	s In Inches
Symbol	Min	Max	Min	Max
Α	0.900	1.100	0.035	0.043
A1	0.000	0.100	0.000	0.004
A2	0.900	1.000	0.035	0.039
b	0.150	0.350	0.006	0.014
С	0.100	0.150	0.004	0.006
D	2.000	2.200	0.079	0.087
E	1.150	1.350	0.045	0.053
E1	2.150	2.400	0.085	0.094
е	0.650 TYP		0.026	S TYP
e1	1.200	1.400	0.047	0.055
L	0.525 REF		0.021	REF
L1	0.260	0.460	0.010	0.018
θ	0°	8°	0°	8°

SOT-363 Suggested Pad Layout

Note:

- 1.Controlling dimension:in millimeters.
- 2.General tolerance:± 0.05mm.
- 3. The pad layout is for reference purposes only.

REEL SPECIFICATION

P/N	PKG	QTY
MMDT3946	SOT-363	3000

Attention

- Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.
- MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specificationsof any andall MSKSEMI Semiconductor products described orcontained herein.
- Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possiblethat these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuitsfor safedesign, redundant design, and structural design.
- In the event that any or all MSKSEMI Semiconductor products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringementsof intellectual property rights or other rightsof third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. Whendesigning equipment, referto the "Delivery Specification" for the MSKSEMI Semiconductor product that you intend to use.

单击下面可查看定价,库存,交付和生命周期等信息

>>MSKSEMI (美森科)