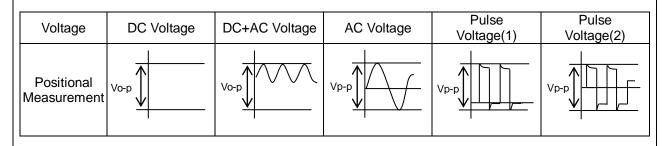
muRata

Reference Specification

Type KX Safety Standard Certified Lead Type Disc Ceramic Capacitors for General Purpose


Product specifications in this catalog are as of Jun. 2019, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the selfgenerated heat due to dielectric-loss. Applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. When measuring, use a thermocouple of small thermal capacity-K of ϕ 0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.(Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

3. TEST CONDITION FOR WITHSTANDING VOLTAGE

(1) TEST EQUIPMENT

Test equipment for AC withstanding voltage should be used with the performance of the wave similar to 50/60 Hz sine wave.

If the distorted sine wave or over load exceeding the specified voltage value is applied, the defective may be caused.

(2) VOLTAGE APPLIED METHOD

When the withstanding voltage is applied, capacitor's lead or terminal should be firmly connected to the out-put of the withstanding voltage test equipment, and then the voltage should be raised from near zero to the test voltage.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, test voltage should be applied with the *zero cross. At the end of the test time, the test voltage should be reduced to near zero, and then capacitor's lead or terminal should be taken off the out-put of the withstanding voltage test equipment.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, the surge voltage may arise, and therefore, the defective may be caused.

*ZERO CROSS is the point where voltage sine wave pass 0V. - See the right figure -

voltage sine wave zero cross

0V

4. FAIL-SAFE

When capacitor would be broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure would follow an electric shock, fire or fume.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

When soldering capacitor with a soldering iron, it should be performed in following conditions.

Temperature of iron-tip : 400 °C max.

Soldering iron wattage : 50W max.

Soldering time : 3.5s max.

7. BONDING, RESIN MOLDING AND COATING

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of the bonded, molded or coated product in the intended equipment.

In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive, molding resin or coating may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING, RESIN MOLDING AND COATING

When the outer coating is hot (over 100 °C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed -10 to 40 °C and 15 to 85%.

Use capacitors within 6 months after delivered. Check the solderability after 6 months or more.

10. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. Power plant control equipment
- 5. Medical equipment
- 6. Transportation equipment (vehicles, trains, ships, etc.)
- 7. Traffic signal equipment
- 8. Disaster prevention / crime prevention equipment
- 9. Data-processing equipment exerting influence on public
- 10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity : Output of 20 watts per liter or less.

Rinsing time : 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. CAPACITANCE CHANGE OF CAPACITORS

· Class 1 capacitors

Capacitance might change a little depending on a surrounding temperature or an applied voltage. Please contact us if you use for the strict time constant circuit.

· Class 2 and 3 capacitors

Class 2 and 3 capacitors like temperature characteristic B, E and F have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit. Please contact us if you need a detail information.

3. PERFORMANCE CHÉCK BY EQUIPMENT

Before using a capacitor, check that there is no problem in the equipment's performance and the specifications.

Generally speaking, CLASS 2 ceramic capacitors have voltage dependence characteristics and temperature dependence characteristics in capacitance. So, the capacitance value may change depending on the operating condition in a equipment. Therefore, be sure to confirm the apparatus performance of receiving influence in a capacitance value change of a capacitor, such as leakage current and noise suppression characteristic.

Moreover, check the surge-proof ability of a capacitor in the equipment, if needed, because the surge voltage may exceed specific value by the inductance of the circuit.

\land ΝΟΤΕ

- 1.Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

1. Application

This specification is applied to Safety Standard Certified Lead Type Disc Ceramic Capacitors Type KX used for General Electric equipment.

Type KX is Safety Standard Certified capacitors of Class X1,Y1.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids.

Approval standard and certified number

	Standard number	*Certified number	AC Rated volt. V(r.m.s.)
UL	UL60384-14	E37921	
CSA	CSA E60384-14	1343810	
VDE	IEC60384-14, EN60384-14	40002831	
BSI	EN60065 (8.8,14.2), IEC60384-14, EN60384-14	KM 37901	
SEMKO		1612604	X1:440
DEMKO		D-05321	Y1:300
FIMKO	IEC60384-14, EN60384-14	FI 29602	
NEMKO		P16221232	
ESTI		18.0079	
IMQ	EN60384-14	V4069	
CQC	IEC60384-14	CQC12001079941	

*Above Certified number may be changed on account of the revision of standards and the renewal of certification.

2. Rating

2-1. Operating temperature range

-40 ~ +125°C

2-2. Part number configuration

ex.) <u>DE1</u>	E3	KX	472	M	A4	B	P01F
Product	Temperature	Туре	Capacitance	Capacitance	Lead	Packing	Individual
code	characteristic	name		tolerance	code	style code	specification

Product code

DE1 denotes X1,Y1 class .

• Temperature characteristic

Code	Temperature characteristic
B3	В
E3	E

Please confirm detailed specification on [Specification and test methods].

• Type name

This denotes safety certified type name Type KX.

Capacitance

The first two digits denote significant figures ; the last digit denotes the multiplier of 10 in pF. ex.) In case of 472.

$$47 \times 10^2 = 4700 \text{pF}$$

• Capacitance tolerance Please refer to [Part number list].

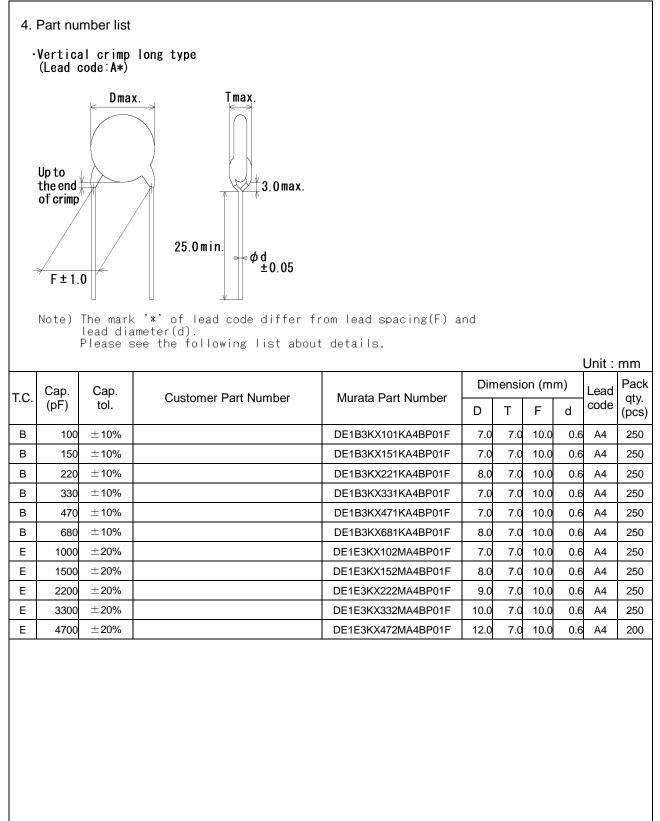
Lead code

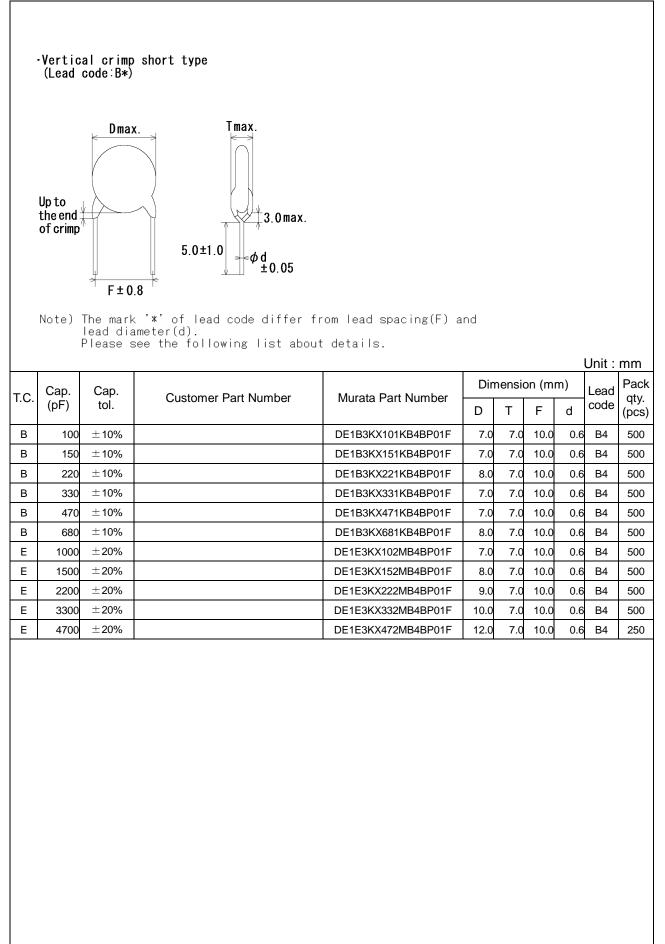
Code	Leads	style				
A*	Vertical crimp long type					
B*	Vartical arimp short type	Lead Length : 5mm				
J*	 Vertical crimp short type 	Lead Length : 3.5mm				
N*	Vertical crimp taping type					
* Place refer to [Part number list]						

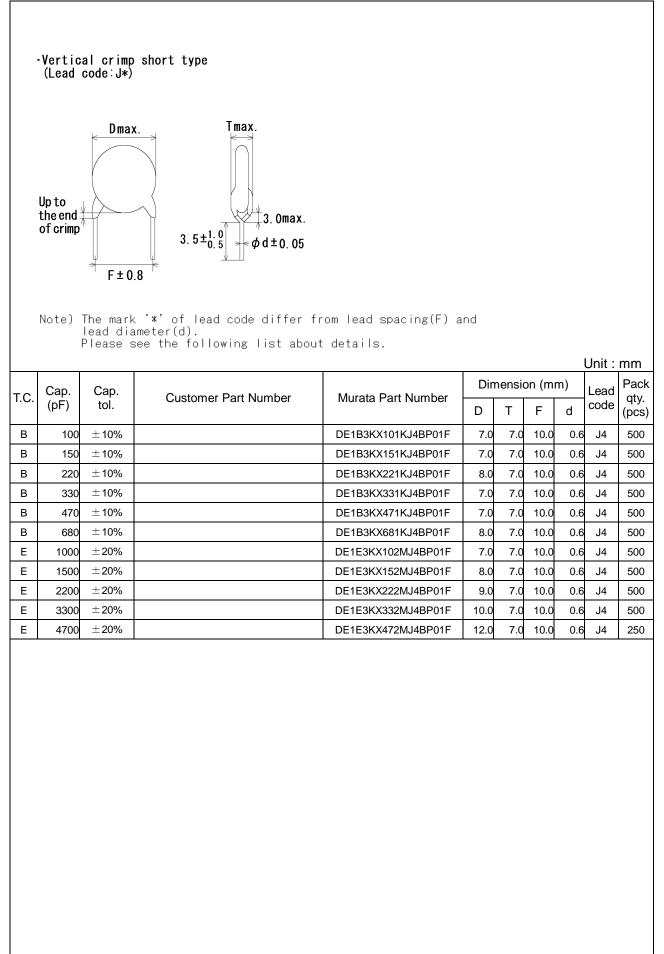
* Please refer to [Part number list]

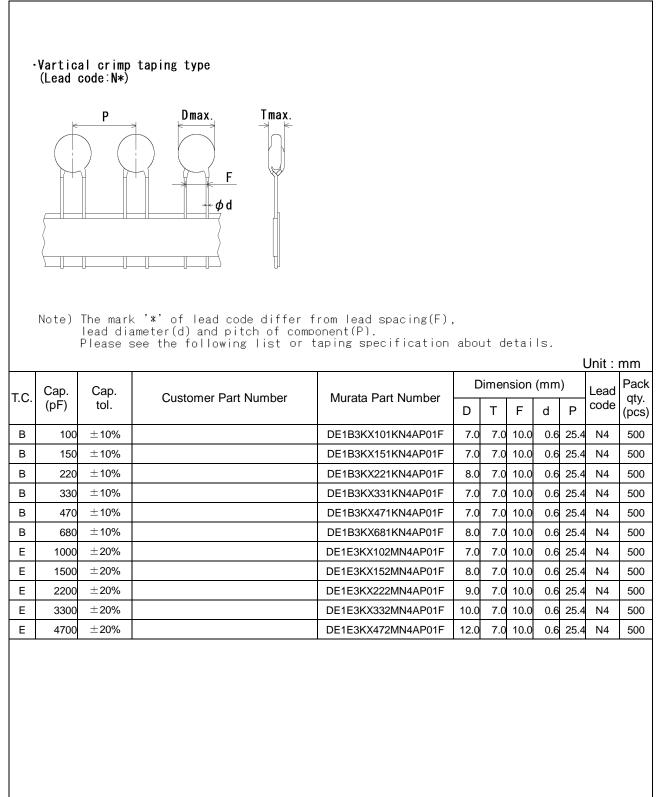
Packing style code

Code	Packing type
В	Bulk type
A	Ammo pack taping type

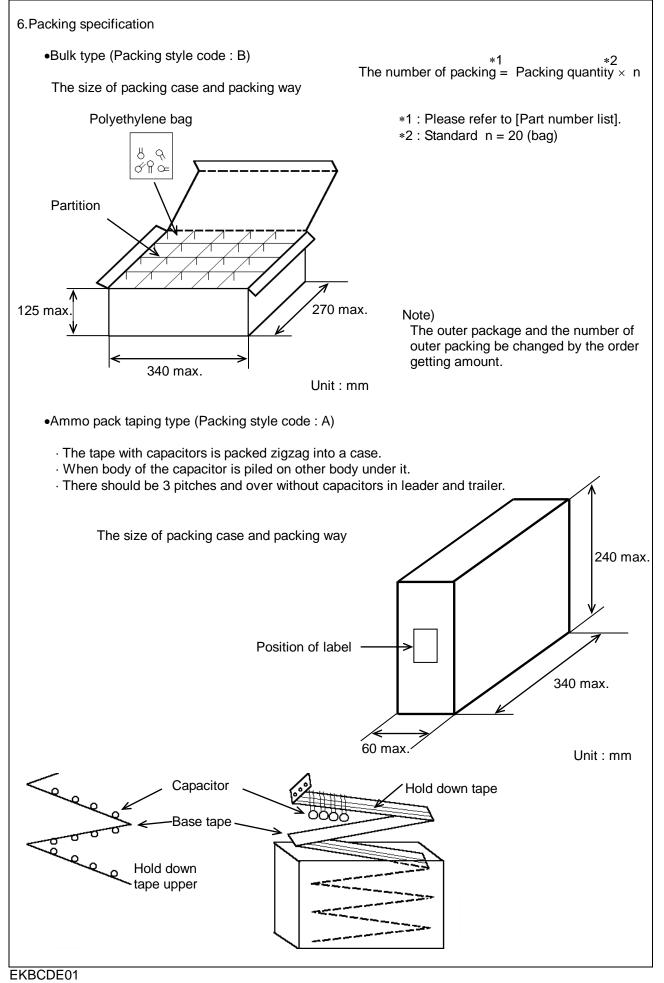

Individual specification

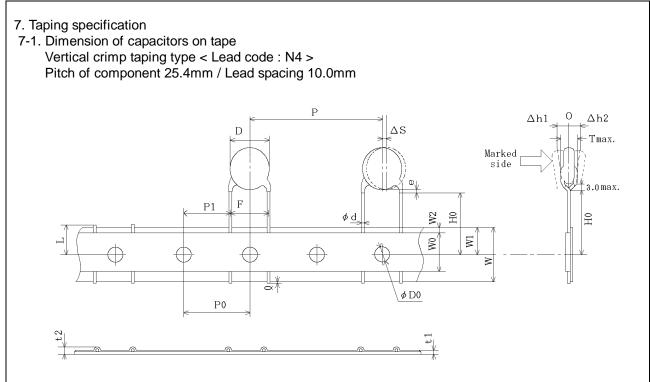

In case part number cannot be identified without 'individual specification', it is added at the end of part number.


Code	Specification
P01F	 Rated voltage : AC300V(r.m.s.) Halogen free Br ≤ 900ppm, Cl ≤ 900ppm Br + Cl ≤ 1500ppm CP wire


Note) Murata part numbers might be changed depending on lead code or any other changes. Therefore, please specify only the type name(KX) and capacitance of products in the parts list when it is required for applying safety standard of electric equipment.

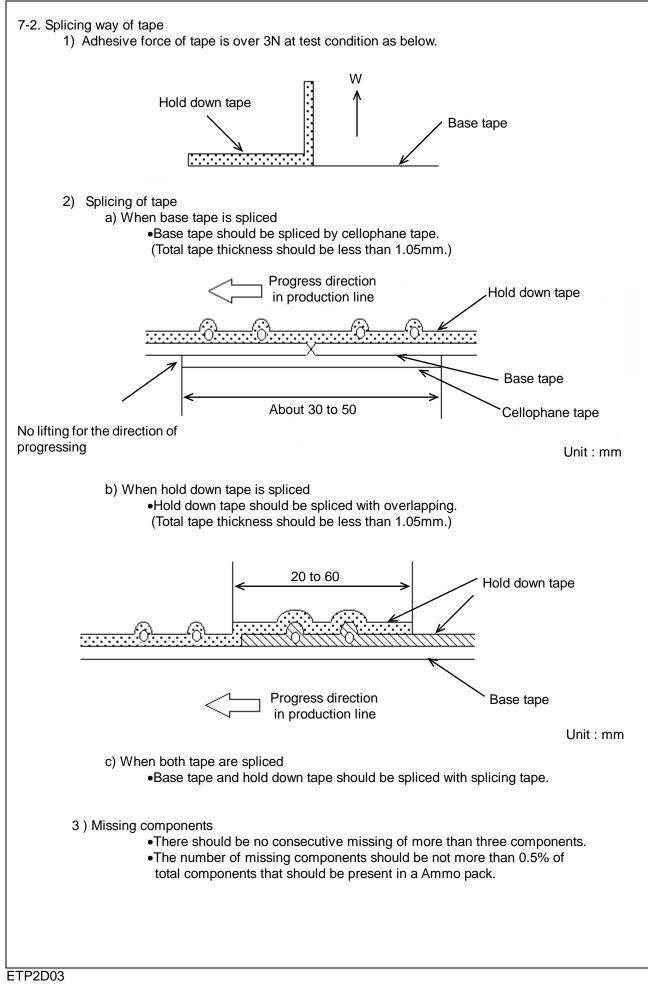
g		
Capacitance tolerance Type name	: Code : KX	
Company name code	: CM15 (Made in Thailand)	
	(Example	e)
		472M (X300~ (1Y1 HF 5D (M15
	Nominal capacitance Capacitance tolerance Type name Rated voltage mark Class code Halogen free mark Manufacturing year Manufacturing month	Nominal capacitance: 3 digit systemCapacitance tolerance: CodeType name: KXRated voltage mark: 300 ~Class code: X1Y1Halogen free mark: HFWanufacturing year: Letter code(The last digit oWanufacturing month: Code(Feb./Mar. \rightarrow 2Apr./May \rightarrow 4Jun./Jul. \rightarrow 6Company name code: Cm15 (Made in Thailand)(Example)




<u>No.</u> 1	Ite Appearance and d		No marked def		The	capacitor sh		method spected by	naked eve	
			No marked defect on appearance			The capacitor should be inspected by naked			nanoa oyo	s
			form and dime		for vis	sible evider	nce of defe	ct.		
				[Part number list].					slide calipe	
2	Marking	1	To be easily lea	gible.					naked eye	s.
3	Dielectric	Between lead	No failure.			capacitor sh				4 ha a
	strength	wires				vires for 60		z> is applie	d between t	the
		Body No failure.				the termina		apacitor sh	ould be	
		insulation				ected toget			M	
						, a metal fo		е	¥.	
						ly wrapped			Λ	
						ody of the c distance c		foil		bout to 6 mm
						t 3 to 6mm	Л	0000		lotal
						each termir	nal.	0000	<u></u>	alls
					Then	, the capac	itor should	be inserte	d into a	
						iner filled w	vith metal b	balls of abo	ut 1mm	
					diame		((***** *) *		a applied fo	
						between the			s applied fo	ונ
					balls.		e capacitoi	ieau wires	anumetai	
4	Insulation Resistar	nce (I.R.)	10000MΩ min			nsulation re	esistance s	hould be m	neasured w	ith
						00±50V wit				
						oltage sho			apacitor	
F	Consoiter		Within an article	d tolorons -	throu	gh a resisto	or of $1M\Omega$.			th
5	Capacitance		Within specifie	eu colerance.		capacitance			l at 20°C wi	แท
6	Dissipation Factor	(D.F.)	2.5% max.						sured at 20°	C with
-		····/	2.0 /0 110/			kHz and A				2
							, .			
7	Temperature chara	acteristic	Char. B: With	hin +10 %	The	capacitance	e measurer	nent should	d be made a	at
·	sing sidero ondie		Char. E : With		each	step specif	fied in Tabl	e.		
			(Temp. range :	-25 to +85°C)						
				Ct	4	0	<u>^</u>	4		1
			Step		1	2	3	4	5	-
				Temp.(°C)	20±2 -25±2 20±2 85±2				20±2	J
8	Active flammability	1	The cheese-clo	oth should not be	The	capacitors s	should be i	ndividually	wrapped in	at
	-		on fire.			one but mo				
									e subjected	
									n successiv bould be	ve
				discharges should be maintained for 2min a						
									R	
					S1	┓,╷┤╶╷╴	╕ <u>╺</u> ╤┼═	┋╷╶╷╷╴		/
					\sim			₃┿сх┿╽	ᅄᆃᄽ	Ut
							L3 L4	╘╹╷╹╷┼		
								후 냅		
								Ĺ	Osciloscope	
					C1,2	•	-	0.033µF±5		
					L1 to R	L4 : 1.5mF		A Rod core βμF±5% 10		
					R UAc			Rated volta		
					Cx		itor under			
					F	: Fuse,	Rated 10A			
					Ut	: Voltag	e applied t	o Ct		
						Ux				
							۸			
							5kV	~	-	
							\sim	\mathcal{N}		
							1			
									time	
I										

	-		Reference only	
No. 9	Item	1	Specification Lead wire should not cut off.	Test method
9	Robustness of terminations	Tensile	Capacitor should not be broken.	Fix the body of capacitor, a tensile weight gradually to each lead wire in the radial direction of
		Bending	4	capacitor up to 10N and keep it for 10±1 s. With the termination in its normal position, the
		Dending		capacitor is held by its body in such a manner that
				the axis of the termination is vertical; a mass
				applying a force of 5N is then suspended from the
				end of the termination.
				The body of the capacitor is then inclined, within a period of 2 to 3 s, through an angle of
				approximately 90° in the vertical plane and then
				returned to its initial position over the same period
				of time; this operation constitutes one bend.
				One bend immediately followed by a second bend
10) (han the c	A		in the opposite direction.
10	Vibration resistance	Appearance Capacitance	No marked defect. Within the specified tolerance.	The capacitor should be firmly soldered to the supporting lead wire and vibration which is 10 to
	resistance	D.F.	2.5% max.	55Hz in the vibration frequency range, 1.5mm in
		0.1.	2.070 max.	total amplitude, and about 1 min in the rate of
				vibration change from 10Hz to 55Hz and back to
				10Hz is applied for a total of 6 h; 2 h each in
11	Soldorobility of locate	I	Lead wire should be soldered	3 mutually perpendicular directions.
11	Solderability of leads		With uniformly coated on the	The lead wire of a capacitor should be dipped into a ethanol solution of 25wt% rosin and then into
			axial direction over 3/4 of the	molten solder for 2 ± 0.5 s. In both cases the depth of
			circumferential direction.	dipping is up to about 1.5 to 2.0mm from the root of
				lead wires.
				Temp. of solder :
				245±5°C Lead Free Solder (Sn-3Ag-0.5Cu)
12	Soldering effect	Appearance	No marked defect.	235±5°C H63 Eutectic Solder Solder temperature: 350±10°C or 260±5°C
12	(Non-preheat)	Capacitance	Within ±10%	Immersion time $: 3.5\pm0.5$ s
	()	change		(In case of 260±5°C : 10±1 s)
		I.R.	1 000MΩ min.	The depth of immersion is up to about
		Dielectric	Per item 3	1.5 to 2.0mm from the root of lead wires.
		strength		Thermal Capacitor
				insulating ()
				1
				solder
				Pre-treatment : Capacitor should be stored at 85±2°C for 1 h, then placed at
				* ¹ room condition for 24 ± 2 h
				before initial measurements.
				Post-treatment : Capacitor should be stored for 1 to
40	O del de la constante de la co			2 h at *1room condition.
13	Soldering effect	Appearance	No marked defect.	First the capacitor should be stored at $120+0/-5^{\circ}C$
	(On-preheat)	Capacitance change	Within ±10%	for 60+0/-5 s. Then, as in figure, the lead wires should be
		I.R.	1000MΩ min.	immersed solder of 260+0/-5°C up to 1.5 to 2.0mm from
		Dielectric	Per item 3	the root of terminal for 7.5+0/-1 s.
		strength		Thermal Capacitor
		_		Thermal Capacitor insulating
				to 2.0mm
				└────────────────────────────────────
				Pre-treatment : Capacitor should be stored at
				$85\pm2^{\circ}$ C for 1 h, then placed at
				* ¹ room condition for 24±2 h before initial measurements.
				Post-treatment : Capacitor should be stored for 1 to
				2 h at *1room condition.
* ¹ "roo	om condition" Tempera	ature: 15 to 35°C	Relative humidity: 45 to 75%, Atmos	
			-	
SK	X04C			

No.	Item		Specification	Test method						
18	Life	Appearance	No marked defect.	Ir	mpulse	e voltage	9			
		Capacitance	Within ±20%				capacitor sh	ould be s	ubjected to	na
		change	Within ±2070				or three times			
		I.R.	2000140 min			lied to li		5. Then u		// 3
			3000MΩ min.	- 0	iie app		ie iesi.			
		Dielectric	Per item 3			. (%)	F .		474-40	-
		strength			10 9	o <u>(%)</u>			= 1.7 µ s=1.6	
					5	₀_/	"	me to nait-vai	ue (T2) = 50 μ	s
						₀_/ ∥				
					0 -	╶╢┰╟╴		t		
						'T1'		-		
						T	r2			
				Т	he ca	oacitors	are placed in	n a circula	ting air ov	en
						riod of 1			0	
							ven is mainta	nined at a	temperatu	re
							, and relative			
							test, the cap			
							m.s.)<50/60⊦			
							ency, except t			
				u	ne volta	age is in	creased to A		r.m.s.) ior	0.1 S.
1				-						
1				P	ost-tre	eatment	: Capacitor			or 1 to
L							2 h at *1ro			
19	Temperature and	Appearance	No marked defect.				should be sub			
1	immersion cycle	Capacitance	Char. B : Within ±10%	С	ycles,	then co	nsecutively to	o 2 immer	sion cycle	s.
1		change	Char. E : Within ±20%	1						
				<	Tempe	erature o	cycle>			
		D.F.	5.0% max.		I		-	ra(0C)	Time	7
						Step	Temperatu		Time	_
			0.0000400	_		1	-40+0/		30 min	
		I.R.	3000MΩ min.	_		2	Room te		3 min	
		Dielectric	Per item 3			3	+125+3	8/-0	30 min	
		strength				4	Room te	mp.	3 min	
					L			· · ·	vala tima i	E avala
								U	ycle time :	5 cycle
				<	Imme	rsion cy	cle>			
					•	_			Immer	sion
					Step	Temp	perature(°C)	Time	wat	
									Clea	
					1	+6	65+5/-0	15 min		
									wat	
					2		0±3	15 min	Sa	
									wat	er
								C	ycle time :	2 cvcle
								U,	yole and .	2 09010
					Dro tro	otmont	Conositor	abould b	a atorad a	
				Г	re-liea	atment				
									n placed a	at
							* ¹ room co	ondition fo	r 24±2 h.	
1				-			A			
1				F	ost-tre	eatment				or 4 to
							24 h at *1	room con	dition.	
* ¹ "ro	om condition" Tempera	ature: 15 to 35°C,	Relative humidity: 45 to 75%, Atmosp	phe	ric pre	ssure: 8	6 to 106kPa			
	·				•					
1										
1										
1										
1										
1										
1										
1										
1										
1										
1										
1										
1										
1										
1										
1										
1										
1										
L										



Unit : mm

			Unit . Inim
Item	Code	Dimensions	Remarks
Pitch of component	Р	25.4±2.0	
Pitch of sprocket hole	P0	12.7±0.3	
Lead spacing	F	10.0±1.0	
Length from hole center to lead	P1	7.7±1.5	
Body diameter	D	Please refer to [P	Part number list].
Deviation along tape, left or right	ΔS	0±2.0	They include deviation by lead bend .
Carrier tape width	W	18.0±0.5	
Position of sprocket hole	W1	9.0±0.5	Deviation of tape width direction
Lead distance between reference and bottom planes	H0	18.0± ^{2.0}	
Protrusion length	Q	+0.5~-1.0	
Diameter of sprocket hole	φD0	4.0±0.1	
Lead diameter	φd	0.60±0.05	
Total tape thickness	t1	0.6±0.3	
Total thickness, tape and lead wire	t2	1.5 max.	They include hold down tape thickness.
Deviation across tape, front	∆h1		
Deviation across tape, rear	∆h2	2.0 max.	
Portion to cut in case of defect	L	0 11.0± _{1.0}	
Hold down tape width	WO	11.5 min.	
Hold down tape position	W2	1.5±1.5	
Coating extension on lead	е	Up to the end of c	rrimp
Body thickness	Т	Please refer to [P	Part number list].

17 / 17

EU RoHS and Halogen Free

This products of the following crresponds to EU RoHS and Halogen Free

(1) RoHS

EU RoHs 2011/65/EC compliance

maximum concentration values tolerated by weight in homogeneous materials •1000 ppm maximum Lead

- •1000 ppm maximum Mercury
- •100 ppm maximum Cadmium
- 1000 ppm maximum Hexavalent chromium
- •1000 ppm maximum Polybrominated biphenyls (PBB)
- •1000 ppm maximum Polybrominated diphenyl ethers (PBDE)

(2) Halogen-Free

The International Electrochemical Commission's (IEC) Definition of Halogen-Free (IEC 61249-2-21) compliance

- •900 ppm maximum chlorine
- •900 ppm maximum bromine
- •1500 ppm maximum total chlorine and bromine

单击下面可查看定价,库存,交付和生命周期等信息

>>Murata(村田)

>>点击查看相关商品