Downloaded From Oneyac.com

CONTENTS

Part Numbering —	
Selection Guide	
1 for General Purpose GRM1	15/18/21/31 Series ————————————————————————————————————
2 for General Purpose GRM3	32 Series —————
3 Ultra-small GRM03 Series	
4 Tight Tolerance GRM03/15	Series —
5 Thin Type —	
1 to 5 Specifications and T	est Methods ————
GRM Series Data	
6 Microchips GMA Series —	
6 Specifications and Test Me	ethods ————
7 Capacitor Arrays GNM Ser	ies ————
7 Specifications and Test Me	ethods —
8 for Ultrasonic Sensors GRM	I Series ————————————————————————————————————
8 Specifications and Test Me	ethods —
9 Low ESL LLL/LLA/LLM Series	s ————
9 Specifications and Test Me	ethods —
10 High-Q GJM Series ———	
11 Tight Tolerance High-Q GJN	M Series ————————————————————————————————————
10 . 11 Specifications and Te	est Methods ————
12 High Frequency GQM Serie	es ————
12 Specifications and Test Me	ethods —
13 High Frequency Type ERB S	eries ————————————————————————————————————
13 Specifications and Test Me	ethods —
ERB Series Data	
Package —	
∆ Caution —	
Notice	
Reference Data	

14	Medium Voltage Low Dissipation Factor	99
15	Medium Voltage High Capacitance for General Use	103
16	Only for LCD Backlight Inverter Circuit	108
17	Only for Information Devices/Tip & Ring	111
18	Only for Camera Flash Circuit	115
19	AC250V (r.m.s.) Type (Which Meet Japanese Law)	119
20	Safety Standard Recognized Type GC (UL, IEC60384-14 Class X1/Y2)	123
21	Safety Standard Recognized Type GD (IEC60384-14 Class Y3)	124
22	Safety Standard Recognized Type GF (IEC60384-14 Class Y2, X1/Y2)	125
23	Safety Standard Recognized Type GB (IEC60384-14 Class X2)	126
GA3	3 Series Specifications and Test Methods	127
GRI	M/GR4/GR7/GA2/GA3 Series Data (Typical Example)	131
Pac	ekage ————————————————————————————————————	134
(1)C	aution	137
Not	ice	145
ISO	9001 Certifications	148

__

1 /

Part Numbering

Chip Monolithic Ceramic Capacitors

GR M 18 8 B1 1H 102 K A01 K (Part Number) 0 0 0 0 0 0 0

Product ID

2 Series

Scrics				
Product ID	Code	Series		
	М	Tin Plated Layer		
GR	4	Only for Information Devices / Tip & Ring		
	7	Only for Camera Flash Circuit		
ER	В	High Frequency Type		
GQ	М	High Frequency for Flow/Reflow Soldering		
GM	Α	Monolithic Microchip		
GN	М	Capacitor Array		
	L	Low ESL Wide Width Type		
LL	Α	Eight-termination Low ESL Type		
	М	Ten-termination Low ESL Type		
GJ	М	High Frequency Low Loss Type Tin Plated Type		
0.4	2	for AC250V (r.m.s.)		
GA	3	Safety Standard Recognized Type		

3Dimension (LXW)

Code	Dimension (LXW)	EIA	
02	0.4×0.2mm	01005	
03	0.6×0.3mm	0201	
05	0.5×0.5mm	0202	
08	0.8×0.8mm	0303	
11	1.25×1.0mm	0504	
15	1.0×0.5mm	0402	
18	1.6×0.8mm	0603	
1D	1.4×1.4mm		
1X	Depends on individual standards.		
21	2.0×1.25mm	0805	
22	2.8×2.8mm 1111		
31	3.2×1.6mm	1206	
32	3.2×2.5mm	1210	
3X	Depends on individual	standards.	
42	4.5×2.0mm	1808	
43	4.5×3.2mm	1812	
52	5.7×2.8mm 2211		
55	5.7×5.0mm 2220		

4 Dimension (T)

Code	Dimension (T)
2	0.2mm
2	2-elements (Array Type)
3	0.3mm
4	4-elements (Array Type)
5	0.5mm
6	0.6mm
7	0.7mm
8	0.8mm
9	0.85mm
Α	1.0mm
В	1.25mm
С	1.6mm
D	2.0mm
E	2.5mm
F	3.2mm
М	1.15mm
N	1.35mm
R	1.8mm
s	2.8mm
Q	1.5mm
Х	Depends on individual standards.

With the array type GNM series, "Dimension(T)" indicates the number of elements.

Continued on the following page. $\begin{tabular}{|c|c|c|c|} \hline \end{tabular}$

⑤Temperature Characteristics

Temperature Characteristic Codes							
Code	Public STD	Code	Referance Temperature	Temperature Range	Capacitance Change or Temperature Coefficient	Operating Temperature Range	
1X	SL *1	JIS	20°C	20 to 85°C	+350 to -1000ppm/°C	-55 to 125°C	
2C	CH *1	JIS	20°C	20 to 125°C	0±60ppm/°C	-55 to 125°C	
2P	PH *1	JIS	20°C	20 to 85°C	-150±60ppm/°C	-25 to 85°C	
2R	RH *1	JIS	20°C	20 to 85°C	-220±60ppm/°C	-25 to 85°C	
2S	SH *1	JIS	20°C	20 to 85°C	-330±60ppm/°C	-25 to 85°C	
2T	TH *1	JIS	20°C	20 to 85°C	-470±60ppm/°C	-25 to 85°C	
3C	CJ *1	JIS	20°C	20 to 125°C	0±120ppm/°C	-55 to 125°C	
3P	PJ *1	JIS	20°C	20 to 85°C	-150±120ppm/°C	-25 to 85°C	
3R	RJ *1	JIS	20°C	20 to 85°C	-220±120ppm/°C	-25 to 85°C	
38	SJ *1	JIS	20°C	20 to 85°C	-330±120ppm/°C	-25 to 85°C	
3T	TJ *1	JIS	20°C	20 to 85°C	-470±120ppm/°C	-25 to 85°C	
3U	UJ *1	JIS	20°C	20 to 85°C	-750±120ppm/°C	-25 to 85°C	
4C	CK *1	JIS	20°C	20 to 125°C	0±250ppm/°C	-55 to 125°C	
5C	C0G *1	EIA	25°C	25 to 125°C	0±30ppm/°C	-55 to 125°C	
5G	X8G *1	EIA	25°C	25 to 150°C	0±30ppm/°C	-55 to 150°C	
6C	C0H *1	EIA	25°C	25 to 125°C	0±60ppm/°C	-55 to 125°C	
6P	P2H *1	EIA	25°C	25 to 85°C	-150±60ppm/°C	-55 to 125°C	
6R	R2H *1	EIA	25°C	25 to 85°C	-220±60ppm/°C	-55 to 125°C	
6S	S2H *1	EIA	25°C	25 to 85°C	-330±60ppm/°C	-55 to 125°C	
6T	T2H *1	EIA	25°C	25 to 85°C	-470±60ppm/°C	-55 to 125°C	
7U	U2J *1	EIA	25°C	25 to 85°C	-750±120ppm/°C	-55 to 125°C	
B1	B *2	JIS	20°C	-25 to 85°C	±10%	-25 to 85°C	
В3	В	JIS	20°C	-25 to 85°C	±10%	-25 to 85°C	
C7	X7S	EIA	25°C	-55 to 125°C	±22%	-55 to 125°C	
C8	X6S	EIA	25°C	-55 to 105°C	±22%	-55 to 105°C	
F1	F *2	JIS	20°C	-25 to 85°C	+30, -80%	-25 to 85°C	
F5	Y5V	EIA	25°C	-30 to 85°C	+22, -82%	-30 to 85°C	
L8	X8L	EIA	25°C	-55 to 150°C	+15, -40%	-55 to 150°C	
R1	R *2	JIS	20°C	-55 to 125°C	±15%	-55 to 125°C	
R3	R	JIS	20°C	-55 to 125°C	±15%	-55 to 125°C	
R6	X5R	EIA	25°C	-55 to 85°C	±15%	-55 to 85°C	
R7	X7R	EIA	25°C	-55 to 125°C	±15%	-55 to 125°C	
R9	X8R	EIA	25°C	-55 to 150°C	±15%	-55 to 150°C	
٥٥	71.54	*2	2000	-25 to 20°C	-4700+1000/-2500ppm/°C	25 +- 0500	
9E	ZLM	*3	20°C	20 to 85°C	-4700+500/-1000ppm/°C	-25 to 85°C	
14/0			25.0	FE 1- 10500	±10% *4	FE 1: 40500	
W0	-	-	25°C	-55 to 125°C	+22, -33% *5	-55 to 125°C	

^{*1} Please refer to table for Capacitance Change under reference temperature.

Continued on the following page. $\begin{tabular}{|c|c|c|c|} \hline \end{tabular}$

^{*2} Capacitance change is specified with 50% rated voltage applied.

^{*3,*4} Murata Temperature Characteristic Code.

^{*4} Apply DC350V bias.

^{*5} No DC bias.

● Capacitance Change from each temperature

JIS Code

	Capacitance Change from 20°C (%)						
Murata Code	–55°C		−25°C		−10°C		
	Max.	Min.	Max.	Min.	Max.	Min.	
1X	-	-	_	-	-	_	
2C	0.82	-0.45	0.49	-0.27	0.33	-0.18	
2P	-	-	1.32	0.41	0.88	0.27	
2R	-	-	1.70	0.72	1.13	0.48	
28	_	-	2.30	1.22	1.54	0.81	
2T	_	-	3.07	1.85	2.05	1.23	
3C	1.37	-0.90	0.82	-0.54	0.55	-0.36	
3P	-	-	1.65	0.14	1.10	0.09	
3R	-	-	2.03	0.45	1.35	0.30	
38	-	-	2.63	0.95	1.76	0.63	
3T	-	-	3.40	1.58	2.27	1.05	
3U	-	-	4.94	2.84	3.29	1.89	
4C	2.56	-1.88	1.54	-1.13	1.02	-0.75	

EIA Code

	Capacitance Change from 25°C (%)						
Murata Code	−55°C		-30°C		−10°C		
	Max.	Min.	Max.	Min.	Max.	Min.	
5C/5G	0.58	-0.24	0.40	-0.17	0.25	-0.11	
6C	0.87	-0.48	0.59	-0.33	0.38	-0.21	
6P	2.33	0.72	1.61	0.50	1.02	0.32	
6R	3.02	1.28	2.08	0.88	1.32	0.56	
6S	4.09	2.16	2.81	1.49	1.79	0.95	
6T	5.46	3.28	3.75	2.26	2.39	1.44	
7U	8.78	5.04	6.04	3.47	3.84	2.21	

6 Rated Voltage

Code	Rated Voltage			
0G	DC4V			
0J	DC6.3V			
1A	DC10V			
1C	DC16V			
1E	DC25V			
1H	DC50V			
2A	DC100V			
2D	DC200V			
2E	DC250V			
YD	DC300V			
2H	DC500V			
2J	DC630V			
3A	DC1kV			
3D	DC2kV			
3F	DC3.15kV			
ВВ	DC350V (for Camera Flash Circuit)			
E2	AC250V			
GB	X2; AC250V (Safety Standard Recognized Type GB)			
GC	X1/Y2; AC250V (Safety Standard Recognized Type GC)			
GD	Y3; AC250V (Safety Standard Recognized Type GD)			
GF	Y2, X1/Y2; AC250V (Safety Standard Recognized Type GF)			

Capacitance

Expressed by three-digit alphanumerics. The unit is pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two numbers.If there is a decimal point, it is expressed by the capital letter "R". In this case, all figures are significant digits.

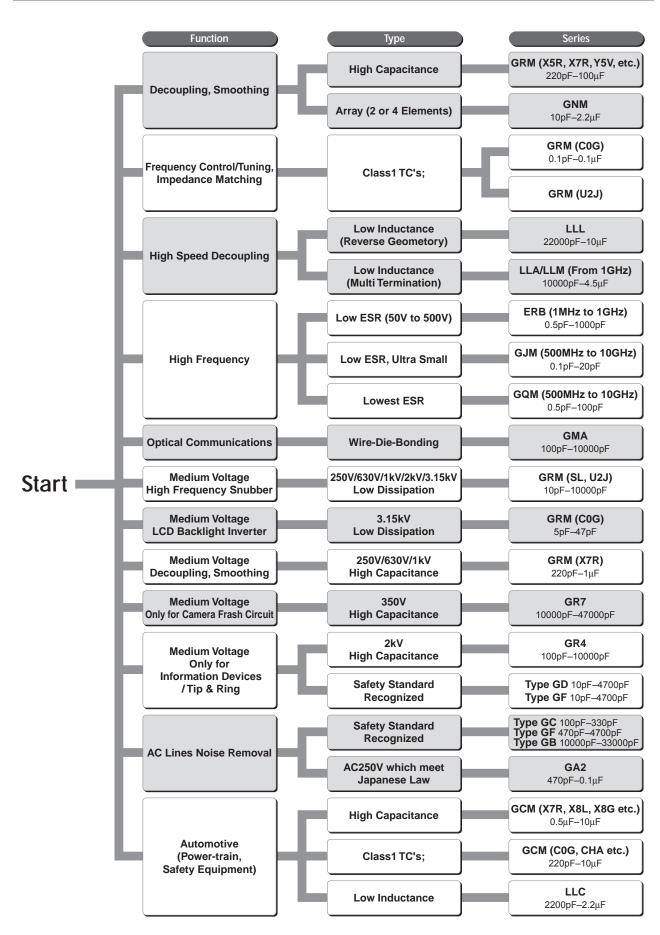
Ex.)	Code	Capacitance
	R50	0.5pF
	1R0	1.0pF
	100	10pF
	103	10000pF

8 Capacitance Tolerance

Code	Capacitance Tolerance	TC	Series	Capaci	tance Step
W	±0.05pF	СΔ	GRM/GJM	≦9.9pF	0.1pF
В	±0.1pF	СΔ	GRM/GJM	≦9.9pF	0.1pF
		СΔ	GRM/GJM	≦9.9pF	0.1pF
С	±0.25pF	except CΔ	GRM	≦5pF	* 1pF
		СΔ	ERB/GQM	≦5pF	* 1pF
		СΔ	GRM/GJM	5.1 to 9.9pF	0.1pF
D	±0.5pF	except CΔ	GRM	5.1 to 9.9pF	* 1pF
		СΔ	ERB/GQM	5.1 to 9.9pF	* 1pF
	±2%	СΔ	GJM	≥10pF	E12 Series
G		СΔ	GQM	≥10pF	E24 Series
	150/	CΔ-SL	GRM/GA3	≥10pF	E12 Series
J	±5%	СΔ	ERB/GQM/GJM	≥10pF	E24 Series
1/	1100/	D D V7D VFD 7LM	GRM/GR7/GA3	E6	Series
K	±10%	B, R, X7R, X5R, ZLM	GR4	E12	Series
	±20%	Z5U	GRM	E3	Series
М		B, R, X7R, X7S	GRM/GMA/LLL/LLA/LLM	E6	Series
		X7R	GA2	E3	Series
Z	+80%, -20%	F, Y5V	GRM	E3 Series	
R	Depends on individual standards.				

^{*} E24 series is also available.

Individual Specification Code


Expressed by three figures.

Packaging

Code	Packaging			
L	ø180mm Embossed Taping			
D	ø180mm Paper Taping			
K	ø330mm Embossed Taping			
J	ø330mm Paper Taping			
В	Bulk			
С	Bulk Case			
Т	Bulk Tray			

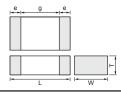
Please check MURATA home page (http://www.murata.com/index.html) in case you can not find the part number on the catalog.

Selection Guide of Chip Monolithic Ceramic Capacitors

Chip Monolithic Ceramic Capacitors

muRata

for General Purpose GRM15/18/21/31 Series


■ Features

- Terminations are made of metal highly resistant to migration.
- A wide selection of sizes is available, from the miniature LxW: 1.0x0.5mm to LxW: 3.2x1.6mm.
 GRM18, 21 and GRM31 types are suited to flow and reflow soldering.
 - GRM15 type is applied to only reflow soldering.
- 3. Smaller size and higher capacitance value
- 4. High reliability and no polarity
- 5. Excellent pulse responsibility and noise reduction due to the low impedance at high frequency.
- 6. Ta replacement

Applications

General electronic equipment

Part Number		Dir	nensions (m	nm)	
Part Number	L	W	T	е	g min.
GRM155	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.35	0.3
GRM185	1.6 ±0.1	0.8 +0.1	0.5 +0/-0.1	0.2 to 0.5	0.5
GRM188*	1.0 ±0.1	0.6 ±0.1	0.8 ±0.1	0.2 10 0.5	0.5
GRM216			0.6 ±0.1		
GRM219	2.0 ±0.1	1.25 +0.1	0.85 ±0.1	0.2 to 0.7	0.7
GRM21A	2.0 ±0.1	1.23 ±0.1	1.0 +0/-0.2	0.2 10 0.7	0.7
GRM21B			1.25 ±0.1		
GRM316			0.6 ±0.1		
GRM319	3.2 ±0.15	1.6 ±0.15	0.85 ±0.1	0.2 +0.00	1.5
GRM31M			1.15 ±0.1	0.3 to 0.8	1.5
GRM31C	3.2 ±0.2	1.6 ±0.2	1.6 ±0.2		

^{*} Bulk Case: 1.6 ±0.07(L) × 0.8 ±0.07(W) × 0.8 ±0.07(T)

Temperature Compensating Type GRM15 Series (1.00x0.50mm) 50/25V

			GR	M15			
			1.0x0.	5 [0402]			
C0G (5C)	P2H (6P)	R2H (6R)	S2H (6S)	(1	SL I X)	T2H (6T)	U2J (7U)
50 (1H)	50 (1H)	50 (1H)	50 (1H)	50 (1H)	25 (1E)	50 (1H)	50 (1H)
pacitance part r	numbering code)	and T (mm) Dim	nension (T Dimer	nsion part number	ering code)		
0.5(5)	0.5 (5)	0.5 (5)	0.5(5)			0.5 (5)	0.5 (5)
0.5(5)	0.5 (5)	0.5 (5)	0.5(5)			0.5 (5)	0.5 (5)
0.5(5)	0.5 (5)	0.5 (5)	0.5(5)			0.5 (5)	0.5 (5)
0.5(5)	0.5 (5)	0.5 (5)	0.5(5)			0.5 (5)	0.5 (5)
0.5(5)	0.5 (5)	0.5 (5)	0.5(5)			0.5 (5)	0.5 (5)
0.5(5)	0.5 (5)	0.5 (5)	0.5(5)			0.5 (5)	0.5 (5)
0.5(5)	0.5 (5)	0.5 (5)	0.5(5)			0.5 (5)	0.5 (5)
0.5(5)	0.5 (5)	0.5 (5)	0.5(5)			0.5 (5)	0.5 (5)
0.5(5)	0.5 (5)	0.5 (5)	0.5(5)	0.5 (5)	0.5 (5)	0.5 (5)	0.5 (5)
0.5(5)	0.5 (5)	0.5 (5)	0.5(5)	0.5 (5)	0.5 (5)	0.5 (5)	0.5 (5)
0.5(5)	0.5 (5)	0.5 (5)	0.5(5)	0.5 (5)	0.5 (5)	0.5 (5)	0.5 (5)
0.5(5)	0.5 (5)	0.5 (5)	0.5(5)	0.5 (5)	0.5 (5)	0.5 (5)	0.5 (5)
0.5(5)	0.5 (5)	0.5 (5)	0.5(5)	0.5 (5)	0.5 (5)	0.5 (5)	0.5 (5)
0.5 (5)		0.5 (5)	0.5(5)	0.5 (5)	0.5 (5)	0.5 (5)	0.5 (5)
0.5 (5)			0.5 (5)	0.5 (5)	0.5 (5)	0.5 (5)	0.5 (5)
0.5 (5)				0.5 (5)	0.5(5)	0.5 (5)	0.5 (5)
0.5 (5)				0.5 (5)	0.5(5)	0.5 (5)	0.5 (5)
0.5 (5)				0.5 (5)	0.5(5)	0.5 (5)	0.5 (5)
0.5 (5)				0.5 (5)	0.5 (5)	0.5 (5)	0.5 (5)
0.5(5)				0.5(5)	0.5 (5)	0.5 (5)	0.5 (5)
0.5 (5)				0.5 (5)	0.5(5)		0.5 (5)
0.5(5)				0.5 (5)	0.5(5)		0.5 (5)
0.5(5)				0.5 (5)	0.5(5)		0.5 (5)
0.5(5)					0.5(5)		
0.5(5)					0.5(5)		
	(5C) 50 (1H) pacitance part r 0.5(5)	(5C) (6P) 50 (1H) (1H) pacitance part numbering code) 0.5(5) 0.5(5)	(5C) (6P) (6R) 50 (1H) 50 (1H) 50 (1H) pacitance part numbering code) and T (mm) Dim 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) </td <td>1.0x0. COG (6P) (6R) (8S) 50 (1H) (1H) (1H) (1H) pacitance part numbering code) and T (mm) Dimension (T Dimer 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5)</td> <td>(5C) (6P) (6R) (6S) (1H) 50 (1H) (1H) (1H) (1H) (1H) pacitance part numbering code) and T (mm) Dimension (T Dimension part number 0.5(5) 0.5</td> <td> COG (5C)</td> <td> COG Co Cor Cor </td>	1.0x0. COG (6P) (6R) (8S) 50 (1H) (1H) (1H) (1H) pacitance part numbering code) and T (mm) Dimension (T Dimer 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5) 0.5(5)	(5C) (6P) (6R) (6S) (1H) 50 (1H) (1H) (1H) (1H) (1H) pacitance part numbering code) and T (mm) Dimension (T Dimension part number 0.5(5) 0.5	COG (5C)	COG Co Cor Cor

Part Number				GRI	VI15			
L x W [EIA]				1.0x0.5	[0402]			
тс	C0G (5C)	P2H (6P)	R2H (6R)	S2H (6S)		SL 1X)	T2H (6T)	U2J (7U)
Rated Volt.	50 (1H)	50 (1H)	50 (1H)	50 (1H)	50 (1H)	25 (1E)	50 (1H)	50 (1H)
Capacitance (Cap	pacitance part n	umbering code)	and T (mm) Dim	ension (T Dimen	sion part numbe	ering code)		
330pF(331)	0.5(5)					0.5(5)		
390pF(391)	0.5(5)					0.5(5)		
470pF(471)	0.5(5)							
560pF(561)	0.5(5)							
680pF(681)	0.5(5)							
820pF(821)	0.5(5)							
1000pF(102)	0.5(5)							

The part numbering code is shown in $\,$ ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Temperature Compensating Type GRM18 Series (1.60x0.80mm) 100/50V

Part Number							GR	M18						
L x W [EIA]							1.6x0.8	3 [0603]						
тс		DG C)		2H P)		2H R)		2H (S)		X)		2H ST)		2J U)
Rated Volt.	100 (2A)	50 (1H)												
Capacitance (Ca	pacitanc	e part nui	mbering c	ode) and	T (mm) D	imension	(T Dimen	sion part	numberin	g code)				
0.50pF(R50)	0.8(8)													
3.0pF(3R0)	0.8(8)		0.8(8)		0.8(8)		0.8(8)				0.8(8)			
4.0pF(4R0)	0.8(8)		0.8(8)		0.8(8)		0.8(8)				0.8(8)			
5.0pF(5R0)	0.8(8)		0.8(8)		0.8(8)		0.8(8)				0.8(8)			
6.0pF(6R0)	0.8(8)		0.8(8)		0.8(8)		0.8(8)				0.8(8)			
7.0pF(7R0)	0.8(8)		0.8(8)		0.8(8)		0.8(8)				0.8(8)			
8.0pF(8R0)	0.8(8)		0.8(8)		0.8(8)		0.8(8)				0.8(8)			
9.0pF(9R0)	0.8(8)		0.8(8)		0.8(8)		0.8(8)				0.8(8)			
10pF(100)	0.8(8)		0.8(8)		0.8(8)		0.8(8)				0.8(8)		0.8(8)	
12pF(120)	0.8(8)		0.8(8)		0.8(8)		0.8(8)		0.8(8)		0.8(8)		0.8(8)	
15pF(150)	0.8(8)		0.8(8)		0.8(8)		0.8(8)		0.8(8)		0.8(8)		0.8(8)	
18pF(180)	0.8(8)		0.8(8)		0.8(8)		0.8(8)		0.8(8)		0.8(8)		0.8(8)	
22pF(220)	0.8(8)		0.8(8)		0.8(8)		0.8(8)		0.8(8)		0.8(8)		0.8(8)	
27pF(270)	0.8(8)		0.8(8)		0.8(8)		0.8(8)		0.8(8)		0.8(8)		0.8(8)	
33pF(330)	0.8(8)		0.8(8)	0.8(8)	0.8(8)		0.8(8)		0.8(8)		0.8(8)		0.8(8)	
39pF(390)	0.8(8)		0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)		0.8(8)		0.8(8)		0.8(8)	
47pF(470)	0.8(8)		0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)				0.8(8)	
56pF(560)	0.8(8)		0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)				0.8(8)	
68pF(680)	0.8(8)		0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)				0.8(8)	
82pF(820)	0.8(8)		0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)				0.8(8)	
100pF(101)	0.8(8)		0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)				0.8(8)	
120pF(121)	0.8(8)		0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)			0.8(8)	0.8(8)	
150pF(151)	0.8(8)			0.8(8)	0.8(8)	0.8(8)		0.8(8)	0.8(8)			0.8(8)	0.8(8)	
180pF(181)	0.8(8)					0.8(8)		0.8(8)	0.8(8)			0.8(8)	0.8(8)	
220pF(221)	0.8(8)							0.8(8)	0.8(8)	0.8(8)		0.8(8)	0.8(8)	0.8(8)
270pF(271)	0.8(8)								0.8(8)	0.8(8)		0.8(8)	0.8(8)	0.8(8)
330pF(331)	0.8(8)								0.8(8)	0.8(8)		0.8(8)	0.8(8)	0.8(8)
390pF(391)	0.8(8)								0.8(8)	0.8(8)		0.8(8)	0.8(8)	0.8(8)
470pF(471)	0.8(8)									0.8(8)		0.8(8)		0.8(8)
560pF(561)	0.8(8)									0.8(8)				0.8(8)
680pF(681)	0.8(8)									0.8(8)				0.8(8)
820pF(821)	0.8(8)									.,				

Part Number				1			GR	W18						
L x W [EIA]							1.6x0.8	[0603]						
тс)G C)		2H P)		2H R)	S2 (6	2H S)		X)		2H T)		2J 'U)
Rated Volt.	100 (2A)	50 (1H)												
Capacitance (Ca	pacitance	e part nur	nbering c	ode) and	T (mm) D	imension	(T Dimen	sion part	numberin	g code)				
1000pF(102)	0.8(8)									0.8(8)				0.8(8)
1200pF(122)		0.8(8)								0.8(8)				0.8(8)
1500pF(152)		0.8(8)								0.8(8)				0.8(8)
1800pF(182)		0.8(8)								0.8(8)				0.8(8)
2200pF(222)		0.8(8)								0.8(8)				0.8(8)
2700pF(272)		0.8(8)								0.8(8)				0.8(8)
3300pF(332)										0.8(8)				0.8(8)
3900pF(392)										0.8(8)				0.8(8)
4700pF(472)										0.8(8)				0.8(8)
5600pF(562)										0.8(8)				0.8(8)
6800pF(682)										0.8(8)				0.8(8)
8200pF(822)										0.8(8)				0.8(8)
10000pF(103)										0.8(8)				0.8(8)

The part numbering code is shown in ().

Temperature Compensating Type GRM21 Series (2.00x1.25mm) 100/50V

Part Number							GR	M21						
L x W [EIA]							2.0x1.2	5 [0805]						
тс	C(5)G C)		2H P)		2H R)		2H S)	S (1	X)		2H 5 T)		2J 'U)
Rated Volt.	100 (2A)	50 (1H)												
Capacitance (Ca	pacitance	e part nur	mbering c	ode) and	T (mm) D	imension	(T Dimen	sion part	numberin	g code)				
33pF(330)				0.6(6)										
39pF(390)				0.6(6)		0.6(6)								
47pF(470)				0.6(6)		0.6(6)		0.6(6)			1.25(B)			
56pF(560)				0.6(6)		0.6(6)		0.6(6)			1.25(B)			
68pF(680)				0.6(6)		0.6(6)		0.6(6)			1.25(B)			
82pF(820)				0.6(6)		0.6(6)		0.6(6)			1.25(B)			
100pF(101)				0.6(6)		0.6(6)		0.6(6)			1.25(B)			
120pF(121)				0.6(6)		0.6(6)		0.6(6)			1.25(B)	0.6(6)		
150pF(151)			0.85(9)	0.6(6)		0.6(6)	0.85(9)	0.6(6)			1.25(B)			
180pF(181)			0.85(9)	0.85(9)	0.85(9)	0.6(6)	0.85(9)	0.6(6)			1.25(B)			
220pF(221)			0.85(9)	0.85(9)	0.85(9)	0.85(9)	0.85(9)	0.6(6)		0.6(6)	1.25(B)			0.6(6)
270pF(271)			0.85(9)	0.85(9)	0.85(9)	0.85(9)	0.85(9)			0.6(6)				0.6(6)
330pF(331)			0.85(9)	0.85(9)	0.85(9)	0.85(9)	0.85(9)			0.6(6)				0.6(6)
390pF(391)			1.25(B)	1.25(B)	0.85(9)	0.85(9)	0.85(9)			0.6(6)				0.6(6)
470pF(471)			1.25(B)	1.25(B)	0.85(9)	0.85(9)	0.85(9)		0.85(9)	0.6(6)			0.85(9)	0.6(6)
560pF(561)				1.25(B)	1.25(B)	0.85(9)	1.25(B)	0.85(9)	0.85(9)	0.6(6)		1.25(B)	0.85(9)	0.6(6)
680pF(681)	0.6(6)					1.25(B)		1.25(B)	0.85(9)	0.6(6)		1.25(B)	0.85(9)	0.6(6)
820pF(821)	0.6(6)							1.25(B)	1.25(B)	0.6(6)		1.25(B)	1.25(B)	0.6(6)
1000pF(102)	0.85(9)								1.25(B)	0.6(6)		1.25(B)	1.25(B)	0.6(6)
1200pF(122)	0.85(9)	0.6(6)							1.25(B)	0.6(6)		1.25(B)	1.25(B)	0.6(6)
1500pF(152)	0.85(9)	0.6(6)							1.25(B)	0.85(9)		1.25(B)	1.25(B)	0.85(9)
1800pF(182)		0.6(6)							1.25(B)	0.85(9)		1.25(B)	1.25(B)	0.85(9)
2200pF(222)		0.6(6)								0.85(9)				0.85(9)
2700pF(272)		0.6(6)								1.25(B)				1.25(B)
3300pF(332)		0.6(6)								1.25(B)				1.25(B)
3900pF(392)		0.6(6)												

Dimensions are shown in mm and Rated Voltage in Vdc.

Part Number							GR	M21						
L x W [EIA]							2.0x1.2	5 [0805]						
тс		0G (C)		2H P)		2H 6R)		2H S)		SL I X)		2H T)		2J 'U)
Rated Volt.	100 (2A)	50 (1H)												
Capacitance (Ca	pacitanc	e part nur	nbering c	ode) and	T (mm) D	imension	(T Dimen	sion part	numberir	ng code)				
4700pF(472)		0.6(6)												
5600pF(562)		0.85(9)												
6800pF(682)		0.85(9)												
8200pF(822)		0.85(9)												
10000pF(103)		0.85(9)								0.6(6)				0.6(6)
12000pF(123)		0.85(9)								0.6(6)				0.6(6)
15000pF(153)		0.85(9)								0.6(6)				0.6(6)
18000pF(183)		1.25(B)								0.6(6)				0.6(6)
22000pF(223)		1.25(B)								0.85(9)				0.85(9)
27000pF(273)										0.85(9)				0.85(9)
33000pF(333)										1.0(A)				1.0(A)
39000pF(393)										1.25(B)				1.25(B)
47000pF(473)										1.25(B)				1.25(B)

The part numbering code is shown in ().

Temperature Compensating Type GRM31 Series (3.20x1.60mm) 100/50/25V

Part Number								GRM31							
L x W [EIA]							3.2	x1.6 [12	06]						
тс		C0G (5C)		P2 (6	2H P)		2H R)	S2 (6	2H S)	S (1	X)		2H T)	U2 (7 0	
Rated Volt.	100 (2A)	50 (1H)	25 (1E)	100 (2A)	50 (1H)										
Capacitance (Ca	apacitanc	e part nu	umbering	code) ar	nd T (mm) Dimens	ion (T Di	mension	part nun	nbering c	ode)				
47pF(470)												0.85(9)			
56pF(560)												0.85(9)			
68pF(680)												0.85(9)			
82pF(820)												0.85(9)			
100pF(101)												1.15(M)			
120pF(121)												1.15(M)			
150pF(151)												1.15(M)			
180pF(181)					0.6(6)							1.15(M)			
220pF(221)					0.6(6)		0.6(6)					1.15(M)			
270pF(271)					0.6(6)		0.6(6)		0.6(6)			1.15(M)			
330pF(331)					0.6(6)		0.6(6)		0.6(6)			1.15(M)			
390pF(391)				0.85(9)			0.6(6)		0.6(6)			1.15(M)			
470pF(471)				0.85(9)					0.6(6)			1.15(M)			
560pF(561)				0.85(9)		0.85(9)		0.85(9)	0.85(9)						
680pF(681)				0.85(9)		0.85(9)	0.85(9)	0.85(9)	0.85(9)						
820pF(821)				0.85(9)		0.85(9)	0.85(9)	0.85(9)	0.85(9)	0.85(9)			1.15(M)	0.85(9)	
1000pF(102)				1.15(M)		1.15(M)	1.15(M)	0.85(9)	0.85(9)	0.85(9)			1.15(M)	0.85(9)	
1200pF(122)				1.15(M)		1.15(M)	1.15(M)	1.15(M)	1.15(M)	0.85(9)			1.15(M)	0.85(9)	
1500pF(152)					1.15(M)		1.15(M)	1.15(M)	1.15(M)	0.85(9)			1.15(M)	0.85(9)	
1800pF(182)	0.85(9)								1.15(M)	0.85(9)			1.15(M)	0.85(9)	
2200pF(222)	0.85(9)									1.15(M)			1.15(M)	1.15(M)	
2700pF(272)	0.85(9)									1.15(M)			1.15(M)	1.15(M)	
3300pF(332)	0.85(9)									1.15(M)			1.15(M)	1.15(M)	
3900pF(392)	0.85(9)									1.15(M)			1.15(M)	1.15(M)	
4700pF(472)	0.85(9)									1.15(M)				1.15(M)	
5600pF(562)	0.85(9)														

Dimensions are shown in mm and Rated Voltage in Vdc.

Part Number								GRM31							
L x W [EIA]							3.2	2x1.6 [12	06]						
тс		C0G (5C)		P2 (6			2H R)	S2 (6	2H S)		X)		2H T)		2J 'U)
Rated Volt.	100 (2A)	50 (1H)	25 (1E)	100 (2A)	50 (1H)										
Capacitance (Ca	pacitano	e part nu	ımbering	code) ar	nd T (mm) Dimens	ion (T Di	mension	part nun	nbering o	ode)				
18000pF(183)		0.85(9)													
22000pF(223)		0.85(9)													
27000pF(273)		0.85(9)													
33000pF(333)		0.85(9)													
39000pF(393)		1.15(M)													
47000pF(473)		1.15(M)													
56000pF(563)		1.6(C)									0.85(9)				0.85(9)
68000pF(683)		1.6(C)									1.15(M)				1.15(M)
82000pF(823)		1.6(C)									1.15(M)				1.15(M)
0.10μF(104)			1.6(C)								1.15(M)				1.15(M)

The part numbering code is shown in ().

High Dielectric Constant Type X5R (R6) Characteristics

тс										X5R (R6)									
Part Number			GRM15	5				GRM18	3			GR	M21				GRM31	l	
L x W [EIA]		1.0	x0.5 [0	402]			1.6	x0.8 [0	603]		2	2.0x1.2	5 [080	5]		3.2	x1.6 [1:	206]	
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)
Capacitance (Ca	pacita	nce pa	rt numb	pering o	code) a	nd T (n	nm) Din	nensio	n (T Din	nensior	n part r	number	ing cod	le)				•	
1000pF (102)	0.5 (5)	0.5 (5)																	
2200pF (222)	0.5 (5)	0.5 (5)																	
4700pF (472)	0.5 (5)	0.5 (5)																	
10000pF (103)						0.8													
22000pF (223)			0.5 (5)			0.8													
33000pF (333)			0.5 (5)	0.5 (5)															
47000pF (473)			0.5 (5)	0.5 (5)															
68000pF (683)			0.5 (5)	0.5 (5)															
0.10μF (104)			0.5 (5)	0.5 (5)			0.8 (8)												
0.15μF (154)				0.5* (5)	0.5* (5)														
0.22μF (224)				0.5* (5)	0.5* (5)		0.8 (8)	0.8 (8)											
0.33μF (334)				0.5* (5)	0.5* (5)														
0.47μF (474)				0.5* (5)	0.5* (5)		0.8* (8)	0.8* (8)											
0.68μF (684)				0.5* (5)	0.5* (5)														

Dimensions are shown in mm and Rated Voltage in Vdc.

тс										X5R (R6)									
Part Number			GRM15	5				GRM18	3			GRI	W21				GRM31		
L x W [EIA]		1.0	κ0.5 [0	402]			1.6	(0.8 [0	503]		2	.0x1.2	5 [0805	5]		3.2	κ1.6 [1 <i>i</i>	206]	
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)
Capacitance (Ca	pacita	nce pai	rt numl	pering (code) a	nd T (m	nm) Din	nensior	T Din	nensio	n part n	umber	ing coc	le)					
1.0μF (105)				0.5* (5)	0.5* (5)		0.8* (8)	0.8* (8)											
2.2µF (225)								0.8* (8)	0.8* (8)	0.8* (8)	1.25* (B)					1.15 (M)			
3.3µF (335)									0.8* (8)		1.25* (B)	1.25* (B)				1.6 (C)			
4.7μF (475)										0.8* (8)	1.25* (B)	1.25* (B)	1.25* (B)		1.6 (C)	1.6 (C)	1.6 (C)		
10μF (106)													1.25* (B)	1.25* (B)	1.6* (C)	1.6 (C)			
15μF (156)																		1.6* (C)	
22μF (226)														1.25* (B)				1.6* (C)	
47μF (476)																		1.6* (C)	
100μF (107)																		1.6* (C)	1.6* (C)

The part numbering code is shown in each ().

Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type X6S (C8) Characteristics

тс						X6S (C8)					
Part Number	GR	M15	GR	M18		GR	M21			GRM31	
L x W [EIA]	1.0x0.5	5 [0402]	1.6x0.8	3 [0603]		2.0x1.2	5 [0805]		3	.2x1.6 [120	6]
Rated Volt.	6.3 (0J)	4 (0G)	6.3 (0J)	4 (0G)	25 (1E)	16 (1C)	6.3 (0J)	4 (0G)	10 (1A)	6.3 (0J)	4 (0G)
Capacitance (Ca	pacitance p	oart number	ing code) an	id T (mm) Di	mension (T	Dimension p	art numberi	ng code)	'		
0.15μF(154)	0.5*(5)										
0.22μF(224)	0.5*(5)										
0.33μF(334)	0.5*(5)										
0.47μF(474)	0.5*(5)										
0.68μF(684)		0.5*(5)	0.8(8)								
1.0μF(105)		0.5*(5)									
2.2μF(225)			0.8*(8)								
4.7μF(475)				0.8*(8)	1.25*(B)	1.25*(B)					
10μF(106)							1.25*(B)		1.15*(M)		
22μF(226)								1.25*(B)		1.6*(C)	1.6*(C)
47μF(476)											1.6*(C)

The part numbering code is shown in ().

 $^{3.3\}mu F$ and $4.7\mu F,\,6.3V$ rated are GRM21 series of L: 2±0.15, W: 1.25±0.15, T: 1.25±0.15.

T: 1.15 ± 0.1 mm is also available for GRM31 $1.0\mu F$ for 16V.

 $L{:}~3.2{\pm}0.2,~W{:}~1.6{\pm}0.2~for~GRM31~16V~1.0\mu F~type.~Also~L{:}~3.2{\pm}0.2,~W{:}~1.6{\pm}0.2,~T{:}~1.15{\pm}0.15~for~GRM31~16V~1.5\mu F~and~2.2\mu F~type.~Also~L{:}~3.2{\pm}0.2,~T{:}~1.15{\pm}0.2,~T{:}~$

^{*:} Please refer to GRM Series Specifications and Test Methods (2) (P.30).

Dimensions are shown in mm and Rated Voltage in Vdc.

^{*:} Please refer to GRM Series Specifications and Test Methods (2) (P.30).

High Dielectric Constant Type X7R (R7) Characteristics

тс												7R ?7)										
Part Number		(GRM1	5				GRI	M18					GRI	M21				(GRM3	1	
L x W [EIA]		1.0x	(0.5 [0	402]			1	.6x0.8	[060	3]			2.	0x1.2	5 [080	5]			3.2x	1.6 [1	206]	
Rated Volt.	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)
Capacitance (Ca	apacita	ance p	oart nu	ımberi	ng co	de) an	d T (m	m) Dii	mensi	on (T I	Dimen	sion p	art nu	mberi	ng co	de)	1			1		
220pF (221)		0.5 (5)				0.8 (8)																
330pF (331)		0.5 (5)				0.8 (8)																
470pF (471)		0.5 (5)				0.8 (8)																
680pF (681)		0.5 (5)				0.8 (8)																
1000pF (102)		0.5 (5)				0.8 (8)																
1500pF (152)		0.5 (5)				0.8 (8)																
2200pF (222)		0.5 (5)				0.8																
3300pF (332)		0.5 (5)				0.8																
4700pF (472)	0.5 (5)	0.5 (5)				. ,						0.85 (9)										
6800pF (682)	, ,	0.5 (5)	0.5 (5)									0.85										
10000pF (103)		0.5 (5)	0.5 (5)									1.25 (B)										
15000pF (153)			0.5 (5)	0.5 (5)			0.8					1.25 (B)										
22000pF (223)			0.5 (5)	0.5 (5)			0.8					1.25 (B)										
33000pF (333)			0.5 (5)	0.5 (5)	0.5 (5)		0.8					1.25 (B)										
47000pF (473)			0.5 (5)	0.5 (5)	0.5 (5)		0.8					1.25 (B)										
68000pF (683)				0.5 (5)	0.5 (5)		0.8	0.8										1.15 (M)				
0.10μF (104)				0.5 (5)	0.5 (5)		0.8	0.8 (8)														
0.15μF (154)								0.8	0.8 (8)				1.25 (B)						1.15 (M)			
0.22μF (224)								0.8	0.8 (8)	0.8		1.0 (A)	1.25 (B)						0.85 (9)			
0.33μF (334)									0.8	0.8		1.0 (A)	0.85 (9)	1.25 (B)								
0.47μF (474)								0.8* (8)	0.8	0.8	0.8		1.25 (B)	0.85 (9)					1.15 (M)			
0.68µF (684)										0.8 (8)				0.85 (9)	0.85 (9)							
1.0μF (105)									0.8* (8)	0.8* (8)	0.8*			1.25 (B)	1.25 (B)			1.6 (C)	1.15 (M)	1.15 (M)		
1.5μF (155)														1.25 (B)	1.25 (B)				1.6 (C)	1.15 (M)	1.15 (M)	

Z Continued from	tne pre	eceaing	page.																			
TC												7R 2 7)										
Part Number		(GRM1	5				GRI	M18					GR	M21				(GRM3	1	
L x W [EIA]		1.0x0.5 [0402] 1.6x0.8 [0603] 2.0x1.25 [0805] 3.2x1.6 [1206]																				
Rated Volt.	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)
Capacitance (Ca	pacita	ance p	art nu	ımberi	ng co	de) an	d T (m	m) Dii	mensi	on (T I	Dimen	sion p	art nu	mberi	ng co	de)		ı				
2.2µF (225)										0.8* (8)				1.25* (B)	1.25* (B)				1.6 (C)		1.15 (M)	
3.3µF (335)															1.25* (B)					1.6 (C)	1.6 (C)	
4.7μF (475)															1.25* (B)	1.25* (B)				1.6 (C)	1.6 (C)	1.6 (C)
10μF (106)																1.25* (B)	1.25* (B)				1.6* (C)	

The part numbering code is shown in each ().

High Dielectric Constant Type X7S (C7) Characteristics

тс		X7S (C7)	
Part Number	GRM18	GRM21	GRM31
L x W [EIA]	1.6x0.8 [0603]	2.0x1.25 [0805]	3.2x1.6 [1206]
Rated Volt.	6.3 (0J)	10 (1A)	4 (0G)
Capacitance (Ca	pacitance part numbering code) and T (mm) Dimension (T Dimension part numbering c	code)
2.2μF(225)	0.8*(8)		
3.3μF(335)		1.25*(B)	
22μF(226)			1.6*(C)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type Y5V (F5) Characteristics

тс						Y5V (F5)					
Part Number			GRM15			GR	M18	GR	M21	GR	M31
L x W [EIA]		1	.0x0.5 [040	2]		1.6x0.8	3 [0603]	2.0x1.2	5 [0805]	3.2x1.6	5 [1206]
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	50 (1H)	25 (1E)	50 (1H)	25 (1E)	50 (1H)	6.3 (0J)
Capacitance (Ca	pacitance p	oart numberi	ing code) an	id T (mm) Di	mension (T I	Dimension p	art numberi	ng code)			
1000pF(102)	0.5(5)										
2200pF(222)	0.5(5)										
4700pF(472)	0.5(5)										
10000pF(103)	0.5(5)					0.8(8)					
22000pF(223)		0.5(5)				0.8(8)					
47000pF(473)		0.5(5)	0.5(5)			0.8(8)					
0.10μF(104)		0.5(5)	0.5(5)			0.8(8)		0.85(9)	0.6(6)		
0.22μF(224)			0.5(5)			0.8(8)	0.8(8)		0.85(9)		
0.47μF(474)			0.5(5)	0.5(5)			0.8(8)	0.85(9)	0.6(6)	1.15(M)	
1.0μF(105)				0.5*(5)	0.5*(5)						
100μF(107)											1.6*(C)

The part numbering code is shown in each ().

The tolerance will be changed to L: 3.2 ± 0.2 , W: 1.6 ± 0.2 for GRM31 16V 1.0μ F type. Also L: 3.2 ± 0.2 , W: 1.6 ± 0.2 , T: 1.15 ± 0.15 for GRM31 16V 1.5μ F and 2.2μ F type. Dimensions are shown in mm and Rated Voltage in Vdc.

^{*:} Please refer to GRM Series Specifications and Test Methods (2) (P.30).

^{*:} Please refer to GRM Series Specifications and Test Methods (2) (P.30).

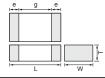
T: 1.25 \pm 0.1mm is also available for GRM21 25V or 16V 1.0 μ F type.

Dimensions are shown in mm and Rated Voltage in Vdc.

^{*:} Please refer to GRM Series Specifications and Test Methods (2) (P.30).

Chip Monolithic Ceramic Capacitors

for General Purpose GRM32 Series


■ Features

- Terminations are made of metal highly resistant to migration.
- 2. Smaller size and higher capacitance value
- 3. High reliability and no polarity
- 4. Excellent pulse responsibility and noise reduction due to the low impedance at high frequency.
- 5. Ta replacement

■ Applications

General electronic equipment

Part Number		D	imensions (r	nm)	
Part Number	L	W	T	е	g min.
GRM329			0.85 ±0.1		
GRM32A			1.0 +0/-0.2		
GRM32M			1.15 ±0.1		
GRM32N	3.2 +0.3	2.5 +0.2	1.35 ±0.15	0.3 min.	1.0
GRM32C	3.2 ±0.3	2.5 ±0.2	1.6 ±0.2	0.3 mm.	1.0
GRM32R			1.8 ±0.2		
GRM32D			2.0 ±0.2		
GRM32E			2.5 ±0.2		

Temperature Compensating Type GRM32 Series

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM3291X2A222JZ01	SL (JIS)	100	2200 ±5%	3.2	2.5	0.85
GRM3291X2A272JZ01	SL (JIS)	100	2700 ±5%	3.2	2.5	0.85
GRM3291X2A332JZ01	SL (JIS)	100	3300 ±5%	3.2	2.5	0.85
GRM32N1X2A562JZ01	SL (JIS)	100	5600 ±5%	3.2	2.5	1.35
GRM32N1X2A682JZ01	SL (JIS)	100	6800 ±5%	3.2	2.5	1.35

High Dielectric Constant Type GRM32 Series (3.20x2.50mm)

	TC Code	Rated Voltage	Capacitance	Length L	Width W	Thickness T
Part Number	(Standard)	(Vdc)	(μF)	(mm)	(mm)	(mm)
GRM32ER61E226ME15	X5R (EIA)	25	22 ±20%*	3.2	2.5	2.5
GRM32ER61C226ME20	X5R (EIA)	16	22 ±20%*	3.2	2.5	2.5
GRM32ER61C476ME15	X5R (EIA)	16	47 ±20%*	3.2	2.5	2.5
GRM32ER61A226ME20	X5R (EIA)	10	22 ±20%*	3.2	2.5	2.5
GRM32ER61A476ME20	X5R (EIA)	10	47 ±20%*	3.2	2.5	2.5
GRM32DR60J226KA01	X5R (EIA)	6.3	22 ±10%*	3.2	2.5	2.0
GRM32DR60J336ME19	X5R (EIA)	6.3	33 ±20%*	3.2	2.5	2.0
GRM32ER60J476ME20	X5R (EIA)	6.3	47 ±20%*	3.2	2.5	2.5
GRM32ER60J107ME20	X5R (EIA)	6.3	100 ±20%*	3.2	2.5	2.5
GRM32DC81E106KA12	X6S(EIA)	25	10 ±10%	3.2	2.5	2.0
GRM32EC80J476ME64	X6S(EIA)	6.3	47 ±20%*	3.2	2.5	2.5
GRM32EC80G107ME20	X6S(EIA)	4	100 ±20%*	3.2	2.5	2.5
GRM32CR72A684KA01	X7R (EIA)	100	0.68 ±10%	3.2	2.5	1.6
GRM32CR72A105KA35	X7R (EIA)	100	1.0 ±10%	3.2	2.5	1.6
GRM32DR72A155KA35	X7R (EIA)	100	1.5 ±10%	3.2	2.5	2.0
GRM32ER72A225KA35	X7R (EIA)	100	2.2 ±10%*	3.2	2.5	2.5
GRM32ER71H105KA01	X7R (EIA)	50	1.0 ±10%	3.2	2.5	2.5
GRM32DR71H335KA88	X7R (EIA)	50	3.3 ±10%	3.2	2.5	2.0
GRM32ER71H475KA88	X7R (EIA)	50	4.7 ±10%	3.2	2.5	2.5
GRM32DR71E335KA01	X7R (EIA)	25	3.3 ±10%	3.2	2.5	2.0
GRM32DR71E475KA61	X7R (EIA)	25	4.7 ±10%	3.2	2.5	2.0
GRM32DR71E106KA12	X7R (EIA)	25	10 ±10%	3.2	2.5	2.0

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (μF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM32ER71C226ME18	X7R (EIA)	16	22 ±20%*	3.2	2.5	2.5
GRM32ER71A226ME20	X7R (EIA)	10	22 ±20%*	3.2	2.5	2.5
GRM32EF50J107ZE20	Y5V (EIA)	6.3	100 +80/-20%*	3.2	2.5	2.5

^{*:} Please refer to GRM Series Specifications and Test Methods (2) (P.30).

Chip Monolithic Ceramic Capacitors

Ultra-small GRM03 Series

■ Features

- 1. Small chip size (LxWxT: 0.6x0.3x0.3mm)
- 2. Terminations are made of metal highly resistant to
- 3. GRM03 series is suited to only reflow
- 4. Stringent dimensional tolerances allow highly reliable, high speed automatic chip placement on
- 5. GRM03 series is suited to miniature microwave module, portable equipment and high frequency circuits.

Part Number		Din	nensions (r	nm)	
Part Number	L	W	T	е	g min.
GRM033	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2

Applications

- 1. Miniature microwave module
- 2. Portable equipment
- 3. High frequency circuit

Part Number						GR	M03					
LxW						0.6x0.3	[0201]					
тс	C0G (5C)	R2H (6R)	S2H (6S)	T2H (6T)		2J 'U)		5R 86)	X6S (C8)		X7R (R7)	
Rated Volt.	25 (1E)	25 (1E)	25 (1E)	25 (1E)	50 (1 H)	25 (1E)	10 (1A)	6.3 (0J)	4 (0G)	25 (1E)	16 (1C)	10 (1A)
Capacitance (Ca	pacitance	part numb	ering code)	and T (mm) Dimensio	n (T Dimen	sion part n	umbering o	code)			
1.0pF(1R0)	0.3(3)	0.3(3)	0.3(3)	0.3(3)								
2.0pF(2R0)	0.3(3)	0.3(3)	0.3(3)	0.3(3)								
3.0pF(3R0)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
4.0pF(4R0)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
5.0pF(5R0)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
6.0pF(6R0)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
7.0pF(7R0)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
8.0pF(8R0)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
9.0pF(9R0)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
10pF(100)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
12pF(120)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
15pF(150)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
18pF(180)	0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)						
22pF(220)	0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)						
27pF(270)	0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)						
33pF(330)	0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)						
39pF(390)	0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)						
47pF(470)	0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)						
56pF(560)	0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)						
68pF(680)	0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)						
82pF(820)	0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)						
100pF(101)	0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)				0.3(3)		
150pF(151)										0.3(3)		
220pF(221)										0.3(3)		
330pF(331)										0.3(3)		
470pF(471)										0.3(3)		
680pF(681)										0.3(3)		

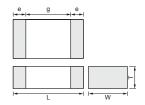
Part Number						GR	M03					
LxW						0.6x0.3	3 [0201]					
тс	C0G (5C)	R2H (6R)	S2H (6S)	T2H (6T)		2J 'U)		5R 86)	X6S (C8)		X7R (R7)	
Rated Volt.	25 (1E)	25 (1E)	25 (1E)	25 (1E)	50 (1H)	25 (1E)	10 (1A)	6.3 (0J)	4 (0G)	25 (1E)	16 (1C)	10 (1A)
Capacitance (Ca	pacitance	part number	ering code)	and T (mm) Dimensio	n (T Dimen	sion part n	umbering c	ode)			
1000pF(102)										0.3(3)		
1500pF(152)							0.3(3)			0.3(3)		0.3(3)
2200pF(222)							0.3(3)				0.3(3)	0.3(3)
3300pF(332)							0.3(3)				0.3(3)	0.3(3)
4700pF(472)							0.3(3)					0.3(3)
6800pF(682)							0.3(3)					0.3(3)
10000pF(103)							0.3(3)					0.3(3)
15000pF(153)								0.3*(3)				
22000pF(223)								0.3*(3)				
33000pF(333)								0.3*(3)				
47000pF(473)								0.3*(3)				
68000pF(683)								0.3*(3)				
0.10μF(104)								0.3*(3)	0.3(3)			

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

^{*:} Please refer to GRM Series Specifications and Test Methods (2) (P.30).

Chip Monolithic Ceramic Capacitors



Tight Tolerance GRM03/15 Series

■ Features

- 1. Terminations are made of metal highly resistant to migration.
- 2. A wide selection of sizes is available, from the miniature LxWxT: 0.6x0.3x0.3mm or LxWxT: 1.0x0.5x0.5mm.
- 3. GRM03 type is a complete line of chip ceramic capacitors in 25V ratings, GRM15 type is a complete line of chip ceramic capacitors in 50V ratings.
- 4. These capacitors have temperature characteristics ranging C0G.
- 5. GRM03 and GRM15 type are applied to only reflow
- 6. Stringent dimensional tolerances allow highly reliable, high speed automatic chip placement on PCBs.
- 7. GRM series is available in paper tape and reel packaging for automatic placement.

Part Number		Din	nensions (r	nm)	
rait Number	L	W	T	е	g min.
GRM033	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2
GRM155	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.35	0.3

Applications

General electronic equipment

Temperature Compensating Type GRM03/15 Series

Part Number		GRM03	GRM15
L x W [EIA]		0.6x0.3 [0201]	1.0x0.5 [0402]
тс		C0G (5C)	C0G (5C)
Rated Volt.		25 (1E)	50 (1H)
Capacitance, Ca	pacitance Tole	erance and T Dimension	
0.30pF(R30)	W, B	0.3(3)	0.5 (5)
0.40pF(R40)	W, B	0.3(3)	0.5 (5)
0.50pF(R50)	W, B	0.3(3)	0.5 (5)
0.60pF(R60)	W, B	0.3(3)	0.5 (5)
0.70pF(R70)	W, B	0.3(3)	0.5 (5)
0.80pF(R80)	W, B	0.3(3)	0.5 (5)
0.90pF(R90)	W, B	0.3(3)	0.5(5)
1.0pF(1R0)	W, B	0.3(3)	0.5(5)
1.1pF(1R1)	W, B	0.3(3)	0.5(5)
1.2pF(1R2)	W, B	0.3(3)	0.5(5)
1.3pF(1R3)	W, B	0.3(3)	0.5(5)
1.4pF(1R4)	W, B	0.3(3)	0.5(5)
1.5pF(1R5)	W, B	0.3(3)	0.5 (5)
1.6pF(1R6)	W, B	0.3(3)	0.5 (5)
1.7pF(1R7)	W, B	0.3(3)	0.5 (5)
1.8pF(1R8)	W, B	0.3(3)	0.5 (5)
1.9pF(1R9)	W, B	0.3(3)	0.5 (5)
2.0pF(2R0)	W, B	0.3(3)	0.5 (5)
2.1pF(2R1)	W, B	0.3(3)	0.5 (5)
2.2pF(2R2)	W, B	0.3(3)	0.5 (5)
2.3pF(2R3)	W, B	0.3(3)	0.5(5)

1.0x0.5 [0402] COG (5C) 50 (1H) 0.5(5) 0.5(5)
(5C) 50 (1H) 0.5(5) 0.5(5)
0.5(5) 0.5(5)
0.5 (5)
0.5 (5)
* * *
0.5(5)
/-/
0.5(5)
O.5(5)
0.5(5)
0.5(5)
0.5(5)
0.5(5)
0.5(5)
0.5(5)
0.5(5)
0.5(5)
0.5(5)
0.5(5)
0.5(5)
0.5(5)
0.5(5)
0.5(5)
0.5(5) 0.5(5)

Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.

• This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.

• This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering. 07.2.6

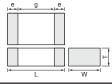
Continued from the preceding page.

Part Number		GRM03	GRM15
L x W [EIA]		0.6x0.3 [0201]	1.0x0.5 [0402]
TC		C0G (5C)	C0G (5C)
Rated Volt.		25 (1E)	50 (1H)
Capacitance, Ca	pacitanc	e Tolerance and T Dimension	
7.6pF(7R6)	W, B, C	0.3(3)	0.5(5)
7.7pF(7R7)	W, B, C	0.3(3)	0.5(5)
7.8pF(7R8)	W, B, C	0.3(3)	0.5(5)
7.9pF(7R9)	W, B, C	0.3(3)	0.5(5)
8.0pF(8R0)	W, B, C	0.3(3)	0.5 (5)
8.1pF(8R1)	W, B, C	0.3(3)	0.5 (5)
8.2pF(8R2)	W, B, C	0.3(3)	0.5(5)
8.3pF(8R3)	W, B, C	0.3(3)	0.5(5)
8.4pF(8R4)	W, B, C	0.3(3)	0.5(5)
8.5pF(8R5)	W, B, C	0.3(3)	0.5(5)
8.6pF(8R6)	W, B, C	0.3(3)	0.5(5)
8.7pF(8R7)	W, B, C	0.3(3)	0.5(5)
8.8pF(8R8)	W, B, C	0.3(3)	0.5(5)
8.9pF(8R9)	W, B, C	0.3(3)	0.5(5)
9.0pF(9R0)	W, B, C	0.3(3)	0.5(5)
9.1pF(9R1)	W, B, C	0.3(3)	0.5(5)
9.2pF(9R2)	W, B, C	0.3(3)	0.5(5)
9.3pF(9R3)	W, B, C	0.3(3)	0.5(5)
9.4pF(9R4)	W, B, C	0.3(3)	0.5(5)
9.5pF(9R5)	W, B, C	0.3(3)	0.5(5)
9.6pF(9R6)	W, B, C	0.3(3)	0.5(5)
9.7pF(9R7)	W, B, C	0.3(3)	0.5(5)
9.8pF(9R8)	W, B, C	0.3(3)	0.5(5)
9.9pF(9R9)	W, B, C	0.3(3)	0.5 (5)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Chip Monolithic Ceramic Capacitors



Thin Type

■ Features

- 1. This series is suited to flow and reflow soldering. Capacitor terminations are made of metal highly resistant to migration.
- 2. Large capacitance values enable excellent bypass effects to be realized.
- 3. GRM18, 21 and GRM31 types are suited to flow and reflow soldering. GRM15 and GRM32 types are applied to only reflow soldering.
- 4. Its thin package makes this series ideally suited for the production of small electronic products and for mounting underneath ICs.

Part Number		Dir	nensions (m	nm)	
rait Nullibei	L	W	T	е	g min.
GRM15X	1.0 ±0.05	0.5 +0.05	0.25 ±0.05	0.1 to 0.3	0.4
GRM153	1.0 ±0.05	0.5 ±0.05	0.3 ± 0.03	0.1 10 0.3	0.4
GRM216		1.25 ±0.1	0.6 ±0.1		0.7
GRM219	2.0 ±0.1		0.85 ±0.1	0.2 to 0.7	
GRM21A			1.0 +0/-0.2		
GRM316	3.2 ±0.15	1.6 ±0.15	0.6 ±0.1	0.3 to 0.8	1.5
GRM319	3.2 ±0.15	1.6 ±0.15	0.85 ±0.1	0.3 10 0.8	1.5
GRM329	3.2 +0.3	2.5 ±0.2	0.85 ±0.1	0.3 min.	1.0
GRM32A	3.2 ±0.3	2.5 ±0.2	1.0 +0/-0.2	0.3 111111.	1.0

Applications

Thin equipment such as IC cards

Temperature Compensating Type

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	EIA
GRM1535C1H1R0CDD5	COG (EIA)	50	1.0 ±0.25pF	1.0	0.5	0.3	0402
GRM1535C1H2R0CDD5	C0G (EIA)	50	2.0 ±0.25pF	1.0	0.5	0.3	0402
GRM1535C1H3R0CDD5	C0G (EIA)	50	3.0 ±0.25pF	1.0	0.5	0.3	0402
GRM1535C1H4R0CDD5	C0G (EIA)	50	4.0 ±0.25pF	1.0	0.5	0.3	0402
GRM1535C1H5R0CDD5	C0G (EIA)	50	5.0 ±0.25pF	1.0	0.5	0.3	0402
GRM1535C1H6R0DDD5	C0G (EIA)	50	6.0 ±0.5pF	1.0	0.5	0.3	0402
GRM1535C1H7R0DDD5	C0G (EIA)	50	7.0 ±0.5pF	1.0	0.5	0.3	0402
GRM1535C1H8R0DDD5	C0G (EIA)	50	8.0 ±0.5pF	1.0	0.5	0.3	0402
GRM1535C1H9R0DDD5	C0G (EIA)	50	9.0 ±0.5pF	1.0	0.5	0.3	0402
GRM1535C1H100JDD5	C0G (EIA)	50	10 ±5%	1.0	0.5	0.3	0402
GRM1535C1H120JDD5	C0G (EIA)	50	12 ±5%	1.0	0.5	0.3	0402
GRM1535C1H150JDD5	C0G (EIA)	50	15 ±5%	1.0	0.5	0.3	0402
GRM1535C1H180JDD5	C0G (EIA)	50	18 ±5%	1.0	0.5	0.3	0402
GRM1535C1H220JDD5	C0G (EIA)	50	22 ±5%	1.0	0.5	0.3	0402
GRM1535C1H270JDD5	C0G (EIA)	50	27 ±5%	1.0	0.5	0.3	0402
GRM1535C1H330JDD5	C0G (EIA)	50	33 ±5%	1.0	0.5	0.3	0402
GRM1535C1H390JDD5	C0G (EIA)	50	39 ±5%	1.0	0.5	0.3	0402
GRM1535C1H470JDD5	C0G (EIA)	50	47 ±5%	1.0	0.5	0.3	0402
GRM1535C1H560JDD5	C0G (EIA)	50	56 ±5%	1.0	0.5	0.3	0402
GRM1535C1H680JDD5	C0G (EIA)	50	68 ±5%	1.0	0.5	0.3	0402
GRM1535C1H820JDD5	C0G (EIA)	50	82 ±5%	1.0	0.5	0.3	0402
GRM1535C1H101JDD5	COG (EIA)	50	100 ±5%	1.0	0.5	0.3	0402

High Dielectric Constant Type

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)	EIA
GRM15XR71H221KA86	X7R (EIA)	50	220pF ±10%	1.0	0.5	0.25	0402
GRM15XR71H331KA86	X7R (EIA)	50	330pF ±10%	1.0	0.5	0.25	0402
GRM15XR71H471KA86	X7R (EIA)	50	470pF ±10%	1.0	0.5	0.25	0402
GRM15XR71H681KA86	X7R (EIA)	50	680pF ±10%	1.0	0.5	0.25	0402
GRM15XR71H102KA86	X7R (EIA)	50	1000pF ±10%	1.0	0.5	0.25	0402
GRM15XR71H152KA86	X7R (EIA)	50	1500pF ±10%	1.0	0.5	0.25	0402
GRM15XR71E222KA86	X7R (EIA)	25	2200pF ±10%	1.0	0.5	0.25	0402
GRM219R71E105KA88	X7R (EIA)	25	1.0μF ±10%	2.0	1.25	0.85	0805
GRM15XR71C332KA86	X7R (EIA)	16	3300pF ±10%	1.0	0.5	0.25	0402
GRM15XR71C472KA86	X7R (EIA)	16	4700pF ±10%	1.0	0.5	0.25	0402
GRM15XR71C682KA86	X7R (EIA)	16	6800pF ±10%	1.0	0.5	0.25	0402
GRM15XR71C103KA86	X7R (EIA)	16	10000pF ±10%	1.0	0.5	0.25	0402
GRM216C81C105KA12	X6S(EIA)	16	1.0μF ±10%	2.0	1.25	0.6*	0805
GRM316C81C225KA12	X6S(EIA)	16	2.2μF ±10%	3.2	1.6	0.6*	1206
GRM219C81C225KA12	X6S(EIA)	16	2.2μF ±10%	2.0	1.25	0.85*	0805
GRM319C81C475KA12	X6S(EIA)	16	4.7μF ±10%	3.2	1.6	0.85*	1206
GRM219C81A475KE34	X6S(EIA)	10	4.7μF ±10%	2.0	1.25	0.85*	0805
GRM219C80J475KE19	X6S(EIA)	6.3	4.7μF ±10%	2.0	1.25	0.85*	0805
GRM319C80J106KE19	X6S(EIA)	6.3	10μF ±10%	3.2	1.6	0.85*	1206
GRM219C80G106KE19	X6S(EIA)	4	10μF ±10%	2.0	1.25	0.85*	0805
GRM216R61E105KA12	X5R (EIA)	25	1.0μF ±10%	2.0	1.25	0.6*	0805
GRM316R61E225KA12	X5R (EIA)	25	2.2μF ±10%	3.2	1.6	0.6*	1206
GRM219R61E225KA12	X5R (EIA)	25	2.2μF ±10%	2.0	1.25	0.85*	0805
GRM319R61E475KA12	X5R (EIA)	25	4.7μF ±10%	3.2	1.6	0.85*	1206
GRM216R61C105KA88	X5R (EIA)	16	1.0μF ±10%	2.0	1.25	0.6*	0805
GRM316R61C225KA88	X5R (EIA)	16	2.2μF ±10%	3.2	1.6	0.6*	1206
GRM219R61C225KA88	X5R (EIA)	16	2.2μF ±10%	2.0	1.25	0.85*	0805
GRM219R61C475KE15	X5R (EIA)	16	4.7μF ±10%	2.0	1.25	0.85*	0805
GRM319R61C475KA88	X5R (EIA)	16	4.7μF ±10%	3.2	1.6	0.85*	1206
GRM319R61C106KE15	X5R (EIA)	16	10μF ±10%	3.2	1.6	0.85*	1206
GRM216R61A225KE24	X5R (EIA)	10	2.2μF ±10%	2.0	1.25	0.6*	0805
GRM219R61A225KA01	X5R (EIA)	10	2.2μF ±10%	2.0	1.25	0.85*	0805
GRM316R61A335KE19	X5R (EIA)	10	3.3μF ±10%	3.2	1.6	0.6*	1206
GRM219R61A335KE19	X5R (EIA)	10	3.3μF ±10%	2.0	1.25	0.85*	0805
GRM316R61A475KE19	X5R (EIA)	10	4.7μF ±10%	3.2	1.6	0.6*	1206
GRM219R61A475KE34	X5R (EIA)	10	4.7μF ±10%	2.0	1.25	0.85*	0805
GRM319R61A106KE19	X5R (EIA)	10	10μF ±10%	3.2	1.6	0.85*	1206
GRM219R60J475KE19	X5R (EIA)	6.3	4.7μF ±10%	2.0	1.25	0.85*	0805
GRM319R60J106KE19	X5R (EIA)	6.3	10μF ±10%	3.2	1.6	0.85*	1206

^{*:} Please refer to GRM Series Specifications and Test Methods (2) (P.30).

Below GRM Series Specifications and Test Methods (1) are applied to Non "*" PNs in capacitance table. In case "*" is added in capacitance table, please refer to GRM Series Specifications and Test Methods (2) (P.30).

			cations	efer to GRM Series Specifications and Test Methods (2) (P.30).
No.	Item	'	Cations	Test Method
INO.	item	Temperature Compensating Type	High Dielectric Type	rest Wethou
1	Operating Temperature Range	-55 to +125℃	B1, B3, F1, R6: -25 to +85°C R1, R7: -55 to +125°C C8: -55 to +105°C E4: +10 to +85°C F5: -30 to +85°C	Reference temperature: 25° C (2Δ , 3Δ , 4Δ , B1, B3, F1, R1: 20° C)
2	Rated Voltage	See the previous pages.		The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{P,P} or V ^{O,P} , whichever is larger, should be maintained within the rated voltage range.
3	Appearance	No defects or abnormalities		Visual inspection
4	Dimensions	Within the specified dimensions		Using calipers (GRM02 size is based on Microscope)
5	Dielectric Strength	No defects or abnormalities		No failure should be observed when 300%* of the rated voltage (temperature compensating type) or 250% of the rated voltage (high dielectric constant type) is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA. *200% for 500V
6	Insulation Resistance	C≦0.047μF: More than 10,000M C>0.047μF: 500Ω · F	$M\Omega$ C: Nominal Capacitance	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 20/25°C and 75%RH max. and within 2 minutes of charging, provided the charge/ discharge current is less than 50mA.
7	Capacitance	Within the specified tolerance		
8	O/ Dissipation Factor (D.F.)	30pF and over: Q≥1000 30pF and below: Q≥400+20C C: Nominal Capacitance (pF)	[R6, R7, C8] W.V.: 100V : 0.025 max. (C<0.068μF) : 0.05 max. (C≥0.068μF) W.V.: 50/25V : 0.025 max. (C≥10μF) : 0.035 max. (C≥10μF) W.V.: 16/10V: 0.035 max. W.V.: 6.3/4V : 0.05 max. (C≥3.3μF) : 0.1 max. (C≥3.3μF) [E4] W.V.: 25Vmin: 0.025 max. [F1, F5] W.V.: 25V min. : 0.05 max. (C<0.1μF) : 0.09 max. (C≥0.1μF) W.V.: 16/10V: 0.125 max. W.V.: 6.3V: 0.15 max.	The capacitance/Q/D.F. should be measured at 20/25°C at the frequency and voltage shown in the table. Char. \(\text{\Delta C} \) (to 7U, 1X (more than 1000pF) (R6, R7, C8, F5, B1, B3, F1) Frequency 1±0.1MHz 1±0.1kHz 1±0.1kHz 1±0.2Vrms 0.5±

Below GRM Series Specifications and Test Methods (1) are applied to Non "*" PNs in capacitance table. In case "*" is added in capacitance table, please refer to GRM Series Specifications and Test Methods (2) (P.30). Continued from the preceding page.

				ications	elei to oltivi t	series opecifications at	iu rest metrious (2) (1 .50).
No.	lt∈	em	Temperature Compensating Type	High Dielectric Type		Test Meth	od
		No bias	Within the specified tolerance (Table A-1)	B1, B3: Within $\pm 10\%$ (-25 to $+85\%$) R1, R7: Within $\pm 15\%$ (-55 to $+125\%$) R6: Within $\pm 15\%$ (-55 to $+85\%$) E4: Within $\pm 22/-56\%$ ($+10$ to $+85\%$) F1: Within $+30/-80\%$ (-25 to $+85\%$) F5: Within $+22/-82\%$ (-30 to $+85\%$) C8: Within $\pm 22\%$ (-55 to $+105\%$)	each specifications and specifications are specifications. The temper capacitance when cyclim 5 (5C: +25 to +85 the specificapacitance The capacitance the step 1, 3 are specifications.	ied temp. stage. ature Compensating Type rature coefficient is deter e measured in step 3 as ng the temperature sequ to +125°C/ΔC: +20 to + 3°C/+20 to +85°C) the cap d tolerance for the tempe e change as Table A-1. tance drift is calculated be maximum and minimur and 5 by the cap. value in	mined using the a reference. entially from step 1 through 125°C: other temp. coeffs.: pacitance should be within erature coefficient and by dividing the differences m measured values in the step 3.
		50% of the Rated Voltage		B1: Within +10/–30% R1: Within +15/–40% F1: Within +30/–95%	Ste1	Reference -55±3 (for △ -30±3 (for △ -25± Reference	nperature (°C) the Temperature ±2 C to 7U/1X/R6/R7/C8) or F5), 10±3 (for E4) 3 (for other TC) the Temperature ±2
	Capacitance				4	85±3	C/R7), 105±3 (for C8) 3 (for other TC) ce Temperature ±2
9	Temperature Characteristics	Capacitance Drift	Within ±0.2% or ±0.05pF (Whichever is larger.) *Do not apply to 1X/25V	*Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/-10°C for one hour and then set for 24±2 hours at room temperature. Perform the initial measurement.	The ranges value over to be within the ln case of a measured a	e specified ranges.*	shown in the table should acitance change should be plying voltage in Applying Voltage (V) e ±2 86) 11) or E4) e ±2 / 6 e ±2 50% of the rated
10	Adhesive of Termin	Strength		or other defect should occur. C Solder resist Baked electrode or copper foil	Fig. 1a using parallel with The soldering reflow method soldering is	ag an eutectic solder. Then the test jig for 10±1 seeing should be done either look and should be conducted uniform and free of defeations, 2N (GRM03), 5N (GRM03)	c. r with an iron or using the letted with care so that the ects such as heat shock.

Below GRM Series Specifications and Test Methods (1) are applied to Non "*" PNs in capacitance table. In case "*" is added in capacitance table, please refer to GRM Series Specifications and Test Methods (2) (P.30). Continued from the preceding page.

		<u> </u>		ications			(=) (- 100)
No.	Ite	·m	Temperature Compensating Type	High Dielectric Type	Tes	t Method	
		Appearance	No defects or abnormalities				
		Capacitance	Within the specified tolerance				
11	Vibration Resistance	Q/D.F.	30pF and over: Q≥1000 30pF and below: Q≥400+20C C: Nominal Capacitance (pF)	[B1, B3, R6, R7, C8] W.V.: 100V : 0.025 max. (C<0.068μF) : 0.05 max. (C≥0.068μF) W.V.: 50/25V : 0.025 max. (C≥10μF) : 0.035 max. (C≥10μF) W.V.: 16/10V: 0.035 max. W.V.: 6.3/4V : 0.05 max. (C≥3.3μF) : 0.1 max. (C≥3.3μF) [E4] W.V.: 25Vmin: 0.025 max. [F1, F5] W.V.: 25V min. : 0.05 max. (C<0.1μF) : 0.09 max. (C≥0.1μF) W.V.: 16/10V: 0.125 max. W.V.: 6.3V: 0.15 max.	Solder the capacitor on the t same manner and under the The capacitor should be sub having a total amplitude of 1 uniformly between the appro- frequency range, from 10 to be traversed in approximatel applied for a period of 2 hou perpendicular directions (total	same conditions a sected to a simple had been same, the frequency simate limits of 10 pdf. and return to y 1 minute. This makes in each of 3 mutters and sections are sections.	s (10). narmonic motion by being varied and 55Hz. The 10Hz, should otion should be
12	Deflection	٦	No crack or marked defect sho	0 Pressurizing speed: 1.0mm/sec. Pressurize Flexure: ≤1	Type a GRM02 0.2 GRM03 0.3 GRM15 0.4 GRM18 1.0 GRM21 1.2 GRM31 2.2 GRM32 2.2 GRM32 2.2 GRM43 3.5 GRM55 4.5	older. Then apply a 5±1 sec. The solo nd should be cond	a force in the dering should be ucted with care cts such as heat
13	Solderabi Terminatio		75% of the terminations are to continuously.	be soldered evenly and	Immerse the capacitor in a s rosin (JIS-K-5902) (25% rosin Preheat at 80 to 120°C for 10 After preheating, immerse in 2±0.5 seconds at 230±5°C of c 2±0.5 seconds at 245±5	n in weight proport to 30 seconds. an eutectic solder r Sn-3.0Ag-0.5Cu	solution for

Below GRM Series Specifications and Test Methods (1) are applied to Non "*" PNs in capacitance table. In case "*" is added in capacitance table, please refer to GRM Series Specifications and Test Methods (2) (P.30). Continued from the preceding page.

	Continued ii	om the pree		ications	efer to GRM Series Specifications and Test Methods (2) (P.30).
No.	Ite	em	Temperature Compensating Type	High Dielectric Type	Test Method
			The measured and observed chapecifications in the following ta	-	
		Appearance	No defects or abnormalities		
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±7.5% F1, F5, E4: Within ±20%	
14	Resistance to Soldering Heat	Q/D.F.	30pF and over: Q≥1000 30pF and below: Q≥400+20C C: Nominal Capacitance (pF)	[B1, B3, R6, R7, C8] W.V.: 100V : 0.025 max. (C<0.068μF) : 0.05 max. (C≥0.068μF) W.V.: 50/25V : 0.025 max. (C≥10μF) : 0.035 max. (C≥10μF) W.V.: 16/10V: 0.035 max. W.V.: 6.3/4V : 0.05 max. (C<3.3μF) : 0.1 max. (C≥3.3μF) [E4] W.V.: 25Vmin: 0.025 max. [F1, F5] W.V.: 25V min. : 0.05 max. (C<0.1μF) : 0.09 max. (C≥0.1μF)	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the capacitor in an eutectic solder or Sn-3.0Ag-0.5Cu solder solution at 270±5°C for 10±0.5 seconds. Set at room temperature for 24±2 hours, then measure. •Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/-10°C for one hour and then set at room temperature for 24±2 hours. Perform the initial measurement. •Preheating for GRM32/43/55 Step Temperature Time 1 100 to 120°C 1 min. 2 170 to 200°C 1 min.
		I.R.	More than $10,000\text{M}\Omega$ or 500Ω	W.V.: 16/10V: 0.125 max. W.V.: 6.3V: 0.15 max. • F (Whichever is smaller)	
		Dielectric Strength	No defects	,	
			The measured and observed chapecifications in the following ta		
		Appearance	No defects or abnormalities		
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±7.5% F1, F5, E4: Within ±20%	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (10). Perform the five cycles according to the four heat treatments
				[R6, R7, C8] W.V.: 100V	shown in the following table. Set for 24±2 hours at room temperature, then measure.
				: 0.05 max. (C<0.068µF)	Step 1 2 3 4
	-			: 0.075 max. (C≧0.068µF) W.V.: 50/25/16/10V : 0.05 max.	Temp. (°C) Min. Operating Temp. +0/-3 Room Temp. Temp. +3/-0 Room Temp.
15	Temperature Cycle		30pF and over: Q≧1000	W.V.: 6.3/4V : 0.075 max. (C<3.3µF)	Time (min.) 30±3 2 to 3 30±3 2 to 3
		Q/D.F.	30pF and below: Q≥400+20C C: Nominal Capacitance (pF)	: 0.125 max. (C≥3.3µF) [E4] W.V.: 25Vmin: 0.05 max. [F1, F5]	•Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/-10°C for one hour and then set at room temperature for 24±2 hours. Perform the initial measurement.
				W.V.: 25V min. : 0.05 max. (C<0.1μF) : 0.09 max. (C≥0.1μF) W.V.: 16/10V: 0.125 max. W.V.: 6.3V: 0.15 max.	
		I.R.	More than $10,000\text{M}\Omega$ or 500Ω		-
		Dielectric Strength	No defects	. ,	

Below GRM Series Specifications and Test Methods (1) are applied to Non "*" PNs in capacitance table. In case "*" is added in capacitance table, please refer to GRM Series Specifications and Test Methods (2) (P.30). Continued from the preceding page.

		Specif	cations	
O. I	em	Temperature Compensating Type	High Dielectric Type	Test Method
		The measured and observed chapecifications in the following ta	•	
	Appearance	No defects or abnormalities		
	Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±12.5% F1, F5, E4: Within ±30%	
Humidity 6 (Steady State)	Q/D.F.	30pF and over: Q≥350 10pF and over 30pF and below: Q≥275+2.5C 10pF and below: Q≥200+10C C: Nominal Capacitance (pF)	[R6, R7, C8] W.V.: 100V : 0.05 max. (C<0.068μF) : 0.075 max. (C≥0.068μF) W.V.: 50/25/16/10V : 0.05 max. W.V.: 6.3/4V : 0.075 max. (C≥3.3μF) : 0.125 max. (C≥3.3μF) [E4] W.V.: 25Vmin: 0.05 max. [F1, F5] W.V.: 25V min. : 0.075 max. (C<0.1μF) : 0.125 max. (C≥0.1μF) W.V.: 16/10V: 0.15 max. W.V.: 6.3V: 0.2 max.	Set the capacitor at 40±2°C and in 90 to 95% humidity for 500±12 hours. Remove and set for 24±2 hours at room temperature, then measure.
	I.R.	More than 1,000M Ω or 50 Ω · F	(Whichever is smaller)	
		The measured and observed chapecifications in the following ta	-	
	Appearance	No defects or abnormalities		
		THE GOLOGIC OF GENERALISE		
	Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±12.5% F1, F5, E4: Within ±30% [W.V.: 10V max.] F1, F5: Within +30/-40%	
7 Humidity Load		Within ±7.5% or ±0.75pF	: Within ±12.5% F1, F5, E4: Within ±30% [W.V.: 10V max.]	Apply the rated voltage at 40±2°C and 90 to 95% humidity fo 500±12 hours. Remove and set for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA. •Initial measurement for F1, F5/10V max. Apply the rated DC voltage for 1 hour at 40±2°C. Remove and set for 24±2 hours at room temperature. Perform initial measurement.

Below GRM Series Specifications and Test Methods (1) are applied to Non "*" PNs in capacitance table. In case "*" is added in capacitance table, please refer to GRM Series Specifications and Test Methods (2) (P.30). Continued from the preceding page.

			Specifications		erer to GRM Series Specifications and Test Methods (2) (P.30).
No.			Temperature Compensating Type	High Dielectric Type	Test Method
			The measured and observed characteristics should satisfy the specifications in the following table.		
	High Temperature Load	Appearance	No defects or abnormalities		
		Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±12.5% F1, F5, E4: Within ±30% [Except 10V max. and. C≥1.0µF] F1, F5: Within +30/−40% [10V max. and C≥1.0µF]	Apply 200%* of the rated voltage at the maximum operating temperature ±3℃ for 1000±12 hours.
18		Q/D.F.	30pF and over: Q≥350 10pF and over 30pF and below: Q≥275+2.5C 10pF and below: Q≥200+10C C: Nominal Capacitance (pF)	[B1, B3, R6, R7, C8] W.V.: 100V : 0.05 max. (C<0.068μF) : 0.075 max. (C≥0.068μF) W.V.: 50/25/16/10V : 0.05 max. W.V.: 6.3/4V : 0.075 max. (C≤3.3μF) : 0.125 max. (C≥3.3μF) [E4] W.V.: 25Vmin: 0.05 max. [F1, F5] W.V.: 25V min. : 0.075 max.(C<0.1μF) : 0.125 max.(C≥0.1μF) W.V.: 16/10V: 0.15 max. W.V.: 6.3V: 0.2 max.	Set for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA. •Initial measurement for high dielectric constant type. Apply 200% of the rated DC voltage at the maximum operating temperature ±3°C for one hour. Remove and set for 24±2 hours at room temperature. Perform initial measurement. *150% for 500V
		I.R.	More than 1,000M Ω or 50 Ω · F	(Whichever is smaller)	

Table A-1

(1)									
		Capacitance Change from 25°C (%)							
Char.	Nominal Values (ppm/°C)*1	- 55		-30		-10			
		Max.	Min.	Max.	Min.	Max.	Min.		
5C	0± 30	0.58	-0.24	0.40	-0.17	0.25	-0.11		
6C	0± 60	0.87	-0.48	0.59	-0.33	0.38	-0.21		
6P	-150± 60	2.33	0.72	1.61	0.50	1.02	0.32		
6R	-220± 60	3.02	1.28	2.08	0.88	1.32	0.56		
6S	-330± 60	4.09	2.16	2.81	1.49	1.79	0.95		
6T	-470± 60	5.46	3.28	3.75	2.26	2.39	1.44		
7U	-750±120	8.78	5.04	6.04	3.47	3.84	2.21		
1X	+350 to -1000	_	_	_	_	_	_		

^{*1:} Nominal values denote the temperature coefficient within a range of 25℃ to 125℃ (for ΔC)/85℃ (for other TC).

(2)

		Capacitance Change from 20℃ (%)						
Char.	Nominal Values (ppm/°C)*2	_	- 55		- 25		-10	
		Max.	Min.	Max.	Min.	Max.	Min.	
2C	0± 60	0.82	-0.45	0.49	-0.27	0.33	-0.18	
3C	0±120	1.37	-0.90	0.82	-0.54	0.55	-0.36	
4C	0±250	2.56	-1.88	1.54	-1.13	1.02	-0.75	
2P	-150± 60	_	_	1.32	0.41	0.88	0.27	
3P	-150±120	_	_	1.65	0.14	1.10	0.09	
4P	-150±250	_	_	2.36	-0.45	1.57	-0.30	
2R	-220± 60	_	_	1.70	0.72	1.13	0.48	
3R	-220±120	_	_	2.03	0.45	1.35	0.30	
4R	-220±250	_	_	2.74	-0.14	1.83	-0.09	
2S	-330± 60	_	_	2.30	1.22	1.54	0.81	
3S	-330±120	_	_	2.63	0.95	1.76	0.63	
4S	-330±250	_	_	3.35	0.36	2.23	0.24	
2T	-470± 60	_	_	3.07	1.85	2.05	1.23	
3T	-470±120	_	_	3.40	1.58	2.27	1.05	
4T	-470±250	_	_	4.12	0.99	2.74	0.66	
3U	-750±120	_	_	4.94	2.84	3.29	1.89	
4U	-750±250	_	_	5.65	2.25	3.77	1.50	

^{*2:} Nominal values denote the temperature coefficient within a range of 20°C to 125°C (for ∆C)/85°C (for other TC).

Below GRM Series Specifications and Test Methods (2) are applied to "*" PNs in capacitance table. In case "*" is not added in capacitance table, please refer to GRM Series Specifications and Test Methods (1) (P.24).

No.	Ite	em	Specifications		Test Method			
1	Operating Temperature Range		B1, B3, F1: -25 to +85°C R6: -55 to +85°C R7, C7: -55 to +125°C F5: -30 to +85°C C8: -55 to +105°C,		ference temperature: 25℃ 1, B3, F1: 20℃)			
2	Rated Voltage		See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p,p} or \ whichever is larger, should be maintained within the rated voltage range.				
3	Appearar	nce	No defects or abnormalities	Visual insp	pection			
4	Dimensio	ns	Within the specified dimensions	Using calip	lipers			
5	Dielectric	Strength	No defects or abnormalities	No failure should be observed when 250% of the rated volta is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.				
6	Insulation Resistance		More than $50\Omega \cdot F$	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at reference temperature and 75%RH max. and within 1 minutes of charging, provided the charge/discharge current is less than 50mA.				
7	Capacita	nce	Within the specified tolerance		itance/D.F. should be measured			
8	Dissipation Factor (D.F.)		B1, B3, R6* ² , R7, C7, C8: 0.1 max. F1, F5: 0.2 max.	temperature at the frequency and voltage shown in the table. Capacitance Frequency Voltage C≦10µF (10V min.)*¹ 1±0.1kHz 1.0±0.2Vrms C≤10µF (6.3V max.) 1±0.1kHz 0.5±0.1Vrms C>10µF 120±24Hz 0.5±0.1Vrms *1 However the voltage is 0.5±0.1Vrms about Table 1 items on the left side.				
		No bias	B1, B3: Within ±10% (-25 to +85°C) F1 : Within +30/-80% (-25 to +85°C) R6 : Within ±15% (-55 to +85°C) R7 : Within ±15% (-55 to +125°C) F5 : Within +22/-82% (-30 to +85°C) C7 : Within ±22% (-55 to +125°C) C8 : Within ±22% (-55 to +105°C)	each speci The ranges reference t shown in the In case of measured	nce change should be measured after 5 min. at d temp. stage. If capacitance change compared with the near ture value over the temperature ranges table should be within the specified ranges.* plying voltage, the capacitance change should be ter 1 more min. with applying voltage in of each temp. stage.			
	Capacitance Temperature			*GRM43 B1/R6 0J/1A 336/476 only: 1.0: Step Temperature (°C)		Applying Voltage (V)		
				1 1	Reference temperature ±2	Applying voltage (v)		
9				2	-55±3 (for R6, C7, C8)/ -25±3 (for B1, B3, F1) -30±3 (for F5)			
	Characteristics			3	Reference temperature ±2	No bias		
		50% of the Rated Voltage	Rated B1: Within +10/-30% F1: Within +30/-95%	4	85±3 (for B1, B3, F1, R6, F5) 125±3 (for C7)/ 105±3 (for C8)			
				5	20±2			
				6	–25±3 (for B1, F1)	50% of the rated		
				7	20±2	voltage		
				8	85±3 (for B1, F1)			
				Perform a then set fo	asurement for high dielectric co heat treatment at 150 +0/–10° r 24±2 hours at room temperat e initial measurement.	C for one hour and		

*2: GRM31CR60J107: 0.15 max.

Below GRM Series Specifications and Test Methods (2) are applied to "*" PNs in capacitance table. Continued from the preceding page. In case "*" is not added in capacitance table, please refer to GRM Series Specifications and Test Methods (1) (P.24). Specifications No. Item Test Method No removal of the terminations or other defects should occur. Solder the capacitor on the test jig (glass epoxy board) shown in Fig. 1a using an eutectic solder. Then apply 10N* force in parallel with the test jig for 10±1sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. *5N: GRM15/GRM18, 2N: GRM03 Type b Adhesive Strength GRM02 0.2 0.56 0.23 10 of Termination GRM03 0.3 0.9 0.3 GRM15 0.5 0.415 Solder resist GRM18 1.0 3.0 1.2 Baked electrode or GRM21 1.2 1.65 4.0 copper foil GRM31 5.0 2.0 2.2 Fig. 1a 22 29 GRM32 5.0 GRM43 3.5 7.0 3.7 GRM55 4.5 8.0 No defects or abnormalities Appearance Solder the capacitor on the test jig (glass epoxy board) in the same manner and under the same conditions as (10). Capacitance Within the specified tolerance The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied 11 Vibration uniformly between the approximate limits of 10 and 55Hz. The B1, B3, R6*2, R7, C7, C8: 0.1 max. frequency range, from 10 to 55Hz and return to 10Hz, should D.F. F1, F5: 0.2 max. be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours). No cracking or marking defects should occur. Solder the capacitor on the test jig (glass epoxy board) shown in Fig. 2a using an eutectic solder. Then apply a force in the direction shown in Fig. 3a for 5±1 sec. The soldering should be done by the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 50 Pressurizing speed : 1.0mm/sec Pressurize R230 Flexure : ≤1 t: 1.6mm Deflection Fig. 2a 45 45 (GRM03/15: t: 0.8mm) Type b а Fig.3a GRM02 0.2 0.56 0.23 GRM03 0.3 0.9 0.3 GRM15 0.415 0.5 GRM18 1.0 3.0 1.2 GRM21 1.2 4.0 1.65 2.2 5.0 2.0 GRM31 GRM32 2.2 5.0 2.9 GRM43 7.0 3.7 3.5 GRM55 4.5 8.0 5.6

*2: GRM31CR60J107: 0.15 max.

continuously

Solderability of

Termination

13

Continued on the following page.

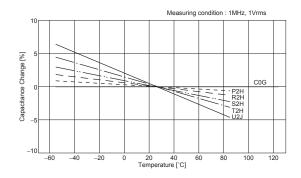
Immerse the capacitor in a solution of ethanol (JIS-K-8101) and

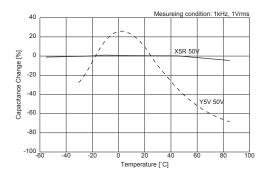
rosin (JIS-K-5902) (25% rosin in weight proportion) . Preheat at 80 to 120°C for 10 to 30 seconds.

for 2±0.5 seconds at 245±5°C.

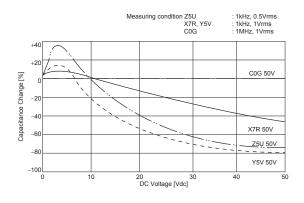
After preheating, immerse in an eutectic solder solution for 2±0.5 seconds at 230±5℃ or Sn-3.0Ag-0.5Cu solder solution

75% of the terminations is to be soldered evenly and

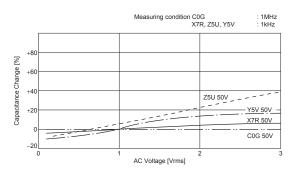

Below GRM Series Specifications and Test Methods (2) are applied to "*" PNs in capacitance table. Continued from the preceding page. In case "*" is not added in capacitance table, please refer to GRM Series Specifications and Test Methods (1) (P.24).

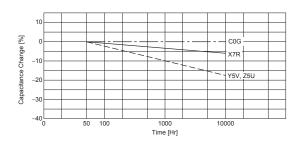

lo. Item		Specifications		Test Method				
	Appearance Capacitance Change	No defects or abnormalities B1, B3, R6, R7, C7, C8: Within ±7.5% F1, F5: Within ±20%	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the capacitor in an eutectic solder or Sn-3.0Ag solder solution at 270±5°C for 10±0.5 seconds. Set at ro			•		
	D.F.	B1, B3, R6* ² , R7, C7, C8: 0.1 max. F1, F5: 0.2 max.		*Do not apply to GRM02. *Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/-10°C for one hour and				
Resistance	I.R.	More than $50\Omega \cdot F$						
14 to Soldering Heat	Dialogtria		Perform a heat treatment at 150+0/−10℃ for one hour and then set at room temperature for 24±2 hours. Perform the initial measurement.					
	Dielectric Strength	No defects	*Preheating for GRM32/43/55 Step Temperature			Ti	Time	
			<u> </u>	100 to 120℃			1 min.	
			2				min.	
	Appearance	No defects or abnormalities	Fix the capac	itor to the supp	orting jig	in the same m	anner and	
	Capacitance Change	B1, B3, R6, R7, C7, C8: Within ±7.5% F1, F5: Within ±20%	under the same conditions as (10). Perform the five cycles according to the four heat treatments shown in the following table.					
	D.F.	B1, B3, R6*2, R7, C7, C8: 0.1 max. F1, F5: 0.2 max.	Set for 24±2 hours at room temperate					
Temperature	I.R.	More than $50\Omega \cdot F$	Step	Min.	2	3 Max.	4	
Sudden Change			Temp. (℃)	Operating Temp. +0/-3	Room Temp.	Operating Temp. +3/-0	Room Temp.	
	Dielectric Strength	No defects	Time (min.) 30±3 2 to 3 30±3 2 to 3 •Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/-10°C for one hour and then set at room temperature for 24±2 hours. Perform the initial measurement.					
	Appearance	No defects or abnormalities	Apply the rated voltage at 40±2℃ and 90 to 95% humidity for					
High	Capacitance Change	B1, B3, R6, R7, C7, C8: Within ±12.5% F1, F5: Within ±30%	500±12 hours. The charge/discharge current is less than Initial measurement				than 50m.	
Temperature High Humidity	D.F.	B1, B3, R6, R7, C7, C8: 0.2 max. F1, F5: 0.4 max.	Perform a heat treatment at 150+0/-10°C for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement.					
(Steady)	I.R.	More than 12.5 Ω · F	•Measurement after test Perform a heat treatment at 150+0/−10℃ for one then let sit for 24±2 hours at room temperature, the statement of					
	Appearance	No defects or abnormalities	1 ' ' '		U	000±12 hours a		
	Capacitance Change	B1, B3, R6, R7, C7, C8: Within ±12.5% F1, F5: Within ±30%	maximum operating temperature ±3°C. Let sit for 24±2 he room temperature, then measure. The charge/discharge current is less than 50mA.			±2 hours		
	D.F.	B1, B3, R6, R7, C7, C8: 0.2 max. F1, F5: 0.4 max.	Initial measurement					
17 Durability	I.R.	More than $25\Omega \cdot F$	Perform a heat treatment at 150+0/-10°C for one hour then let sit for 24±2 hours at room temperature. Perforr initial measurement. •Measurement after test Perform a heat treatment at 150+0/-10°C for one hour then let sit for 24±2 hours at room temperature, then m			orm the		

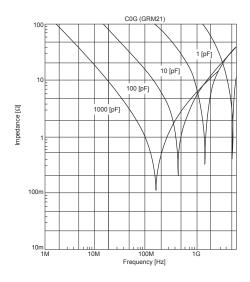
^{*2:} GRM31CR60J107: 0.15 max.


GRM Series Data

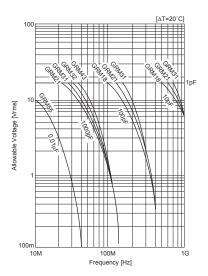
■ Capacitance - Temperature Characteristics

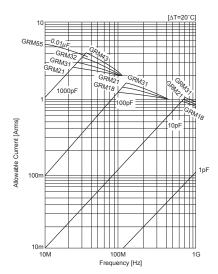



■ Capacitance - DC Voltage Characteristics

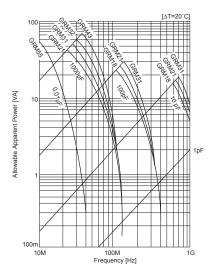

■ Capacitance - AC Voltage Characteristics

■ Capacitance Change - Aging


■ Impedance - Frequency Characteristics


GRM Series Data

Continued from the preceding page.

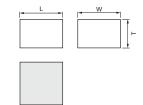

■ Allowable Voltage - Frequency

■ Allowable Current - Frequency

■ Allowable Apparent Power - Frequency

Chip Monolithic Ceramic Capacitors

Microchips GMA Series


■ Features

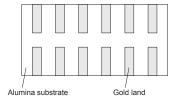
- 1. Better microwave characteristics
- 2. Suitable for by-passing
- 3. High density mounting

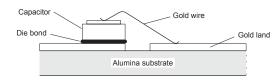
Applications

- 1. Optical device for telecommunication
- 2. IC, IC packaging built-in
- 3. Measuring equipment

Part Number	Dimensions (mm)					
Part Number	L	W	T			
GMA05X	0.5 ±0.05	0.5 ±0.05	0.35 ±0.05			
GMA085	0.8 ±0.05	0.8 ±0.05	0.5 ±0.1			

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)
GMA05XR72A101MD01	X7R (EIA)	100	100pF ±20%	0.5	0.5	0.35
GMA05XR72A151MD01	X7R (EIA)	100	150pF ±20%	0.5	0.5	0.35
GMA05XR72A221MD01	X7R (EIA)	100	220pF ±20%	0.5	0.5	0.35
GMA05XR72A331MD01	X7R (EIA)	100	330pF ±20%	0.5	0.5	0.35
GMA085R72A331MD01	X7R (EIA)	100	330pF ±20%	0.8	0.8	0.5
GMA085R72A471MD01	X7R (EIA)	100	470pF ±20%	0.8	0.8	0.5
GMA085R72A681MD01	X7R (EIA)	100	680pF ±20%	0.8	0.8	0.5
GMA085R72A102MD01	X7R (EIA)	100	1000pF ±20%	0.8	0.8	0.5
GMA05XR71H161MD01	X7R (EIA)	50	160pF ±20%	0.5	0.5	0.35
GMA05XR71H331MD01	X7R (EIA)	50	330pF ±20%	0.5	0.5	0.35
GMA05XR71H471MD01	X7R (EIA)	50	470pF ±20%	0.5	0.5	0.35
GMA05XR71C431MD01	X7R (EIA)	16	430pF ±20%	0.5	0.5	0.35
GMA05XR71C471MD01	X7R (EIA)	16	470pF ±20%	0.5	0.5	0.35
GMA05XR71C681MD01	X7R (EIA)	16	680pF ±20%	0.5	0.5	0.35
GMA05XR71C102MD01	X7R (EIA)	16	1000pF ±20%	0.5	0.5	0.35
GMA085R71C102MD01	X7R (EIA)	16	1000pF ±20%	0.8	0.8	0.5
GMA05XR71C152MD01	X7R (EIA)	16	1500pF ±20%	0.5	0.5	0.35
GMA085R71C152MD01	X7R (EIA)	16	1500pF ±20%	0.8	0.8	0.5
GMA05XR71C222MD01	X7R (EIA)	16	2200pF ±20%	0.5	0.5	0.35
GMA085R71C222MD01	X7R (EIA)	16	2200pF ±20%	0.8	0.8	0.5
GMA085R71C332MD01	X7R (EIA)	16	3300pF ±20%	0.8	0.8	0.5
GMA085R71C472MD01	X7R (EIA)	16	4700pF ±20%	0.8	0.8	0.5
GMA085R71C682MD01	X7R (EIA)	16	6800pF ±20%	0.8	0.8	0.5
GMA085R71C103MD01	X7R (EIA)	16	10000pF ±20%	0.8	0.8	0.5


No.	Ite	em	Specifications		Test Method										
1	Operating Temperating Range	-	R7: −55 to +125°C	Reference	Temperature: 25%	С									
2	Rated Vo	Voltage See the previous pages.		The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p,p} or V ^{0,p} , whichever is larger, should be maintained within the rated voltage range.											
3	Appearar	nce	No defects or abnormalities	Using calip	ers										
4	Dimensio	ns	Within the specified dimersions	Visual insp	ection										
5			No defects or abnormalities	rated voltage	should be observed ge is applied betwo rovided the charge	een the both	termination	s for 1 to 5							
6	Insulation	Resistance	10,000MΩ min.	voltage no	tion resistance sho t exceeding the rat ity and within 2 mi	ted voltage a	at normal te								
7	Capacita	nce	Within the specified tolerance		itance/D.F. should										
	Dississation	Ft		temperatur	e at the frequency	/ and voltage	e shown in t	he table.							
8	Dissipation (D.F.)	n Factor	R7: 0.035 max.	Freque Voltage		1±0.1k 1±0.2V									
		No bias	No bias	No bias	No bias				each speci •The range Reference shown in the In case of a measured	itance change sho fied temp. stage. es of capacitance of Temperature valune table should be applying voltage, tafter 1 more min. van of each temp. st	change comple over the tell within the spirite capacitan with applying	pared with temperature pecified ran	he ranges ges.*		
	Capacitance						Step	Temperature		Applying	Voltage (V)				
9	Temperature Characteristics					No bias	R7: Within +/–15% (–55 to +125°C)	2	Reference Tem -55±3 (fo -30±3 (fo	or R7)	No	bias			
												3	Reference Tem	perature±2	
							4	125±3 (fo 85±3 (fo							
				*Initial measurement for high dielectric constant type Perform a heat treatment at 150 +0/-10°C for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement.											
10	Mechanical	Bond Strength	Pull force: 0.03N min.	Mount the 6 Au-Sn (80/2	883 Method 2011 (capacitor on a gold 20) and bond a 25 ₁ erminal using an ul	l metallized a μm (0.0008 ir	nch) gold wi	re to the							
	Strength	Die Shear Strength	Die Shear force: 2N min.	Mount the	883 Method 2019 capacitor on a gol (80/20). Apply the										
		Appearance	No defects or abnormalities		uency from 10 to 5										
11	Vibration Resistance	Capacitance	Within the specified tolerance		Amplitude: 1.5 mm motion for a period	. ,									
		D.F.	R7: 0.035 max.	 Apply this motion for a period of 2 hours in each of 3 mutually perpendicular directions (total 6 hours). 											
		Appearance	No defects or abnormalities		itor should be set										
		Capacitance Change	R7: Within ±7.5%	then meas	re after one hour hour hour hour hour for the initial moting jig in the same	neasurement	t. Fix the ca	pacitor to							
	Tomporet	D.F.	R7: 0.035 max.	conditions	as (11) and condu	act the five cy	ycles accord	ding to the							
12	Temperature Cycle	I.R.	10,000M Ω min.		es and time show s at room tempera		•	Set it for							
		Dielectric Strength	No defects	Step Temp. (%	1 Min. Operating Temp. +0/-3	2 Room Max	3 ex. Operating emp. +3/-0 30±3	Room Temp. 2 to 3							
				- (,,		-								

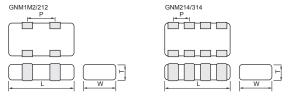


Continued from	the preceding pag	e.
----------------	-------------------	----

No.	Ite	em	Specifications	Test Method
		Appearance	No defects or abnormalities	
13	Humidity (Standy State)	Capacitance Change	R7: Within ±12.5%	Set the capacitor for 500±12 hours at 40±20°C, in 90 to 95% humidity.
	(Steady State)	D.F.	R7: 0.05 max.	Take it out and set it for 24±2 hours at room temperature, then measure.
		I.R.	1,000M Ω min.	
	Humidity Load	Appearance	No defects or abnormalities	
14		Capacitance Change	R7: Within ±12.5%	Apply the rated voltage for 500±12 hours at 40±2°C, in 90 to 95% humidity and set it for 24±2 hours at room
		D.F.	R7: 0.05 max.	temperature,then measure. The charge/discharge current is less than 50mA.
		I.R.	500M Ω min.	
		Appearance	No defects or abnormalities	A voltage treatment should be given to the capacitor, in which a
	High	Capacitance Change	R7: Within ±12.5%	DC voltage of 200% the rated voltage is applied for one hour at the maximum operating temperature ±3°C then it should be set for 24±2 hours at room temperature and the initial measurement
15	Temperature	D.F.	R7: 0.05 max.	should be conducted.
	Load	I.R.	1,000MΩ min.	Then apply the above mentioned voltage continuously for 1000±12 hours at the same temperature, remove it from the bath, and set it for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.

Mounting for testing: The capacitors should be mounted on the substrate as shown below using die bonding and wire bonding when tests No.11 to 15 are performed.

Chip Monolithic Ceramic Capacitors


Capacitor Arrays GNM Series

■ Features

- 1. High density mounting due to mounting space saving
- 2. Mounting cost saving

■ Applications

General electronic equipment

Part Number	Dimensions (mm)						
Part Number	L	W	T	Р			
GNM1M2	1.37 +0.15	1.0 ±0.15	0.6 ±0.1	0.64 +0.05			
GNWTWZ	1.37 ±0.13	1.0 ±0.15	0.8 +0/-0.15	0.04 ±0.05			
GNM212	2.0 +0.15	1.25 +0.15	0.85 ±0.1	1.0 ±0.1			
GNM214	2.0 ±0.13	1.25 ±0.15	0.6 ±0.1	0.5 ±0.05			
GNM314	3.2 +0.15	1.6 +0.15	0.8 ±0.1	0.8 +0.1			
GNW314	3.2 ±0.13	1.0 ±0.15	1.0 ±0.1	0.6 ±0.1			

Temperature Compensating Type

Part Number		GNM1M	GNM21	GN	M31
LxW		1.37x1.0	2.0x1.25	3.2	x1.6
тс		C0G (5C)	C0G (5C)		0G (C)
Rated Volt.		50 (1H)	50 (1H)	100 (2A)	50 (1H)
Capacitance, Ca	pacitano	e Tolerance and T Dimension			
10pF(100)	K	0.6(2)	0.6(4)	0.8(4)	0.8(4)
15pF(150)	K	0.6(2)	0.6(4)	0.8(4)	0.8(4)
22pF(220)	K	0.6(2)	0.6(4)	0.8(4)	0.8(4)
27pF(270)	K	0.6(2)	0.6(4)	0.8(4)	0.8(4)
33pF(330)	K	0.6(2)	0.6(4)	0.8(4)	0.8(4)
39pF(390)	K	0.6(2)	0.6(4)	0.8(4)	0.8(4)
47pF(470)	K	0.6(2)	0.6(4)	0.8(4)	0.8(4)
68pF(680)	K	0.6(2)	0.6(4)	0.8(4)	0.8(4)
100pF(101)	K	0.6(2)	0.6(4)	0.8(4)	0.8(4)
150pF(151)	K	0.6(2)	0.6(4)	0.8(4)	0.8(4)
220pF(221)	K	0.6(2)	0.6(4)		0.8(4)
270pF(271)	K				0.8(4)
330pF(331)	K				0.8(4)

The part numbering code is shown in each (). The (4) code in T (mm) means number of elements (four). Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type GNM1M Series

Part Number			GNM1M								
LxW			1.37x1.0								
тс			X5R (R6)			X7R (R7)					
Rated Volt.		16 (1C)	10 (1A)	6.3 (0J)	50 (1H)	25 (1E)	16 (1C)	10 (1A)			
Capacitance, Ca	pacitano	e Tolerance and	T Dimension	,		,					
1000pF(102)	М				0.6(2)						
2200pF(222)	K, M					0.6(2)					
4700pF(472)	K, M					0.6(2)					
10000pF(103)	М					0.6(2)					
22000pF(223)	K, M	0.6(2)	0.6(2)				0.6(2)	0.6(2)			

Continued from the preceding page.

Part Number					GNM1M				
LxW		1.37x1.0							
тс			X5R (R6)			X7R (R7)			
Rated Volt.		16 (1C)	10 (1A)	6.3 (0J)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	
Capacitance, Ca	pacitanc	e Tolerance and	T Dimension						
47000pF(473)	K, M	0.6(2)	0.6(2)				0.6(2)	0.6(2)	
0.10μF(104)	М		0.6(2)						
1.0μF(105)	М	0.8(2)	0.8(2)	0.8(2)					

The part numbering code is shown in each (). The (2) code in T (mm) means number of elements (two).

High Dielectric Constant Type GNM21 Series

Part Number				GNM21					
LxW		2.0x1.25							
тс			X5R (R6)		X7R (R7)				
Rated Volt.		16 (1C)	10 (1A)	50 (1H)	25 (1E)	16 (1C)			
Capacitance, Ca	pacitano	e Tolerance and T Dime	nsion						
1000pF(102)	М			0.6(4)					
2200pF(222)	K, M				0.6(4)				
4700pF(472)	K, M				0.6(4)				
10000pF(103)	М				0.6(4)				
22000pF(223)	K, M					0.85(4)			
47000pF(473)	K, M					0.85(4)			
0.10μF(104)	М					0.85(4)			
0.47μF(474)	М	0.85(2)							
1.0μF(105)	М	0.85(2)	0.85(4)						
2.2μF(225)	K, M		0.85(2)						

The part numbering code is shown in each (). The (2) code in T (mm) means number of elements (two).

High Dielectric Constant Type GNM31 Series

Part Number			GN	M31			
LxW		3.2x1.6					
TC Rated Volt.		X7R (R7)			X5R (R6)		
		100 (2A)	50 (1H)	16 (1C)	10 (1A)		
Capacitance, Ca	pacitance	Tolerance and T Dimension					
220pF(221)	K, M	0.8(4)					
330pF(331)	K, M	0.8(4)					
470pF(471)	K, M	0.8(4)	0.8(4)				
680pF(681)	K, M	0.8(4)	0.8(4)				
1000pF(102)	K, M	0.8(4)	0.8(4)				
1500pF(152)	K, M	0.8(4)	0.8(4)				
2200pF(222)	K, M	0.8(4)	0.8(4)				
3300pF(332)	K, M	0.8(4)	0.8(4)				
4700pF(472)	K, M	0.8(4)	0.8(4)				
6800pF(682)	K, M		0.8(4)				
10000pF(103)	K, M		0.8(4)				

Dimensions are shown in mm and Rated Voltage in Vdc.

Please refer to Specifications and Test Methods (2) about $1.0\mu\text{F}$ products.

Dimensions are shown in mm and Rated Voltage in Vdc.

Please refer to Specifications and Test Methods (2) about X5R, 10V products.

0.85(4)

⚠Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ttd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.

• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Continued from the preceding page. Part Number GNM31 LxW 3.2x1.6 X7R (**R7**) X5R (**R6**) TC 100 (**2A**) 50 (**1H**) 16 (**1C**) 10 (**1A**) Rated Volt. Capacitance, Capacitance Tolerance and T Dimension 15000pF(**153**) K, M 0.8(4) 22000pF(**223**) 0.8(4) K, M 33000pF(**333**) 0.8(4) K, M 47000pF(**473**) K, M 1.0(4) 68000pF(**683**) K, M 1.0(4) $0.10 \mu F(104)$ K, M 1.0(4)

The part numbering code is shown in each (). The (4) code in T (mm) means number of elements (four). Dimensions are shown in mm and Rated Voltage in Vdc.

М

1.0μF(**105**)

No.	Ito	em		Specifications		Tost	Method		
INO.	THE	2111	Temperature Compensating Type	High Dielectric Type		1630	Method		
1	Operating Temperating Range	_	5C: -55 to +125°C	R7: -55 to +125°C R6: -30 to +85°C					
2	Rated Vo	ltage	See the previous pag	ges.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{P-P} or V ^{O-P} , whichever is larger, should be maintained within the rated voltage range.				
3	Appearar	nce	No defects or abnorr	nalities	Visual inspec	ction			
4	Dimensio	ns	Within the specified	dimensions	Using caliper	rs			
5	Dielectric	Strength	No defects or abnorr	nalities	(5C) or 250% terminations	ould be observed 6 of the rated volt for 1 to 5 second s than 50mA.	age (R7) i	s applied be	etween the
6	Insulation Resistant		More than 10,000MΩ (Whichever is smalle		voltage not e	on resistance show exceeding the rate thin 2 minutes of	ed voltage		
7	Capacita	nce	Within the specified t	olerance		ince/Q/D.F. shou			°C at the
	Q/		30pF min.: Q≥1000 30pF max.:	Char. 25V min. 16V 10V 6.3V	Ch	nd voltage shown ar. 5C	in the tabl	e.	7
8	Dissipation	on Factor	Q≧400+20C	R7, R6 0.025 0.035 0.035 0.05 max. max. max. max.	Item Frequence		lHz	1±0.1	
	(D.F.)		C: Nominal Capacitance (pF)		Voltage	0.5 to 5\	'rms	1.0±0.2	2Vrms
	Capacitance	Capacitance Change Temperature Coefficent	Within the specified tolerance (Table A) Within the specified tolerance	Char. Temp. Range Range Temp. Reference Change Change Cap. Change R7 -55°C to +125°C to +85°C 25°C Within ±15%	each specific (1) Temperal The temperal tance measu temperature should be wi coefficient ar The capacital between the	unce change should temperature stature Compensatiriture Coefficient is ured in step 3 as a sequentially from thin the specified did capacitance of unce drift is calcul maximum and mid 5 by the cap. v	age. ng Type determine a reference step1 thre tolerance nange as 1 ated by dis	ed using the e. When cyc ough 5, the for the tem lable A. viding the deasured val	e capaci- cling the capacitance perature ifferences
9	Temperature Characteristics		(Table A)	st	Step 1		mperature 25±2	-	
					2	-55±3 (for	5C/R7), -	-30±3 (for F	5)
		Capacitance	Within $\pm 0.2\%$ or ± 0.05 pF		3 4	125±3 (fo	25±2 r 5C/R7), 8	85±3 (for F	5)
		Drift	(Whichever is larger.)		The ranges of 25°C value of	ectric Constant T of capacitance ch over the temperat thin the specified	20±2 ype ange com ure ranges	pared with	the above
10	Adhesive Strength of Termination		GNM	GNM 2 GNM 2 Solder resist Copper foil	Fig.1 using a the test jig for The soldering reflow methor	g should be done of d and should be conform and free of the document of the do	hen apply either with onducted v	5N force in an iron or us with care so	parallel with sing the that the

Continued from the preceding page Specifications No Item Test Method Temperature High Dielectric Type Compensating Type Appearance No defects or abnormalities Solder the capacitor to the test jig (glass epoxy board) in the same manner and under the same conditions as (10). The Capacitance Within the specified tolerance capacitor should be subjected to a simple harmonic motion 30pF min.: Q≥1000 having a total amplitude of 1.5mm, the frequency being varied Vibration 30pF max.: uniformly between the approximate limits of 10 and 55Hz. The 11 25V min. Char. 16V 10V 6.3V Resistance Q≥400+20C frequency range, from 10 to 55Hz and return to 10Hz, should 0.025 0.035 0.035 0.05 Q/D.F. R7, R6 be traversed in approximately 1 minute. This motion should be max max. max. max. C: Nominal applied for a period of 2 hours in each of 3 mutually perpendic-Capacitance (pF) ular directions (total of 6 hours). No cracking or marking defects should occur. Solder the capacitor on the test jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. •GNM□□4 •GNM□□2 Then apply a force in the direction shown in Fig. 3 for 5 ± 1 sec. The soldering should be done by the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 100 100 5.0 5.0 50 Pressurizing Pressurize 12 Deflection R230 Flexure : ≤1 d Capacitance meter GNM1M2 2.0±0.05 0.5±0.05 0.32±0.05 0.32±0.05 GNM212 2.0±0.05 0.6±0.05 0.5±0.05 0.5±0.05 2.0±0.05 | 0.7±0.05 | 0.3±0.05 | 0.2±0.05 **GNM214 GNM314** 2.5±0.05 | 0.8±0.05 | 0.4±0.05 | 0.4±0.05 Fig. 3 Fig. 2 Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at Solderability of 75% of the terminations are to be soldered evenly and 13 80 to 120°C for 10 to 30 seconds. After preheating, immerse in Termination continuously. eutectic solder solution for 2±0.5 seconds at 230±5°C or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5°C. Resistance to The measured and observed characteristics should satisfy the Soldering Heat specifications in the following table. Appearance No marking defects Within ±2.5% Preheat the capacitor at 120 to 150°C for 1 minute. Immerse Capacitance or ±0.25pF R7. R6: Within ±7.5% the capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu solder (Whichever is Change solution at 270±5°C for 10±0.5 seconds. Let sit at room larger) temperature for 24±2 hours, then measure. 30pF min.: Q≥1000 14 30pF max. · Initial measurement for high dielectric constant type Char. 25V min. 6.3V 16V 10V Q≥400+20C Perform a heat treatment at 150+0/-10°C for one hour and Q/D.F. 0.025 0.035 0.035 0.05 R7, R6 then let sit for 24±2 hours at room temperature. max. max. max. max

Continued on the following page.

Perform the initial measurement.

C: Nominal

No failure

I.R.

Dielectric

Strength

Capacitance (pF)

More than $10,000M\Omega$ or $500\Omega \cdot F$ (Whichever is smaller)

				Specifications	S										
No.	Temperature Cycle Sp Appearance Not Capacitance Change (W. Iai Strength Not Strength Not Strength Not Capacitance Change Not Capacitance Change (W. Iai Strength Not Strength Not Capacitance Change (W. Capacitance Change (W. Iai Sp. Iai S	Temperature Compensating Type	ŀ	ligh Die	lectric T	уре	_	Tes	st Metho	d					
		ture	The measured and conspecifications in the		istics sh	ould sat	isfy the	Fix the capacitor to the supporting jig in the same manner and							
		Appearance	No marking defects					under the same conditions as (10). Perform the five cycles according to the four heat treatments listed in the following table. Let sit for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant type) at room temperature, then measure.							
			Within ±2.5% or ±0.25pF (Whichever is larger)	R7, R6: Within ±	7.5%										
15		Q/D.F.	30pF min.: Q≥1000 30pF max.: Q≥400+20C	Char. 25V min. 87, R6 0.025	16V 0.035	10V 0.035	6.3V 0.05	Temp. (°C)	Min. Operating Temp. +0/–3	Room Temp.	Max. Operating Temp. +3/–0	Room Temp.			
			C:Nominal Capacitance (pF)	max.	max.	max.	max.	- Time (min.) 30±3 2 to 3 30±3 2 to 3 • Initial measurement for high dielectric constant type							
		I.R.	More than 10,000Mg	or 500Ω · F (Whi	chever i	s smalle	r)	Perform a heat treatment at 150+0/-10°C for one hour and then let sit for 24±2 hours at room temperature.							
			No failure				<u>. </u>		initial measure		simporatare.				
			The measured and c specifications in the		istics sh	ould sat	isfy the								
		Appearance	No marking defects					_							
			Within ±5% or ±0.5pF (Whichever is larger)	R7, R6: Within ±	:12.5%										
16		Q/D.F.	30pF and over: Q≥350 10pF and over, 30pF and below: Q≥275+5C/2 10pF and below: Q≥200+10C C: Nominal Capacitance (pF)	Char. 25V mir R7, R6 0.05 max.	n. 16\ 0.09 max	5 (V/6.3V 0.05 max.	Sit the capacitor at 40±2°C and 90 to 95% humidity for 50 hours. Remove and let sit for 24±2 hours at room temperature, to measure.							
		I.R.	More than 1,000MΩ	or 50Ω · F (Which	ever is s	maller)									
		Dielectric Strength	No failure												
	Humidity	Load	The measured and o		istics sh	ould sat	isfy the								
		Appearance	No marking defects												
		Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	R7, R6: Within ±	12.5%				•)±2°C an	d 90 to 95% hu	ımidity for			
17		Q/D.F.	30pF and over: Q≥200 30pF and below: Q≥100+10C/3 C: Nominal	Char. 25V mir R7, R6 0.05 max.	n. 16V 0.05 max	5 0	//6.3V).05 nax.	- 500±12 hours. Remove and let sit for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.							
			Capacitance (pF)					_							
		I.R.	More than 500MΩ or	25Ω · F (Whichev	er is sm	aller)									
		Dielectric Strength	No failure												

1	Continued	from	the	preceding	page.
---	-----------	------	-----	-----------	-------

\supset	Continued fr	om the prec	eding page.					
				Specif	fications			
No.	Ite	·m	Temperature Compensating Type		High Die	electric T	уре	Test Method
	High Tem Load	perature	The measured and of specifications in the			tics shou	ld satisfy the	
		Appearance	No marking defects					
		Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	R7, R6: \	Within ±1	2.5%		Apply 200% of the rated voltage for 1000±12 hours at the maximum operating temperature ±3°C. Let sit for 24±2 hours at room temperature, then measure. The charqe/discharge current is less than 50mA.
18		Q/D.F.	30pF and over: Q≥350 10pF and over, 30pF and below: Q≥275+5C/2 10pF and below: Q≥200+10C C: Nominal Capacitance (pF)	Char.	0.04 0.05 0.05			Initial measurement for high dielectric constant type. Apply 200% of the rated DC voltage for one hour at the maximum operating temperature ±3°C. Remove and let sit for 24±2 hours at room temperature. Perform initial measurement.
		I.R.	More than 1,000MΩ	or 50Ω · F	(Whichev	er is sm	aller)	

Table A

		Capacitance Change from 25℃ (%)										
Char.	Nominal Values (ppm/℃) Note 1	-5	5℃	-3	0℃	−10°C						
	(ppin/c) Note i	Max.	Min.	Max.	Min.	Max.	Min.					
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11					

Note 1: Nominal values denote the temperature coefficient within a range of 25 to 125°C.

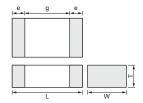
No.	Ite	em	Specifications	Test Method						
1	Operating Temperatu		R6: -55°C to +85°C							
2	Rated Vo	ltage	See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, VP-P or VO-P, whichever is larger, should be maintained within the rated voltage range.						
3	Appearar	nce	No defects or abnormalities	Visual inspection						
4	Dimensio	ns	Within the specified dimension	Using calipers						
5	Dielectric	Strength	No defects or abnormalities	No failure should be observed when 250% of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.						
6	Insulation	Resistance	50Ω · F min.	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 25°C and 75%RH max. and within 1 minute of charging.						
7	Capacita	nce	Within the specified tolerance	The capacitance/D.F. should be measured at 25°C at the						
	Dissipation	on Factor		frequency and voltage shown in the table.						
8	(D.F.)	JII I actor	0.1 max.	Capacitance Frequency Voltage R6 1±0.1kHz 0.5±0.1Vrms						
9	Characteristics Adhesive Strength		Char. Temp. Range Reference Temp. Cap. Change Reference Temp. Cap. Change Temp. Cap. Change Reference Temp. Cap. Change Reference Temp. Cap. Change Temp. Cap. Change Reference Temp. Cap. Cap. Change Reference Temp. Cap. Cap. Cap. Change Reference Temp. Cap. Cap. Cap. Cap. Cap. Cap. Cap. Ca	The capacitance change should be measured affter 5 min.at each specified temperature stage. Step Temperature (°C) 1 25±2 2 -55±3 3 25±2 4 85±3 5 25±2 The ranges of capacitance change compared with the 25°C value over the temperature ranges shown in the table should be within the specified ranges. Initial measurement for high dielectric constant type. Perform a heat treatment at 150+0/-10°C for one hour and then set for 24±2 hours at room temperature. Perform the initial measurement.						
10			No removal of the terminations or other defects should occur.	Solder the capacitor to the test jig (glass epoxy board) shown in Fig. 1 using a eutectic solder. Then apply 5N force in parallel with the test jig for 10±1 sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. Type a b c d GNM1M2 0.5 1.6 0.32 0.32 GNM212 0.6 1.8 0.5 0.5 (in mm)						
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board) in						
		Capacitance	Within the specified tolerance	the same manner and under the same conditions as (10).						
11	Vibration	D.F.	0.1 max.	The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours).						

\overline{A}	Continued fr	om the prec	eding page.									
No.	Ite	em	Specifications	Test Method								
12	Deflection	n	No cracking or marking defects should occur. 20 50 Pressurizing speed: 1.0mm/sec. Pressurize R230 Flexure: ≤1 Capacitance meter 45 45	Solder the capacitor to the test jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done by the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. Thickness: 0.8mm								
			Fig. 3	GNM1M2 2.0±0.5 0.5±0.05 0.32±0.05 0.32±0.05 GNM212 2.0±0.05 0.6±0.05 0.5±0.05 0.5±0.05 (in mm)								
13	Solderabi Terminati	-	75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5°C or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5°C.								
		Appearance	No marking defects	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse								
	Resistance	Capacitance Change	R6: Within ±7.5%	the capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu solder solution at 270±5°C for 10±0.5 seconds.								
14	to Soldering	D.F.	0.1 max.	Let sit at room temperature for 24±2 hours, then measure. • Initial measurement								
	Heat	I.R.	50Ω · F min.	Perform a heat treatment at 150 +0/-10°C for one hour and								
		Dielectric Strength	No failure	then let sit for 24±2 hours at room temperature. Perform the initial measurement.								
		Appearance	No marking defects	Fix the capacitor to the supporting jig in the same manner and								
		Capacitance Change	R6: Within ±12.5%	under the same conditions as (10). Perform the five cycles according to the four heat treatments listed in the following table.								
		D.F.	0.1 max.	Let sit for 24±2 hours at room temperature, then measure.								
	Temperature	I.R.	$50\Omega \cdot$ F min.	Step 1 2 3 4								
15	Cycle			Temp. (°C) Min. Operating Temp. Room Temp. Max. Operating Temp. Room Temp. Time (min.) 30±3 2 to 3 30±3 2 to 3								
		Dielectric Strength	No failure	• Initial measurement Perform a heat treatment at 150 +0/-10 °C for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement.								
		Appearance	No marking defects	Apply the rated voltage at 40±2°C and 90 to 95% humidity for								
	High Temperature	Capacitance Change	R6: Within ±12.5%	500±12 hours. The charge/discharge current is less than 50mA. Initial measurement Perform a heat treatment at 150 +0/-10°C for one hour								
16	High	D.F.	0.2 max.	and then let sit for 24±2 hours at room temperature.								
.0	Humidity (Steady)	I.R.	12.5Ω · F min.	Perform the initial measurement. • Measurement after test								
	(Steady)	Dielectric Strength	No failure	Perform a heat treatment at 150 +0/-10°C for one hour and then let sit for 24±2 hours at room temperature, then measure.								
		Appearance	No marking defects	Apply 125% of the rated voltage for 1000±12 hours at the								
		Capacitance Change	R6: Within ±12.5%	maximum operating temperature ±3°C. Let sit for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.								
		D.F.	0.2 max.	Initial measurement								
17	Durability	I.R.	$25\Omega \cdot F$ min.	Perform a heat treatment at 150 +0/-10°C for one hour								
		Dielectric Strength	No failure	and then let sit for 24±2 hours at room temperature. Perform the initial measurement. • Measurement after test Perform a heat treatment at 150 +0/-10°C for one hour and then let sit for 24±2 hours at room temperature, then measure.								

Chip Monolithic Ceramic Capacitors

for Ultrasonic Sensors GRM Series

■ Features


- 1. Proper to compensate for ultrasonic sensor
- 2. Small chip size and high cap. value

Applications

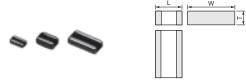
Ultrasonic sensor

(Back sonar, Corner sonar, etc.)

Part Number	Dimensions (mm)										
Part Number	L	W	T	е	g min.						
GRM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	0.7						

Part Number	TC Code	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM2199E2A102KD42	ZLM (Murata)	100	1000 ±10%	2.0	1.25	0.85
GRM2199E2A152KD42	ZLM (Murata)	100	1500 ±10%	2.0	1.25	0.85

No.	Ite	em	Specifications	Test Method					
1	Operating Temperat	,	−25 to +85°C	Reference Temperature: 20°C					
2	Rated Vol	ltage	See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p.p} or V ^{o.p} , whichever is larger, should be maintained within the rated voltage range.					
3	Appearan	ice	No defects or abnormalities	Visual inspection					
4	Dimensio	ns	Within the specified dimensions	Using calipers					
5	Dielectric	Strength	No defects or abnormalities	No failure should be observed when 300% of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.					
6	Insulation (I.R.)	Resistance	More than $10,000 \text{M}\Omega$	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 20°C and 75%RH max. and within 2 minutes of charging.					
7	Capacitar	nce	Within the specified tolerance	The capacitance/D.F. should be measured at 20°C with					
8	Dissipatio (D.F.)	n Factor	0.01 max.	1±0.1kHz in frequency and 1±0.2Vrms in voltage.					
9	Capacitan Temperati Character	ure	Within $-4,700^{+1.900}_{-2.500}$ ppm/°C (at -25 to $+20$ °C) Within $-4,700^{+500}_{-1.000}$ ppm/°C (at $+20$ to $+85$ °C)	The temperature coefficient is determined using the capacitance measured in step 1 as a reference. When cycling the temperature sequentially from step 1 through 5, the capacitance should be within the specified tolerance for the temperature coefficient. The capacitance change should be measured after 5 min. at each specified temperature stage. Step Temperature (°C) 1 20±2 2 -25±3 3 20±2 4 85±3 5 20±2					
10	Adhesive Strength of Termination		No removal of the terminations or other defect should occur.	Solder the capacitor to the test jig (glass epoxy board) shown in Fig.1 using a eutectic solder. Then apply 10N force in the direction of the arrow. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. Solder resist Baked electrode or copper foil Type a b c GRM21 1.2 4.0 1.65 (in mm) Fig. 1					
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board) in the					
		Capacitance	Within the specified tolerance	same manner and under the same conditions as (10).					
11	Vibration Resistance	D.F.	0.01 max.	The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours).					



	Continued fr	om the prec	eding page.								
No.	Ite	em	Specifications	Test Method							
			No cracking or marking defects should occur.	Solder the capacitor to the test jig (glass epoxy boards) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done by the reflow method and should be conducted with care so that the soldering is uniform and free							
12	Deflection	n	Type a b c GRM21 1.2 4.0 1.65 (in mm)	of defects such as heat shock. 20 50 Pressurizing speed: 1.0mm/sec. Pressurize Flexure: ≤1 Capacitance meter 45 45 (in mm) Fig.3							
13	Solderabi Terminati		75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120℃ for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5℃ or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5℃.							
		Appearance	No defects or abnormalities								
	Resistance	Capacitance Change	Within ±7.5%	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu solder solution							
14	to Soldering Heat	D.F.	0.01 max.	at 270±5℃ for 10±0.5 seconds. Let sit at room temperature for							
	rieat	I.R.	More than 10,000M Ω	24±2 hours, then measure.							
		Dielectric Strength	No failure								
		Appearance	No defects or abnormalities	Fix the capacitor to the supporting jig in the same manner and							
	Ŧ.,	Capacitance Change	Within ±7.5%	under the same conditions as (11). Perform the five cycles according to the four heat treatments listed in the following table. Let sit for 24±2 hours at room tem-							
15	Temperature Cycle	D.F.	0.01 max.	perature, then measure.							
		I.R.	More than 10,000M Ω	Step 1 2 3 4 Temp. (°C) -25^{+3}_{-3} Room Temp. 85^{+3}_{-3} Room Temp.							
		Dielectric Strength	No failure	Temp. (°C)							
		Appearance	No defects or abnormalities								
	Humidity,	Capacitance Change	Within ±12.5%	Sit the capacitor at 40±2°C and 90 to 95% humidity for 500±12							
16	Steady	D.F.	0.02 max.	hours. Remove and let sit for 24±2 hours at room temperature, then							
	State	I.R.	More than 1,000M Ω	measure.							
		Dielectric Strength	No failure								
		Appearance	No defects or abnormalities								
17	Humidity Load	Capacitance Change	Within ±12.5%	Apply the rated voltage at 40±2°C and 90 to 95% humidity for 500±12 hours. Remove and let sit for 24±2 hours at room temperature, then measure. The charge/discharge current is less							
	Load	D.F.	0.02 max.	than 50mA.							
		I.R.	More than $500M\Omega$								
		Appearance	No defects or abnormalities								
18	High Temperature	Capacitance Change	Within ±12.5%	Apply 200% of the rated voltage for 1,000±12 hours at 85±3°C. Let sit for 24±2 hours at room temperature, then measure.							
	Load	D.F.	0.02 max.	The charge/discharge current is less than 50mA.							
		I.R.	More than 1,000M Ω								

Chip Monolithic Ceramic Capacitors

Low ESL LLL/LLA/LLM Series

- Features (Reversed Geometry Low ESL Type)
- 1. Low ESL, good for noise reduction for high frequency
- 2. Small, high cap
- Applications
- 1. High speed microprocessor
- 2. High frequency digital equipment

Part Number		Dimensions (mm))		
Fait Number	L	W	T		
LLL153	0.5 ±0.05	1.0 ±0.05	0.3 ±0.05		
LLL185	0.8 ±0.1	1.6 ±0.1	0.6 max.		
LLL215			0.5 +0/-0.15		
LLL216	1.25 ±0.1	2.0 ±0.1	0.6 ±0.1		
LLL219			0.85 ±0.1		
LLL315			0.5 +0/-0.15		
LLL317	1.6 +0.15	3.2 +0.15	0.7 ±0.1		
LLL31M	1.0 ±0.15	3.2 ±0.13	1.15 ±0.1		
LLL31B	1		1.25 +0.15/-0.05		

Reversed Geometry Low ESL Type

Part Number	LLL15		LLL18							LLI	L21			LLL31					
LxW	0.5x1.0			0.8	x1.6					1.25	x2.0					1.62	x3.2		
тс	X6S (C8)			X7R (R7)			X7S (C7)			X7R (R7)			X7S (C7)	X7R (R7)				X7S (C7)	
Rated Volt.	6.3 (0J)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)
Capacitance (C	apacita	nce pa	rt numb	pering (code) a	nd T (n	nm) Din	nensior	T Din	nensior	part n	umber	ing coc	de)					
2200pF (222)		0.5 (5)																	
4700pF (472)		0.5 (5)						0.6 (6)											
10000pF (103)			0.5 (5)					0.6 (6)						0.7 (7)					
22000pF (223)			0.5 (5)					0.6 (6)						0.7 (7)					
47000pF (473)				0.5 (5)					0.6 (6)					0.7 (7)					
0.10μF (104)	0.3 (3)				0.5 (5)				0.6 (6)					1.15 (M)	0.7 (7)				
0.22μF (224)						0.5 (5)				0.85 (9)	0.6 (6)				1.15 (M)	0.7 (7)			
0.47μF (474)							0.5 (5)				0.85 (9)				1.15 (M)	0.7 (7)			
1.0μF (105)							0.5 (5)					0.85 (9)				1.15 (M)	0.7 (7)		
2.2μF (225)							0.5 (5)						0.85 (9)				1.15 (M)	0.7 (7)	
4.7μF (475)																		1.15 (M)	
10μF (106)																			1.25 (B)

The part numbering code is shown in ().

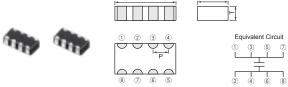
Dimensions are shown in mm and Rated Voltage in Vdc.

Please refer to Specifications and Test Method (2) about LLL15 Series and LLL18 Series 1.0μF/2.2μF type.

Reversed Geometry Low ESL Type Low Profile

Part Number		LLI	L18		LLL21					LL	L31			
LxW		0.8x1.6			1.25x2.0					1.6x3.2				
TC		X7R (R7)		X7S (C7)			X7R (R7)			X7S (C7)		X7R (R7)		
Rated Volt.	25 (1E)	16 (1C)	10 (1A)	4 (0G)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)	50 (1H)	25 (1E)	16 (1C)	10 (1A)
Capacitance (Ca	Capacitance (Capacitance part numbering code) and T (mm) Dimension (T Dimension part numbering code)													
1000pF(102)					0.5(5)									
2200pF(222)					0.5(5)									
4700pF(472)					0.5(5)									
10000pF(103)	0.5(5)				0.5(5)						0.5(5)			
22000pF(223)		0.5(5)				0.5(5)					0.5(5)			
47000pF(473)		0.5(5)					0.5(5)					0.5(5)		
0.10μF(104)			0.5(5)				0.5(5)					0.5(5)		
0.22μF(224)				0.5(5)				0.5(5)					0.5(5)	
0.47μF(474)									0.5(5)					0.5(5)
1.0μF(105)										0.5(5)				

The part numbering code is shown in ().


Dimensions are shown in mm and Rated Voltage in Vdc.

■ Features (Eight Terminals Low ESL Type)

- Low ESL(100pH), suitable to decoupling capacitor for 1GHz clock speed IC.
- 2. Small, large cap

■ Applications

- 1. High speed microprocessor
- 2. High frequency digital equipment

			. , ,					
Part Number	Dimensions (mm)							
Part Number	L	W	T	Р				
LLA185	1.6 ±0.1	0.8 ±0.1	0.5 +0.05/-0.1	0.4 ±0.1				
LLA215	2.0 ±0.1	1.25 ±0.1	0.5 +0.05/-0.1	0.5 ±0.05				
LLA219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.5 ±0.05				
LLA315	3.2 ±0.15	1.6 ±0.15	0.5 +0.05/-0.1	0.8 ±0.1				
LLA319	3.2 ±0.15	1.6 ±0.15	0.85 ±0.1	0.8 ±0.1				
LLA31M	3.2 ±0.15	1.6 ±0.15	1.15±0.1	0.8 ±0.1				

Eight Terminals Low ESL Type

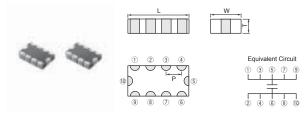
Part Number	LLA18			LLA21				LLA31		
L x W	1.6x0.8			2.0x1.25			3.2x1.6			
тс	X7S (C7)		X7R (R7) X7S (C7)					X7R (R7)		
Rated Volt.	4 (0G)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	(0G)	16 10 (1 C) (1 A)		(0G)	
Capacitance (Ca	pacitance par	t numbering co	de) and T (mr	n) Dimension (T	Dimension pa	rt numbering c	ode)	'	-	
10000pF(103)		0.85(9)								
22000pF(223)		0.85(9)								
47000pF(473)		0.85(9)								
0.10μF(104)	0.5(5)		0.85(9)				0.85(9)			
0.22μF(224)	0.5(5)		0.85(9)				0.85(9)			
0.47μF(474)	0.5(5)			0.85(9)			0.85(9)			
1.0μF(105)	0.5(5)				0.85(9)			0.85(9)		
2.2μF(225)	0.5 (5)					0.85(9)		1.15(M)	0.85(9)	
4.7μF(475)						0.85(9)				

The part numbering code is shown in $\,$ ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Please refer to Specifications and Test Method (2) about LLA18 Series 1.0 μ F/2.2 μ F type and LLA21 Series 4.7 μ F type.

Eight Terminals Low ESL Type Low Profile


Part Number	LLA21					LLA31			
LxW	2.0x1.25 3.2x1.6								
тс		X7 (R	'R 7)		X7S (C7)		X7R (R7)		
Rated Volt.	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)	16 (1C)			
Capacitance (Cap	pacitance part n	numbering code)	and T (mm) Dim	ension (T Dimer	sion part numbe	ering code)			
10000pF(103)	0.5 (5)								
22000pF(223)	0.5 (5)								
47000pF(473)		0.5(5)							
0.10μF(104)		0.5(5)				0.5(5)			
0.22μF(224)			0.5(5)	0.5(5)		0.5(5)			
0.47μF(474)				0.5(5)			0.5(5)		
1.0μF(105)					0.5(5)			0.5(5)	
2.2μF(225)					0.5(5)			0.5(5)	
4.7μF(475)					0.5(5)				

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Please refer to Specifications and Test Method (2) about LLA21 Series (Low Profile) 2.2μF/4.7μF type.

- Features (Ten Terminals Low ESL Type)
- 1. Low ESL(45pH), suitable to decoupling capacitor for 2GHz clock speed IC.
- 2. Small, large cap
- Applications
- 1. High speed microprocessor
- 2. High frequency digital equipment

Dort Number	Dimensions (mm)							
Part Number	L	W	T	Р				
LLM215	2.0 ±0.1	1.25 ±0.1	0.5 +0.05/-0.1	0.5 ±0.05				
LLM315	3.2 ±0.15	1.6 ±0.15	0.5 +0.05/-0.1	0.8 ±0.1				

Ten Terminals Low ESL Type Low Profile

Part Number	LLM21				LLM31			
LxW		2.0	x1.25		3.2x1.6			
тс				X7S (C7)	X7R (R7)			
Rated Volt.	25 (1E)	16 (1C)	6.3 (0J)	4 (0G)	16 (1C)	10 (1A)	6.3 (0J)	
Capacitance (Ca	pacitance part nui	mbering code) and	d T (mm) Dimension	(T Dimension part	numbering code)			
10000pF(103)	0.5 (5)							
22000pF(223)	0.5 (5)							
47000pF(473)		0.5 (5)						
0.10μF(104)		0.5 (5)			0.5(5)			
0.22μF(224)			0.5 (5)		0.5(5)			
0.47μF(474)			0.5 (5)			0.5(5)		
1.0μF(105)				0.5(5)				
2.2μF(225)				0.5(5)			0.5(5)	

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Please refer to Specifications and Test Method (2) about LLM21 Series (Low Profile) $2.2\mu F$ type.

LLL/LLA/LLM Series Specifications and Test Methods (1)

No.	Ite	em	Specifications	Test Method			
1	Operating Temperating Range		R7, C7: -55 to +125°C				
2	Rated Vo	ltage	See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p-p} or V ^{0-p} , whichever is larger, should be maintained within the rated voltage range.			
3	Appearar	nce	No defects or abnormalities	Visual inspection			
4	Dimensio	ns	Within the specified dimension	Using calipers			
5	Dielectric	Strength	No defects or abnormalities	No failure should be observed when 250% of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.			
6	Insulation Resistant		More than 10,000M Ω or 500 Ω · F (Whichever is smaller)	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 25°C and 75%RH max. and within 2 minutes of charging.			
7	Capacita	nce	Within the specified tolerance	The capacitance/D.F. should be measured at 25°C at the frequency and voltage shown in the table.			
8	Dissipatio (D.F.)	on Factor	W.V.: 25V min.; 0.025 max. W.V.: 16V max.; 0.035 max. *1	Capacitance Frequency Voltage C≤10μF (10V min.) 1±0.1kHz 1.0±0.2Vrms C≤10μF (6.3V max.) 1±0.1kHz 0.5±0.1Vrms C>10μF 120±24Hz 0.5±0.1Vrms			
9	Capacitance Temperature Characteristics		Char. Temp. Range (°C) Reference Temp. Cap.Change R7 -55 to +125 25°C Within ±15% C7 -55 to +125 25°C Within ±22%	The capacitance change should be measured after 5 min. at each specified temperature stage. Step Temperature (°C) 1 25±2 2 -55±3 3 25±2 4 125±3 5 25±2 The ranges of capacitance change compared with the 25°C value over the temperature ranges shown in the table should			
10	Adhesive of Termin		No removal of the terminations or other defect should occur.	be within the specified ranges. Solder the capacitor to the test jig (glass epoxy board) using a eutectic solder. Then apply 10N* force in parallel with the test jig for 10±1 sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. *LLL18 and LLA/LLM Series: 5N			
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board) in			
		Capacitance	Within the specified tolerance	the same manner and under the same conditions as (10). The			
11	Vibration Resistance	D.F.	W.V.: 25V min.; 0.025 max. W.V.: 16V max.; 0.035 max. *1	capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours).			
12	2 Solderability of Termination		75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5°C, or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5°C.			
		Appearance	No marking defects	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse			
		Capacitance Change	Within ±7.5%	the capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu solder solution at 270±5°C for 10±0.5 seconds. Let sit at room			
13	Resistance to Soldering Heat	D.F.	W.V.: 25V min.; 0.025 max. W.V.: 16V max.; 0.035 max. *1	temperature for 24±2 hours, then measure. • Initial measurement.			
	. 7041	I.R.	More than 10,000M Ω or 500 Ω · F (Whichever is smaller)	Perform a heat treatment at 150 $^{+\circ}_{-1\circ}$ °C for one hour and then			
		Dielectric Strength	No failure	let sit for 24±2 hours at room temperature. Perform the initial measurement.			

LLL/LLA/LLM Series Specifications and Test Methods (1)

lo.	Ite	em	Specifications	Test Method						
		Appearance Capacitance Change	No marking defects Within ±7.5% *1 W.V.; 25V min.; 0.025 max.	Fix the capacitor to the supporting jig in the same manner an under the same conditions as (10). Perform the five cycles according to the four heat treatments listed in the following table. Let sit for 24±2 hours at room						
		D.F.	W.V.: 16V max.; 0.035 max. *1	temperature, then measure. Step 1 2 3 4						
14	Temperature Cycle	I.R.	More than 10,000M Ω or 500 Ω · F (Whichever is smaller)	Temp. (°C) Min. Operating Room Max. Operating Room Temp. + O Temp. + O Temp.						
	oj.iio	Dielectric Strength	No failure	Time (min.) 30±3 2 to 3 30±3 2 to 3 • Initial measurement. Perform a heat treatment at 150 ± ?o °C for one hour and the let sit for 24±2 hours at room temperature. Perform the initial measurement.						
		Appearance	No marking defects							
15	Humidity (Steady	Capacitance Change	Within ±12.5% *1	Sit the capacitor at 40±2°C and 90 to 95% humidity for 500±12 hours. Remove and let sit for 24±2 hours at room temperature						
	State)	D.F.	0.05 max. *1	then measure.						
		I.R.	More than 1,000M Ω or $50\Omega \cdot F$ (Whichever is smaller)							
		Appearance	No marking defects	Apply the rated voltage at 40±2°C and 90 to 95% humidity for 500±12 hours. Remove and let sit for 24±2 hours at room						
		Capacitance Change	Within ±12.5% *1							
16	Humidity	D.F.	0.05 max. *1							
	Load	I.R.	More than $500 M\Omega$ or $25 \Omega \cdot F *1$ (Whichever is smaller)	temperature, then measure. The charge/discharge current is less than 50mA.						
		Dielectric Strength	No failure							
		Appearance	No marking defects	Apply 200% of the rated voltage for 1000±12 hours at the						
		Capacitance Change	Within ±12.5% *1	maximum operating temperature $\pm 3^{\circ}$ C. Let sit for 24 ± 2 hours at room temperature, then measure. The charge/discharge						
17	High Temperature	D.F.	W.V.: 25V min.; 0.04 max. W.V.: 16V max.; 0.05 max. *1	current is less than 50mA. •Initial measurement.						
	Load	I.R.	More than 1,000M Ω or 50 Ω · F *1 (Whichever is smaller)	Apply 200% of the rated DC voltage for one hour at the maximum operating temperature ±3°C. Remove and let sit fo						
		Dielectric Strength No failure		24±2 hours at room temperature. Perform initial measurement. (*1)						

^{*1:} The figure indicates typical inspection.Please refer to individual specifications.

LLL/LLA/LLM Series Specifications and Test Methods (2)

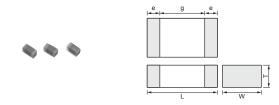
No.	Ite	em		Spe	cifications		Т	est Method		
1	Operating Temperat Range		R7, C7: -55 C8: -55 to -							
2	Rated Vo	ltage	See the pre	vious pages.			The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p,p} or V ^{0,p} , whichever is larger, should be maintained within the rated voltage range.			
3	Appearar	nce	No defects or abnormalities				Visual inspection			
4	Dimensio	ns	Within the s	pecified dimension	on		Using calipers			
5	Dielectric	Strength	No defects of	or abnormalities			No failure should be observis applied between the term provided the charge/discha	ninations for 1 to	5 seconds,	
6	Insulation Resistance $50\Omega \cdot F \text{ min.}$			The insulation resistance s not exceeding the rated voluments of charging	Itage at 25°C and	•				
7	Capacita	nce	Within the specified tolerance				The capacitance/D.F. shou frequency and voltage show		at 25°C at the	
8	Dissipatio (D.F.)	n Factor	R7, C7, C8: 0.120 max.			Capacitance C≤10μF (10V min.) C≤10μF (6.3V max.) C>10μF	Frequency 1±0.1kHz 1±0.1kHz 120±24Hz	Voltage 1.0±0.2Vrms 0.5±0.1Vrms 0.5±0.1Vrms		
9	Capacitance Temperature Characteristics		Char. R7 C7 C8	Temp. Range (°C) -55 to +125 -55 to +125 -55 to +105	Reference Temp. 25°C	Cap.Change Within ±15% Within ±22% Within ±22%	The capacitance change should be measured after 5 min. at each specified temperature stage. The ranges of capacitance change compared with the 25°C value over the temperature ranges shown in the table should be within the specified ranges.			
10	Adhesive of Termin		No removal of the terminations or other defect should occur.			Solder the capacitor to the test jig (glass epoxy board) using a eutectic solder. Then apply 10N* force in parallel with the test jig for 10±1 sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. *5N (LLL15, LLL18, LLA,LLM Series)				
		Appearance	No defects of	or abnormalities			Solder the capacitor to the test jig (glass epoxy board) in			
		Capacitance	Within the s	pecified tolerance	e		the same manner and under the same conditions as (10). The			
11			R7, C7, C8: 0.120 max.			capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours).				
12	2 Solderability of Termination		75% of the terminations are to be soldered evenly and continuously.				Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5°C, or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5°C.			
		Appearance	No marking	defects			Preheat the capacitor at 12			
	Resistance	Capacitance Change	R7, C7, C8:	Within ±7.5%			the capacitor in a eutectic s solution at 270±5°C for 10: Let sit at room temperature	±0.5 seconds.		
13	to Soldering	D.F.	R7, C7, C8:	0.120 max.			· ·	-,		
	Heat	I.R.	50Ω · F min				Initial measurement. Perform a heat treatment.	at 150±%°C for	one hour and then	
		Dielectric Strength					Perform a heat treatment at 150 $^{+0.0}_{-1.0}$ °C for one hour and then let sit for 24 \pm 2 hours at room temperature. Perform the initial measurement.			

LLL/LLA/LLM Series Specifications and Test Methods (2)

Continued from the preceding page.

No.	Ite	em	Specifications	Test Method					
		Appearance Capacitance Change D.F.	No marking defects R7, C7, C8: Within ±12.5% R7, C7, C8: 0.120 max.	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (10).Perform the five cycles according to the four heat treatments listed in the following table. Let sit for 24±2 hours at room temperature, then measure.					
	Temperature	I.R.	50Ω · F min.	Step 1 2 3 4					
14	Sudden Change		0052 111111.	Temp. (°C) Min. Operating Temp. ±°S Room Temp. ±°S Max. Operating Temp. ±°S Room Temp. ±°S Time (min.) 30±3 2 to 3 30±3 2 to 3					
		Dielectric Strength	No failure	• Initial measurement Perform a heat treatment at 150 ±\cap20 °C for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement.					
		Appearance	No marking defects	Apply the rated voltage at 40±2°C and 90 to 95% humidity for 500±12 hours. The charge/discharge current is less than 50mA.					
	High	Capacitance Change	R7, C7, C8: Within ±12.5%						
	Temperatue	D.F.	R7, C7, C8: 0.2 max.	•Initial measurement					
15	High Humidity (Steady State)	I.R.	12.5 Ω · F min.	Perform a heat treatment at 150±9°° C for one hour and the let sit for 24±2 hours at room temperature. Perform the initial measurement. *Measurement after test Perform a heat treatment at 150±9°° C for one hour and the let sit for 24±2 hours at room temperature, then measure.					
		Appearance	No marking defects	Apply 150% of the rated voltage for 1000±12 hours at the					
		Capacitance Change	R7, C7, C8: Within ±12.5%	maximum operating temperature ±3°C. The charge/discharge current is less than 50mA.					
		D.F.	R7, C7, C8: 0.2 max.	•Initial measurement					
16	Durability	I.R.	$25\Omega \cdot F$ min.	Perform a heat treatment at 150 ⁺⁹ ₋₀ °C for one hour and the let sit for 24±2 hours at room temperature. Perform the initia measurement. •Measurement after test Perform a heat treatment at 150 ⁺⁹ ₋₀ °C for one hour and the let sit for 24±2 hours at room temperature, then measure.					

Chip Monolithic Ceramic Capacitors


High-Q GJM Series

■ Features

- 1. Mobile telecommunications and RF module, mainly
- 2. Quality improvement of telephone call, low power consumption, yield ratio improvement

■ Applications

VCO, PA, Mobile telecommunications

Part Number		Dir	nensions (ı	nm)	
Part Number	L	W	T	е	g min.
GJM03	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2
GJM15	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.3	0.4

Part Number	GJM03	GJM15
L x W [EIA]	0.6x0.3 [0201]	1.0x0.5 [0402]
тс	C0G (5C)	C0G (5C)
Rated Volt.	25 (1E)	50 (1H)
Capacitance (Capacitance	part numbering code) and T (mm) Dimension (T Dimen	nsion part numbering code)
0.20pF(R20)	0.3(3)	
0.30pF(R30)	0.3(3)	0.5 (5)
0.40pF(R40)	0.3(3)	0.5(5)
0.50pF(R50)	0.3(3)	0.5(5)
0.60pF(R60)	0.3(3)	0.5(5)
0.70pF(R70)	0.3(3)	0.5(5)
0.75pF(R75)	0.3(3)	0.5(5)
0.80pF(R80)	0.3(3)	0.5(5)
0.90pF(R90)	0.3(3)	0.5(5)
1.0pF(1R0)	0.3(3)	0.5(5)
1.1pF(1R1)	0.3(3)	0.5(5)
1.2pF(1R2)	0.3(3)	0.5(5)
1.3pF(1R3)	0.3(3)	0.5(5)
1.4pF(1R4)	0.3(3)	0.5(5)
1.5pF(1R5)	0.3(3)	0.5(5)
1.6pF(1R6)	0.3(3)	0.5(5)
1.7pF(1R7)	0.3(3)	0.5(5)
1.8pF(1R8)	0.3(3)	0.5(5)
1.9pF(1R9)	0.3(3)	0.5(5)
2.0pF(2R0)	0.3(3)	0.5(5)
2.1pF(2R1)	0.3(3)	0.5(5)
2.2pF(2R2)	0.3(3)	0.5(5)
2.3pF(2R3)	0.3(3)	0.5(5)
2.4pF(2R4)	0.3(3)	0.5(5)
2.5pF(2R5)	0.3(3)	0.5(5)
2.6pF(2R6)	0.3(3)	0.5(5)
2.7pF(2R7)	0.3(3)	0.5 (5)
2.8pF(2R8)	0.3(3)	0.5 (5)
2.9pF(2R9)	0.3(3)	0.5(5)
3.0pF(3R0)	0.3(3)	0.5(5)
3.1pF(3R1)	0.3(3)	0.5(5)
3.2pF(3R2)	0.3(3)	0.5(5)
3.3pF(3R3)	0.3(3)	0.5(5)

Continued from the preceding page.

Part Number	GJM03	GJM15
L x W [EIA]	0.6x0.3 [0201]	1.0x0.5 [0402]
тс	C0G (5C)	C0G (5C)
Rated Volt.	25 (1E)	50 (1H)
Capacitance (Capacitance p	art numbering code) and T (mm) Dimension (T Din	nension part numbering code)
3.4pF(3R4)	0.3(3)	0.5(5)
3.5pF(3R5)	0.3(3)	0.5(5)
3.6pF(3R6)	0.3(3)	0.5(5)
3.7pF(3R7)	0.3(3)	0.5 (5)
3.8pF(3R8)	0.3(3)	0.5(5)
3.9pF(3R9)	0.3(3)	0.5(5)
4.0pF(4R0)	0.3(3)	0.5(5)
4.1pF(4R1)	0.3(3)	0.5(5)
4.2pF(4R2)	0.3(3)	0.5(5)
4.3pF(4R3)	0.3(3)	0.5(5)
4.4pF(4R4)	0.3(3)	0.5 (5)
4.5pF(4R5)	0.3(3)	0.5 (5)
4.6pF(4R6)	0.3(3)	0.5 (5)
4.7pF(4R7)	0.3(3)	0.5(5)
4.8pF(4R8)	0.3(3)	0.5(5)
4.9pF(4R9)	0.3(3)	0.5 (5)
5.0pF(5R0)	0.3(3)	0.5 (5)
5.1pF(5R1)	0.3(3)	0.5(5)
5.2pF(5R2)	0.3(3)	0.5(5)
5.3pF(5R3)	0.3(3)	0.5(5)
5.4pF(5R4)	0.3(3)	0.5 (5)
5.5pF(5R5)	0.3(3)	0.5 (5)
5.6pF(5R6)	0.3(3)	0.5 (5)
5.7pF(5R7)	0.3(3)	0.5 (5)
5.8pF(5R8)	0.3(3)	0.5 (5)
5.9pF(5R9)	0.3(3)	0.5 (5)
6.0pF(6R0)	0.3(3)	0.5 (5)
6.1pF(6R1)	0.3(3)	0.5 (5)
6.2pF(6R2)	0.3(3)	0.5 (5)
6.3pF(6R3)	0.3(3)	0.5(5)
6.4pF(6R4)	0.3(3)	0.5 (5)
6.5pF(6R5)	0.3(3)	0.5(5)
6.6pF(6R6)	0.3(3)	0.5(5)
6.7pF(6R7)	0.3(3)	0.5 (5)
6.8pF(6R8)	0.3(3)	0.5(5)
6.9pF(6R9)		0.5(5)
7.0pF(7R0)		0.5(5)
7.1pF(7R1)		0.5(5)
7.2pF(7R2)		0.5(5)
7.3pF(7R3)		0.5(5)
7.4pF(7R4)		0.5(5)
7.5pF(7R5)		0.5(5)
7.6pF(7R6)		0.5(5)
7.7pF(7R7)		0.5(5)
7.8pF(7R8)		0.5(5)
7.9pF(7R9)		0.5(5)
8.0pF(8R0)		0.5(5)
8.1pF(8R1)		0.5 (5)
8.2pF(8R2)		0.5(5)
8.3pF(8R3)		0.5(5)
8.4pF(8R4)		0.5(5)
8.5pF(8R5)		0.5(5)

Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.

• This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.

• This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering. 07.2.6

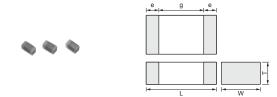
Continued from the preceding page.

Part Number	GJM03	GJM15
L x W [EIA]	0.6x0.3 [0201]	1.0x0.5 [0402]
тс	C0G (5C)	C0G (5C)
Rated Volt.	25 (1 E)	50 (1H)
Capacitance (Capa	citance part numbering code) and T (mm) Dimension (T Dimen	sion part numbering code)
8.6pF(8R6)		0.5 (5)
8.7pF(8R7)		0.5 (5)
8.8pF(8R8)		0.5(5)
8.9pF(8R9)		0.5 (5)
9.0pF(9R0)		0.5 (5)
9.1pF(9R1)		0.5 (5)
9.2pF(9R2)		0.5(5)
9.3pF(9R3)		0.5(5)
9.4pF(9R4)		0.5(5)
9.5pF(9R5)		O.5(5)
9.6pF(9R6)		0.5(5)
9.7pF(9R7)		0.5(5)
9.8pF(9R8)		0.5(5)
9.9pF(9R9)		0.5(5)
10pF(100)		0.5(5)
12pF(120)		0.5(5)
15pF(150)		0.5(5)
18pF(180)		0.5(5)

The part numbering code is shown in $\ (\).$

Dimensions are shown in mm and Rated Voltage in Vdc.

muRata


Tight Tolerance High-Q GJM Series

■ Features

- 1. Mobile telecommunications and RF module, mainly
- 2. Quality improvement of telephone call, low power consumption, yield ratio improvement

■ Applications

VCO, PA, Mobile telecommunications

Part Number	Dimensions (mm)						
Part Number	L	W	T	е	g min.		
GJM03	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2		
GJM15	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.3	0.4		

Part Number		GJM03	GJM15
L x W [EIA]		0.6x0.3 [0201]	1.0x0.5 [0402]
тс		C0G (5C)	C0G (5C)
Rated Volt.		25 (1E)	50 (1H)
Capacitance, Ca	pacitance Tole	erance and T Dimension	
0.10pF(R10)	W, B		0.5 (5)
0.20pF(R20)	W, B	0.3 (3)	0.5 (5)
0.30pF(R30)	W, B	0.3 (3)	0.5 (5)
0.40pF(R40)	W, B	0.3 (3)	0.5 (5)
0.50pF(R50)	W, B	0.3 (3)	0.5 (5)
0.60pF(R60)	W, B	0.3 (3)	0.5 (5)
0.70pF(R70)	W, B	0.3(3)	0.5(5)
0.80pF(R80)	W, B	0.3(3)	0.5(5)
0.90pF(R90)	W, B	0.3 (3)	0.5 (5)
1.0pF(1R0)	W, B	0.3 (3)	0.5 (5)
1.1pF(1R1)	W, B	0.3 (3)	0.5 (5)
1.2pF(1R2)	W, B	0.3 (3)	0.5 (5)
1.3pF(1R3)	W, B	0.3 (3)	0.5 (5)
1.4pF(1R4)	W, B	0.3 (3)	0.5 (5)
1.5pF(1R5)	W, B	0.3 (3)	0.5 (5)
1.6pF(1R6)	W, B	0.3(3)	0.5 (5)
1.7pF(1R7)	W, B	0.3(3)	0.5 (5)
1.8pF(1R8)	W, B	0.3(3)	0.5 (5)
1.9pF(1R9)	W, B	0.3(3)	0.5 (5)
2.0pF(2R0)	W, B	0.3(3)	0.5 (5)
2.1pF(2R1)	W, B	0.3(3)	0.5(5)
2.2pF(2R2)	W, B	0.3(3)	0.5(5)
2.3pF(2R3)	W, B	0.3(3)	0.5(5)
2.4pF(2R4)	W, B	0.3(3)	0.5(5)
2.5pF(2R5)	W, B	0.3(3)	0.5(5)
2.6pF(2R6)	W, B	0.3(3)	0.5(5)
2.7pF(2R7)	W, B	0.3(3)	0.5(5)
2.8pF(2R8)	W, B	0.3(3)	0.5(5)
2.9pF(2R9)	W, B	0.3(3)	0.5(5)
3.0pF(3R0)	W, B	0.3(3)	0.5(5)
3.1pF(3R1)	W, B	0.3(3)	0.5(5)
3.2pF(3R2)	W, B	0.3(3)	0.5(5)
3.3pF(3R3)	W, B	0.3(3)	0.5(5)

Part Number		GJM03	GJM15
L x W [EIA]		0.6x0.3 [0201]	1.0x0.5 [0402]
тс		COG	COG
10		(5C)	(5 C)
Rated Volt.		25	50
rtated voit.		(1E)	(1H)
Capacitance, Ca	apacitance	Tolerance and T Dimension	
3.4pF(3R4)	W, B	0.3(3)	0.5(5)
3.5pF(3R5)	W, B	0.3(3)	0.5(5)
3.6pF(3R6)	W, B	0.3(3)	0.5(5)
3.7pF(3R7)	W, B	0.3(3)	0.5(5)
3.8pF(3R8)	W, B	0.3(3)	0.5(5)
3.9pF(3R9)	W, B	0.3(3)	0.5(5)
4.0pF(4R0)	W, B	0.3(3)	0.5(5)
4.1pF(4R1)	W, B	0.3(3)	0.5(5)
4.2pF(4R2)	W, B	0.3(3)	0.5(5)
4.3pF(4R3)	W, B	0.3(3)	0.5(5)
4.4pF(4R4)	W, B	0.3(3)	0.5(5)
4.5pF(4R5)	W, B	0.3(3)	0.5(5)
4.6pF(4R6)	W, B	0.3(3)	0.5(5)
4.7pF(4R7)	W, B	0.3(3)	0.5(5)
4.8pF(4R8)	W, B	0.3(3)	0.5(5)
4.9pF(4R9)	W, B	0.3(3)	0.5(5)
5.0pF(5R0)	W, B	0.3(3)	0.5(5)
	W, B, C	0.3(3)	0.5(5)
	W, B, C	0.3(3)	0.5(5)
	W, B, C	0.3(3)	0.5(5)
	W, B, C	0.3(3)	0.5(5)
	W, B, C	0.3(3)	0.5(5)
5.6pF(5R6)	W, B, C	0.3(3)	0.5(5)
	W, B, C	0.3(3)	0.5(5)
	W, B, C	0.3(3)	0.5(5)
	W, B, C	0.3(3)	0.5(5)
	W, B, C	0.3(3)	0.5(5)
6.1pF(6R1)		0.3(3)	0.5 (5)
6.2pF(6R2)		0.3(3)	0.5 (5)
6.3pF(6R3)		0.3(3)	0.5 (5)
6.4pF(6R4)	W, B, C	0.3(3)	0.5 (5)
6.5pF(6R5)	W, B, C	0.3(3)	0.5 (5)
6.6pF(6R6)	W, B, C	0.3(3)	0.5 (5)
6.7pF(6R7)		0.3(3)	0.5 (5)
6.8pF(6R8)	W, B, C	0.3(3)	0.5 (5)
6.9pF(6R9)	W, B, C		0.5(5)
7.0pF(7R0)			0.5 (5)
7.1pF(7R1)	W, B, C		0.5 (5)
7.2pF(7R2)	W, B, C		0.5(5)
7.3pF(7R3)			0.5(5)
7.4pF(7R4)			0.5 (5)
7.5pF(7R5)			0.5 (5)
7.6pF(7R6)			0.5 (5)
7.7pF(7R7)			0.5 (5)
7.8pF(7R8)			0.5 (5)
7.9pF(7R9)			0.5(5)
8.0pF(8R0)			0.5(5)
8.1pF(8R1)			0.5(5)
8.2pF(8R2)	W, B, C		0.5(5)
8.3pF(8R3)	W, B, C		0.5(5)
8.4pF(8R4)	W, B, C		0.5(5)
8.5pF(8R5)			0.5(5)

C02E.pdf 07.2.6

Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.

• This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.

• This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.

Part Number		GJM03	GJM15
L x W [EIA]	0.63	x0.3 [0201]	1.0x0.5 [0402]
тс		C0G (5C)	C0G (5C)
Rated Volt.		25 (1E)	50 (1H)
Capacitance, Ca	pacitance Tolerance and T Dimensi	ion	1
8.6pF(8R6)	W, B, C		0.5(5)
8.7pF(8R7)	W, B, C		0.5(5)
8.8pF(8R8)	W, B, C		0.5(5)
8.9pF(8R9)	W, B, C		0.5(5)
9.0pF(9R0)	W, B, C		0.5(5)
9.1pF(9R1)	W, B, C		0.5(5)
9.2pF(9R2)	W, B, C		0.5(5)
9.3pF(9R3)	W, B, C		0.5(5)
9.4pF(9R4)	W, B, C		0.5(5)
9.5pF(9R5)	W, B, C		0.5(5)
9.6pF(9R6)	W, B, C		0.5(5)
9.7pF(9R7)	W, B, C		0.5(5)
9.8pF(9R8)	W, B, C		0.5(5)
9.9pF(9R9)	W, B, C		0.5(5)

The part numbering code is shown in $\ (\).$

Dimensions are shown in mm and Rated Voltage in Vdc.

Ite	Specifications Item		Test Method			
		Temperature Compensating Type		Test Method		
Operating Temperatu	ure Range	-55 to +125℃	Reference Temperatu (2C, 3C, 4C: 20℃)	re: 25℃		
Rated Vo	ltage	See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p,p} or V ^{Q,p} , whichever is larger, should be maintained within the rated voltage range.			
Appearar	nce	No defects or abnormalities	Visual inspection Using calipers No failure should be observed when 300% of the rated vol			
Dimensio	ns	Within the specified dimensions	Using calipers			
		No defects or abnormalities	is applied between the	bserved when 300% of the rated voltage e terminations for 1 to 5 seconds, ischarge current is less than 50mA.		
Insulation Resistance (I.R.)		10,000M Ω min. or $500\Omega \cdot \text{F}$ min. (Whichever is smaller)		nce should be measured with a DC ⊢the rated voltage at 25°C and 75%RH utes of charging.		
Capacitance		Within the specified tolerance	The capacitance/Q sh frequency and voltage	ould be measured at 25°C at the shown in the table.		
		30pF max.: Q≥400+20C		1±0.1MHz		
Q		C: Nominal Capacitance (pF)	Voltage	0.5 to 5Vrms		
	Capacitance Change	Within the specified tolerance (Table A)	The capacitance chan each specified temper	ige should be measured after 5 min. at rature stage.		
	Temperature Coefficient	Within the specified tolerance (Table A)	Temperature Compensating Type The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 throug 5, (5C: +25 to 125°C: other temp. coeffs.: +20 to 125°C) the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as Table A. The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in ste 1, 3 and 5 by the capacitance value in step 3. Step Temperature (°C) 1 Reference Temp. ±2 2 -55±3 3 Reference Temp. ±2 4 125±3			
Capacitance Temperature Characteristics	Capacitance Drift					
			5	Reference Temp. ±2		
Adhesive Strength of Termination				Solder the capacitor to the test jig (glass epoxy board) shown in Fig. 1 using a eutectic solder. Then apply a 5N* force in parallel with the test jig for 10±1 sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. *2N (GJM03** *2N (GJM03** *3N (GJM03** *2N (GJM03** *3N		
	Appearar Dimension Dielectrico Insulation (I.R.) Capacita Q Capacitance Temperature Characteristics	Capacitance Q Capacitance Change Temperature Coefficient Capacitance Temperature Characteristics Capacitance Drift Adhesive Strength	Rated Voltage See the previous pages. Appearance No defects or abnormalities Dimensions Within the specified dimensions Dielectric Strength No defects or abnormalities Insulation Resistance (I.R.) 10,000MΩ min. or 500Ω · F min. (Whichever is smaller) Capacitance Within the specified tolerance Q 30pF max.: Q≥400+20C C: Nominal Capacitance (pF) Capacitance Change Within the specified tolerance (Table A) Vithin the specified tolerance (Table A) Capacitance Temperature Characteristics Within ±0.2% or ±0.05pF (Whichever is larger.) Adhesive Strength No removal of the terminations or other defect should occur.	Rated Voltage Rated Voltage See the previous pages. The rated voltage is a may be applied continument of may be applied to may be applied continument of may be applied to the may be applied to the may be applied to the part of may be applied to the provided the charged in the specified to the applied to the applied to the may be applied to the may be applied to the the applied to the may be applied to the applied to the applied to the may be applied to the the specified to the applied to the a		

			Specifications				
О.	Ite	em	Temperature Compensating Type	Test Method			
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board) in the same manner and under the same conditions as (10).			
	Vibration Resistance	Capacitance Q	Within the specified tolerance Q≥400+20C C: Nominal Capacitance (pF)	The capacitor should be subjected to a simple harmonic mot having a total amplitude of 1.5mm, the frequency being varie uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutual perpendicular directions (total of 6 hours).			
			No cracking or marking defects should occur.	Solder the capacitor to the test jig (glass epoxy boards) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done by the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.			
2	Deflection		Type a b c GJM03 0.3 0.9 0.3 GJM15 0.4 1.5 0.5 (in mm)	of defects such as heat shock. 20 50 Pressurizing speed: 1.0mm/sec. Pressurize R230 Capacitance meter 45 45 (in mm) Fig. 3			
3	Solderabi Terminati	-	75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5 or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5°			
			The measured and observed characteristics should satisfy the specifications in the following table.				
		Appearance	No marking defects				
	Resistance to Soldering	Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu			
	Heat	Q	Q≥400+20C C: Nominal Capacitance (pF)	solder solution at 270±5°C for 10±0.5 seconds. Let sit at room temperature for 24±2 hours.			
		I.R.	More than 10,000M Ω or 500 Ω · F (Whichever is smaller)				
		Dielectric Strength	No failure				
			The measured and observed characteristics should satisfy the specifications in the following table.				
		Appearance	No marking defects	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (10). Perform the five cycles			
	Temperature	Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	according to the four heat treatments listed in the following table Let sit for 24±2 hours at room temperature, then measure.			
5	Cycle	Q	Q≥400+20C C: Nominal Capacitance (pF)	Step 1 2 3 4 Temp. (°C) Min. Operating Room Max. Operating Room Temp. 1 Temp.			
		I.R.	More than 10,000M Ω or 500 Ω · F (Whichever is smaller)	Temp. (C) Temp. +3 Temp. Temp. +3 Temp. Time (min.) 30±3 2 to 3 30±3 2 to 3			
		Dielectric Strength	No failure				
		-	The measured and observed characteristics should satisfy the specifications in the following table.				
		Appearance	No marking defects	1			
	Humidity,	Capacitance	Within ±5% or ±0.5pF	Let the capacitor sit at 40±2°C and 90 to 95% humidity for 500±12 hours.			
6	Steady State	Change Q	(Whichever is larger) 10pF and over, 30pF and below: Q≥275+ 5 C 10pF and below: Q≥200+10C	Remove and let sit for 24±2 hours (temperature compensatin type) at room temperature, then measure.			
		I.R.	C: Nominal Capacitance (pF) More than $10,000M\Omega$ or $500\Omega \cdot F$ (Whichever is smaller)	_			
			,: : (

Continued from the preceding page.

[7] osumasa nem mo broceamià bago.						
NIo	Ita		Specifications	Toot Mathed		
No.	Ite	em	Temperature Compensating Type	Test Method		
			The measured and observed characteristics should satisfy the specifications in the following table.			
		Appearance	No marking defects			
17	Humidity	Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	Apply the rated voltage at 40±2℃ and 90 to 95% humidity for 500±12 hours.		
	Load	Q	30pF and below: Q≥100+ ¹⁰ / ₃ C C: Nominal Capacitance (pF)	Remove and let sit for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.		
		I.R.	More than $500 \text{M}\Omega$ or $25 \Omega \cdot \text{F}$ (Whichever is smaller)			
		Dielectric Strength	No failure			
			The measured and observed characteristics should satisfy the specifications in the following table.			
		Appearance	No marking defects			
	High	Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	Apply 200% of the rated voltage for 1000±12 hours at the maximum operating temperature ±3°C. Let sit for 24±2 hours		
18	Temperature Load	Q	10pF and over, 30pF and below: Q≥275+ ½ C 10pF and below: Q≥200+10C C: Nominal Capacitance (pF)	(temperature compensating type) at room temperature, then measure. The charge/discharge current is less than 50mA.		
		I.R.	More than 1,000M Ω or 50 Ω · F (Whichever is smaller)			
		Dielectric Strength	No failure			
19	ESR		0.5pF≦C≦1pF: 350mΩ below 1pF <c≦5pf: 300mω="" below<br="">5pF<c≦10pf: 250mω="" below<="" td=""><td>The ESR should be measured at room temperature, and frequency 1±0.2GHz with the equivalent of BOONTON Model 34A.</td></c≦10pf:></c≦5pf:>	The ESR should be measured at room temperature, and frequency 1±0.2GHz with the equivalent of BOONTON Model 34A.		
17			10pF <c≦20pf: 400mω="" below<="" td=""><td>The ESR should be measured at room temperature, and frequency 500±50MHz with the equivalent of HP8753B.</td></c≦20pf:>	The ESR should be measured at room temperature, and frequency 500±50MHz with the equivalent of HP8753B.		

Table A

(1)	(1)							
	T	Capacitance Change from 25℃ Value (%)						
Char. Code	Temp. Coeff. (ppm/°C) *1	− 55℃		-30℃		-10℃		
	(ppiii/ G) - 1	Max.	Min.	Max.	Min.	Max.	Min.	
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11	

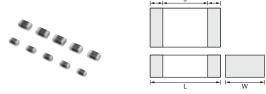
^{*1:} Nominal values denote the temperature coefficient within a range of 25 to 125°C.

(2)

	Nominal Values (ppm/°c) *2	Capacitance Change from 20℃ Value (%)					
Char.		− 55℃		− 25℃		-10°C	
		Max.	Min.	Max.	Min.	Max.	Min.
2C	0±60	0.82	-0.45	0.49	-0.27	0.33	-0.18
3C	0±120	0.37	-0.90	0.82	-0.54	0.55	-0.36
4C	0±250	0.56	-0.88	1.54	-1.13	1.02	-0.75

^{*2:} Nominal values denote the temperature coefficient within a range of 20 to 125°C.

muRata


High Frequency GQM Series

■ Features

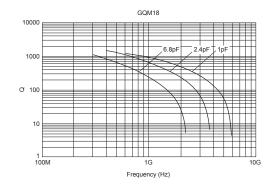
- 1. HiQ and low ESR at VHF, UHF, Microwave
- Feature improvement, low power consumption for mobile telecommunications (Base station, terminal, etc.)

■ Applications

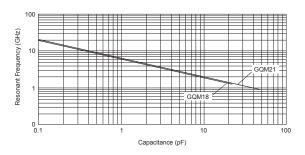
High frequency circuit (Mobile telecommunications, etc.)

Dort Number	Dimensions (mm)						
Part Number	L	W	Т	е	g min.		
GQM188	1.6 ±0.1	0.8 ±0.1	0.8 ±0.1	0.2 to 0.5	0.5		
GQM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	0.7		

Part Number	GQM	118	M21	
LxW	1.6x0.8 2.0x1.25		(1.25	
тс	C00 (5 C	G ;)		0G 6C)
Rated Volt.	100 (2A)	50 (1H)	100 (2A)	50 (1H)
Capacitance (Capaci	tance part numbering code) a	and T (mm) Dimension (T Dimen	sion part numbering code)	
0.50pF(R50)	0.8(8)		0.85(9)	
0.75pF(R75)	0.8(8)		0.85(9)	
1.0pF(1R0)	0.8(8)		0.85(9)	
1.1pF(1R1)	0.8(8)		0.85(9)	
1.2pF(1R2)	0.8(8)		0.85(9)	
1.3pF(1R3)	0.8(8)		0.85(9)	
1.5pF(1R5)	0.8(8)		0.85(9)	
1.6pF(1R6)	0.8(8)		0.85(9)	
1.8pF(1R8)	0.8(8)		0.85(9)	
2.0pF(2R0)	0.8(8)		0.85(9)	
2.2pF(2R2)	0.8(8)		0.85(9)	
2.4pF(2R4)	0.8(8)		0.85(9)	
2.7pF(2R7)	0.8(8)		0.85(9)	
3.0pF(3R0)	0.8(8)		0.85(9)	
3.3pF(3R3)	0.8(8)		0.85(9)	
3.6pF(3R6)	0.8(8)		0.85(9)	
3.9pF(3R9)	0.8(8)		0.85(9)	
4.0pF(4R0)	0.8(8)		0.85(9)	
4.3pF(4R3)	0.8(8)		0.85(9)	
4.7pF(4R7)	0.8(8)		0.85(9)	
5.0pF(5R0)	0.8(8)		0.85(9)	
5.1pF(5R1)	0.8(8)		0.85(9)	
5.6pF(5R6)	0.8(8)		0.85(9)	
6.0pF(6R0)	0.8(8)		0.85(9)	
6.2pF(6R2)	0.8(8)		0.85(9)	
6.8pF(6R8)	0.8(8)		0.85(9)	
7.0pF(7R0)	.,	0.8(8)	0.85(9)	
7.5pF(7R5)		0.8(8)	0.85(9)	
8.0pF(8R0)		0.8(8)	0.85(9)	
8.2pF(8R2)		0.8(8)	0.85(9)	
9.0pF(9R0)		0.8(8)	0.85(9)	
9.1pF(9R1)		0.8(8)	0.85(9)	
10pF(100)		0.8(8)	0.85(9)	


Continued from the preceding page.

Part Number	GQI	W18	GQM21			
_ x W	1.6x0.8			2.0x1.25		
гс	C0 (5	OG C)	C((5	OG C)		
Rated Volt.	100 (2A)	50 (1H)	100 (2A)	50 (1H)		
Capacitance (Capacita	nce part numbering code)	and T (mm) Dimension (T Dimens	ion part numbering code)			
11pF(110)		0.8(8)	0.85 (9)			
12pF(120)		0.8(8)	0.85(9)			
13pF(130)		0.8(8)	0.85 (9)			
15pF(150)		0.8(8)	0.85(9)			
16pF(160)		0.8(8)	0.85(9)			
18pF(180)		0.8(8)	0.85(9)			
20pF(200)		0.8(8)		0.85(9)		
22pF(220)		0.8(8)		0.85(9)		
24pF(240)		0.8(8)		0.85(9)		
27pF(270)		0.8(8)		0.85(9)		
30pF(300)		0.8(8)		0.85(9)		
33pF(330)		0.8(8)		0.85(9)		
36pF(360)		0.8(8)		0.85(9)		
39pF(390)		0.8(8)		0.85(9)		
43pF(430)		0.8(8)		0.85(9)		
47pF(470)		0.8(8)		0.85(9)		
51pF(510)		0.8(8)		0.85(9)		
56pF(560)		0.8(8)		0.85(9)		
62pF(620)		0.8(8)		0.85(9)		
68pF(680)		0.8(8)		0.85(9)		
75pF(750)		0.8(8)		0.85(9)		
82pF(820)		0.8(8)		0.85(9)		
91pF(910)		0.8(8)		0.85(9)		
100pF(101)		0.8(8)		0.85(9)		


The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

■ Q - Frequency Characteristics

■ Resonant Frequency - Capacitance

No.	Ite	em	Specifications	Test Method			
1	Operating Temperatu	ıre	−55 to 125°C	Reference Temperature: 25°C (2C, 3C, 4C: 20°C)			
2	2 Rated Voltage		See the previous page.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p.p} or V ^{o.p} , whichever is larger, should be maintained within the rated voltage range.			
3	Appearance		No defects or abnormalities	Visual inspection			
4	Dimensio	n	Within the specified dimensions	Using calipers			
5	5 Dielectric Strength		No defects or abnormalities	No failure should be observed when 300% of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.			
6	Insulation	Resistance	More than 10,000M Ω (Whichever is smaller)	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 25°C and 75%RH max. and within 2 minutes of charging.			
7	Capacita	nce	Within the specified tolerance	The capacitance/Q			at the
8	Q		30pF min.: Q≥1400 30pF max.: Q≥800+20C	frequency and voltage Frequency	ge shown in t	he table. 1±0.1MHz	
	Q		C: Nominal Capacitance (pF)	Voltage		0.5 to 5Vrms	<u> </u>
		Capacitance Change	Within the specified tolerance (Table A)	The temperature coefficient is determined using the measured in step 3 as a reference.		the capacitance	
	Capacitance Temperature Characteristics	Temperature Coefficient	Within the specified tolerance (Table A)	1 Reference Temp 2 -55±3 3 Reference Temp 4 125±3	he specified tol	erance for the	
9		Capacitance Drift	Within ±0.2% or ±0.05pF (Whichever is larger)		um and minim the capacitan T Ref Ref	inimum measured values in the itance value in step 3. Temperature (°C) Reference Temp. ±2 -55±3 Reference Temp. ±2	
			No removal of the terminations or other defect should occur.	Solder the capacitor	to the test jig (glass epoxy bo	ard) shown in
10	Adhesive Strength of Termination		9 1 1 1 1 1 1 1 1		c solder. Then ±1 sec. I be done eithe nould be cond	n apply 10N* for er with an iron o lucted with care fects such as he	or using the so that the
				Type GQM18	1.0	3.0	1.2
			Solder resist Baked electrode or copper foil	GQM21	1.2 Fig.	1 4.0	1.65 (in mm)
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board) in the			ooard) in the
		Capacitance	Within the specified tolerance	same manner and u The capacitor should			
11	Vibration Resistance	Q	30pF min.: Q≧1400 30pF max.: Q≥800+20C C: Nominal Capacitance (pF)	having a total amplit uniformly between the frequency range, fro be traversed in appr This motion should the	ude of 1.5mm ne approxima m 10 to 55Hz oximately 1 n	n, the frequency te limits of 10 a z and return to ninute.	y being varied and 55Hz. The 10Hz, should
			, , ,	3 mutually perpendic		•	

Continued from the preceding page

\nearrow	Continued from the preceding page.							
No.	Ite	em	Specifications	Test Method				
12	2 Deflection		No crack or marked defect should occur.	Solder the capacitor on the test jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done by the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 20 50 Pressurizing speed: 1.0mm/sec. Pressurize Flexure: ≤1 Capacitance meter 45 Fig. 3				
13	Solderabi Terminati	,	75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5°C or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5°C.				
			The measured and observed characteristics should satisfy the specifications in the following table.					
		Appearance	No marking defects	1				
	Resistance to Soldering Heat	Capacitance Change	Within ±2.5% or ±0.25 pF (Whichever is larger)	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu solder solution at 270±5°C for 10±0.5 seconds. Let sit at room temperature for 24±2 hours.				
14		Q	30pF min.: Q≥1400 30pF max.: Q≥800+20C					
		I.R.	C: Nominal Capacitance (pF) More than 10,000MΩ	-				
		Dielectric	No failure					
	Strength		The measured and observed characteristics should satisfy the specifications in the following table.					
		Appearance	No marking defects	Fix the capacitor to the supporting jig in the same manner and				
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	 under the same conditions as (10). Perform the five cycles according to the four heat treatments listed in the following table. 				
15	Temperature Cycle	е	30pF min.: Q≥1400 30pF max.: Q≥800+20C	Let sit for 24±2 hours at room temperature, then measure. Step 1 2 3 4				
	-,	Q		Temp (%) Min. Operating Room Max. Operating Room				
		I.R.	C: Nominal Capacitance (pF) More than 10,000MΩ	Time (min.) 30±3 2 to 3 30±3 2 to 3				
		Dielectric Strength	No failure					
		j ve g	The measured and observed characteristics should satisfy the specifications in the following table.					
		Appearance	No marking defects	1				
		Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)	Let the connector sit at 4010% and 00 to 050/ house life for				
16	Humidity Steady State	Q	30pF min.: Q≥350 10pF and over, 30pF and below: Q≥275+5C/2 10pF max.: Q≥200+10C	 Let the capacitor sit at 40±2℃ and 90 to 95% humidity for 500±12 hours. Remove and let sit for 24±2 hours (temperature compensating type) at room temperature, then measure. 				
		1.0	C: Nominal Capacitance (pF)	-				
	_	I.R.	More than 1,000MΩ	-				
		Dielectric Strength	No failure					

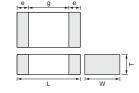
Continued from the preceding page.

No.	. Item		Specifications	Test Method		
17			The measured and observed characteristics should satisfy the specifications in the following table.			
		Appearance	No marking defects			
		Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	Apply the rated voltage at 40±2°C and 90 to 95% humidity for		
	Humidity Load	Q	30pF min.: Q≥200 30pF max.: Q≥100+10C/3	500±12 hours. Remove and let sit for 24±2 hours at room temperature then measure. The charge/discharge current is less than 50mA.		
			C: Nominal Capacitance (pF)			
		I.R.	More than $500 M\Omega$			
		Dielectric Strength	No failure			
			The measured and observed characteristics should satisfy the specifications in the following table.	_		
		Appearance	No marking defects			
		Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	Apply 200% of the rated voltage for 1000±12 hours at the		
18	High Temperature Load	Q	30pF min.: Q≥350 10pF and over, 30pF and below: Q≥275+5C/2 10pF max.: Q≥200+10C	maximum operating temperature ±3°C. Let sit for 24±2 hours (temperature compensating type) at room temperature, then measure. The charge/discharge current is less than 50mA.		
			C: Nominal Capacitance (pF)			
		I.R.	More than 1,000M Ω			
		Dielectric Strength	No failure			

Table A

(1)								
			Capacitance Change from 25℃ (%)					
	Char.	Nominal Values (ppm/°C) *1	− 55℃		-30℃		−10°C	
		(ppiii/ c) · i	Max.	Min.	Max.	Min.	Max.	Min.
	5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11

^{*1:} Nominal values denote the temperature coefficient within a range of 25 to 125°C.


muRata

High Frequency Type ERB Series

■ Features (ERB Series)

- Negligible inductance is achieved by its monolithic structure so the series can be used at frequencies above 1GHz.
- 2. Nickel barriered terminations of ERB series improve solderability and decrease solder leaching.
- ERB18/21 series are designed for both flow and reflow soldering and ERB32 series are designed for reflow soldering.

	Part Number	Dimensions (mm)							
	Part Number	L	W	T max.	e min.	g min.			
	ERB188	1.6±0.1	0.8±0.1	0.9	0.2	0.5			
	ERB21B	2.0±0.3	1.25±0.3	1.35	0.25	0.7			
	ERB32Q	3.2±0.3	2.5±0.3	1.7	0.3	1.0			

■ Applications

High frequency and high-power circuits

Part Number	ER	B18		ERI	B21				ER	B32		
LxW	1.6x0.8			2.0x	1.25		3.2x2.5					
TC COG (5C)			C0G (5C)			C0G (5C)						
Rated Volt.	250 (2E)	200 (2D)	250 (2E)	200 (2D)	100 (2A)	50 (1H)	500 (2H)	300 (YD)	250 (2E)	200 (2D)	100 (2A)	50 (1H)
Capacitance (Ca	pacitance	part numb	ering code)	and T (mm) Dimensio	n (T Dimen	sion part nu	umbering c	ode)			
0.50pF(R50)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
0.75pF(R75)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
1.0pF(1R0)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
1.1pF(1R1)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
1.2pF(1R2)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
1.3pF(1R3)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
1.5pF(1R5)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
1.6pF(1R6)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
1.8pF(1R8)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
2.0pF(2R0)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
2.2pF(2R2)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
2.4pF(2R4)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
2.7pF(2R7)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
3.0pF(3R0)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
3.3pF(3R3)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
3.6pF(3R6)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
3.9pF(3R9)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
4.0pF(4R0)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
4.3pF(4R3)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
4.7pF(4R7)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
5.0pF(5R0)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
5.1pF(5R1)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
5.6pF(5R6)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
6.0pF(6R0)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
6.2pF(6R2)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
6.8pF(6R8)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
7.0pF(7R0)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
7.5pF(7R5)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
8.0pF(8R0)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
8.2pF(8R2)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
9.0pF(9R0)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
9.1pF(9R1)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					

Continued from the preceding page.

Part Number	ER	B18		ER	B21				ER	B32		
LxW	1.6	1.6x0.8 2.0x1.25			3.2x2.5							
тс	C	0G iC)		C0G (5C)			C0G (5C)					
Rated Volt.	250 (2E)	200 (2D)	250 (2E)	200 (2D)	100 (2A)	50 (1H)	500 (2H)	300 (YD)	250 (2E)	200 (2D)	100 (2A)	50 (1H)
Capacitance (Ca	pacitance	part numb	ering code)	and T (mm	n) Dimensio	n (T Dimen	sion part n	umbering o	ode)			
10pF(100)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
11pF(110)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
12pF(120)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
13pF(130)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
15pF(150)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
16pF(160)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
18pF(180)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
20pF(200)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
22pF(220)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
24pF(240)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
27pF(270)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
30pF(300)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
33pF(330)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
36pF(360)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
39pF(390)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
43pF(430)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
47pF(470)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
51pF(510)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
56pF(560)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
62pF(620)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
68pF(680)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
75pF(750)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
82pF(820)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
91pF(910)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
100pF(101)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
110pF(111)					1.35(B)		1.7(Q)					
120pF(121)					1.35(B)		1.7(Q)					
130pF(131)					1.35(B)			1.7(Q)				
150pF(151)						1.35(B)		1.7(Q)				
160pF(161)						1.35(B)			1.7(Q)	1.7(Q)		
180pF(181)									1.7(Q)	1.7(Q)		
200pF(201)									1.7(Q)	1.7(Q)		
220pF(221)									1.7(Q)	1.7(Q)		
240pF(241)											1.7(Q)	
270pF(271)											1.7(Q)	
300pF(301)											1.7(Q)	
330pF(331)											1.7(Q)	
360pF(361)											1.7(Q)	
390pF(391)											1.7(Q)	
430pF(431)											1.7(Q)	
470pF(471)											1.7(Q)	
510pF(511)												1.7(Q)
560pF(561)												1.7(Q)
620pF(621)												1.7(Q)
680pF(681)												1.7(Q)
750pF(751)												1.7(Q)
820pF(821)												1.7(Q)
910pF(911)												1.7(Q)
1000pF(102)												1.7(Q)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

No.				Test Method			
1	Operating Temperature Range			Reference Temperature: 25°C			
2	2 Rated Voltage		See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{P-P} or V ^{O-P} , whichever is larger, should be maintained within the rated voltage range.			
3	Appearar	nce	No defects or abnormalities	Visual inspection			
4	Dimensio	ns	Within the specified dimension	Using calipers			
5			No defects or abnormalities	age is applied betw	e observed when 300%(*) of the rated volt- reen the terminations for 1 to 5 seconds, e/discharge current is less than 50mA. 0V: 200%		
6	Insulation Resistance (I.R.)		1,000,000MΩ min. (C≦470pF) 100,000MΩ min. (C>470pF)	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 25°C and standard humidity and within 2 minutes of charging.			
7	Capacita	Capacitance Within the specified tolerance		The capacitance/Q	should be measured at 25℃ at the		
8	3 Q		C≦ 220pF : Q≧10,000 220pF <c≦ 470pf="" 5,000<br="" :="" q≧="">470pF<c≦1,000pf 3,000<br="" :="" q≧="">C: Nominal Capacitance (pF)</c≦1,000pf></c≦>	frequency and voltage shown in the table. Frequency 1±0.1MHz Voltage 1±0.2Vrms			
	Temperature		Within the specified tolerance (Table A-6)	The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling			
			Within the specified tolerance (Table A-6)	the temperature sequentially from step 1 through 5, the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as Table A.			
9	Capacitance Temperature			The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in steps 1, 3 and 5 by the capacitance value in step 3.			
	Characteristics			Step	Temperature (℃)		
		Capacitance Drift	Within ±0.2% or ±0.05pF (Whichever is larger)	1	25±2		
		DIIIL	(Will chever is larger)	2	-55±3		
				3	25±2		
					125±3 25±2		
					25±2		
	Adhesive Strength of Termination		No removal of the terminations or other defects should occur.	Solder the capacitor on the test jig (glass epoxy board) show in Fig. 1 using an eutectic solder. Then apply 10N* force in parallel with the test jig for 10±1sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.			
10				Type	a b c		

Solder Resist

Copper Foil

Fig.1

Baked Electrode or

Continued on the following page.

1.2

1.65

2.9

(in mm) *5N (ERB188)

3.0

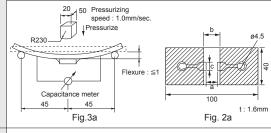
4.0

5.0

1.0

1.2

2.2


ERB18

ERB21

ERB32

Continued from the preceding page

No.	Ite	em	Specifications	Test Method	
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board) in the same manner and under the same conditions as (10).	
		Capacitance	Within the specified tolerance	The capacitor should be subjected to a simple harmonic motion	
11	Vibration Resistance	Q	Satisfies the initial value. $C \leq 220 pF : Q \geq 10,000$ $220 pF < C \leq 470 pF : Q \geq 5,000$ $470 pF < C \leq 1,000 pF : Q \geq 3,000$ C: Nominal Capacitance (pF)	having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours).	
12	12 Deflection		No crack or marked defect should occur. 20 50 Pressurizing speed: 1.0mm/sec. Pressurize 04.5	Solder the capacitor on the test jig (glass epoxy board) shown in Fig. 2a using an eutectic solder. Then apply a force in the direction shown in Fig. 3a. The soldering should be done by the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.	

Type b ERB18 1.0 3.0 1.2 ERB21 1.2 4.0 1.65 ERB32 2.2 5.0 2.9 (in mm)

Solderability of 95% of the terminations are to be soldered evenly and Termination continuously.

specifications in the following table.

Immerse the capacitor in a solution of isopropyl alcohol and rosin (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in an eutectic solder or Sn-3.0Ag-0.5Cu solder solution for 5±0.5 seconds at 245±5℃.

Resistance to Soldering Heat

Temperature

Humidity

15 Cycle

Item	Specifications			
Appearance	No marked defect			
Capacitance	Within ±2.5% or ±0.25pF			
Change	(Whichever is larger)			
	C≦ 220pF : Q≥10,000			
Q	220pF <c≤ 470pf="" 5,000<="" :="" q≥="" td=""></c≤>			
	470pF <c≦1,000pf 3,000<="" :="" q≥="" td=""></c≦1,000pf>			
Dielectric Strength	No failure			

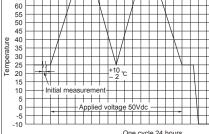
The measured and observed characteristics should satisfy the

Preheat according to the conditions listed in the table below. Immerse the capacitor in an eutectic solder or Sn-3.0Ag-0.5Cu solder solution at 270±5℃ for 10±0.5 seconds. Let sit at room temperature for 24±2 hours.

Chip Size	Preheat Condition 1minute at 120 to 150°C				
2.0×1.25mm max.					
3.2×2.5mm	Each 1 minute at 100 to 120℃ and then 170 to 200℃				

The measured and observed characteristics should satisfy the specifications in the following table.

Specifications
No marked defect
Within ±5% or ±0.5pF
(Whichever is larger)
C≥30pF : Q≥350
10pF≦C<30pF : Q≥275+ 5 C
C<10pF : Q≥200+10C
1,000MΩ min.
No failure


Fix the capacitor to the supporting jig in the same manner and under the same conditions as (10). Perform the five cycles $\,$ according to the four heat treatments listed in the following table. Let sit for 24±2 hours at room temperature, then measure.

Step	1	2	3	4
Temp. (℃)	Min. Operating Temp. +0/-3	Room Temp.	Max. Operating Temp. +3/-0	Room Temp.
Time (min.)	30±3	5 max.	30±3	5 max.

The measured and observed characteristics should satisfy the specifications in the following table.

Item	Specifications					
Appearance	No marked defect					
Capacitance	Within ±5% or ±0.5pF					
Change	(Whichever is larger)					
	C≥30pF : Q≥350					
Q	10pF≦C<30pF : Q≥275+ 5 C					
	C<10pF : Q≥200+10C					
I.R.	1,000MΩ min.					
	•					

Apply the 24-hour heat (−10 to +65°C) and humidity (80 to 100%) treatment shown below, 10 consecutive times. Remove, let sit for 24±2 hours at room temperature, and measure.

Humidity Humidity 80–98%

One cycle 24 hours 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2021 22 23 24

C: Nominal Capacitance (pF)

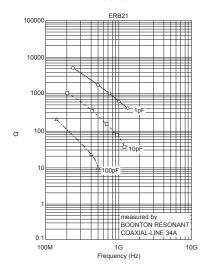
C: Nominal Capacitance (pF)

C: Nominal Capacitance (pF)

Continued from the preceding page.

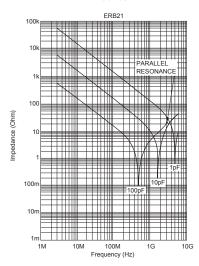
No.	Item	S	pecifications	Test Method	
		The measured and obser specifications in the follow	ved characteristics should satisfy the ving table.		
		Item	Specifications		
	High Temperature Load	Appearance	No marked defect		
		Capacitance	Within ±3% or ±0.3pF	Apply 200% (500V only 150%) of the rated voltage for 1,000±1	
17		Change	(Whichever is larger)	hours at 125±3℃.	
17		Q	C≧30pF : Q≧350 10pF≦C<30pF : Q≥275+ 5 C C<10pF : Q≥200+10C	Remove and let sit for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.	
		I.R.	1,000MΩ min.		
		Dielectric Strength	No failure		
		C: Nominal Capacitance (pF)			

Table A-6

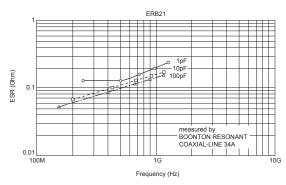

	Nominal Values (ppm/℃) Note 1	Capacitance Change from 25°C (%)						
Char.		-55		-30		-10		
		Max.	Min.	Max.	Min.	Max.	Min.	
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11	

Note 1: Nominal values denote the temperature coefficient within a range of 25 to 125℃ (for 5C)

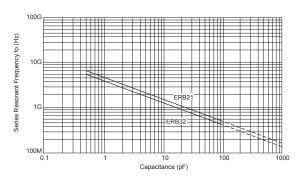
ERB Series Data


■ Q - Frequency Characteristics

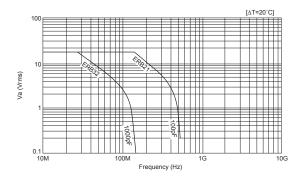
ERB Series


■ Impedance - Frequency Characteristics

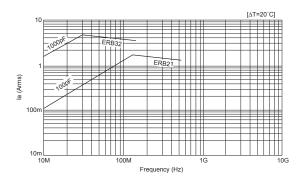
ERB Series


■ ESR - Frequency Characteristics

ERB Series

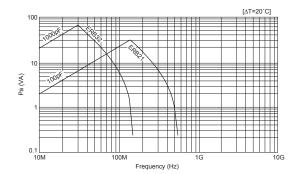


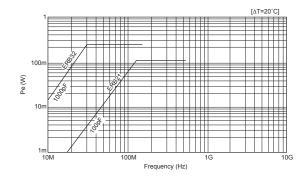
■ Resonant Frequency - Capacitance


ERB Series

■ Allowable Voltage - Frequency

■ Allowable Current - Frequency




ERB Series Data

\(\) Continued from the preceding page.

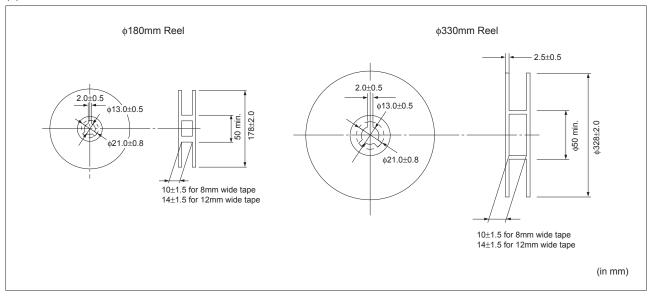
■ Allowable Apparent Power - Frequency

■ Allowable Effective Power - Frequency

■ Minimum Quantity Guide

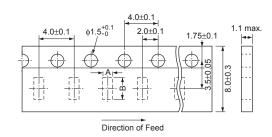
J		Dimensions (mm)		Quantity (pcs.)						
Part Number					ø180mm Reel		ø330mm Reel		Bulk Case	Bulk Bag
		L	W	Т	Paper Tape	Embossed Tape	Paper Tape	Embossed Tape		-
Packaging Code					D	L	J	K	С	Bulk : B Tray : T
	GRM02	0.4	0.2	0.2	20,000	-	ı	-	-	1,000
	GRM03	0.6	0.3	0.3	15,000	-	50,000	-	-	1,000
	GRM15	1.0	0.5	0.25	10,000	-	50,000	-	-	1,000
				0.5	10,000	-	50,000	-	50,000	1,000
	GRM18	1.6	0.8	0.8	4,000	-	10,000	-	15,000 1)	1,000
	GRM21	2.0	1.25	0.6 0.85/1.0	4,000	-	10,000 10,000	-	10,000	1,000 1,000
	GRIVIZI	2.0	1.23	1.25	4,000	3,000	-	10,000	5,000 2)	1,000
				0.6/0.85	4,000	-	10,000	-	-	1,000
	GRM31	3.2	1.6	1.15	-	3,000	-	10,000	-	1,000
				1.6	-	2,000	-	6,000	-	1,000
For General				0.85	_	4,000	-	10,000	-	1,000
Purpose				1.15	-	3,000	-	10,000	-	1,000
	GRM32	3.2	2.5	1.35	-	2,000	-	8,000	-	1,000
				1.6	-	2,000	-	6,000	-	1,000
				1.8/2.0 2.5	-	1,000	-	4,000	-	1,000
				1.15	-	1,000	-	5,000	-	1,000
	GRM43	4.5	3.2	1.35/1.6 1.8/2.0	-	1,000	-	4,000	-	1,000
				2.5	-	500	-	2,000	-	1,000
				2.8 1.15	-	500	-	1,500	-	500 1,000
	GRM55			1.15 1.35/1.6 1.8/2.0	-	1,000 1,000	-	5,000 4,000		1,000
		5.7	5.7 5.0	2.5		500		2,000	-	500
				3.2	_	300	_	1,500	_	500
5 -	GJM03	0.6	0.3	0.3	15,000	-	50,000	-	-	1,000
High Power Type	GJM15	1.0	0.5	0.5	10,000	-	50,000	-	50,000	1,000
	GQM18	1.6	0.8	0.8	4,000	-	10,000	-	-	1,000
	GQM21	2.0	1.25	0.85	4,000	-	10,000	-	-	1,000
High Frequency	ERB18	1.6	0.8	0.9 max.	4,000	-	10,000	-	-	1,000
	ERB21	2.0	1.25	1.35 max.	-	3,000	-	10,000	-	1,000
F 100	ERB32	3.2	2.5	1.7 max.	-	2,000	-	8,000	-	1,000
For Ultrasonic	GRM21	2.0	1.25	0.85	4,000	-	10,000	-	-	1,000 400 ³⁾
Microchip	GMA05 GMA08	0.5	0.5	0.35	-	-	-	-	-	400 3)
	GNM1M	1.37	1.0	0.6	4,000	-	10,000	-		1,000
	GNM21	2.0	1.25	0.6/0.85	4,000	-	10,000	-	-	1,000
Array				0.8	4,000	-	10,000	-	-	1,000
	GNM31	3.2	1.6	1.0	-	3,000	-	10,000	-	1,000
	LLL15	0.5	1.0	0.3	10,000	-	50,000	-	-	1,000
	LLL18	8.0	1.6	0.5	-	4,000	-	10,000	-	1,000
	LLL21	1.25	2.0	0.5/0.6	-	4,000	-	10,000	-	1,000
			2.0	0.85	-	3,000	-	10,000	-	1,000
	LLL31	1.6	3.2	0.5/0.7	-	4,000	-	10,000	-	1,000
	11 110		0.8	1.15	-	3,000	-	10,000	-	1,000
	LLA18	1.6	0.0	0.5 0.5	-	4,000	-	10,000 10,000	-	1,000 1,000
Low ESL	LLA21	2.0	1.25	0.85	-	4,000 3,000	-	10,000	-	1,000
				0.5	-	4,000	-	10,000	-	1,000
	LLA31	3.2	1.6	0.85	_	3,000	-	10,000	-	1,000
				1.15	-	3,000	-	10,000	-	1,000
	1 1 M24	2.0	1.05	0.5	-	4,000	-	10,000	-	1,000
	LLM21	2.0	1.25	0.85	-	3,000	-	10,000	-	1,000
	LLM31	3.2	1.6	0.5	-	4,000	-	10,000	-	1,000
	LLIVIJ I	J.2	1.0	1.15	-	3,000	-	10,000	-	1,000

¹⁾ $68,000 pF/0.1 \mu F$ of 50V R7 rated are not available by bulk case.


²⁾ Dimension tolerance $\pm 0.15 \text{mm}$ rated are not available by bulk case.

³⁾ Tray

Continued from the preceding page.


■ Tape Carrier Packaging

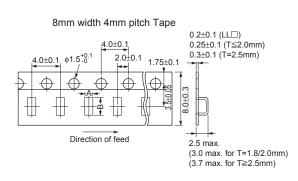
(1) Dimensions of Reel

(2) Dimensions of Paper Tape

Part Number	Α	В
LLL15	0.65	1.15
GRM18 GQM18 ERB18	1.05±0.1	1.85±0.1
GNM1M	1.17±0.05	1.55±0.05
GRM21 (T≦0.85mm) GQM21 GNM21	1.55±0.15	2.3±0.15
GRM31 (T≦0.85mm) GNM31 (T≦0.8mm)	2.0±0.2	3.6±0.2
GRM32 (T≦0.85mm)	2.8±0.2	3.6±0.2

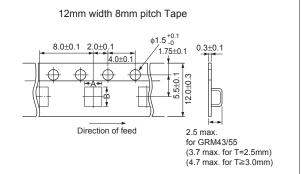
8mm width 2mm pitch Tape	
0.4 max. (GRM02) 0.5 max. (GRM03/GJM03) 0.8 max. (GRM5/GJM15)	
Direction of Feed	

Part Number	A*	B*
GRM02	0.25	0.45
GJM03 GRM03	0.37	0.67
GJM15 GRM15	0.65	1.15


*Nominal Value

Continued on the following page. $\begin{tabular}{|c|c|c|c|} \hline \end{tabular}$

(in mm)

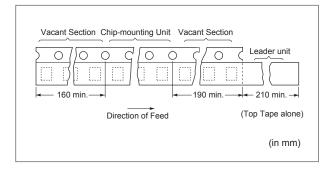

Continued from the preceding page.

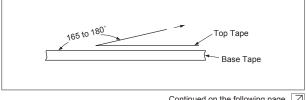
(3) Dimensions of Embossed Tape

Part Number	А	В
LLL18, LLA18	1.05±0.1	1.85±0.1
GRM21, ERB21 (T≥1.0mm) LLL21 LLA21, LLM21	1.45±0.2	2.25±0.2
GRM31 (T≥1.15mm) LLL31 LLA31, LLM31 GNM31 (T≥1.0mm)	1.9±0.2	3.5±0.2
GRM32, ERB32 (T≧1.0mm)	2.8±0.2	3.5±0.2

*Nominal Value

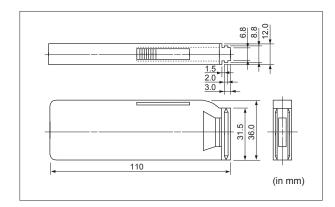
Part Number	A*	B*
GRM43	3.6	4.9
GRM55	5.2	6.1


*Nominal Value


(in mm)

(4) Taping Method

- 1 Tapes for capacitors are wound clockwise. The sprocket holes are to the right as the tape is pulled toward the user.
- 2 Part of the leader and part of the empty tape should be attached to the end of the tape as follows.
- 3 The top tape and base tape are not attached at the end of the tape for a minimum of 5 pitches.
- 4 Missing capacitors number within 0.1% of the number per reel or 1 pc, whichever is greater, and are not continuous.
- 5 The top tape and bottom tape should not protrude beyond the edges of the tape and should not cover sprocket holes.
- 6 Cumulative tolerance of sprocket holes, 10 pitches: ±0.3mm.
- 7 Peeling off force: 0.1 to 0.6N* in the direction shown below. *GRM02 GRM03 : 0.05 to 0.5N


GJM03

Continued from the preceding page.

■ Dimensions of Bulk Case Packaging The bulk case uses antistatic materials. Please contact Murata for details.

1Caution

■ Storage and Operating Conditions

Chip monolithic ceramic capacitors (chips) can experience degradation of termination solderability when subjected to high temperature or humidity, or if exposed to sulfur or chlorine gases.

Storage environment must be at an ambient temperature of 5-40 degree C and an ambient humidity of 20-70%RH. Use chip within 6 months. If 6 months or more have elapsed, check solderability before use.

Use of Sn-Zn based solder will deteriorate reliability of MLCC.

Please contact Murata factory for the use of Sn-Zn based solder in advance.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

■ Handling

1. Inspection

Thrusting force of the test probe can flex the PCB, resulting in cracked chips or open solder joints. Provide support pins on the back side of the PCB to prevent warping or flexing.

- 2. Board Separation (or depanalization)
- (1) Board flexing at the time of separation causes cracked chips or broken solder.
- (2) Severity of stresses imposed on the chip at the time of board break is in the order of: Pushback<Slitter<V Slot<Perforator.
- (3) Board separation must be performed using special jigs, not with hands.

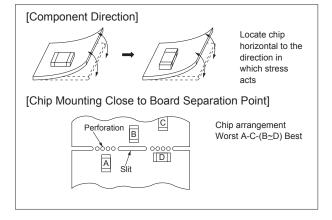
3. Reel and bulk case

In the handling of reel and case, please be careful and do not drop it.

Do not use chips from a case which has been dropped.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND FUMING WHEN THE PRODUCT IS USED.

sales representatives or product engineers before ordering.

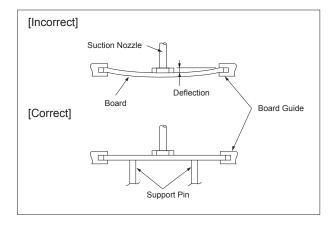

This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications because

⚠Caution

■ **(**Caution (Soldering and Mounting)

1. Mounting Position

Choose a mounting position that minimizes the stress imposed on the chip during flexing or bending of the board.



(Reference Data 2. Board bending strength for solder fillet height) (Reference Data 3. Temperature cycling for solder fillet height) (Reference Data 4. Board bending strength for board material)

2. Chip Placing

- An excessively low bottom dead point of the suction nozzle imposes great force on the chip during mounting. causing cracked chips. So adjust the suction nozzle's bottom dead point by correcting warp in the board. Normally, the suction nozzle's bottom dead point must be set on the upper surface of the board. Nozzle pressure for chip mounting must be a 1 to 3N static load.
- Dirt particles and dust accumulated between the suction nozzle and the cylinder inner wall prevent the nozzle from moving smoothly. This imposes great force on the chip during mounting, causing cracked chips. And the locating claw, when worn out, imposes uneven forces on the chip when positioning, causing cracked chips. The suction nozzle and the locating claw must be maintained, checked and replaced periodically.

(Reference Data 5. Break strength)

⚠Caution

Continued from the preceding page.

3. Reflow Soldering

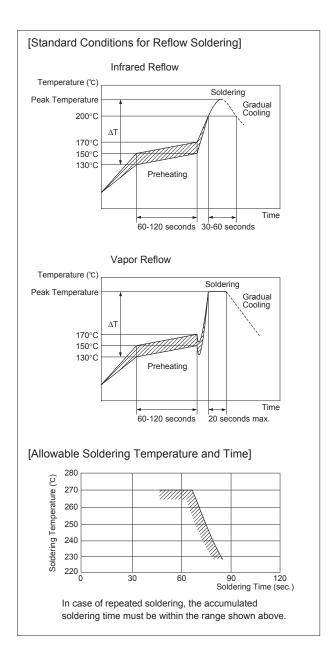
- When sudden heat is applied to the components, the mechanical strength of the components should go down because remarkable temperature change causes deformity inside components. In order to prevent mechanical damage in the components, preheating should be required for both of the components and the PCB board. Preheating conditions are shown in table 1. It is required to keep temperature differential between the soldering and the components surface (ΔT) as small as possible.
- Solderability of Tin plating termination chip might be deteriorated when low temperature soldering profile where peak solder temperature is below the Tin melting point is used. Please confirm the solderability of Tin plating termination chip before use.
- When components are immersed in solvent after mounting, be sure to maintain the temperature difference (ΔT) between the component and solvent within the range shown in the table 1.

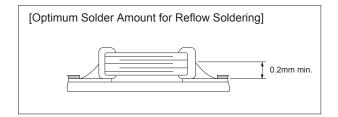
Table 1

Part Number	Temperature Differential
GRM02/03/15/18/21/31	
GJM03/15	
LLL15/18/21/31	ΔT≦190℃
ERB18/21	
GQM18/21	
GRM32/43/55	
LLA18/21/31	
LLM21/31	ΔΤ≦130℃
GNM	
ERB32	

Recommended Conditions

	Pb-Sn S	Lead Free Solder	
	Infrared Reflow	Vapor Reflow	Lead Free Solder
Peak Temperature	230-250°C	230-240°C	240-260°C
Atmosphere	Air	Air	Air or N2


Pb-Sn Solder: Sn-37Pb Lead Free Solder: Sn-3.0Ag-0.5Cu


Optimum Solder Amount for Reflow Soldering

- Overly thick application of solder paste results in excessive fillet height solder.
 - This makes the chip more susceptible to mechanical and thermal stress on the board and may cause cracked chips.
- Too little solder paste results in a lack of adhesive strength on the outer electrode, which may result in chips breaking loose from the PCB.
- Make sure the solder has been applied smoothly to the end surface to a height of 0.2mm min.

Inverting the PCB

Make sure not to impose an abnormal mechanical shock on the PCB.

Continued from the preceding page

4. Leaded Component Insertion

If the PCB is flexed when leaded components (such as transformers and ICs) are being mounted, chips may crack and solder joints may break.

Before mounting leaded components, support the PCB using backup pins or special jigs to prevent warping.

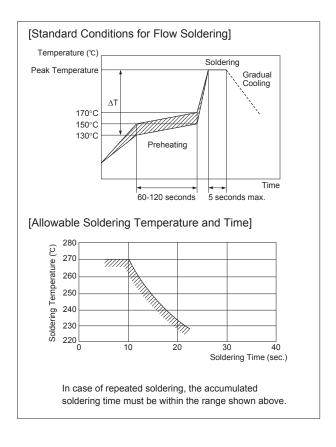
5. Flow Soldering

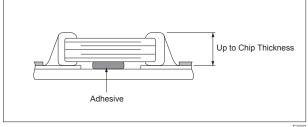
- When sudden heat is applied to the components, the mechanical strength of the components should go down because remarkable temperature change causes deformity inside components. And an excessively long soldering time or high soldering temperature results in leaching of the outer electrodes, causing poor adhesion or a reduction in capacitance value due to loss of contact between electrodes and end termination.
- In order to prevent mechanical damage in the components, preheating shoud be required for the both components and the PCB board. Preheating conditions are shown in table 2. It is required to keep temperature differential between the soldering and the components surface (ΔT) as small as possible.

When components are immersed in solvent after mounting, be sure to maintain the temperature difference between the component and solvent within the range shown in Table 2.

Do not apply flow soldering to chips not listed in Table 2.

Table 2


Part Number	Temperature Differential	
GRM18/21/31		
LLL21/31	AT<450°0	
ERB18/21	ΔΤ≦150℃	
GQM18/21		


Recommended Conditions

	Pb-Sn Solder	Lead Free Solder
Peak Temperature	240-250°C	250-260°C
Atmosphere	Air	N ₂

Pb-Sn Solder: Sn-37Pb Lead Free Solder: Sn-3.0Ag-0.5Cu

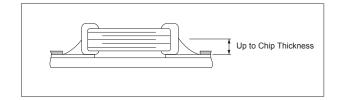
Optimum Solder Amount for Flow Soldering
 The top of the solder fillet should be lower than the
 thickness of components. If the solder amount is
 excessively big, the risk of cracking is higher during
 board bending or under any other stressful conditions.

1 Caution

- Continued from the preceding page.
- 6. Correction with a Soldering Iron
- (1) For Chip Type Capacitors
- When sudden heat is applied to the components by soldering iron, the mechanical strength of the components should go down because remarkable temperature change causes deformity inside components. In order to prevent mechanical damage in the components, preheating should be required for both of the components and the PCB board. Preheating conditions are shown in table 3. It is required to keep temperature differential between the soldering and the components surface (ΔT) as small as possible. After soldering, it is not allowed to cool it down rapidly.

Table 3

Part Number	Temperature Differential	Peak Temperature	Atmosphere
GRM15/18/21/31 GJM15 LLL15/18/21/31 GQM18/21 ERB18/21	ΔT≦190°C	300°C max. 3 seconds max. / termination	Air
GRM32/43/55 GNM LLA18/21/31 LLM21/31 ERB32	ΔT≦130°C	270°C max. 3 seconds max. / termination	Air


*Applicable for both Pb-Sn and Lead Free Solder.

Pb-Sn Solder: Sn-37Pb

Lead Free Solder: Sn-3.0Ag-0.5Cu

 Optimum Solder Amount when Corrections Are Made Using a Soldering Iron

The top of the solder fillet should be lower than the thickness of components. If the solder amount is excessively big, the risk of cracking is higher during board bending or under any other stressful conditions. Soldering iron ø3mm or smaller should be required. And it is necessary to keep a distance between the soldering iron and the components without direct touch. Thread solder with ø0.5mm or smaller is required for soldering.

7. Washing

Excessive output of ultrasonic oscillation during cleaning causes PCBs to resonate, resulting in cracked chips or broken solder. Take note not to vibrate PCBs.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND FUMING WHEN THE PRODUCT IS USED.

Rating

Die Bonding/Wire Bonding (GMA Series)

- 1. Die Bonding of Capacitors
- •Use the following materials Brazing alloy: Au-Sn (80/20) 300 to 320 degree C in N2 atmosphere
- Mounting
- (1) Control the temperature of the substrate so that it matches the temperature of the brazing
- (2) Place brazing alloy on substrate and place the capacitor on the alloy. Hold the capacitor and gently apply the load. Be sure to complete the operation in 1 minute.

- 2. Wire Bonding
- Wire

Gold wire:

20 micro m (0.0008 inch), 25 micro m (0.001 inch) diameter

- Bonding
- (1) Thermocompression, ultrasonic ball bonding.
- (2) Required stage temperature: 200 to 250 degree C
- (3) Required wedge or capillary weight: 0.5N to 2N.
- (4) Bond the capacitor and base substrate or other devices with gold wire.

■ Notice (Soldering and Mounting)

1. PCB Design

(1) Notice for Pattern Forms

Unlike leaded components, chip components are susceptible to flexing stresses since they are mounted directly on the substrate.

They are also more sensitive to mechanical and thermal stresses than leaded components.

Excess solder fillet height can multiply these stresses and cause chip cracking. When designing substrates, take land patterns and dimensions into consideration to eliminate the possibility of excess solder fillet height.

Pattern Forms

	Placing Close to Chassis	Placing of Chip Components and Leaded Components	Placing of Leaded Components after Chip Component	Lateral Mounting
Prohibited	Chassis Solder (ground) Electrode Pattern	Lead Wire	Soldering Iron Lead Wire	
Correct	Solder Resist	Solder Resist	Solder Resist	Solder Resist

- Ontinued from the preceding page.
- (2) Land Dimensions

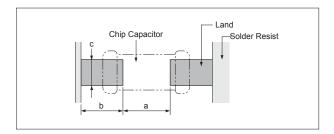
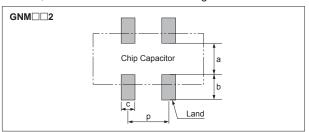


Table 1 Flow Soldering Method

Dimensions Part Number	Dimensions (L×W)	а	b	С	
GRM18	4.0240.0	0.0.1.0	0.0.00	0.0.00	
GQM18	1.6×0.8	0.6-1.0	0.8-0.9	0.6-0.8	
GRM21	2.024.05	40.40	0.0.4.0	0.8-1.1	
GQM21	2.0×1.25	1.0-1.2	0.9-1.0		
GRM31	3.2×1.6	2.2-2.6	1.0-1.1	1.0-1.4	
LLL21	1.25×2.0	0.4-0.7	0.5-0.7	1.4-1.8	
LLL31	1.6×3.2	0.6-1.0	0.8-0.9	2.6-2.8	
ERB18	1.6×0.8	0.6-1.0	0.8-0.9	0.6-0.8	
ERB21	2.0×1.25	1.0-1.2	0.9-1.0	0.8-1.1	

(in mm)


Table 2 Reflow Soldering Method

Dimensions Part Number	Dimensions (LXW)	a	b	С	
GRM02	0.4×0.2	0.16-0.2	0.12-0.18	0.2-0.23	
GRM03	0.6×0.3	0.2-0.3	0.2-0.35	0.2-0.4	
GJM03					
GRM15	1.0×0.5	0.3-0.5	0.35-0.45	0.4-0.6	
GJM15		****		*** ***	
GRM18	1.6×0.8	0.6-0.8	0.6-0.7	0.6-0.8	
GQM18	1.070.0	0.0 0.0	0.0 0.7	0.0 0.0	
GRM21	2.0×1.25	1.0-1.2	0.6-0.7	0.8-1.1	
GQM21	2.0 \(\times 1.25\)	1.0—1.2	0.0-0.7	0.0 1.1	
GRM31	3.2×1.6	2.2-2.4	0.8-0.9	1.0-1.4	
GRM32	3.2×2.5	2.0-2.4	1.0-1.2	1.8-2.3	
GRM43	4.5×3.2	3.0-3.5	1.2-1.4	2.3-3.0	
GRM55	5.7×5.0	4.0-4.6	1.4-1.6	3.5-4.8	
LLL15	0.5×1.0	0.15-0.2	0.2-0.3	0.7-1.0	
LLL18	0.8×1.6	0.2-0.4	0.3-0.4	1.0-1.4	
LLL21	1.25×2.0	0.4-0.6	0.3-0.5	1.4-1.8	
LLL31	1.6×3.2	0.6-0.8	0.6-0.7	2.6-2.8	
ERB18	1.6×0.8	0.6-0.8	0.6-0.7	0.6-0.8	
ERB21	2.0×1.25	1.0-1.2	0.6-0.7	0.8-1.1	
ERB32	3.2×2.5	2.0-2.4	1.0-1.2	1.8-2.3	

(in mm)

Continued from the preceding page.

GNM, LLA Series for Reflow Soldering Method

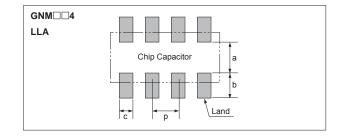


Table 3 GNM, LLA Series for Reflow Soldering Land Dimensions

and a state of the									
Part Number	Dimensions (mm)								
Fait Number	L	W	а	b	С	р			
GNM1M2	1.37	1.0	0.4 to 0.5	0.35 to 0.45	0.3 to 0.35	0.64			
GNM212	2.0	1.25	0.6 to 0.7	0.5 to 0.7	0.4 to 0.5	1.0			
GNM214	2.0	1.25	0.6 to 0.7	0.5 to 0.7	0.25 to 0.35	0.5			
GNM314	3.2	1.6	0.8 to 1.0	0.7 to 0.9	0.3 to 0.4	0.8			
LLA18	1.6	0.8	0.3 to 0.4	0.25 to 0.4	0.2 to 0.28	0.4			
LLA21	2.0	1.25	0.7 to 0.8	0.4 to 0.6	0.2 to 0.3	0.5			
LLA31	3.2	1.6	0.8 to 1.0	0.7 to 0.9	0.3 to 0.4	0.8			

LLM Series for Reflow Soldering Method

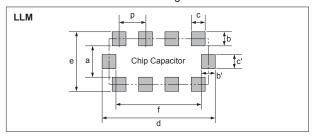
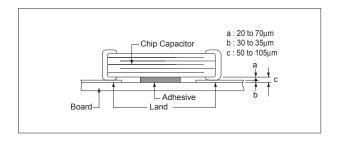


Table 4 LLM Series for Reflow Soldering Land Dimensions


Part Number	Dimensions (mm)						
Part Number	а	b, b'	c, c'	d	е	f	р
LLM21	0.6 to 0.8	(0.3 to 0.5)	0.3	2.0 to 2.6	1.3 to 1.8	1.4 to 1.6	0.5
LLM31	1.0	(0.3 to 0.5)	0.4	3.2 to 3.6	1.6 to 2.0	2.6	0.8

b=(c-e)/2, b'=(d-f)/2

2. Adhesive Application

- Thin or insufficient adhesive causes chips to loosen or become disconnected when flow soldered. The amount of adhesive must be more than dimension c shown in the drawing at right to obtain enough bonding strength. The chip's electrode thickness and land thickness must be taken into consideration.
- Low viscosity adhesive causes chips to slip after mounting. Adhesive must have a viscosity of 5000Pa ·s (500ps) min. (at 25℃)
- Adhesive Coverage*

Transolve boverage	
Part Number	Adhesive Coverage*
GRM18, GQM18	0.05mg min.
GRM21, LLL21, GQM21	0.1mg min.
GRM31, LLL31	0.15mg min.

*Nominal Value

Continued from the preceding page.

3. Adhesive Curing

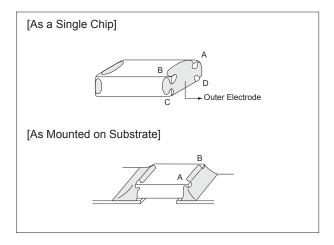
Insufficient curing of the adhesive causes chips to disconnect during flow soldering and causes deteriorated insulation resistance between outer electrodes due to moisture absorption.

Control curing temperature and time in order to prevent insufficient hardening.

Inverting the PCB

Make sure not to impose an abnormal mechanical shock on the PCB.

4. Flux Application


- An excessive amount of flux generates a large quantity of flux gas, causing deteriorated solderability. So apply flux thinly and evenly throughout. (A foaming system is generally used for flow soldering).
- Flux containing too high a percentage of halide may cause corrosion of the outer electrodes unless sufficiently

cleaned. Use flux with a halide content of 0.2wt% max. But do not use strong acidic flux.

Wash thoroughly because water soluble flux causes deteriorated insulation resistance between outer electrodes unless sufficiently cleaned.

5. Flow Soldering

 Set temperature and time to ensure that leaching of the outer electrode does not exceed 25% of the chip end area as a single chip (full length of the edge A-B-C-D shown below) and 25% of the length A-B shown below as mounted on substrate.

(Reference Data 6. Thermal shock) (Reference Data 7. Solder heat resistance)

■ Others

1. Resin Coating

When selecting resin materials, select those with low contraction.

2. Circuit Design

These capacitors in this catalog are not safety recognized products

3. Remarks

guaranteed ratings.

The above notices are for standard applications and conditions. Contact us when the products are used in special mounting conditions. Select optimum conditions for operation as they determine the reliability of the product after assembly. The data herein are given in typical values, not

1. Solderability

(1) Test Method

Subject the chip capacitor to the following conditions. Then apply flux (an ethanol solution of 25% rosin) to the chip and dip it in 230°C eutectic solder for 2 seconds. Conditions:

Expose prepared at room temperature (for 6 months and 12 months, respectively)

Prepared at high temperature (for 100 hours at 85℃) Prepared left at high humidity (for 100 hours under 90%RH to 95%RH at 40°C)

(2) Test Samples

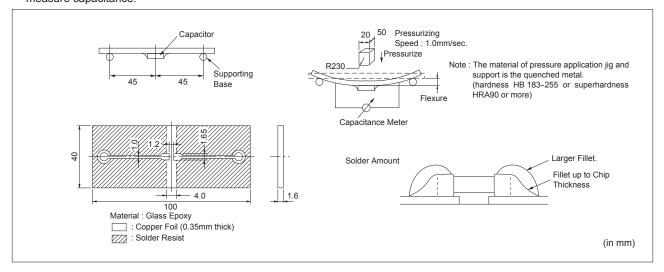
GRM21: Products for flow/reflow soldering.

(3) Acceptance Criteria

With a 60-power optical microscope, measure the surface area of the outer electrode that is covered with solder.

(4) Results

Refer to Table 1.


Table 1

Sample	Initial State	Prepared at Room Temperature		Prepared at High Temperature for	Prepared at High Humidity for 100 Hours at 90 to	
	Illitiai State	6 months	12 months	100 Hours at 85°C	95% RH and 40℃	
GRM21 for flow/reflow soldering	95 to 100%	95 to 100%	95%	90 to 95%	95%	

2. Board Bending Strength for Solder Fillet Height

(1) Test Method

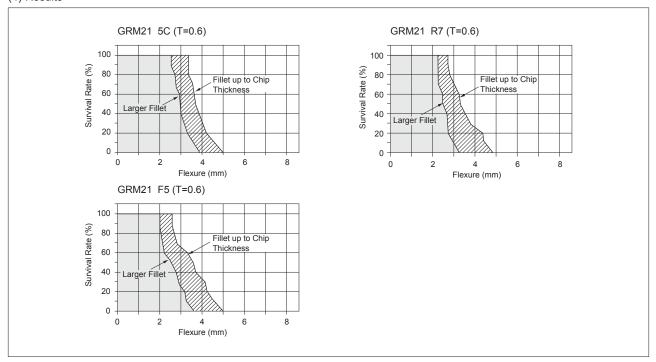
Solder the chip capacitor to the test PCB with the amount of solder paste necessary to achieve the fillet heights. Then bend the PCB using the method illustrated and measure capacitance.

(2) Test Samples

GRM21: 5C/R7/F5 Characteristics T=0.6mm

(3) Acceptance Criteria

Products should be determined to be defective if the change in capacitance has exceeded the values specified in Table 2.


Table 2

Tubic 2	
Characteristics	Change in Capacitance
5C	Within ±5% or ±0.5pF, whichever is greater
R7	Within ±12.5%
F5	Within ±20%

Continued from the preceding page.

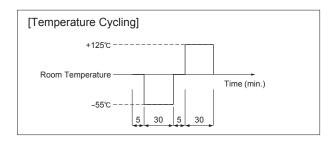
(4) Results

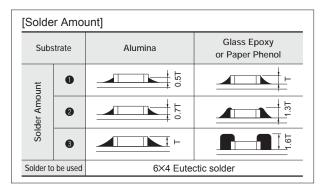
3. Temperature Cycling for Solder Fillet Height

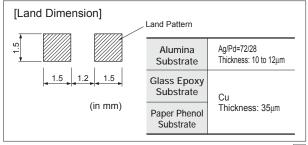
(1) Test Method

Solder the chips to the substrate of various test fixtures using sufficient amounts of solder to achieve the required fillet height. Then subject the fixtures to the cycle illustrated below 200 times.

① Solder Amount


Alumina substrates are typically designed for reflow soldering.


Glass epoxy or paper phenol substrates are typically used for flow soldering.


② Material

Alumina (Thickness: 0.64mm) Glass epoxy (Thickness: 1.64mm) Paper phenol (Thickness: 1.64mm)

3 Land Dimension

Continued from the preceding page.

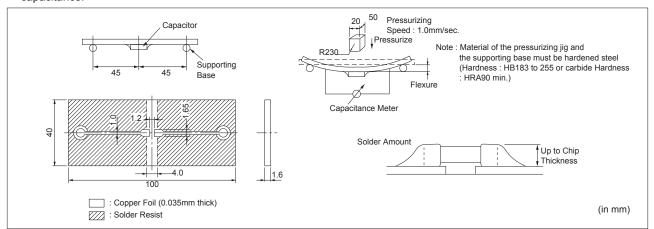
(2) Test Samples GRM21 5C/R7/F5 Characteristics T=0.6mm

(3) Acceptance Criteria

Products are determined to be defective if the change in capacitance has exceeded the values specified in Table 3.

Table 3

Characteristics	Change in Capacitance
5C	Within ±2.5% or ±0.25pF, whichever is greater
R7	Within ±7.5%
F5	Within ±20%



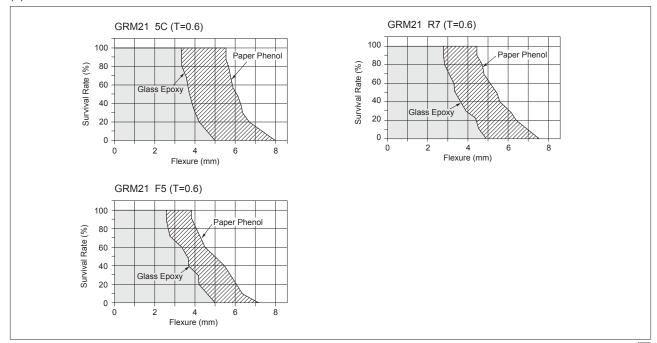
Continued from the preceding page.

4. Board Bending Strength for Board Material

(1) Test Method

Solder the chip to the test board. Then bend the board using the method illustrated below, to measure capacitance.

(2) Test Samples GRM21 5C/R7/F5 Characteristics T=0.6mm typical


(3) Acceptance Criteria

Products should be determined to be defective if the change in capacitance has exceeded the values specified in Table 4.

Table 4

Characteristics	Change in Capacitance
5C	Within ±5% or ±0.5pF, whichever is greater
R7	Within ±12.5%
F5	Within ±20%

(4) Results

Continued from the preceding page

5. Break Strength

(1) Test Method

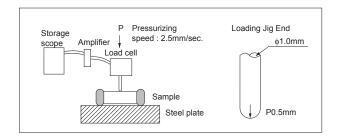
Place the chip on a steel plate as illustrated on the right. Increase load applied to a point near the center of the test sample.

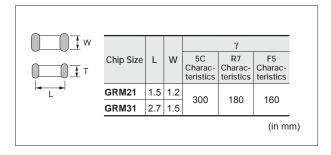
(2) Test Samples

GRM21 5C/R7/F5 Characteristics GRM31 5C/R7/F5 Characteristics

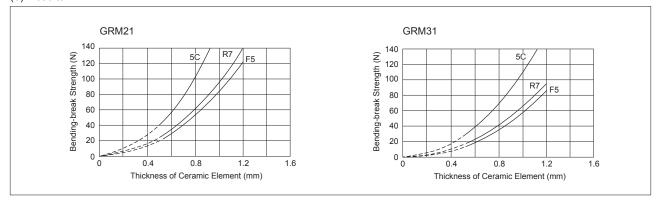
(3) Acceptance Criteria

Define the load that has caused the chip to break or crack, as the bending force.


(4) Explanation


Break strength, P, is proportionate to the square of the thickness of the ceramic element and is expressed as a curve of secondary degree.

The formula is:

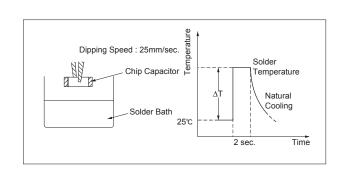

$$P = \frac{2\gamma WT^2}{3I} \quad (N)$$

W: Width of ceramic element (mm) T: Thickness of element (mm) L: Distance between fulcrums (mm) γ: Bending stress (N/mm²)

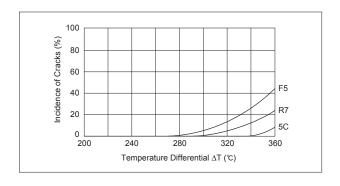
(5) Results

6. Thermal Shock

(1) Test method


After applying flux (an ethanol solution of 25% rosin), dip the chip in a solder bath (6×4 eutectic solder) in accordance with the following conditions:

(2) Test samples


GRM21 5C/R7/F5 Characteristics T=0.6mm typical

(3) Acceptance criteria

Visually inspect the test sample with a 60-power optical microscope. Chips exhibiting breaks or cracks should be determined to be defective.

- Continued from the preceding page.
- (4) Results

7. Solder Heat Resistance

(1) Test Method

① Reflow soldering:

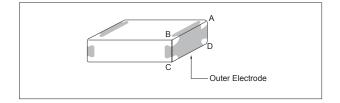
Apply about 300 μm of solder paste over the alumina substrate. After reflow soldering, remove the chip and check for leaching that may have occurred on the outer electrode.

2 Flow soldering:

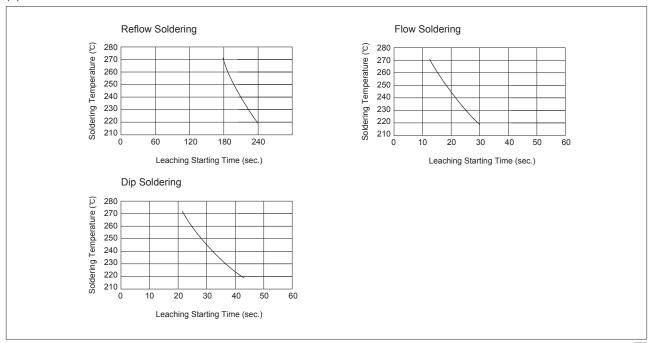
After dipping the test sample with a pair of tweezers in wave solder (eutectic solder), check for leaching that may have occurred on the outer electrode.

(2) Test samples

GRM21: For flow/reflow soldering T=0.6mm


(3) Acceptance criteria

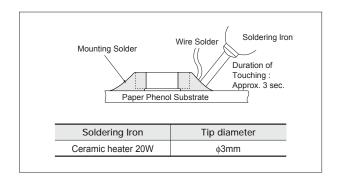
The starting time of leaching should be defined as the time when the outer electrode has lost 25% of the total edge length of A-B-C-D as illustrated:


3 Dip soldering:

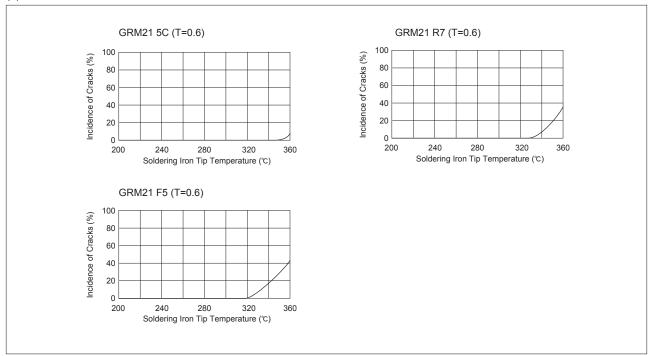
After dipping the test sample with a pair of tweezers in static solder (eutectic solder), check for leaching that may have occurred on the outer electrode.

4 Flux to be used: An ethanol solution of 25% rosin.

(4) Results



- Continued from the preceding page.
- 8. Thermal Shock when Making Corrections with a Soldering Iron
- (1) Test Method


Apply a soldering iron meeting the conditions below to the soldered joint of a chip that has been soldered to a paper phenol board, while supplying wire solder. (Note: the soldering iron tip should not directly touch the ceramic element of the chip.)

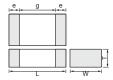
(2) Test Samples GRM21 5C/R7/F5 Characteristics T=0.6mm

(3) Acceptance Criteria for Defects Observe the appearance of the test sample with a 60-power optical microscope. Those units displaying any breaks or cracks are determined to be defective.

(4) Results

muRata

Medium Voltage Low Dissipation Factor


■ Features

- 1. Low-loss and suitable for high frequency circuits
- 2. Murata's original internal electrode structure realizes high flash-over voltage.
- A new monolithic structure for small, surfacemountable devices capable of operating at high voltage levels
- 4. Sn-plated external electrodes realize good solderability.
- 5. Use the GRM21/31 type with flow or reflow soldering, and other types with reflow soldering only.

Applications

Ideal for use on high frequency pulse circuits such as snubber circuits for switching power supplies, DC-DC converters, ballasts (inverter fluorescent lamps), etc.

Part Number	Dimensions (mm)							
Part Number	L	W	T	e min.	g min.			
GRM21A	2.0 ±0.2	1.25 ±0.2	1.0 +0,-0.3		0.7			
GRM31A	22102	1.6 +0.2						
GRM31B	3.2 ±0.2	1.6 ±0.2	1.25 + 0, -0.3		1.5*			
GRM32A	3.2 ±0.2	2.5 +0.2	1.0 +0,-0.3	0.3	1.5			
GRM32B	3.2 ±0.2	2.5 ±0.2	1.25 + 0, -0.3					
GRM42A	4.5 ±0.3	2.0 ±0.2	1.0 +0,-0.3		2.9			

* GRM31A7U3D, GRM32A7U3D, GRM32B7U3D: 1.8mm min.

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GRM21A7U2E101JW31D	DC250	U2J (EIA)	100 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E151JW31D	DC250	U2J (EIA)	150 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E221JW31D	DC250	U2J (EIA)	220 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E331JW31D	DC250	U2J (EIA)	330 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E471JW31D	DC250	U2J (EIA)	470 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E681JW31D	DC250	U2J (EIA)	680 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E102JW31D	DC250	U2J (EIA)	1000 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E152JW31D	DC250	U2J (EIA)	1500 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E222JW31D	DC250	U2J (EIA)	2200 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM31A7U2E332JW31D	DC250	U2J (EIA)	3300 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2E472JW31D	DC250	U2J (EIA)	4700 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31B7U2E682JW31L	DC250	U2J (EIA)	6800 ±5%	3.2	1.6	1.25	1.5	0.3 min.
GRM31B7U2E103JW31L	DC250	U2J (EIA)	10000 ±5%	3.2	1.6	1.25	1.5	0.3 min.
GRM31A7U2J100JW31D	DC630	U2J (EIA)	10 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J150JW31D	DC630	U2J (EIA)	15 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J220JW31D	DC630	U2J (EIA)	22 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J330JW31D	DC630	U2J (EIA)	33 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J470JW31D	DC630	U2J (EIA)	47 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J680JW31D	DC630	U2J (EIA)	68 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J101JW31D	DC630	U2J (EIA)	100 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J151JW31D	DC630	U2J (EIA)	150 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J221JW31D	DC630	U2J (EIA)	220 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J331JW31D	DC630	U2J (EIA)	330 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J471JW31D	DC630	U2J (EIA)	470 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J681JW31D	DC630	U2J (EIA)	680 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J102JW31D	DC630	U2J (EIA)	1000 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM32A7U2J152JW31D	DC630	U2J (EIA)	1500 ±5%	3.2	2.5	1.0	1.5	0.3 min.
GRM32A7U2J222JW31D	DC630	U2J (EIA)	2200 ±5%	3.2	2.5	1.0	1.5	0.3 min.
GRM31A7U3A100JW31D	DC1000	U2J (EIA)	10 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A150JW31D	DC1000	U2J (EIA)	15 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A220JW31D	DC1000	U2J (EIA)	22 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A330JW31D	DC1000	U2J (EIA)	33 ±5%	3.2	1.6	1.0	1.5	0.3 min.

Continued from the preceding page.

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GRM31A7U3A470JW31D	DC1000	U2J (EIA)	47 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A680JW31D	DC1000	U2J (EIA)	68 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A101JW31D	DC1000	U2J (EIA)	100 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A151JW31D	DC1000	U2J (EIA)	150 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A221JW31D	DC1000	U2J (EIA)	220 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A331JW31D	DC1000	U2J (EIA)	330 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31B7U3A471JW31L	DC1000	U2J (EIA)	470 ±5%	3.2	1.6	1.25	1.5	0.3 min.
GRM31A7U3D100JW31D	DC2000	U2J (EIA)	10 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D120JW31D	DC2000	U2J (EIA)	12 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D150JW31D	DC2000	U2J (EIA)	15 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D180JW31D	DC2000	U2J (EIA)	18 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D220JW31D	DC2000	U2J (EIA)	22 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D270JW31D	DC2000	U2J (EIA)	27 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D330JW31D	DC2000	U2J (EIA)	33 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D390JW31D	DC2000	U2J (EIA)	39 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D470JW31D	DC2000	U2J (EIA)	47 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D560JW31D	DC2000	U2J (EIA)	56 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D680JW31D	DC2000	U2J (EIA)	68 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM32A7U3D820JW31D	DC2000	U2J (EIA)	82 ±5%	3.2	2.5	1.0	1.8	0.3 min.
GRM32A7U3D101JW31D	DC2000	U2J (EIA)	100 ±5%	3.2	2.5	1.0	1.8	0.3 min.
GRM32A7U3D121JW31D	DC2000	U2J (EIA)	120 ±5%	3.2	2.5	1.0	1.8	0.3 min.
GRM32A7U3D151JW31D	DC2000	U2J (EIA)	150 ±5%	3.2	2.5	1.0	1.8	0.3 min.
GRM32B7U3D181JW31L	DC2000	U2J (EIA)	180 ±5%	3.2	2.5	1.25	1.8	0.3 min.
GRM32B7U3D221JW31L	DC2000	U2J (EIA)	220 ±5%	3.2	2.5	1.25	1.8	0.3 min.
GRM42A7U3F270JW31L	DC3150	U2J (EIA)	27 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A7U3F330JW31L	DC3150	U2J (EIA)	33 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A7U3F390JW31L	DC3150	U2J (EIA)	39 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A7U3F470JW31L	DC3150	U2J (EIA)	47 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A7U3F560JW31L	DC3150	U2J (EIA)	56 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A7U3F680JW31L	DC3150	U2J (EIA)	68 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A7U3F820JW31L	DC3150	U2J (EIA)	82 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A7U3F101JW31L	DC3150	U2J (EIA)	100 ±5%	4.5	2.0	1.0	2.9	0.3 min.

No.	Item Specification		Specifications	Test Method		
1	Operating —55 to +125℃		-55 to +125℃	-		
2	Appearar	nce	No defects or abnormalities	Visual inspection		
3	Dimensio	ns	Within the specified dimension	Using calipers		
4	Dielectric Strength		No defects or abnormalities	No failure should be observed when voltage in Table is applied between the terminations for 1 to 5 sec., provided the charge/ discharge current is less than 50mA. Rated voltage Test voltage DC250V 200% of the rated voltage DC630V 150% of the rated voltage DC1kV, DC2kV 120% of the rated voltage DC3.15kV DC4095V		
5	Insulation I (I.R.)	Resistance	More than 10,000M Ω	The insulation resistance should be measured with DC500±50V (DC250±25V in case of rated voltage: DC250V) and within 60±5 sec. of charging.		
6	Capacita	nce	Within the specified tolerance	The capacitance/Q should be measured at the frequency and		
7	Q		1,000 min.	voltage shown as follows. Capacitance Frequency Voltage		
8	Capacitance Temperature Characteristics		Temp. Coefficient -750±120 ppm/℃ (Temp. Range: +25 to +125℃) -750+120, -347 ppm/℃ (Temp. Range: -55 to +25℃)	The capacitance measurement should be made at each step specified in Table. Step Temperature (℃) 1 25±2 2 Min. Operating Temp.±3 3 25±2 4 Max. Operating Temp.±2 5 25±2		
9	Adhesive Strength of Termination		No removal of the terminations or other defect should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1. Then apply 10N force in the direction of the arrow. The soldering should be done using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.		
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board).		
		Capacitance	Within the specified tolerance	The capacitor should be subjected to a simple harmonic motion		
10	Vibration Resistance	Q	1,000 min.	having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each of 3 mutually perpendicular directions (total of 6 hrs.). Solder resist Glass Epoxy Board		

\Box	Continued fr	om the prec	eding page.				
No.	Ite	em	Specifications	Test Method			
11	11 Deflection		No cracking or marking defects should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 2. Then apply a force in the direction shown in Fig. 3. The soldering should be done using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 20 50 Pressurizing speed: 1.0mm/s speed: 1.0mm/s Pressurize Pressurize Capacitance meter 45 (in mm) Fig. 3			
12	Solderability of Termination		75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in solder solution for 2±0.5 sec. Immersing speed: 25±2.5mm/s Temp. of solder: 245±5°C Lead Free Solder (Sn-3.0Ag-0.5Cu) 235±5°C H60A or H63A Eutectic Solder			
		Appearance	No marking defects	Preheat the capacitor at 120 to 150°C* for 1 min.			
	Resistance	Capacitance Change	Within ±2.5%	Immerse the capacitor in solder solution at 260±5°C for 10±1 sec. Let sit at room condition* for 24±2 hrs., then measure. - •Immersing speed: 25±2.5mm/s			
13	to Soldering	Q I.R.	1,000 min. More than 10,000M Ω	*Preheating for more than 3.2×2.5mm			
	Heat		,,,,,,,	Step Temperature Time			
		Dielectric Strength	In accordance with item No.4	1 100 to 120°C 1 min. 2 170 to 200°C 1 min.			
		Appearance	No marking defects	Fix the capacitor to the supporting jig (glass epoxy board) shown in Fig. 4.			
	Temperature Cycle	Capacitance Change	Within ±2.5%	Perform the 5 cycles according to the 4 heat treatments listed in the following table.			
		Q	500 min.	Let sit for 24±2 hrs. at room condition*, then measure. Step Temperature (°C) Time (min.)			
14		I.R. Dielectric Strength	More than $10{,}000\text{M}\Omega$ In accordance with item No.4	1 Min. Operating Temp.±3 30±3 2 Room Temp. 2 to 3 3 Max. Operating Temp.±2 30±3 4 Room Temp. 2 to 3			
				Glass Epoxy Board Fig. 4			
		Appearance	No marking defects	-			
	Humidity (Steady State)	Capacitance Change	Within ±5.0%	Let the capacitor sit at 40±2°C and relative humidity of 90 to 95%			
15		Q I.R.	350 min. More than 1,000M $Ω$	for 500 ±2 d hrs. Remove and let sit for 24±2 hrs. at room condition*, then			
		Dielectric Strength	In accordance with item No.4	measure.			
		Appearance	No marking defects				
		Capacitance Change	Within ±3.0%	Apply 120% of the rated voltage for 1,000 ±48 hrs. at maximum			
16	Life	Q	350 min.	operating temperature ±3°c. Remove and let sit for 24±2 hrs. at room condition*, then			
		LIIG	I.R. Dielectric Strength	More than 1,000M Ω In accordance with item No.4	measure. The charge/discharge current is less than 50mA.		

^{* &}quot;Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Chip Monolithic Ceramic Capacitors

Medium Voltage High Capacitance for General Use

■ Features

- A new monolithic structure for small, high capacitance capable of operating at high voltage levels
- 2. Sn-plated external electrodes realizes good solderability.
- Use the GRM18/21/31 types with flow or reflow soldering, and other types with reflow soldering only.

■ Applications

- Ideal for use on diode-snubber circuits for switching power supplies
- Ideal for use as primary-secondary coupling for DC-DC converter
- 3. Ideal for use on line filters and ringer detectors for telephones, facsimiles and modems

Part Number	Dimensions (mm)						
i art ivamber	L	W	T	е	g min.		
GRM188	1.6 ±0.1	0.8 ±0.1	0.8 ±0.1	0.2 to 0.5	0.4		
GRM21A	2.0 +0.2	1.25 +0.2	1.0 +0,-0.3		0.7		
GRM21B	2.0 ±0.2	1.25 ±0.2	1.25 ±0.2				
GRM31B	3.2 ±0.2	1.6 ±0.2	1.25 +0,-0.3	0.3 min.			
GRM31C			1.6 ±0.2		1.2		
GRM32Q	3.2 ±0.3	2.5 +0.2	1.5 +0,-0.3				
GRM32D	3.2 ±0.3	2.5 ±0.2	2.0 +0,-0.3				
GRM43Q	4.5 ±0.4	3.2 ±0.3	1.5 +0,-0.3		2.2		
GRM43D			2.0 +0,-0.3				
GRM55D	5.7 ±0.4	5.0 ±0.4	2.0 +0,-0.3		3.2		

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GRM188R72E221KW07D	DC250	X7R (EIA)	220pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM188R72E331KW07D	DC250	X7R (EIA)	330pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM188R72E471KW07D	DC250	X7R (EIA)	470pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM188R72E681KW07D	DC250	X7R (EIA)	680pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM188R72E102KW07D	DC250	X7R (EIA)	1000pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM21AR72E102KW01D	DC250	X7R (EIA)	1000pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM188R72E152KW07D	DC250	X7R (EIA)	1500pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM21AR72E152KW01D	DC250	X7R (EIA)	1500pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM188R72E222KW07D	DC250	X7R (EIA)	2200pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM21AR72E222KW01D	DC250	X7R (EIA)	2200pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM21AR72E332KW01D	DC250	X7R (EIA)	3300pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM21AR72E472KW01D	DC250	X7R (EIA)	4700pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM21AR72E682KW01D	DC250	X7R (EIA)	6800pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM21BR72E103KW03L	DC250	X7R (EIA)	10000pF ±10%	2.0	1.25	1.25	0.7	0.3 min.
GRM31BR72E153KW01L	DC250	X7R (EIA)	15000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72E223KW01L	DC250	X7R (EIA)	22000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31CR72E333KW03L	DC250	X7R (EIA)	33000pF ±10%	3.2	1.6	1.6	1.2	0.3 min.
GRM31CR72E473KW03L	DC250	X7R (EIA)	47000pF ±10%	3.2	1.6	1.6	1.2	0.3 min.
GRM31BR72E683KW01L	DC250	X7R (EIA)	68000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM32QR72E683KW01L	DC250	X7R (EIA)	68000pF ±10%	3.2	2.5	1.5	1.2	0.3 min.
GRM31CR72E104KW03L	DC250	X7R (EIA)	0.10μF ±10%	3.2	1.6	1.6	1.2	0.3 min.
GRM32DR72E104KW01L	DC250	X7R (EIA)	0.10μF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM43QR72E154KW01L	DC250	X7R (EIA)	0.15μF ±10%	4.5	3.2	1.5	2.2	0.3 min.
GRM32DR72E224KW01L	DC250	X7R (EIA)	0.22μF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM43DR72E224KW01L	DC250	X7R (EIA)	0.22μF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM43DR72E334KW01L	DC250	X7R (EIA)	0.33μF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM55DR72E334KW01L	DC250	X7R (EIA)	0.33μF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM43DR72E474KW01L	DC250	X7R (EIA)	0.47μF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM55DR72E474KW01L	DC250	X7R (EIA)	0.47μF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM55DR72E105KW01L	DC250	X7R (EIA)	1.0μF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM31BR72J102KW01L	DC630	X7R (EIA)	1000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J152KW01L	DC630	X7R (EIA)	1500pF ±10%	3.2	1.6	1.25	1.2	0.3 min.

 $\begin{tabular}{|c|c|c|c|c|c|} \hline \end{tabular}$ Continued from the preceding page.

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GRM31BR72J222KW01L	DC630	X7R (EIA)	2200pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J332KW01L	DC630	X7R (EIA)	3300pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J472KW01L	DC630	X7R (EIA)	4700pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J682KW01L	DC630	X7R (EIA)	6800pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J103KW01L	DC630	X7R (EIA)	10000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31CR72J153KW03L	DC630	X7R (EIA)	15000pF ±10%	3.2	1.6	1.6	1.2	0.3 min.
GRM32QR72J223KW01L	DC630	X7R (EIA)	22000pF ±10%	3.2	2.5	1.5	1.2	0.3 min.
GRM32DR72J333KW01L	DC630	X7R (EIA)	33000pF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM32DR72J473KW01L	DC630	X7R (EIA)	47000pF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM43QR72J683KW01L	DC630	X7R (EIA)	68000pF ±10%	4.5	3.2	1.5	2.2	0.3 min.
GRM43DR72J104KW01L	DC630	X7R (EIA)	0.10μF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM55DR72J154KW01L	DC630	X7R (EIA)	0.15μF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM55DR72J224KW01L	DC630	X7R (EIA)	0.22μF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM31BR73A471KW01L	DC1000	X7R (EIA)	470pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR73A102KW01L	DC1000	X7R (EIA)	1000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR73A152KW01L	DC1000	X7R (EIA)	1500pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR73A222KW01L	DC1000	X7R (EIA)	2200pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR73A332KW01L	DC1000	X7R (EIA)	3300pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR73A472KW01L	DC1000	X7R (EIA)	4700pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM32QR73A682KW01L	DC1000	X7R (EIA)	6800pF ±10%	3.2	2.5	1.5	1.2	0.3 min.
GRM32QR73A103KW01L	DC1000	X7R (EIA)	10000pF ±10%	3.2	2.5	1.5	1.2	0.3 min.
GRM32DR73A153KW01L	DC1000	X7R (EIA)	15000pF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM32DR73A223KW01L	DC1000	X7R (EIA)	22000pF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM43DR73A333KW01L	DC1000	X7R (EIA)	33000pF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM43DR73A473KW01L	DC1000	X7R (EIA)	47000pF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM55DR73A104KW01L	DC1000	X7R (EIA)	0.10μF ±10%	5.7	5.0	2.0	3.2	0.3 min.

No.	Ite	em	Specifications	Test Method		
1	Operating Temperature Range −55 to +125°C		−55 to +125°C	-		
2	Appearan	nce	No defects or abnormalities	Visual inspection		
3	Dimensions V		Within the specified dimensions	Using calipers		
4	Dielectric Strength		No defects or abnormalities	No failure should be observed when 150% of the rated voltage (200% of the rated voltage in case of rated voltage: DC250V, 120% of the rated voltage in case of rated voltage: DC1kV) is applied between the terminations for 1 to 5 sec., provided the charge/discharge current is less than 50mA.		
5	Insulation F (I.R.)	Resistance	C≥0.01μF: More than 100MΩ • μF C<0.01μF: More than 10,000MΩ	The insulation resistance should be measured with DC500±50V (DC250±25V in case of rated voltage: DC250V) and within 60±5 sec. of charging.		
6	Capacitar	nce	Within the specified tolerance	The capacitance/D.E. should be measured at a frequency of		
7	Dissipation Factor (D		0.025 max.	The capacitance/D.F. should be measured at a frequency of 1±0.2kHz and a voltage of AC1±0.2V(r.m.s.)		
8	Capacitance Temperature Characteristics		Cap. Change Within ±15% (Temp. Range: −55 to +125°C)	The capacitance measurement should be made at each step specified in Table. Step Temperature (°C) 1 25±2 2 Min. Operating Temp.±3 3 25±2 4 Max. Operating Temp.±2 5 25±2 • Pretreatment Perform a heat treatment at 150 ⁺ 0 °C for 60±5 min. and then let sit for 24±2 hrs. at room condition*.		
9	Adhesive Strength of Termination		No removal of the terminations or other defect should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1. Then apply 10N force in the direction of the arrow. The soldering should be done using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 10N (5N : Size 1.6×0.8mm only), 10±1s Glass Epoxy Board Fig. 1		
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board).		
		Capacitance	Within the specified tolerance	The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied		
10	Vibration Resistance	D.F.	0.025 max.	uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each of 3 mutually perpendicular directions (total of 6 hrs.). Solder resist Glass Epoxy Board		
			·	004 4001 5		

^{* &}quot;Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

No.	Ite	em	Specifications	Test Method		
140.	TIC.	2111	No cracking or marking defects should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown		
11	Deflection	04.5 04.5 100 1 1.1.6		in Fig. 2. Then apply a force in the direction shown in Fig. 3. The soldering should be done using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 20 50 Pressurizing speed: 1.0mm/s Pressurize Pressurize Capacitance meter 45 (in mm) Fig. 3		
			Fig. 2			
12	Solderab Terminati	,	75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in solder solution for 2±0.5 sec. Immersing speed: 25±2.5mm/s Temp. of solder: 245±5°C Lead Free Solder (Sn-3.0Ag-0.5Cu) 235±5°C H60A or H63A Eutectic Solder		
		Appearance	No marking defects	Preheat the capacitor at 120 to 150°C° for 1 min.		
		Capacitance Change	Within ±10%	Immerse the capacitor in solder solution at 260±5°C for 10±1 sec. Let sit at room condition* for 24±2 hrs., then measure. •Immersing speed: 25±2.5mm/s		
	Resistance to Soldering Heat	D.F.	0.025 max.	Pretreatment		
13		I.R.	$C \ge 0.01 \mu F$: More than $100 M \Omega \cdot \mu F$ C<0.01 μF : More than $10,000 M \Omega$	Perform a heat treatment at 150±18°C for 60±5 min. and then let sit for 24±2 hrs. at room condition*. *Preheating for more than 3.2×2.5mm		
		Dielectric Strength	In accordance with item No.4	Step Temperature Time 1 100 to 120℃ 1 min. 2 170 to 200℃ 1 min.		
		Appearance	No marking defects	Fix the capacitor to the supporting jig (glass epoxy board) shown		
		Capacitance Change	Within ±7.5%	in Fig. 4. Perform the 5 cycles according to the 4 heat treatments listed in		
		D.F.	0.025 max.	the following table. Let sit for 24±2 hrs. at room condition*, then measure.		
		1.0	C≧0.01μF: More than 100MΩ • μF	Step Temperature (°C) Time (min.)		
		I.R.	C<0.01μF: More than 10,000M Ω	1 Min. Operating Temp.±3 30±3 2 Room Temp. 2 to 3		
	Temperature Cycle			3 Max. Operating Temp.±2 30±3		
14		Dielectric Strength	In accordance with item No.4	4 Room Temp. 2 to 3 • Pretreatment Perform a heat treatment at 150 ± 18 ℃ for 60±5 min. and then let sit for 24±2 hrs. at room condition*. Solder resist Glass Epoxy Board Fig. 4		
		Appearance	No marking defects			
		Capacitance Change	Within ±15%	Let the capacitor sit at $40\pm2^{\circ}$ C and relative humidity of 90 to 95% for $500\pm^{22}$ hrs.		
15	Humidity (Steady	D.F.	0.05 max.	Remove and let sit for 24±2 hrs. at room condition*, then		
10	State)	I.R.	C ≥0.01 μ F: More than 10M Ω • μ F C<0.01 μ F: More than 1,000M Ω	 measure. •Pretreatment Perform a heat treatment at 150[±]₁° c for 60±5 min. and then 		

^{* &}quot;Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

In accordance with item No.4

Continued on the following page. $\begin{tabular}{|c|c|c|c|}\hline \end{tabular}$

let sit for 24±2 hrs. at room condition*.

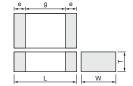
Dielectric

Strength

Continued from the preceding page.

No.	o. Item		Specifications	Test Method			
		Appearance	No marking defects	Apply 120% of the rated voltage (150% of the rated voltage in			
		Capacitance Change	Within ±15% (rated voltage: DC250V, DC630V) Within ±20% (rated voltage: DC1kV)	case of rated voltage: DC250V, 110% of the rated voltage in case of rated voltage: DC1kV) for 1,000 ± 48 hrs. at maximum			
16	Life	D.F.	0.05 max.	operating temperature ±3°C. Remove and let sit for 24 ±2 hrs. at room condition*, then measure.			
10	20	I.R.	C≥0.01μF: More than 10MΩ • μF C<0.01μF: More than 1,000MΩ	The charge/discharge current is less than 50mA. •Pretreatment			
		Dielectric Strength	In accordance with item No.4	Apply test voltage for 60±5 min. at test temperature. Remove and let sit for 24±2 hrs. at room condition*.			
		Appearance	No marking defects				
	Humidity Loading	Capacitance Change	Within ±15%	Apply the rated voltage at 40±2°C and relative humidity of 90 to 95% for 500±20 hrs.			
17	(Application:	D.F.	0.05 max.	Remove and let sit for 24±2 hrs. at room condition*, then measure.			
17	DC250V, DC630V item)	I.R.	C≥0.01μF: More than $10M\Omega \cdot \mu F$ C<0.01μF: More than $1,000M\Omega$	Pretreatment Apply test voltage for 60±5 min. at test temperature.			
	itemy	Dielectric Strength	In accordance with item No.4	Remove and let sit for 24±2 hrs. at room condition*.			

^{* &}quot;Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa



Only for LCD Backlight Inverter Circuit

■ Features

- 1. Low-loss and suitable for high frequency circuits
- 2. Murata's original internal electrode structure realizes high flash-over voltage.
- A new monolithic structure for small, surfacemountable devices capable of operating at high voltage levels.
- Sn-plated external electrodes realize good solderability.
- 5. Only for reflow soldering
- The capacitors less than 22pF can be applied maximum 4.0kV peak to peak at 100kHz or less only for the ballast or the resonance usage in the LCD backlight inverter circuit.

Part Number		Dim	ensions (mm)	
Part Number	L	W	T	e min.	g min.
GRM42A	4.5 ±0.3	2.0 ±0.2	1.0 +0, -0.3	0.3	2.9

■ Applications

Ideal for use as the ballast in LCD backlight inverter.

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GRM42A5C3F050DW01L	DC3150	COG (EIA)	5.0 ±0.5pF	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F100JW01L	DC3150	COG (EIA)	10 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F120JW01L	DC3150	COG (EIA)	12 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F150JW01L	DC3150	COG (EIA)	15 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F180JW01L	DC3150	C0G (EIA)	18 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F220JW01L	DC3150	C0G (EIA)	22 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F270JW01L	DC3150	COG (EIA)	27 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F330JW01L	DC3150	COG (EIA)	33 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F390JW01L	DC3150	C0G (EIA)	39 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F470JW01L	DC3150	COG (EIA)	47 ±5%	4.5	2.0	1.0	2.9	0.3 min.

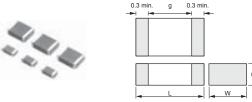
No.	o. Item Specification		Specifications	Test Method
1	Operating Temperatu	ıre Range	-55 to +125℃	-
2	Appearance No defects or abnormalities		No defects or abnormalities	Visual inspection
3	Dimensio	ns	Within the specified dimension	Using calipers
4	Dielectric Strength		No defects or abnormalities	No failure should be observed when DC4095V is applied between the terminations for 1 to 5 sec., provided the charge/ discharge current is less than 50mA.
5	Insulation F (I.R.)	Resistance	More than 10,000M Ω	The insulation resistance should be measured with DC500±50V and within 60±5 sec. of charging.
6	Capacita	nce	Within the specified tolerance	The capacitance/Q should be measured at a frequency of
7	Q		1,000 min.	1±0.2MHz and a voltage of AC0.5 to 5V(r.m.s.)
8	Capacitance 3 Temperature Characteristics		Temp. Coefficient 0±30 ppm/℃ (Temp. Range: +25 to +125℃) 0+30, −72 ppm/℃ (Temp. Range: −55 to +25℃)	The capacitance measurement should be made at each step specified in Table. Step Temperature (℃) 1 25±2 2 Min. Operating Temp.±3 3 25±2 4 Max. Operating Temp.±2 5 25±2
9	Adhesive Strength of Termination		No removal of the terminations or other defect should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1. Then apply 10N force in the direction of the arrow. The soldering should be done using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. The soldering is uniform and free of defects such as heat shock. Glass Epoxy Board Fig. 1
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board).
10	Vibration Resistance	Capacitance Q	Within the specified tolerance 1,000 min.	The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each of 3 mutually perpendicular directions (total of 6 hrs.). Solder resist Glass Epoxy Board
11	1 Deflection		No cracking or marking defects should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 2. Then apply a force in the direction shown in Fig. 3. The soldering should be done using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 20 50 Pressurizing speed: 1.0nm/s Pressurize Capacitance meter 45 (in mm) Fig. 3

Continued from the preceding page.

	Sontinued from the preceding page.							
No.	Ite	em	Specifications	Test Method				
12	Solderability of Termination		75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in solder solution for 2±0.5 sec. Immersing speed: 25±2.5mm/s Temp. of solder: 245±5°C Lead Free Solder (Sn-3.0Ag-0.5Cu) 235±5°C H60A or H63A Eutectic Solder				
		Appearance	No marking defects	Preheat the capacitor as table. Immerse the capacitor in solder solution at 260±5°C for 10±1 sec. Let sit at room condition* for 24±2 hrs., then measure. •Immersing speed: 25±2.5mm/s				
		Capacitance Change	Within ±2.5%					
13	Resistance to Soldering	Q	1,000 min.	*Preheating				
13	Heat	I.R.	More than 10,000M Ω					
		Dielectric Strength	In accordance with item No.4	Step Temperature Time 1 100 to 120°C 1 min. 2 170 to 200°C 1 min.				
		Appearance	No marking defects	Fix the capacitor to the supporting jig (glass epoxy board) shown				
		Capacitance Change	Within ±2.5%	in Fig. 4. Perform the 5 cycles according to the 4 heat treatments listed in the following table.				
		Q	1,000 min.	Let sit for 24±2 hrs. at room condition*, then measure.				
		I.R.	More than $10,000M\Omega$	Step Temperature (°C) Time (min.)				
14	Temperature Cycle	Dielectric Strength	In accordance with item No.4	1 Min. Operating Temp.±3 30±3 2 Room Temp. 2 to 3 3 Max. Operating Temp.±2 30±3 4 Room Temp. 2 to 3 4 Room Temp. 2 to 3 Solder resist Glass Epoxy Board Fig. 4				
		Appearance	No marking defects					
	Humidity	Capacitance Change	Within ±5.0%	Let the capacitor sit at 40±2°C and relative humidity of 90 to 95%				
15	(Steady	Q	350 min.	for 500 ±26 hrs. Remove and let sit for 24±2 hrs. at room condition*, then				
	State)	I.R.	More than 1,000M Ω	measure.				
		Dielectric Strength	In accordance with item No.4					
		Appearance	No marking defects					
		Capacitance Change	Within ±3.0%	Apply 120% of the rated voltage for 1,000 \pm % hrs. at maximum operating temperature \pm 3°C.				
16	Life	Q	350 min.	Remove and let sit for 24±2 hrs. at room condition*, then				
		I.R.	More than 1,000M Ω	measure. The charge/discharge current is less than 50mA.				
		Dielectric Strength	In accordance with item No.4	The charge discharge current is less than some.				

^{* &}quot;Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

muRata

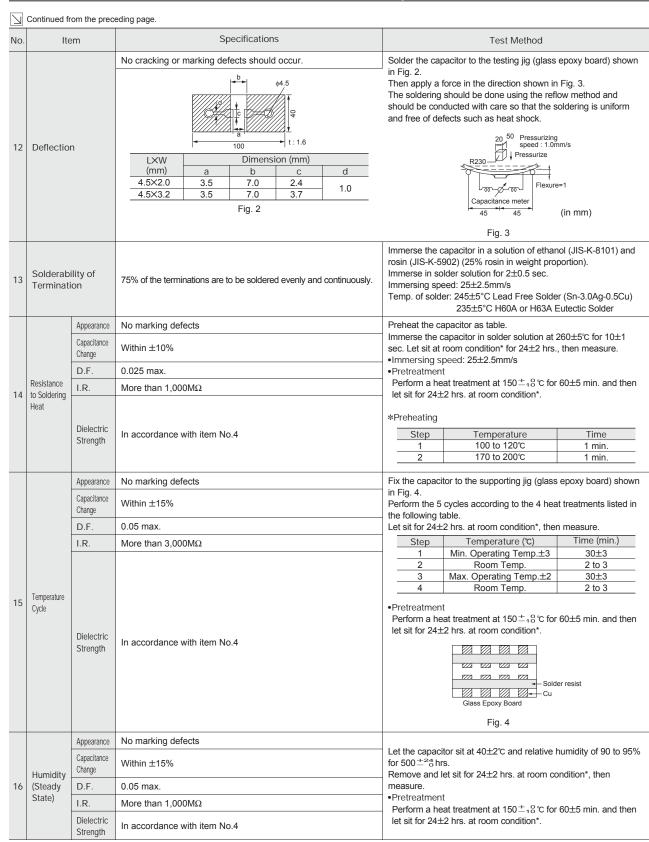

Only for Information Devices/Tip & Ring

■ Features

- These items are designed specifically for telecommunications devices (IEEE802.3) in Ethernet LAN and primary-secondary coupling for DC-DC converter.
- A new monolithic structure for small, high capacitance capable of operating at high voltage levels
- 3. Sn-plated external electrodes realizes good solderability.
- 4. Only for reflow soldering
- The low-profile type (thickness: 1.5mm max.) is available. Fit for use on thinner type equipment.

■ Applications

- Ideal for use on telecommunications devices in Ethernet LAN
- Ideal for use as primary-secondary coupling for DC-DC converter


David Namelaan		Dimens	sions (mm)	
Part Number	L	W	Т	g min.
GR442Q	4.5 ±0.3	2.0 ±0.2	1.5 +0, -0.3	
GR443D	4.5 ±0.4	3.2 +0.3	2.0 +0, -0.3	2.5
GR443Q	4.5 ±0.4	3.2 ±0.3	1.5 +0, -0.3	
GR455D	5.7 ±0.4	5.0 ±0.4	2.0 +0, -0.3	3.2

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GR442QR73D101KW01L	DC2000	X7R (EIA)	100 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D121KW01L	DC2000	X7R (EIA)	120 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D151KW01L	DC2000	X7R (EIA)	150 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D181KW01L	DC2000	X7R (EIA)	180 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D221KW01L	DC2000	X7R (EIA)	220 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D271KW01L	DC2000	X7R (EIA)	270 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D331KW01L	DC2000	X7R (EIA)	330 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D391KW01L	DC2000	X7R (EIA)	390 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D471KW01L	DC2000	X7R (EIA)	470 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D561KW01L	DC2000	X7R (EIA)	560 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D681KW01L	DC2000	X7R (EIA)	680 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D821KW01L	DC2000	X7R (EIA)	820 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D102KW01L	DC2000	X7R (EIA)	1000 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D122KW01L	DC2000	X7R (EIA)	1200 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D152KW01L	DC2000	X7R (EIA)	1500 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR443QR73D182KW01L	DC2000	X7R (EIA)	1800 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443QR73D222KW01L	DC2000	X7R (EIA)	2200 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443QR73D272KW01L	DC2000	X7R (EIA)	2700 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443QR73D332KW01L	DC2000	X7R (EIA)	3300 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443QR73D392KW01L	DC2000	X7R (EIA)	3900 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443DR73D472KW01L	DC2000	X7R (EIA)	4700 ±10%	4.5	3.2	2.0	2.5	0.3 min.
GR455DR73D103KW01L	DC2000	X7R (EIA)	10000 ±10%	5.7	5.0	2.0	3.2	0.3 min.

No.	Ite	em	Specifications	Test Method
1	Operating Temperatu	ure Range	-55 to +125℃	-
2	Appearar	nce	No defects or abnormalities	Visual inspection
3	Dimensio	ns	Within the specified dimensions	Using calipers
4	4 Dielectric Strength		No defects or abnormalities	No failure should be observed when voltage in table is applied between the terminations, provided the charge/discharge current is less than 50mA. Rated voltage Test Voltage Time DC2kV 120% of the rated voltage 60±1 sec. AC1500V(r.m.s.) 60±1 sec.
5	Pulse Vol	tage	No self healing breakdowns or flash-overs have taken place in the capacitor.	10 impulse of alternating polarity is subjected. (5 impulse for each polarity) The interval between impulse is 60 sec. Applied Voltage: 2.5kV zero to peak
6	Insulation F (I.R.)	Resistance	More than $6{,}000M\Omega$	The insulation resistance should be measured with DC500±50V and within 60±5 sec. of charging.
7	Capacita	nce	Within the specified tolerance	The capacitance/D.F. should be measured at a frequency of
8	Dissipation Factor (D		0.025 max.	1±0.2kHz and a voltage of AC1±0.2V(r.m.s.)
9	Capacitance 9 Temperature Characteristics		Cap. Change within ±15% (Temp. Range: −55 to +125°C)	The capacitance measurement should be made at each step specified in Table. Step Temperature (°C) 1 25±2 2 Min. Operating Temp.±3 3 25±2 4 Max. Operating Temp.±2 5 25±2 • Pretreatment Perform a heat treatment at 150 ± 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10	Adhesive Strength of Termination		No removal of the terminations or other defect should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1. Then apply 10N force in the direction of the arrow. The soldering should be done using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board).
		Capacitance	Within the specified tolerance	The capacitor should be subjected to a simple harmonic motion
11	Vibration Resistance	D.F.	0.025 max.	having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each of 3 mutually perpendicular directions (total of 6 hrs.). Solder resist Glass Epoxy Board

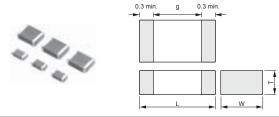
^{* &}quot;Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

^{* &}quot;Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Continued from the preceding page.

No.	Item		Specifications	Test Method
		Appearance	No marking defects	
		Capacitance Change	Within ±20%	Apply 110% of the rated voltage for 1,000 ±4% hrs. at maximum operating temperature ±3°C. Remove and let sit for 24 ±2 hrs. at room condition*, then measure.
17	Life	D.F.	0.05 max.	The charge/discharge current is less than 50mA.
		I.R.	More than $2{,}000M\Omega$	Pretreatment Apply test voltage for 60±5 min. at test temperature.
		Dielectric Strength	In accordance with item No.4	Remove and let sit for 24±2 hrs. at room condition*.

^{* &}quot;Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa


Only for Camera Flash Circuit

■ Features

- Suitable for the trigger of the flash circuit, because real capacitance is stable during operating voltage
- 2. The thin type fit for thinner camera.
- 3. Sn-plated external electrodes realizes good solderability.
- 4. For flow and reflow soldering

■ Applications

For strobe circuit

Part Number	Dimensions (mm)						
Part Number	L W		T	g min.			
GR731A			1.0 +0, -0.3				
GR731B	3.2 ±0.2	1.6 ±0.2	1.25 +0, -0.3	1.2			
GR731C			1.6 ±0.2				

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GR731AW0BB103KW01D	DC350	-	10000 ±10%	3.2	1.6	1.0	1.2	0.3 min.
GR731AW0BB153KW01D	DC350	-	15000 ±10%	3.2	1.6	1.0	1.2	0.3 min.
GR731BW0BB223KW01L	DC350	-	22000 ±10%	3.2	1.6	1.25	1.2	0.3 min.
GR731BW0BB333KW01L	DC350	-	33000 ±10%	3.2	1.6	1.25	1.2	0.3 min.
GR731CW0BB473KW03L	DC350	-	47000 ±10%	3.2	1.6	1.6	1.2	0.3 min.

No.	Ite	m	Specifications	Test Method		
1	Operating Temperatu	ıre Range	-55 to +125℃	-		
2	Appearan	ice	No defects or abnormalities	Visual inspection		
3	Dimensio	ns	Within the specified dimensions	Using calipers		
4	Dielectric	Strength	No defects or abnormalities	No failure should be observed when DC500V is applied between the terminations for 1 to 5 sec., provided the charge/discharge current is less than 50mA.		
5	Insulation F (I.R.)	Resistance	C≧0.01μF: More than 100MΩ • μF C<0.01μF: More than 10,000MΩ	The insulation resistance should be measured with DC250±50V and within 60±5 sec. of charging.		
6	Capacitar	nce	Within the specified tolerance			
7	Dissipation Factor (D		0.025 max.	The capacitance/D.F. should be measured at a frequency of 1±0.2kHz and a voltage of AC1±0.2V(r.m.s.)		
				The capacitance measurement should be made at each step specified in Table.		
8	Temperat	capacitance within $\pm 10\%$ (Apply DC350V bias) Within $\pm \frac{+22}{-33}\%$ (No DC bias) (Temp. Range : -55 to $+125\%$)		Step Temperature (°C) 1 25±2 2 Min. Operating Temp.±3 3 25±2 4 Max. Operating Temp.±2 5 25±2 •Pretreatment		
				Perform a heat treatment at $150\pm^\circ_0$ °C for 60 ± 5 min. and then let sit for 24 ± 2 hrs. at room condition*.		
9	Adhesive of Termin		No removal of the terminations or other defect should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1. Then apply 10N force in the direction of the arrow. The soldering should be done using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.		
				Fig. 1		
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board). The capacitor should be subjected to a simple harmonic motion		
		Capacitance	Within the specified tolerance	having a total amplitude of 1.5mm, the frequency being varied		
10	Vibration Resistance	D.F.	0.025 max.	uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each of 3 mutually perpendicular directions (total of 6 hrs.).		
				Solder resist Glass Epoxy Board		

^{* &}quot;Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

\square	Continued fr	om the prec	eding page.				
No.	Ite	em	Specifications	Test Method			
11	1 Deflection		No cracking or marking defects should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 2. Then apply a force in the direction shown in Fig. 3. The soldering should be done using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 20 50 Pressurizing Speed: 1.0mm/s Pressurize Flexure=1 Capacitance meter (in mm) Fig. 3			
12	Solderability of Termination 75% of the terminations are to be soldered evenly and continuously.		75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in solder solution for 2±0.5 sec. Immersing speed: 25±2.5mm/s Temp. of solder: 245±5°C Lead Free Solder (Sn-3.0Ag-0.5Cu) 235±5°C H60A or H63A Eutectic Solder			
		Appearance	No marking defects				
		Capacitance Change	Within ±10%	Preheat the capacitor at 120 to 150°C* for 1 min. Immerse the capacitor in solder solution at 260±5°C for 10±1			
13	Resistance to Soldering Heat	D.F.	0.025 max.	sec. Let sit at room condition* for 24±2 hrs., then measure. •Immersing speed: 25±2.5mm/s			
		I.R.	C≥0.01μF: More than 100M Ω • μF C<0.01μF: More than 10,000M Ω	Pretreatment Perform a heat treatment at 150 ± 18 °C for 60±5 min. and then let sit for 24±2 hrs. at room condition*.			
		Dielectric Strength	In accordance with item No.4				
		Appearance	No marking defects	Fix the capacitor to the supporting jig (glass epoxy board) shown in Fig. 4.			
		Capacitance Change	Within ±7.5%	Perform the 5 cycles according to the 4 heat treatments listed in the following table.			
		D.F.	0.025 max.	Let sit for 24±2 hrs. at room condition*, then measure.			
		I.R.	$C \ge 0.01 \mu F$: More than $100 M \Omega \cdot \mu F$ C<0.01 μF: More than $10,000 M \Omega$	Step Temperature (°C) Time (min.) 1 Min. Operating Temp.±3 30±3			
			O CO. O TAT : INIOTO BIBLIT 10,000 INISE	2 Room Temp. 2 to 3			
14	Temperature Cycle			3 Max. Operating Temp.±2 30±3 4 Room Temp. 2 to 3 •Pretreatment Perform a heat treatment at 150±10 °C for 60±5 min. and then			
		Dielectric Strength In accordance with item No.4		let sit for 24±2 hrs. at room condition*.			
		Appearance	No marking defects				
		Capacitance Change	Within ±15%	Let the capacitor sit at 40±2°C and relative humidity of 90 to 95% for 500±2°4 hrs.			
15	Humidity (Steady	D.F.	0.05 max.	Remove and let sit for 24±2 hrs. at room condition*, then measure.			
13	State)	I.R.	C≥0.01μF: More than 10M Ω • μF C<0.01μF: More than 1,000M Ω	Pretreatment Perform a heat treatment at 150±18 ℃ for 60±5 min. and then			
		Dielectric Strength	In accordance with item No.4	let sit for 24±2 hrs. at room condition*.			

^{* &}quot;Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Continued from the preceding page.

No.	Ite	em	Specifications	Test Method			
		Appearance	No marking defects				
		Capacitance Change	Within ±15%	Apply DC350V for 1,000 $\pm ^{48}$ hrs. at maximum operating temperature $\pm 3^{\circ}$ C. Remove and let sit for 24 ± 2 hrs. at room			
16	Life	D.F.	0.05 max.	condition*, then measure. The charge/discharge current is less than 50mA.			
	20	I.R.	C≧0.01μF: More than 10MΩ • μF C<0.01μF: More than 1,000MΩ	Pretreatment Apply test voltage for 60±5 min. at test temperature.			
		Dielectric Strength	In accordance with item No.4	Remove and let sit for 24±2 hrs. at room condition*.			
		Appearance	No marking defects				
		Capacitance Change	Within ±15%	Apply the rated voltage at 40±2°C and relative humidity of 90 to 95% for 500±26 hrs.			
17	Humidity	D.F.	0.05 max.	Remove and let sit for 24±2 hrs. at room condition*, then measure.			
17	Loading	I.R.	C≥0.01μF: More than 10MΩ • μF C<0.01μF: More than 1,000MΩ	Pretreatment Apply test voltage for 60±5 min. at test temperature.			
		Dielectric Strength	In accordance with item No.4	Remove and let sit for 24±2 hrs. at room condition*.			

^{* &}quot;Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

AC250V (r.m.s.) Type (Which Meet Japanese Law)

■ Features

- 1. Chip monolithic ceramic capacitor for AC lines
- A new monolithic structure for small, high capacitance capable of operating at high voltage levels
- 3. Sn-plated external electrodes realizes good solderability.
- 4. Only for reflow soldering
- 5. Capacitance 0.01 to 0.1uF for connecting lines and 470 to 4700pF for connecting lines to earth

■ Applications

Noise suppression filters for switching power supplies, telephones, facsimiles, modems

■ Reference standard

GA2 series obtains no safety approval. This series is based on JIS C 5102, JIS C 5150, and the standards of the electrical appliance and material safety law of Japan (separated table 4).

			L	VV			
Part Number		Dimensions (mm)					
Part Number	L	W	Т	e min.	g min.		
GA242Q	4.5 ±0.3	2.0 ±0.2	1.5 +0, -0.3				
GA243D	4.5 ±0.4	3.2 +0.3	2.0 +0, -0.3	0.3	2.5		
GA243Q	4.5 ±0.4	3.2 ±0.3	1.5 +0, -0.3	0.3			
GA255D	5.7 ±0.4	5.0 ±0.4	2.0 +0, -0.3		3.2		

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA242QR7E2471MW01L	AC250 (r.m.s.)	X7R (EIA)	470pF ±20%	4.5	2.0	1.5	2.5	0.3 min.
GA242QR7E2102MW01L	AC250 (r.m.s.)	X7R (EIA)	1000pF ±20%	4.5	2.0	1.5	2.5	0.3 min.
GA243QR7E2222MW01L	AC250 (r.m.s.)	X7R (EIA)	2200pF ±20%	4.5	3.2	1.5	2.5	0.3 min.
GA243QR7E2332MW01L	AC250 (r.m.s.)	X7R (EIA)	3300pF ±20%	4.5	3.2	1.5	2.5	0.3 min.
GA243DR7E2472MW01L	AC250 (r.m.s.)	X7R (EIA)	4700pF ±20%	4.5	3.2	2.0	2.5	0.3 min.
GA243QR7E2103MW01L	AC250 (r.m.s.)	X7R (EIA)	10000pF ±20%	4.5	3.2	1.5	2.5	0.3 min.
GA243QR7E2223MW01L	AC250 (r.m.s.)	X7R (EIA)	22000pF ±20%	4.5	3.2	1.5	2.5	0.3 min.
GA243DR7E2473MW01L	AC250 (r.m.s.)	X7R (EIA)	47000pF ±20%	4.5	3.2	2.0	2.5	0.3 min.
GA255DR7E2104MW01L	AC250 (r.m.s.)	X7R (EIA)	0.10μF ±20%	5.7	5.0	2.0	3.2	0.3 min.

No.	Ite	em	Specifications	Test Method			
1	Operating Temperatu	ıre Range	-55 to +125℃	-			
2	Appearar	nce	No defects or abnormalities	Visual inspection			
3	Dimensio	ns	Within the specified dimensions	Using calipers			
4	4 Dielectric Strength		No defects or abnormalities	No failure should be observed when voltage in table is applied between the terminations for 60±1 sec., provided the charge/discharge current is less than 50mA. Nominal Capacitance Test voltage C≥10,000pF AC575V (r.m.s.) C<10,000pF AC1500V (r.m.s.)			
5	Insulation F	Resistance	More than 2,000M Ω	The insulation resistance should be measured with DC500±50V and within 60±5 sec. of charging.			
6	Capacita	nce	Within the specified tolerance	and within 6525 555. Or orlarging.			
7	Dissipation	on	0.025 max.	The capacitance/D.F. should be measured at a frequency of 1±0.2kHz and a voltage of AC1±0.2V (r.m.s.)			
8	Factor (D.F.) Capacitance		Cap. Change Within ±15% (Temp. Range: −55 to +125°C)	The capacitance measurement should be made at each step specified in Table. Step Temperature (℃) 1 25±2 2 Min. Operating Temp.±3 3 25±2 4 Max. Operating Temp.±2 5 25±2 •Pretreatment Perform a heat treatment at 150 [±] ₁ 0 ℃ for 60±5 min. and then let sit for 24±2 hrs. at room condition*.			
9	Discharge Test (Application: Nominal Capacitance C<10,000pF)	Appearance	No defects or abnormalities	As in Fig., discharge is made 50 times at 5 sec. intervals from the capacitor (Cd) charged at DC voltage of specified. R3 R1 Ct: Capacitor under test Cd: 0.001µF R1: 1,000Ω R2: 100MΩ R3: Surge resistance			
10	Adhesive Strength of Termination		No removal of the terminations or other defects should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1. Then apply 10N force in the direction of the arrow. The soldering should be done using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 10N, 10±1s Glass Epoxy Board Glass Epoxy Board Fig. 1			
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board).			
		Capacitance	Within the specified tolerance	The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied			
11	Vibration Resistance	D.F.	0.025 max.	uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each of 3 mutually perpendicular directions (total of 6 hrs.).			
				Glass Epoxy Board			

^{* &}quot;Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Continued from the preceding page Specifications No. Item Test Method Solder the capacitor to the testing jig (glass epoxy board) shown No cracking or marking defects should occur. Then apply a force in the direction shown in Fig. 3. The soldering should be done using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 50 Pressurizing speed: 1.0mm/s Pressurize 12 Deflection R230 t: 1.6 Flexure=1 Dimension (mm) LXW (mm) Capacitance mete d 4.5×2.0 3.5 7.0 2.4 (in mm) 4.5×3.2 3.5 7.0 3.7 1.0 Fig. 3 5.7×5.0 4.5 8.0 5.6 Fig. 2 Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in solder solution for 2±0.5 sec. Solderability of 13 75% of the terminations are to be soldered evenly and continuously. Immersing speed: 25±2.5mm/s Termination Temp. of solder: 245±5°C Lead Free Solder (Sn-3.0Ag-0.5Cu) 235±5°C H60A or H63A Eutectic Solder Appearance No marking defects Capacitance Within ±15% Change The capacitor should be subjected to 40±2°C, relative humidity of Humidity 14 D.F 0.05 max. 90 to 98% for 8 hrs., and then removed in room condition* for 16 Insulation hrs. until 5 cycles. I.R. More than 1,000M Ω Dielectric In accordance with item No.4 Strength No marking defects Appearance Preheat the capacitor as table. Immerse the capacitor in solder solution at 260±5℃ for 10±1 Capacitance Within ±10% sec. Let sit at room condition* for 24±2 hrs., then measure. Change •Immersing speed: 25±2.5mm/s D.F. 0.025 max. Pretreatment Resistance Perform a heat treatment at 150 ⁺₁₀ °C for 60±5 min. and then I.R. More than 2,000M Ω 15 to Soldering let sit for 24±2 hrs. at room condition*. Heat *Preheating Dielectric In accordance with item No.4 Step Temperature Time Strength 100 to 120°C 1 min 170 to 200℃ 1 min Appearance No marking defects Fix the capacitor to the supporting jig (glass epoxy board) shown in Fig. 4. Capacitance Within ±15% Perform the 5 cycles according to the 4 heat treatments listed in Change the following table. D.F. 0.05 max. Let sit for 24±2 hrs. at room condition*, then measure. Time (min.) Temperature (℃) More than $2,000M\Omega$ Step I.R. Min. Operating Temp.±3 30±3 Room Temp. 2 to 3 Max. Operating Temp.±2 3 30 + 34 Room Temp. 2 to 3 Temperature 16 Cycle Pretreatment Perform a heat treatment at 150[±]₁₀ °C for 60±5 min. and then let sit for 24±2 hrs. at room condition*. Dielectric In accordance with item No.4 Strength M M M M-Glass Epoxy Board Fig. 4

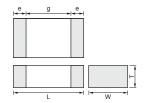
^{* &}quot;Room condition" Temperature: 15 to 35℃, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Continued from the preceding page.

No.	Ite	em	Specifications	Test Method			
		Appearance	No marking defects	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	Humidity	Capacitance Change	Within ±15%	Let the capacitor sit at 40±2°C and relative humidity of 90 to 95% for 500±2°6 hrs. Remove and let sit for 24±2 hrs. at room condition*, then			
17	(Steady	D.F.	0.05 max.	measure.			
	State)	I.R.	More than 1,000M Ω	•Pretreatment Perform a heat treatment at 150 ± 10 °C for 60±5 min, and then			
		Dielectric Strength	In accordance with item No.4	Perform a heat treatment at 150 = 18 ℃ for 60±5 min. and then let sit for 24±2 hrs. at room condition*.			
		Appearance	No marking defects	Apply voltage and time as Table at 85±2℃. Remove and let sit			
		Capacitance Change	Within ±20%	for 24 ±2 hrs. at room condition*, then measure. The charge / discharge current is less than 50mA.			
		D.F.	0.05 max.	Nominal Capacitance Test Time Test voltage C≥10,000pF 1,000±46 hrs. AC300V (r.m.s.)			
18	Life	I.R.	More than 1,000M Ω	C<10,000pF 1,500 ⁺⁴⁸ ₀ hrs. AC500V (r.m.s.)*			
		Dielectric Strength	In accordance with item No.4	 Except that once each hour the voltage is increased to AC1,000V (r.m.s.) for 0.1 sec. Pretreatment Apply test voltage for 60±5 min. at test temperature. Remove and let sit for 24±2 hrs. at room condition*. 			
		Appearance	No marking defects				
		Capacitance Change	Within ±15%	Apply the rated voltage at 40±2°C and relative humidity of 90 to 95% for 500±2°6 hrs. Remove and let sit for 24±2 hrs. at room condition*, then			
19	Humidity Loading	D.F.	0.05 max.	measure.			
	Loading	I.R.	More than 1,000M Ω	Pretreatment Apply test voltage for 60±5 min. at test temperature.			
		Dielectric Strength	In accordance with item No.4	Remove and let sit for 24±2 hrs. at room condition*.			

^{* &}quot;Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Safety Standard Recognized Type GC (UL, IEC60384-14 Class X1/Y2)


■ Features

- 1. Chip monolithic ceramic capacitor (certified as conforming to safety standards) for AC lines
- A new monolithic structure for small, high capacitance capable of operating at high voltage levels
- 3. Compared to lead type capacitors, this new capacitor is greatly downsized and low-profiled to 1/10 or less in volume, and 1/4 or less in height.
- 4. The type GC can be used as an X1-class and Y2-class capacitor, line-by-pass capacitor of UL1414.
- 5. +125 degree C guaranteed
- 6. Only for reflow soldering

Applications

- Ideal for use as Y capacitor or X capacitor for various switching power supplies
- 2. Ideal for modem applications

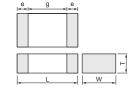
Part Number	Dimensions (mm)						
Part Number	L	W	T	e min.	g min.		
GA355D	5.7 ±0.4	5.0 ±0.4	2.0 ±0.3	0.3	4.0		

	Charles IN	Status of R	Rated	
	Standard No.	Type GB	Type GC	Voltage
UL	UL1414	_	0*	
BSI		_	0	
VDE	EN132400	0	0	AC250V
SEV	EN 132400	0	0	(r.m.s.)
SEMKO		0	0	
EN13240	0 Class	X2	X1, Y2	

^{*:} Line By-pass only

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA355DR7GC101KY02L	AC250 (r.m.s.)	X7R (EIA)	100 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC151KY02L	AC250 (r.m.s.)	X7R (EIA)	150 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC221KY02L	AC250 (r.m.s.)	X7R (EIA)	220 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC331KY02L	AC250 (r.m.s.)	X7R (EIA)	330 ±10%	5.7	5.0	2.0	4.0	0.3 min.

Safety Standard Recognized Type GD (IEC60384-14 Class Y3)


■ Features

- Available for equipment based on IEC/EN60950 and UL1950
- 2. The type GD can be used as a Y3-class capacitor.
- A new monolithic structure for small, high capacitance capable of operating at high voltage levels
- 4. +125 degree C guaranteed
- 5. Only for reflow soldering
- 6. The low-profile type (thickness: 1.5mm max.) is available. Fit for use on thinner type equipment.

Applications

- Ideal for use on line filters and couplings for DAA modems without transformers
- 2. Ideal for use on line filters for information equipment

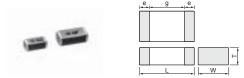
Part Number	Dimensions (mm)								
Part Number	L	W	T	e min.	g min.				
GA342A			1.0 +0, -0.3						
GA342D	4.5 ±0.3	2.0 ±0.2	2.0 ±0.3		2.5				
GA342Q			1.5 +0, -0.3	0.3					
GA343D	4.5 ±0.4	3.2 +0.3	2.0 +0, -0.3						
GA343Q	4.5 ±0.4	3.2 ±0.3	1.5 +0, -0.3						

	Standard	Class	Status of Recognition	Rated	
	No.	Class	Type GD	Voltage	
SEMKO	EN132400	Y3	0	AC250V(r.m.s.)	

Α	n	n	lio	ca	ti	റ	n	ς

Size	Switching power supplies	Communication network devices such as a modem
4.5×3.2mm and under	_	0

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA342D1XGD100JY02L	AC250 (r.m.s.)	SL (JIS)	10 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD120JY02L	AC250 (r.m.s.)	SL (JIS)	12 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD150JY02L	AC250 (r.m.s.)	SL (JIS)	15 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD180JY02L	AC250 (r.m.s.)	SL (JIS)	18 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD220JY02L	AC250 (r.m.s.)	SL (JIS)	22 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342A1XGD270JW31L	AC250 (r.m.s.)	SL (JIS)	27 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342A1XGD330JW31L	AC250 (r.m.s.)	SL (JIS)	33 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342A1XGD390JW31L	AC250 (r.m.s.)	SL (JIS)	39 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342A1XGD470JW31L	AC250 (r.m.s.)	SL (JIS)	47 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342A1XGD560JW31L	AC250 (r.m.s.)	SL (JIS)	56 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342A1XGD680JW31L	AC250 (r.m.s.)	SL (JIS)	68 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342A1XGD820JW31L	AC250 (r.m.s.)	SL (JIS)	82 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342QR7GD101KW01L	AC250 (r.m.s.)	X7R (EIA)	100 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD151KW01L	AC250 (r.m.s.)	X7R (EIA)	150 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD221KW01L	AC250 (r.m.s.)	X7R (EIA)	220 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD331KW01L	AC250 (r.m.s.)	X7R (EIA)	330 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD471KW01L	AC250 (r.m.s.)	X7R (EIA)	470 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD681KW01L	AC250 (r.m.s.)	X7R (EIA)	680 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD102KW01L	AC250 (r.m.s.)	X7R (EIA)	1000 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD152KW01L	AC250 (r.m.s.)	X7R (EIA)	1500 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA343QR7GD182KW01L	AC250 (r.m.s.)	X7R (EIA)	1800 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GA343QR7GD222KW01L	AC250 (r.m.s.)	X7R (EIA)	2200 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GA343DR7GD472KW01L	AC250 (r.m.s.)	X7R (EIA)	4700 ±10%	4.5	3.2	2.0	2.5	0.3 min.


Safety Standard Recognized Type GF (IEC60384-14 Class Y2, X1/Y2)

■ Features

- Available for equipment based on IEC/EN60950 and UL1950. Besides, the GA352/355 types are available for equipment based on IEC/EN60065, UL1492, and UL6500
- 2. The type GF can be used as a Y2-class capacitor.
- A new monolithic structure for small, high capacitance capable of operating at high voltage levels
- 4. +125 degree C guaranteed
- 5. Only for reflow soldering
- The low-profile type (thickness: 1.5mm max.) is available. Fit for use on thinner type equipment.

■ Applications

- Ideal for use on line filters and couplings for DAA modems without transformers
- 2. Ideal for use on line filters for information equipment
- Ideal for use as Y capacitor or X capacitor for various switching power supplies (GA352/355 types only)

Part Number	Dimensions (mm)					
Part Number	L	W	Т	e min.	g min.	
GA342A			1.0 +0, -0.3			
GA342D	4.5 ±0.3	2.0 ±0.2	2.0 ±0.2*		2.5	
GA342Q			1.5 +0, -0.3	0.3		
GA352Q		2.8 ±0.3	1.5 +0, -0.3	0.5		
GA355D	5.7 ±0.4	5.0 +0.4	2.0 +0, -0.3		4.0	
GA355Q		3.0 ±0.4	1.5 +0, -0.3			

^{*} GA342D1X : 2.0±0.3

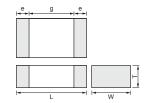
			Status of R		
	Standard	Class	Туре	Rated	
	No.		Size : 4.5×2.0mm	Size: 5.7×2.8mm and over	Voltage
UL	UL1414	X1, Y2	_	0	AC250V
SEMKO	EN132400	Y2	0	0	(r.m.s.)

Application 4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ns
---	----

Size	Switching power supplies	Communication network devices such as a modem		
4.5×2.0mm	_	0		
5.7×2.8mm and over	0	0		

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA342D1XGF100JY02L	AC250 (r.m.s.)	SL (JIS)	10 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF120JY02L	AC250 (r.m.s.)	SL (JIS)	12 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF150JY02L	AC250 (r.m.s.)	SL (JIS)	15 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF180JY02L	AC250 (r.m.s.)	SL (JIS)	18 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF220JY02L	AC250 (r.m.s.)	SL (JIS)	22 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342A1XGF270JW31L	AC250 (r.m.s.)	SL (JIS)	27 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342A1XGF330JW31L	AC250 (r.m.s.)	SL (JIS)	33 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342A1XGF390JW31L	AC250 (r.m.s.)	SL (JIS)	39 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342A1XGF470JW31L	AC250 (r.m.s.)	SL (JIS)	47 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342A1XGF560JW31L	AC250 (r.m.s.)	SL (JIS)	56 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342A1XGF680JW31L	AC250 (r.m.s.)	SL (JIS)	68 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342A1XGF820JW31L	AC250 (r.m.s.)	SL (JIS)	82 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342QR7GF101KW01L	AC250 (r.m.s.)	X7R (EIA)	100 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GF151KW01L	AC250 (r.m.s.)	X7R (EIA)	150 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342DR7GF221KW02L	AC250 (r.m.s.)	X7R (EIA)	220 ±10%	4.5	2.0	2.0	2.5	0.3 min.
GA342DR7GF331KW02L	AC250 (r.m.s.)	X7R (EIA)	330 ±10%	4.5	2.0	2.0	2.5	0.3 min.
GA352QR7GF471KW01L	AC250 (r.m.s.)	X7R (EIA)	470 ±10%	5.7	2.8	1.5	4.0	0.3 min.
GA352QR7GF681KW01L	AC250 (r.m.s.)	X7R (EIA)	680 ±10%	5.7	2.8	1.5	4.0	0.3 min.
GA352QR7GF102KW01L	AC250 (r.m.s.)	X7R (EIA)	1000 ±10%	5.7	2.8	1.5	4.0	0.3 min.
GA352QR7GF152KW01L	AC250 (r.m.s.)	X7R (EIA)	1500 ±10%	5.7	2.8	1.5	4.0	0.3 min.
GA355QR7GF182KW01L	AC250 (r.m.s.)	X7R (EIA)	1800 ±10%	5.7	5.0	1.5	4.0	0.3 min.
GA355QR7GF222KW01L	AC250 (r.m.s.)	X7R (EIA)	2200 ±10%	5.7	5.0	1.5	4.0	0.3 min.
GA355QR7GF332KW01L	AC250 (r.m.s.)	X7R (EIA)	3300 ±10%	5.7	5.0	1.5	4.0	0.3 min.
GA355DR7GF472KW01L	AC250 (r.m.s.)	X7R (EIA)	4700 ±10%	5.7	5.0	2.0	4.0	0.3 min.

Safety Standard Recognized Type GB (IEC60384-14 Class X2)


■ Features

- 1. The type GB can be used as an X2-class capacitor.
- Chip monolithic ceramic capacitor (certified as conforming to safety standards) for AC lines
- A new monolithic structure for small, high capacitance capable of operating at high voltage levels
- 4. Compared to lead type capacitors, this new capacitor is greatly downsized and low-profiled to 1/10 or less in volume, and 1/4 or less in height.
- 5. +125 degree C guaranteed
- 6. Only for reflow soldering

Applications

Ideal for use as X capacitor for various switching power supplies

Part Number	Dimensions (mm)						
Part Number	L	W	T	e min.	g min.		
GA355D	5.7 +0.4	5.0 ±0.4	2.0 ±0.3	0.3	4.0		
GA355X	5.7 ±0.4		2.7 ±0.3	- 0.3			

	Standard No.	Status of R	Rated	
	Standard No.	Type GB	Type GC	Voltage
UL	UL1414	_	0*	
BSI		_	0	
VDE	EN132400	0	0	AC250V
SEV	EN 132400	0	0	(r.m.s.)
SEMKO		0	0	
EN13240	0 Class	X2	X1, Y2	

^{*:} Line By-pass only

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA355DR7GB103KY02L	AC250 (r.m.s.)	X7R (EIA)	10000 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GB153KY02L	AC250 (r.m.s.)	X7R (EIA)	15000 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GB223KY02L	AC250 (r.m.s.)	X7R (EIA)	22000 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355XR7GB333KY06L	AC250 (r.m.s.)	X7R (EIA)	33000 ±10%	5.7	5.0	2.7	4.0	0.3 min.

No.	Ite	em	Specifications	Test Method		
1	Operating Temperatu	ure Range	-55 to +125℃	-		
2	Appearan	nce	No defects or abnormalities	Visual inspection		
3	Dimensio	ns	Within the specified dimensions	Using calipers		
4	Dielectric Strength		No defects or abnormalities	No failure should be observed when voltage in table is applied between the terminations for 60±1 sec., provided the charge/discharge current is less than 50mA. Test Voltage Type GB DC1075V		
				Type GC/GD/GF AC1500V (r.m.s.)		
5	Pulse Vol (Applicati GD/GF)	0	No self healing breakdowns or flash-overs have taken place in the capacitor.	10 impulse of alternating polarity is subjected. (5 impulse for each polarity) The interval between impulse is 60 sec. Applied Voltage: 2.5kV zero to peak		
6	Insulation F (I.R.)	Resistance	More than $6{,}000M\Omega$	The insulation resistance should be measured with DC500 \pm 50V and within 60 \pm 5 sec. of charging.		
7	Capacitar	nce	Within the specified tolerance			
8	Dissipation 8 Factor (D.F.) Q		Char. Specification X7R D.F.≤0.025 SL Q≥400+20C*² (C<30pF)	The capacitance/Q/D.F. should be measured at a frequency of 1±0.2kHz (SL char.: 1±0.2MHz) and a voltage of AC1±0.2V (r.m.s.).		
9	Capacitance 9 Temperature Characteristics		Char. Capacitance Change X7R Within ±15% Temperature characteristic guarantee is −55 to +125°C Char. Temperature Coefficient SL +350 to −1000ppm/°C Temperature characteristic guarantee is +20 to +85°C	The capacitance measurement should be made at each step specified in Table. Step Temperature (°C) 1 25±2 (20±2 for SL char.) 2 Min. Operating Temp.±3 3 25±2 (20±2 for SL char.) 4 Max. Operating Temp.±2 5 25±2 (20±2 for SL char.) SL char.: The capacitance should be measured at even 85°C between step 3 and step 4. • Pretreatment for X7R char. Perform a heat treatment at 150±18°C for 60±5 min. and then let sit for 24±2 hrs. at room condition*1.		
		Appearance	No defects or abnormalities	As in Fig., discharge is made 50 times at 5 sec. intervals from		
		I.R.	More than 1,000M Ω	the capacitor (Cd) charged at DC voltage of specified.		
10	Discharge Test (Application: Type GC)	Dielectric Strength	In accordance with item No.4	R3 T 10kV V Cd Ct R2 Ct: Capacitor under test Cd: 0.001µF		
11		dhesive Strength f Termination No removal of the terminations or other defect should occur.		R1: 1,000Ω R2: 100MΩ R3: Surge resistance Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1. Then apply 10N force in the direction of the arrow. The soldering should be done using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.		
				Glass Epoxy Board Fig. 1		

^{*1 &}quot;Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

^{*2 &}quot;C" expresses nominal capacitance value (pF).

\overline{A}	Continued from the preceding page.							
No.	Ite	em	Specifications	Test Method				
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board).				
		Capacitance	Within the specified tolerance	The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied				
12	Vibration Resistance	D.F. Q	Char. Specification X7R D.F.≤0.025 SL Q≥400+20C*² (C<30pF)	uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each of 3 mutually perpendicular directions (total of 6 hrs.). Solder resist Glass Epoxy Board				
13	Deflection	n	No cracking or marking defects should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 2. Then apply a force in the direction shown in Fig. 3. The soldering should be done using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 20 50 Pressurizing speed: 1.0mm/s Pressurize Pressurize (in mm) Fig. 3				
14	Solderability of			Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in solder solution for 2±0.5 sec. Immersing speed: 25±2.5mm/s Temp. of solder: 245±5°C Lead Free Solder (Sn-3.0Ag-0.5Cu) 235±5°C H60A or H63A Eutectic Solder				
		Appearance	No marking defects	Preheat the capacitor as table. Immerse the capacitor in solder				
15	Resistance to Soldering Heat	Capacitance Change	Char. Capacitance Change X7R Within ±10% SL Within ±2.5% or ±0.25pF (Whichever is larger)	solution at 260±5°C for 10±1 sec. Let sit at room condition*1 for 24±2 hrs., then measure. •Immersing speed: 25±2.5mm/s •Pretreatment for X7R char. Perform a heat treatment at 150±10°C for 60±5 min. and then let sit for 24±2 hrs. at room condition*1.				
	ricut	I.R.	More than 1,000MΩ	*Preheating				
		Dielectric Strength	In accordance with item No.4	Step Temperature Time 1 100 to 120℃ 1 min. 2 170 to 200℃ 1 min.				

^{*1 &}quot;Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

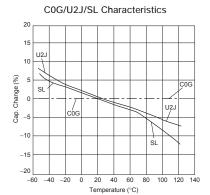
^{*2 &}quot;C" expresses nominal capacitance value (pF).

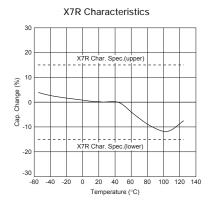
No.	Ite	m	Specifications	Test Method		
		Appearance No marking defects Capacitance Change X7R Within ±15% Change SL Within ±2.5% or ±0.25pF (Whichever is larger)		Fix the capacitor to the supporting jig (glass epoxy board) show in Fig. 4. Perform the 5 cycles according to the 4 heat treatments listed in the following table. Let sit for 24±2 hrs. at room condition**, then measure. Step Temperature (°C) Time (min.) 1 Min. Operating Temp.±3 30±3 2 Room Temp. 2 to 3		
16	Temperature Cycle	D.F. Q	Char. Specification X7R D.F.≦0.05 SL Q≥400+20C*² (C<30pF)	3 Max. Operating Temp.±2 30±3 4 Room Temp. 2 to 3 •Pretreatment for X7R char. Perform a heat treatment at 150±18℃ for 60±5 min. and ther		
		I.R. More than $3,000 M\Omega$ Dielectric Strength In accordance with item No.4		let sit for 24±2 hrs. at room condition*1.		
Humidity (Steady State)		Appearance Capacitance Change	No marking defects Char. Capacitance Change X7R Within ±15% SL Within ±5.0% or ±0.5pF (Whichever is larger)	Before this test, the test shown in the following is performedItem 11 Adhesive Strength of Termination (applied force is 5N) -Item 13 Deflection		
	(Steady	D.F. Q	$\begin{tabular}{ c c c c }\hline Char. & Specification \\\hline X7R & D.F. \le 0.05 \\\hline SL & Q \ge 275 + 5/2C^{*2} (C < 30pF) \\Q \ge 350 & (C \ge 30pF) \\\hline \end{tabular}$ More than 3,000M\$\Omega\$	Let the capacitor sit at 40±2°C and relative humidity of 90 to 95° for 500±2°6 hrs. Remove and let sit for 24±2 hrs. at room condition*1, then measure. •Pretreatment for X7R char. Perform a heat treatment at 150±18°C for 60±5 min. and then let sit for 24±2 hrs. at room condition*1.		
		Dielectric Strength	In accordance with item No.4			
		Appearance No marking defects Capacitance Change Change Change X7R Within ±20% Change SL Within ±3.0% or ±0.3pF (Whichever is larger)		Before this test, the test shown in the following is performed. -Item 11 Adhesive Strength of Termination (apply force is 5N) -Item 13 Deflection Impulse Voltage Each individual capacitor should be subjected to a 2.5kV (Type		
		D.F. Q	Char. Specification X7R D.F.≤0.05 SL Q≥275+5/2C*² (C<30pF)	be subjected to a 2.5kV (Type GC/GF: 5kV) Impulse (the voltage value means zero to peak) for three times. Then the capacitors are applied to life test. Apply voltage as Table for 1,000 hrs. at 125 ± 6 °C, relative		
18	Life	I.R.	More than $3{,}000M\Omega$	humidity 50% max.		
		Dielectric Strength	In accordance with item No.4	Applied Voltage GB AC312.5V (r.m.s.), except that once each hour the voltage is increased to AC1,000V (r.m.s.) for 0.1 sec. GC GD AC425V (r.m.s.), except that once each hour the voltage is increased to AC1,000V (r.m.s.) for 0.1 sec. Let sit for 24±2 hrs. at room condition*¹, then measure. •Pretreatment for X7R char. Perform a heat treatment at 150±18° c for 60±5 min. and then let sit for 24±2 hrs. at room condition*¹.		

^{*1 &}quot;Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

^{*2 &}quot;C" expresses nominal capacitance value (pF).

Continued from the preceding page


	\(\square\) Continued from the preceding page.						
No.	Ite	em	Specifications	Test Method			
		Appearance Capacitance Change	No marking defects Char. Capacitance Change X7R Within ±15% SL Within ±5.0% or ±0.5pF (Whichever is larger)	Before this test, the test shown in the following is performedItem 11 Adhesive Strength of Termination (apply force is 5N) -Item 13 Deflection			
	Humidity Loading	D.F. Q	Char. Specification X7R D.F.≦0.05 SL Q≥275+5/2C*² (C<30pF)	Apply the rated voltage at 40±2°C and relative humidity of 90 to 95% for 500±2°d hrs. Remove and let sit for 24±2 hrs. at room condition*1, then measure. •Pretreatment for X7R char. Perform a heat treatment at 150±10°C for 60±5 min. and then			
		I.R. Dielectric	More than 3,000M Ω In accordance with item No.4	let sit for 24±2 hrs. at room condition*1.			
20	Strength		The cheesecloth should not be on fire.	The capacitor should be individually wrapped in at least one but not more than two complete layers of cheesecloth. The capacitor should be subjected to 20 discharges. The interval between successive discharges should be 5 sec. The UAC should be maintained for 2 min. after the last discharge. C1,2 : 1µF±10%			
21	Passive Flammability		The burning time should not exceed 30 sec. The tissue paper should not ignite.	The capacitor under test should be held in the flame in the position which best promotes burning. Each specimen should only be exposed once to the flame. Time of exposure to flame: 30 sec. Length of flame: 12±1mm Gas burner : Length 35mm min. Inside Dia. 0.5±0.1mm Outside Dia. 0.9mm max. Gas : Butane gas Purity 95% min. Test Specimen Tissue About 10mm Thick Board			


^{*1 &}quot;Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

^{*2 &}quot;C" expresses nominal capacitance value (pF).

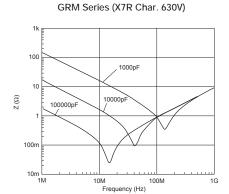
GRM/GR4/GR7/GA2/GA3 Series Data (Typical Example)

■ Capacitance - Temperature Characteristics

GR4 Series 20 10 Cap. Change (%) -10 -15 -20 -40 -20 40 60 100 120 140 -60 20 80 Temperature (°C)

■ Impedance - Frequency Characteristics

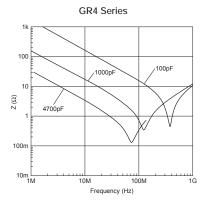
10m L 1M

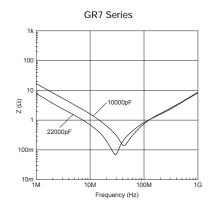

1000pF 10000p 100000pF 100m

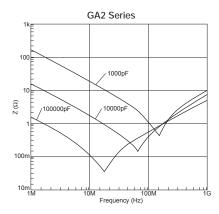
Frequency (Hz)

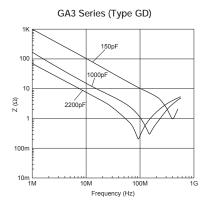
100M

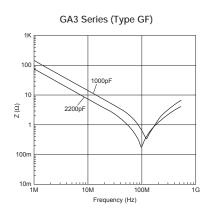
10M

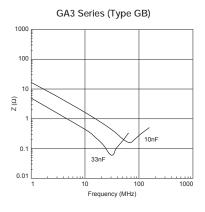

GRM Series (X7R Char. 250V)

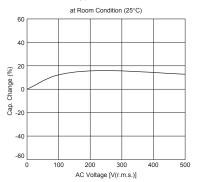


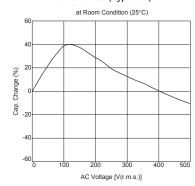

GRM/GR4/GR7/GA2/GA3 Series Data (Typical Example)


Continued from the preceding page.


■ Impedance - Frequency Characteristics






GRM/GR4/GR7/GA2/GA3 Series Data (Typical Example)

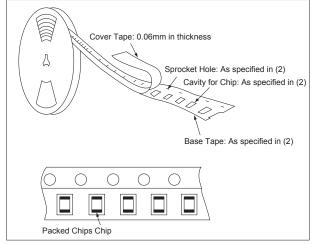
■ Capacitance - AC Voltage Characteristics

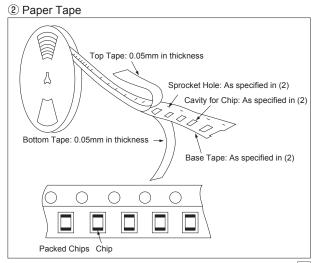
GA3 Series (Type GD/GF, X7R char.)

GA3 Series (Type GB)

Package

Taping is standard packaging method.

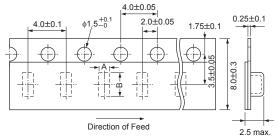

■ Minimum Quantity Guide


Part Number		Dimensions (mm)		Quantity (pcs.) ø180mm Reel		
Partivu	r art rumber		L W T		Paper Tape Embossed	
	GRM18	1.6	0.8	0.8	4,000	-
				1.0	4,000	_
	GRM21	2.0	1.25	1.25	-	3,000
				1.0	4,000	-
	GRM31/GR731	3.2	1.6	1.25	-	3,000
				1.6	-	2,000
				1.0	4,000	-
			2.5	1.25	-	3,000
Medium-voltage	GRM32	3.2		1.5	-	2,000
				2.0	-	1,000
	GRM42/GR442			1.0	-	3,000
		4.5	2.0	1.5	-	2,000
				2.0	-	2,000
	GRM43/GR443	4.5	3.2	1.5	-	1,000
				2.0	-	1,000
				2.5	-	500
	GRM55/GR455	5.7	5.0	2.0	-	1,000
	GA242	4.5	2.0	1.5	-	2,000
AC250V	CA242	4.5	3.2	1.5	-	1,000
ACZOUV	GA243			2.0	-	1,000
	GA255	5.7	5.0	2.0	-	1,000
				1.0	-	3,000
	GA342	4.5	2.0	1.5	-	2,000
				2.0	-	2,000
Safety Std.	GA343	4.5	3.2	1.5	-	1,000
Recognition	GA343	4.0	5.2	2.0	-	1,000
	GA352	5.7	2.8	1.5	-	1,000
				1.5	-	1,000
	GA355	5.7 5.0	5.0	2.0	-	1,000
				2.7	-	500

■ Tape Carrier Packaging

(1) Appearance of Taping

① Embossed Tape



Package

- Continued from the preceding page.
- (2) Dimensions of Tape
- ① Embossed Tape

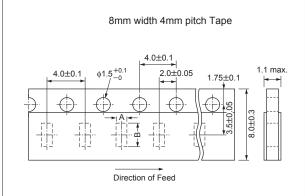
8mm width 4mm pitch Tape 4.0±0.05

A. H. J.	0.3±0.1

12mm width 8mm/4mm pitch Tape

Part Number	A*	B*
GRM21 (T≧1.25mm)	1.45	2.25
GRM31/GR731 (T≥1.25mm)	2.0	3.6
GRM32 (T≧1.25mm)	2.9	3.6

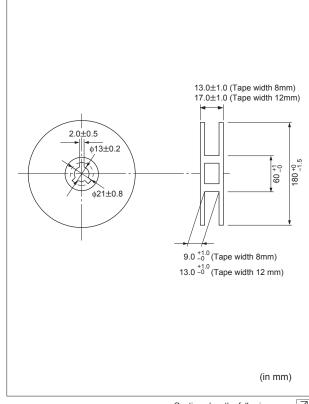
*Nominal Value


Part Number	A*	B*
GRM42/GR442/GA242/GA342	2.5	5.1
GRM43/GR443/GA243/GA343	3.6	4.9
GA352	3.2	6.1
GRM55/GR455/GA255/GA355	5.4	6.1

*1 4.0±0.1mm in case of GRM42/GR442/GA242/GA342

*Nominal Value

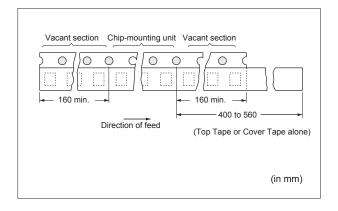
(in mm)

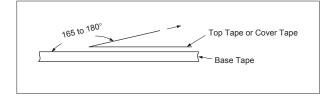

2 Paper Tape

Part Number	A*	B*
GRM18	1.05	1.85
GRM21 (T=1.0mm)	1.45	2.25
GRM31/GR731 (T=1.0mm)	2.0	3.6
GRM32 (T=1.0mm)	2.9	3.6

*Nominal value (in mm)

(3) Dimensions of Reel




Package

Continued from the preceding page.

(4) Taping Method

- $\ensuremath{\mathbb{1}}$ Tapes for capacitors are wound clockwise. The sprocket holes are to the right as the tape is pulled toward the user.
- 2 Part of the leader and part of the empty tape should be attached to the end of the tape as shown at right.
- ③ The top tape or cover tape and base tape are not attached at the end of the tape for a minimum of 5 pitches.
- 4 Missing capacitors number within 0.1% of the number per reel or 1 pc, whichever is greater, and are not continuous.
- 5 The top tape or cover tape and bottom tape should not protrude beyond the edges of the tape and should not cover sprocket holes.
- 6 Cumulative tolerance of sprocket holes, 10 pitches:
- 7 Peeling off force: 0.1 to 0.6N in the direction shown at right.

■ Storage and Operating Conditions

Operating and storage environment Do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors

where the temperature and relative humidity do not exceed 5 to 40 degrees centigrade and 20 to 70%. Use capacitors within 6 months after delivered. Check the solderability after 6 months or more.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

■ Handling

- 1. Vibration and impact Do not expose a capacitor to excessive shock or vibration during use.
- 2. Do not directly touch the chip capacitor, especially the ceramic body. Residue from hands/fingers may create a short circuit environment.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

⚠Caution

■ Caution (Rating)

1. Operating Voltage

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range.

When the voltage is applied to the circuit, starting or stopping may generate irregular voltage for a transit period because of resonance or switching. Be sure to use a capacitor with a rated voltage range that includes these irregular voltages.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage (1)	Pulse Voltage (2)
Positional Measurement	V0-p	Vo-p	Vp-p	Vp-p	Vp-p

- 2. Operating Temperature, Self-generated Heat, and Lead Reduction at High-frequency voltage condition Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a highfrequency voltage, pulse voltage, it may self-generate heat due to dielectric loss.
- (1) In case of X7R char.

Applied voltage should be the load such as selfgenerated heat is within 20°C on the condition of atmosphere temperature 25°C. When measuring, use a thermocouple of small thermal capacity -K of ø0.1mm in conditions where the capacitor is not affected by radiant heat from other components or surrounding ambient fluctuations. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

∆Caution

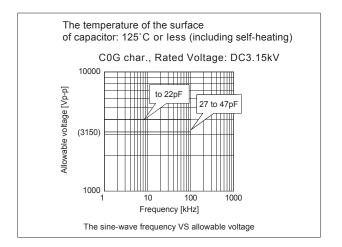
Continued from the preceding page

(2) In case of COG, U2J char.

Due to the low self-heating characteristics of lowdissipation capacitors, the allowable electric power of these capacitors is generally much higher than that of X7R characteristic capacitors.

When a high frequency voltage which cause 20°C self heating to the capacitor is applied, it will exceed capacitor's allowable electric power.

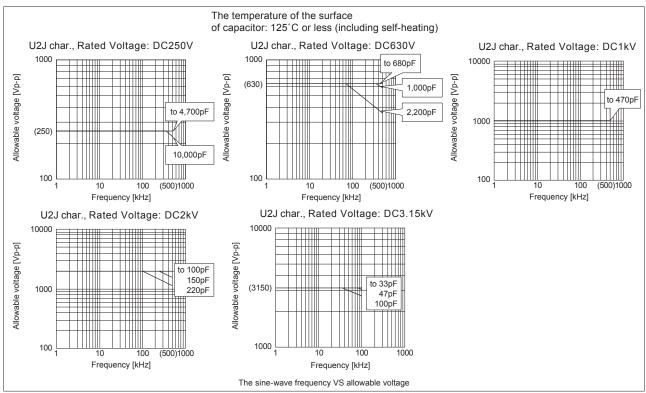
<C0G char.>


Therefore, in case of COG char., the frequency of the applied sine wave voltage should be less than 100kHz. The applied voltage should be less than the value shown in figure at right. The capacitors less than 22pF can be applied maximum 4.0kV peak to peak at 100kHz or less only for the ballast or the resonance usage in the LCD backlight inverter circuit.

<U2J char.>

In case of U2J char., the frequency of the applied sine wave voltage should be less than 500kHz (less than 100kHz in case of rated voltage: DC3.15kV). The applied voltage should be less than the value shown in figure below.

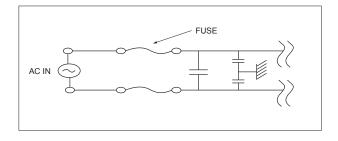
<Capacitor selection tool>


We are also offering free software the "capacitor selection tool: Murata Medium Voltage Capacitors Selection Tool by Voltage Form (*)" which will assist you in selecting a suitable capacitor.

The software can be downloaded from Murata's Internet Website (http://www.murata.com/designlib/mmcsv_e.html). By inputting capacitance values and applied voltage waveform of the specific capacitor series, this software will calculate the capacitor's power consumption and list suitable capacitors (non-sine wave is also available).

* As of Jul. 2006, subject series are below.

· Temperature Characteristics C0G, U2J


⚠Caution

Continued from the preceding page.

3. Fail-safe

Failure of a capacitor may result in a short circuit. Be sure to provide an appropriate fail-safe function such as a fuse on your product to help eliminate possible electric shock, fire, or fumes.

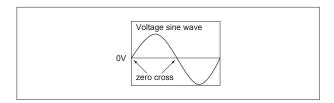
Please consider using fuses on each AC line if the capacitors are used between the AC input lines and earth (line bypass capacitors), to prepare for the worst case, such as a short circuit.

4. Test condition for AC withstanding Voltage

(1) Test Equipment

Tests for AC withstanding voltage should be made with equipment capable of creating a wave similar to a 50/60 Hz sine wave.

If the distorted sine wave or overload exceeding the specified voltage value is applied, a defect may be caused.

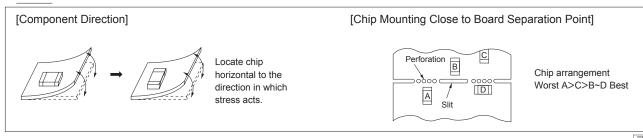

(2) Voltage applied method

The capacitor's leads or terminals should be firmly connected to the output of the withstanding voltage test equipment, and then the voltage should be raised from near zero to the test voltage. If the test voltage is applied directly to the capacitor without raising it from near zero, it should be applied with the zero cross*. At the end of the test time, the test voltage should be reduced to near zero, and then the capacitor's leads or terminals should be taken off the output of the withstanding voltage test equipment. If the test voltage is applied directly to the capacitor without raising it from near zero, surge voltage may occur and cause a defect.

*ZERO CROSS is the point where voltage sine wave pass 0V.

- See the figure at right -

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.


■ Caution (Soldering and Mounting)

Vibration and Impact
 Do not expose a capacitor to excessive shock or vibration during use.

2. Circuit Board Material

In case that ceramic chip capacitor is soldered on the metal board, such as Aluminum board, the stress of heat expansion and contraction might cause the crack of ceramic capacitor, due to the difference of thermal expansion coefficient between metal board and ceramic chip.

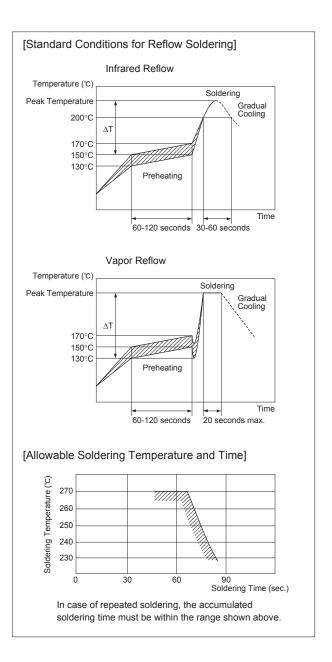
Land Layout for Cropping PC Board
 Choose a mounting position that minimizes the stress
 imposed on the chip during flexing or bending of the board.

⚠Caution

Continued from the preceding page

4. Reflow Soldering

- When sudden heat is given to the components, the mechanical strength of the components should go down because remarkable temperature change causes deformity of components inside. In order to prevent mechanical damage in the components, preheating should be required for both of the components and the PCB board. Preheating conditions are shown in Table 1. It is required to keep temperature differential between the soldering and the components surface (ΔT) as small as possible.
- Solderability of Tin plating termination chip might be deteriorated when low temperature soldering profile where peak solder temperature is below the Tin melting point is used. Please confirm the solderability of Tin plating termination chip before use.
- When components are immersed in solvent after mounting, be sure to maintain the temperature difference (ΔT) between the component and solvent within the range shown in the Table 1.

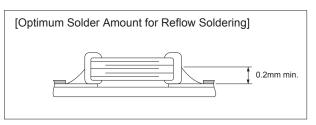

Table 1

Part Number	Temperature Differential	
G□□18/21/31	ΔΤ≦190℃	
G□□32/42/43/52/55	ΔΤ≦130℃	

Recommended Conditions

	Pb-Sn S	Lood Fron Coldon	
	Infrared Reflow	Vapor Reflow	Lead Free Solder
Peak Temperature	230-250°C	230-240°C	240-260°C
Atmosphere	Air	Air	Air or N2

Pb-Sn Solder: Sn-37Pb Lead Free Solder: Sn-3.0Ag-0.5Cu



Optimum Solder Amount for Reflow Soldering

- Overly thick application of solder paste results in excessive fillet height solder.
 - This makes the chip more susceptible to mechanical and thermal stress on the board and may cause cracked chips.
- Too little solder paste results in a lack of adhesive strength on the outer electrode, which may result in chips breaking loose from the PCB.
- Make sure the solder has been applied smoothly to the end surface to a height of 0.2mm min.

Inverting the PCB

Make sure not to impose an abnormal mechanical shock on the PCB.

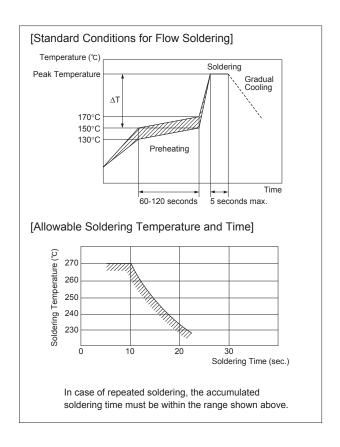
Continued from the preceding page.

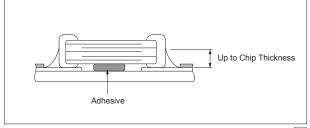
5. Flow Soldering

- When sudden heat is given to the components, the mechanical strength of the components should go down because remarkable temperature change causes deformity of components inside. And an excessively long soldering time or high soldering temperature results in leaching by the outer electrodes, causing poor adhesion or a reduction in capacitance value due to loss of contact between electrodes and end termination.
- In order to prevent mechanical damage in the components, preheating should be required for both of the components and the PCB board. Preheating conditions are shown in Table 2. It is required to keep temperature differential between the soldering and the components surface (ΔT) as small as possible.
- When components are immersed in solvent after mounting, be sure to maintain the temperature difference between the component and solvent within the range shown in Table 2.

Do not apply flow soldering to chips not listed in Table 2.

Table 2


Part Number	Temperature Differential	
G□□18/21/31	∆T≦150°C	


Recommended Conditions

	Pb-Sn Solder	Lead Free Solder
Peak Temperature	240-250°C	250-260°C
Atmosphere	Air	N ₂

Ph-Sn Solder: Sn-37Ph Lead Free Solder: Sn-3.0Ag-0.5Cu

 Optimum Solder Amount for Flow Soldering The top of the solder fillet should be lower than the thickness of components. If the solder amount is excessively big, the risk of cracking is higher during board bending or under any other stressful conditions.

1Caution

- Continued from the preceding page.
- 6. Correction with a Soldering Iron
- (1) For Chip Type Capacitors
- When sudden heat is applied to the components by soldering iron, the mechanical strength of the components should go down because remarkable temperature change causes deformity of components inside. In order to prevent mechanical damage in the components, preheating should be required for both of the components and the PCB board. Preheating conditions are shown in Table 3. It is required to keep temperature differential between the soldering and the components surface (ΔT) as small as possible. After soldering, it should not be allowed to cool down rapidly.

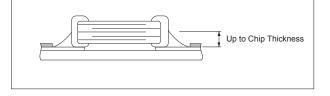
Table 3

Part Number	Temperature Differential	Peak Temperature	Atmosphere
G□□18/21/31	ΔT≦190℃	300°C max. 3 sec. max. / termination (both sides total 6 sec. max.)	Air
G 32/42/43/ 52/55	ΛT≤130°C		Air

^{*}Applicable for both Pb-Sn and Lead Free Solder.

Pb-Sn Solder: Sn-37Pb

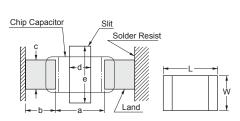
Lead Free Solder: Sn-3.0Ag-0.5Cu


 Optimum Solder Amount when Corrections Are Made Using a Soldering Iron

The top of the solder fillet should be lower than the thickness of components. If the solder amount is excessively big, the risk of cracking is higher during board bending or under any other stressful conditions. Soldering iron ø3mm or smaller should be required. And it is necessary to keep a distance between the soldering iron and the components without direct touch. Thread solder with Ø0.5mm or smaller is required for soldering.

Excessive output of ultrasonic oscillation during cleaning causes PCBs to resonate, resulting in cracked chips or broken solder. Take note not to vibrate PCBs.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND FUMING WHEN THE PRODUCT IS USED.



Notice

■ Notice (Soldering and Mounting)

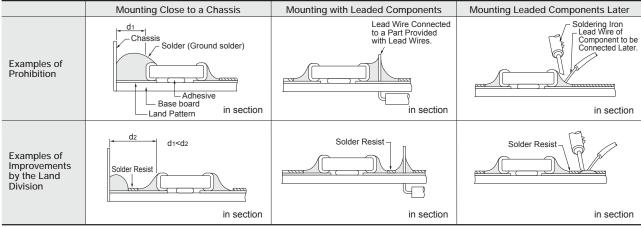
1. Construction of Board Pattern After installing chips, if solder is excessively applied to the circuit board, mechanical stress will cause destruction resistance characteristics to lower. To prevent this, be extremely careful in determining shape and dimension before designing the circuit board diagram.

Construction and Dimensions of Pattern (Example)

Preparing slit helps flux cleaning and resin coating on the back of the capacitor.

Flow Soldering

L×W	а	b	С
1.6×0.8	0.6-1.0	0.8-0.9	0.6-0.8
2.0×1.25	1.0-1.2	0.9-1.0	0.8-1.1
3.2×1.6	2.2-2.6	1.0-1.1	1.0-1.4


Flow soldering : 3.2×1.6 or less available.

Reflow Soldering

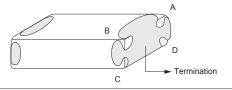
L×W	a	b	С	d	е
1.6×0.8	0.6-0.8	0.6-0.7	0.6-0.8	-	-
2.0×1.25	1.0-1.2	0.9-1.0	0.8-1.1	-	-
3.2×1.6	2.2-2.4	0.8-0.9	1.0-1.4	1.0-2.0	3.2-3.7
3.2×2.5	2.0-2.4	1.0-1.2	1.8-2.3	1.0-2.0	4.1-4.6
4.5×2.0	2.8-3.4	1.2-1.4	1.4-1.8	1.0-2.8	3.6-4.1
4.5×3.2	2.8-3.4	1.2-1.4	2.3-3.0	1.0-2.8	4.8-5.3
5.7×2.8	4.0-4.6	1.4-1.6	2.1-2.6	1.0-4.0	4.4-4.9
5.7×5.0	4.0-4.6	1.4-1.6	3.5-4.8	1.0-4.0	6.6-7.1

(in mm)

Land Layout to Prevent Excessive Solder

Notice

Continued from the preceding page.


- 2. Mounting of Chips
- Thickness of adhesives applied Keep thickness of adhesives applied (50-105μm or more) to reinforce the adhesive contact considering the thickness of the termination or capacitor (20-70µm) and the land pattern (30-35µm).
- Mechanical shock of the chip placer When the positioning claws and pick-up nozzle are worn, the load is applied to the chip while positioning is concentrated in one position, thus causing cracks, breakage, faulty positioning accuracy, etc. Careful checking and maintenance are necessary to prevent unexpected trouble. An excessively low bottom dead point of the suction nozzle imposes great force on the chip during mounting, causing cracked chips. Please set the suction nozzle's bottom dead point on the upper surface of the board.

3. Soldering

(1) Limit of losing effective area of the terminations and conditions needed for soldering.

Depending on the conditions of the soldering temperature and/or immersion (melting time), effective areas may be lost in some part of the terminations.

To prevent this, be careful in soldering so that any possible loss of the effective area on the terminations will securely remain at a maximum of 25% on all edge length A-B-C-D-A of part with A, B, C, D, shown in the Figure below.

 Please use it after confirming there is no problem in the reliability of the product beforehand with the intended equipment. The residue of flux might cause a decrease in nonconductivity and the corrosion of an external electrode, etc.

Notice

Continued from the preceding page.

4. Cleaning

Please confirm there is no problem in the reliability of the product beforehand when cleaning it with the intended

The residue after cleaning it might cause the decrease in the surface resistance of the chip and the corrosion of the electrode part, etc. As a result it might cause reliability to deteriorate. Please confirm beforehand that there is no problem with the intended equipment in ultrasonic cleansing.

5. Resin Coating

Please use it after confirming there is no influence on the product with a intended equipment beforehand when the resin coating and molding.

A cracked chip might be caused at the cooling/heating cycle by the amount of resin spreading and/or bias

The resin for coating and molding must be selected as the stress is small when stiffening and the hygroscopic is low as possible.

Rating

- 1. Capacitance change of capacitor
- (1) In case of X7R char.

Capacitors have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor is left on for a long time. Moreover, capacitance might change greatly depending on the surrounding temperature or an applied voltage. So, it is not likely to be suitable for use in a time constant circuit. Please contact us if you need detailed information.

(2) In case of any char. except X7R Capacitance might change a little depending on the surrounding temperature or an applied voltage. Please contact us if you intend to use this product in a strict time constant circuit.

2. Performance check by equipment

Before using a capacitor, check that there is no problem in the equipment's performance and the specifications.

Generally speaking, CLASS 2 (X7R char.) ceramic capacitors have voltage dependence characteristics and temperature dependence characteristics in capacitance. So, the capacitance value may change depending on the operating condition in the equipment. Therefore, be sure to confirm the apparatus performance of receiving influence in a capacitance value change of a capacitor, such as leakage current and noise suppression characteristics. Moreover, check the surge-proof ability of a capacitor in the equipment, if needed, because the surge voltage may exceed specific value by the inductance of the circuit.

ISO 9001 Certifications

■ Qualified Standards

The products listed here have been produced by ISO 9001 certified factory.

Plant		
Fukui Murata Mfg. Co., Ltd.		
Izumo Murata Mfg. Co., Ltd.		
Okayama Murata Mfg. Co., Ltd.		
Murata Electronics Singapore (Pte.) Ltd.		
Murata Amazonia Industria E Comercio Ltda.		
Suzhou Murata Electronics Co., Ltd.		
Beijing Murata Electronics Co., Ltd.		

C02E.pdf 07.26

sales representatives or product engineers before ordering.

This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications because there is no space for detailed specifications.

1. Export Control

(For customers outside Japan)

No muRata products should be used or sold, through any channels, for use in the design, development, production, utilization, maintenance or operation of, or otherwise contribution to (1) any weapons (Weapons of Mass Destruction (nuclear, chemical or biological weapons or missiles) or conventional weapons) or (2) goods or systems specially designed or intended for military end-use or utilization by military end-users.

For products which are controlled items subject to the "Foreign Exchange and Foreign Trade Law" of Japan, the export license specified by the law is required for export.

- 2. Please contact our sales representatives or product engineers before using the products in this catalog for the applications listed below, which require especially high reliability for the prevention of defects which might directly damage a third party's life, body or property, or when one of our products is intended for use in applications other than those specified in this catalog.
 - 1) Aircraft equipment (3) Undersea equipment
- (2) Aerospace equipment
- (5) Medical equipment
- 4 Power plant equipment
- (7) Traffic signal equipment
- 6 Transportation equipment (vehicles, trains, ships, etc.) ® Disaster prevention / crime prevention equipment
- 9 Data-processing equipment
- 10 Application of similar complexity and/or reliability requirements to the applications listed above
- 3. Product specifications in this catalog are as of July 2006. They are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering. If there are any questions, please contact our sales representatives or product
- 4. Please read rating and \(\Delta CAUTION \) (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
- 5. This catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
- 6. Please note that unless otherwise specified, we shall assume no responsibility whatsoever for any conflict or dispute that may occur in connection with the effect of our and/or a third party's intellectual property rights and other related rights in consideration of your use of our products and/or information described or contained in our catalogs. In this connection, no representation shall be made to the effect that any third parties are authorized to use the rights mentioned above under licenses without our consent.
- 7. No ozone depleting substances (ODS) under the Montreal Protocol are used in our manufacturing process.

muKata Murata Manufacturing Co., Ltd.

http://www.murata.com/

单击下面可查看定价,库存,交付和生命周期等信息

>>Murata(村田)