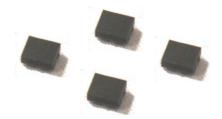


Datasheet of SAW Device


SAW Duplexer

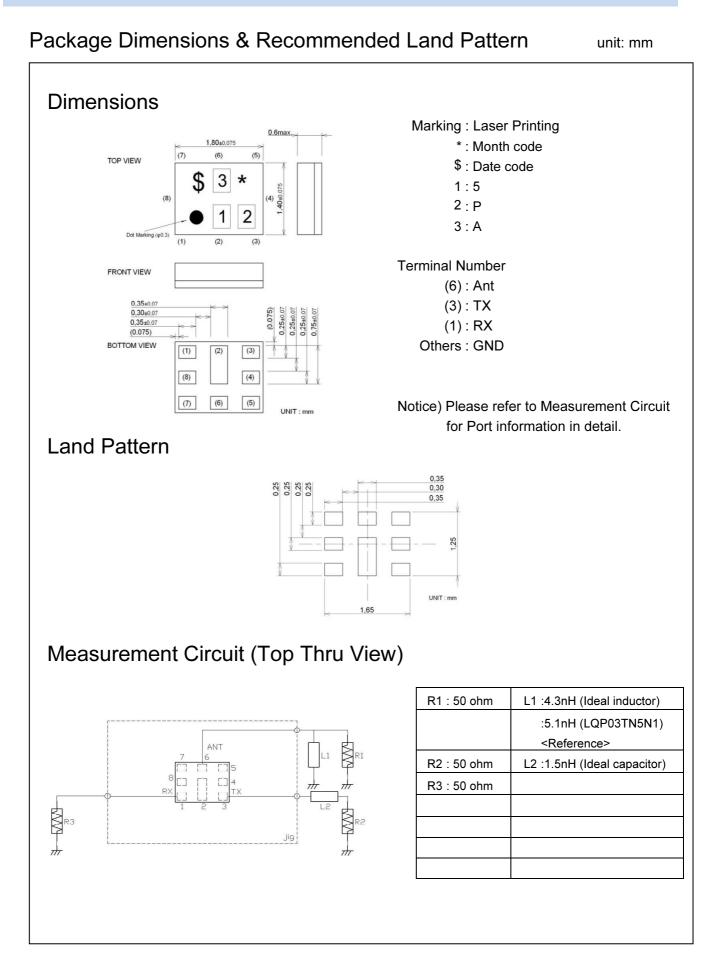
for Band2 / Unbalanced / LR /1814

Murata PN: SAYEY1G88BA0B0A

- > 5GNR
- Low Insertion Loss
- High Isolation

Note : This Murata SAW Component is Consumer grade product and applicable for Cellular phone or similar end devices. Please also read Important Notice at the end of this document.

NI	Revision							
IN								



General Information

- Operating temperature	: -20 to +85 deg.C
- Storage temperature	: -40 to +85 deg.C
- Input Power	: +29.0dBm 5000h +50deg.C (1) +27.5dBm 5000h +50deg.C (2) (1) applicable for W-CDMA, SC-FDMA, DFT-s-OFDM (2) applicable for CP-OFDM
- D.C. Volatage between the terminals	: 3V (25+/-2 deg.C)
- Minimum Resistance between the terminals	: 10M ohm
- RoHS compliance	: Yes
- ESD (ElectroStatic Discharge) sensitive devi	ce

The input power shall be applied to Tx-port within own Tx passband frequency range.

Electrical Characteristic < TX→ANT. >

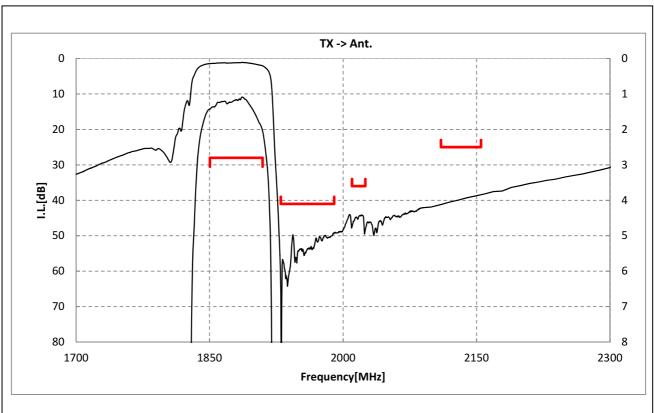
$TX \to ANT.$					Characteristics (-20 to +85 deg.C)			1.1	
	$X \rightarrow ANI.$					Unit	Note		
Contor Fraguanay	1				min.	typ.* 1880	max.	MHz	
Center Frequency	1850.48	to	1909.52	MHz		2.0	2.8	dB	
		to	1907.6	MHz		1.9	2.0	dB _{INT}	Any 3.84MHz
		to	1907.5	MHz		1.9	2.4		Any 4.5MHz
	1851.25	10 to	1908.75	MHz		2.0	2.6	dB _{INT}	Any 1.25MHz
	1850.48	<u>to</u>	1909.52	MHz		2.0	2.3	dB	+23 to +27deg.C
		to	1907.6	MHz		1.9	2.1	dB _{INT}	+23 to +27deg.C Any 3.84MHz
Ripple Deviation		to	1909.52	MHz		0.3	1.2	dB	Any 5MHz
apple Benation	1850.48	to	1909.52	MHz		0.3	0.8	dB	+23 to +27deg.C Any 5MHz
/SWR	1850.48	to	1909.52	MHz		1.4	1.9		Ant
	1850.48	to	1909.52			1.5	1.9		TX
		to	1909.52	MHz		1.4	1.9		+23 to +27deg.C ANT.
		to	1909.52	MHz		1.5	1.9		+23 to +27deg.C TX
Absolute Attenuation		to	728.	MHz	33	38		dB	
		to	716.	MHz	34	39		dB	
		to	764.	MHz	33	38		dB	
		to	787.	MHz	32	37		dB	
		to	894.	MHz	31	36		dB	
		to	1250.	MHz	28	30		dB	
		to	1563.	MHz	35	38		dB	
		to	1573.37	MHz	35	39		dB	
		to	1577.47	MHz	35	39		dB	
		to	1585.42	MHz	35	39		dB	
		to	1605.88	MHz	35	40		dB	
		to	1680.	MHz	24	35		dB	
			1990.	MHz	41	49		dB	
		to	1990.	MHz	43	49		dB	± 22 to ± 27 dog C
		to	2025.	MHz	43 36	49		dB dB	+23 to +27deg.C
		to		MHz		38			
		<u>to</u>	2155.		25			dB	
		<u>to</u>	2360.	MHz	17	25		dB	
		<u>to</u>	2500.	MHz	18 18	26		dB dB	
		to	3820.	MHz	-	23			
		to	5850.	MHz	5.0	10.0		dB	
		to	5455.	MHz	7.0	12.0		dB	
		to	5845.	MHz	5.0	10.0		dB	
		to	5950.	MHz	5.0	10.0		dB	
		to	7650.	MHz	3.0	6.1		dB	
		to	9560.	MHz	9.0	7.5		dB	
	11090.	to	11470.	MHz	12	8		dB	

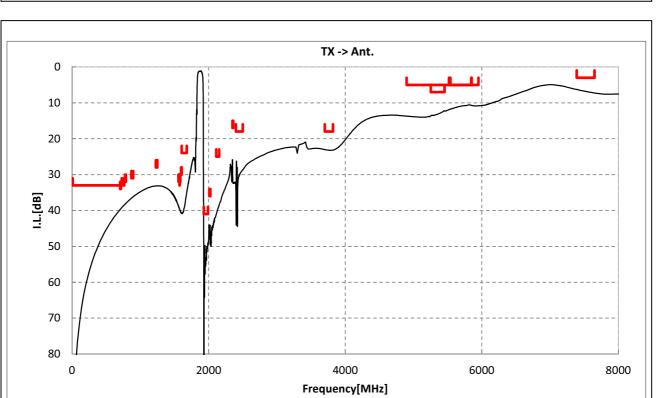
* Typical value at 25±2deg.C

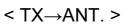
Electrical Characteristic < ANT. -> RX >

AI	NT. \rightarrow RX		Characteristics (-20 to +85 deg.C)			Unit	Note	
				min.	typ.*	max.		
Center Frequency					1960		MHz	
Insertion Loss	1930.48 to	1989.52	MHz		2.6	3.2	dB	
	1932.4 to		MHz		2.2	2.9	dB _{INT}	Any 3.84MHz
	1932.5 to		MHz		2.2	2.9	dBINT	Any 4.5MHz
	1931.25 to		MHz		2.3	3.0	dBINT	Any 1.25MHz
	1930.48 to		MHz		2.6	2.8	dB	+23 to +27deg.C
	1932.4 to		MHz		2.2	2.4	dB _{INT}	+23 to +27deg.C Any 3.84MHz
Ripple Deviation	1930.48 to		MHz		0.6	1.4	dB	Any 5MHz
	1930.48 to		MHz		0.6	1.1	dB	+23 to +27deg.C Any 5MHz
VSWR	1930.48 to		MHz		2.0	2.1	чD	ANT.
00000	1930.48 to	1989.52			1.8	2.1		RX
	1930.48 to	1989.52			2.0	2.1		+23 to +27deg.C ANT
	1930.48 to		MHz		1.8	2.0		+23 to +27deg.C RX
Abaduta Attenuation			MHz	30	46	2.0	dB	+23 10 +27 deg.C RA
Absolute Attenuation			MHz	80	94		dB	
			MHz	80 51	94 57		dB dB	
	777. to		MHz	50	56		dB	
	824. to		MHz	48	55		dB	
	1770. to		MHz	47	53		dB	
	1850. to		MHz	45	56		dB	
	1910. to		MHz	11	52		dB	
	2005. to		MHz	2.5	7.4		dB	
	1850. to		MHz	51	56		dB	+23 to +27deg.C
	1910. to		MHz	24	52		dB	+23 to +27deg.C
	2005. to		MHz	4.0	7.4		dB	+23 to +27deg.C
	2050. to		MHz	25	50		dB	
	2075. to		MHz	40	45		dB	
	2305. to		MHz	42	47		dB	
	2400. to		MHz	42	48		dB	
	3780. to	3900.	MHz	48	60		dB	
	3860. to	3980.	MHz	48	60		dB	
	3980. to	13025.	MHz	15	38		dB	
	4900. to	5950.	MHz	40	48		dB	
	5610. to		MHz	40	48		dB	
	5630. to		MHz	40	48		dB	
	5790. to		MHz	40	48		dB	
	5970. to		MHz	30	40		dB	
	7720. to		MHz	30	38		dB	
	9650. to		MHz	20	38		dB	
			MHz	15	38		dB	
	100001		101112					

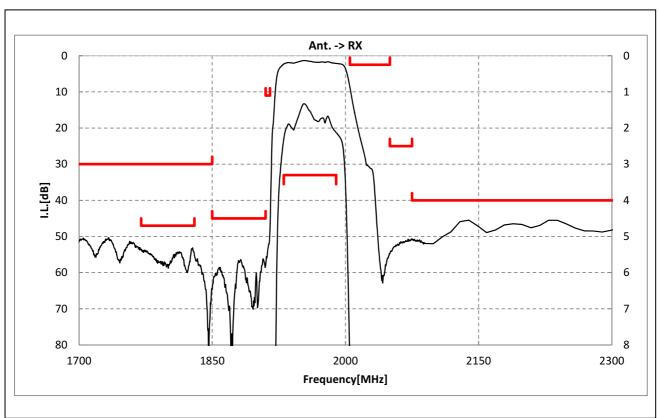
* Typical value at 25±2deg.C

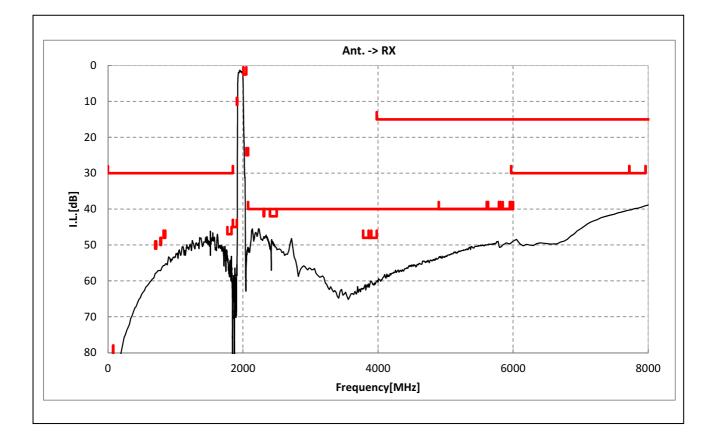

Electrical Characteristic $< TX \rightarrow RX. >$


Characteristics (2009/88/08/21) Unit (2009/88/08/21) Note solation Imit, 1977 MHz 0 Note 1850.43 10 1009.52 MHz 53 58 dB 100 1	Electrical Chai	acteris						ation		
min. yp.* max. isolation 1574. to 1677. MHz 40 66 dB 1850.42 to 1909.52 MHz 53 58 dB mm. Amy 3.84MHz 1852.5 to 1909.75 MHz 53 58 dB mm. Amy 3.84MHz 1852.5 to 1907.5 MHz 53 58 dB mm. Amy 3.84MHz 1852.5 to 1907.5 MHz 50 54 dB mm. Amy 3.84MHz 1852.5 to 1987.5 MHz 52 55 dBsrr. Amy 3.84MHz 1852.5 to 1987.5 MHz 52 55 dBsrr. Amy 3.84MHz 1852.5 to 1987.5 MHz 58 dB dBsrr. Amy 3.84MHz 1852.5 to 1987.5 MHz 58 dB dBsrr. Amy 3.84MHz 1850.5 to 3820. MHz 45 58 dB dB 1852.5 to 580.<	$TX \to RX$						to +85 d	eg.C)	Unit	Note
1574. 1977. MHz 40 66 dB 1850.48 1909.52 MHz 53 58 dB my 3.84MHz 1852.4 1907.5 MHz 53 58 dBwr Any 3.84MHz 1852.5 10 1907.5 MHz 53 58 dBwr Any 3.84MHz 1852.4 1987.75 MHz 50 54 dBwr Any 3.84MHz 1930.25 1987.75 MHz 52 55 dBwr Any 3.84MHz 1932.5 1987.5 MHz 52 55 dBwr Any 3.84MHz 1932.5 1987.5 MHz 52 55 dBwr Any 3.84MHz 1932.4 0 1909.52 MHz 58 dB HBwr Any 3.84MHz 1850.4 0 1909.52 MHz 45 53 dB HBwr Any 4.5MHz 1850.4 0 3820 MHz 45 53 dB HBwr A12 10 +27deg.C Any 4.5MHz 1850.4 0 3820 MHz 42 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>min.</td><td>typ.*</td><td>max.</td><td></td><td></td></td<>						min.	typ.*	max.		
1850.25 (j) 1905.75 MHz 53 58 dB 1852.4 (j) 1907.6 MHz 53 58 dB _{MT} Any 3.54MHz 1852.5 (j) 1007.5 MHz 53 58 dB _{MT} Any 4.5MHz 1852.5 (j) 1007.5 MHz 53 58 dB _{MT} Any 4.5MHz 1932.25 (j) 1087.5 MHz 50 54 dB Tany 3.54MHz 1932.25 (j) 1088.75 MHz 52 55 dB _{MT} Any 1.52MHz 1088.75 MHz 1932.25 (j) 1088.75 MHz 52 55 dB _{MT} Any 1.52MHz 1202.72 MHz 1850.48 (j) 1090.76 MHz 54 58 dB _{MT} Any 1.25MHz 120.72 MHz 1852.4 (j) 197.6 MHz 54 58 dB _{MT} +23 to +27 deg.C Any 3.84MHz 1850.0 (j) 5850 MHz 42 59 dB -23 to +27 deg.C Any 3.84MHz 3700 10 5850 MHz 42 59 dB -23 to +27 deg.C Any 3.84MHz 18550 10 5850 MHz 42 59 dB -23 to +27 deg.C Any 3.84MHz	Isolation	1574 t	157 c	7	MHz	40	66		dB	
1850.48 to 1905.52 M1/2 53 58 dBarr Any 3.54MHz 1852.5 to 1907.5 M1/2 53 58 dBarr Any 4.5MHz 1852.5 to 1908.75 M1/2 53 58 dBarr Any 3.54MHz 1930.25 to 1987.75 M1/2 52 55 dBarr Any 3.54MHz 1932.42 to 1987.5 M1/2 52 55 dBarr Any 3.54MHz 1932.5 to 1987.5 M1/2 52 55 dBarr Any 4.5MHz 1950.48 to 1905.25 M1/2 54 58 dB +23 to +27deg.C 1952.41 to 1907.6 M1/2 45 53 dB +23 to +27deg.C C 1955.0 to 3820 M1/2 45 53 dB +23 to +27deg.C Any 3.84MHz 1955.0 to 3820 M1/2 45 53 dB +23 to +27deg.C Any 3.84MHz 1955.0 to <td></td> <td>1850.25 t</td> <td>, 190</td> <td>9.75</td> <td>MHz</td> <td></td> <td></td> <td></td> <td></td> <td></td>		1850.25 t	, 190	9.75	MHz					
1852.5 10 1907.5 MH2 53 58 dB _m r Argy 4.5MH2 1890.25 10 1980.75 MH2 52 55 dB _m r Argy 1.25MH2 1932.5 10 1987.5 MH2 52 55 dB _m r Argy 3.84MH2 1932.5 10 1987.5 MH2 52 55 dB _m r Argy 3.84MH2 1932.6 10 1987.5 MH2 52 55 dB _m r Argy 4.5MH2 1952.4 10 1987.6 MH2 54 58 dB +23 to +27 deg C 1850.48 10 1907.6 MH2 54 58 dB +23 to +27 deg C 1852.4 10 1907.6 MH2 54 58 dB +23 to +27 deg C -16 1852.4 10 1907.6 MH2 54 58 dB +23 to +27 deg C -16 1850.0 MH2 42 59 dB -16 -16 -16 1907.0 10 2840.0 MH2 50 0 -16		1850.48 t	J 190	9.52	MHz		58			
1851 25 io 1908 75 MH2 53 58 dB dB 1932 4 10 1987 6 MH2 52 55 dB _{NT} Any 3.54MH2 1932 4 10 1987 6 MH2 52 55 dB _{NT} Any 3.54MH2 1931 25 10 1987 6 MH2 52 55 dB _{NT} Any 1.52MH2 1980 48 10 1987 6 MH2 54 58 dB _{NT} Any 1.52MH2 1980 48 10 1907 6 MH2 54 58 dB _{NT} Any 1.52MH2 1985 24 10 1907 6 MH2 53 dB 550 tD 210 +27/deg/C Any 3.84MH2 3700 10 3850 MH2 42 59 dB 10 10 100 5850 MH2 42 59 dB 10 10 10 100 5850 MH2 42 59 dB 10 10 10 100 5850 MH2 42 59 dB 10 10 10		1852.4 t	J 190							
193.025 to 198.75 MHz 52 55 dB _{NT} Any 3.84MHz 193.25 to 1987.6 MHz 52 55 dB _{NT} Any 4.384MHz 193.25 to 1987.6 MHz 52 55 dB _{NT} Any 4.384MHz 1850.46 to 1905.52 MHz 54 58 dB +23 to +27 deg C 1850.47 to 3820 MHz 45 53 dB 3700 to 3820 MHz 42 59 dB 3700 to 5850 </td <td></td> <td>1852.5 t</td> <td>) 19C</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		1852.5 t) 19C							
19324 to 19875 MHz 52 55 dB _{NT} Any 4.5MHz 193125 to 198875 MHz 52 55 dB _{NT} Any 4.5MHz 185124 to 198875 MHz 52 55 dB _{NT} Any 4.5MHz 18524 to 19952 MHz 54 58 dB _{NT} Any 4.5MHz 18524 to 19076 MHz 54 58 dB _{NT} +23 to +27deg.C 18524 to 19076 MHz 54 53 dB		1851.25 t	J 190)8.75	MHz					Any 1.25MHz
1932.5 10 1987.5 MHz 52 55 dB _{MT} Anyi 125MHz 1850.48 10 1998.52 MHz 54 58 dB +23 to +27 deg.C Anyi 3.84MHz 1850.48 to 1998.52 MHz 54 58 dB +23 to +27 deg.C Anyi 3.84MHz 37000. to 3820. MHz 45 53 dB 37000. to 3820. MHz 42 59 dB 37000. to 5850. MHz 42 59 dB 48 37000. to to to to to 16 16 37000. to to to to to 16 16 16 <t< td=""><td></td><td></td><td></td><td>39.75</td><td>MHz</td><td></td><td></td><td></td><td></td><td></td></t<>				39.75	MHz					
193125 10 198.75 MHz 52 55 dB _{NT} Ary 1.23MHz 18524 10 1907.6 MHz 54 58 dB _{NT} +23 to +27deg C 1852.4 10 382.0 MHz 45 53 dB 3700. to 382.0 MHz 42 59 dB 555. to 586.0 MHz 42 59 dB 556.0 MHz 42 59 dB MHz 42 557.0 MHz 42 59 MHz MHz 42		-								
1850.48 to 1909.52 MHz 54 58 dB +23 to +27deg.C 3700 to 3820 MHz 45 53 dB 550. to 3880. MHz 42 59 dB 550. to 3880. MHz 42 59 dB 550. to 5850. MHz 42 59 dB 550. to to to to to to 550. to to to to to to 550. to to to to to to to 550. to to<		1932.5 t	<u>198</u>	37.5	MHz					
18524 1007.6 MHz 54 58 dB _{NT} +23 to +27deg.C Any 3.84MHz 550. 10 5850. MHz 42 59 dB		1931.25 t	<u>) 198</u>							Any 1.25MHz
3700 10 3820 MHz 45 53 dB 5500 10 5850 MHz 42 59 dB										+23 to +27deg.C
5550. 10 5850. MHz 42 59 dB <t< td=""><td></td><td>•</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>+23 to +27 deg.C Ally 3.64 MHZ</td></t<>		•	-							+23 to +27 deg.C Ally 3.64 MHZ
NNN <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		-	-							
Image: state of the state of		<u> </u>	5 000	<i>.</i>		72	- 55		UD	
Image: state of the state of										1
Image: state of the state of						l				
Image: state of the state of										
Image: style s										
Image: state of the state of										
Image: state of the state of										
Image: state of the state of										
Image: state of the state of										
Image: state of the state of										
Image: state of the state of										
Image: state of the state of										
Image: set of the										
Image: section of the section of th										
Image: state of the state of										
Image: state of the state of										
Image: set of the										
Image: sector of the sector										
Image: state of the state of										
Image: state of the state of										
Image: sector of the sector										
Image: state of the state of										
Image: state of the state of										
Image: state of the state of										
Image: state of the state of										
Image: state of the state of										
Image: state of the state of										
Image: state of the state of										
Image: state of the state of										
Image: state of the state										
Image: Sector of the sector										
Image: Sector of the sector										
Image: Second						1	1			
Image: Second										

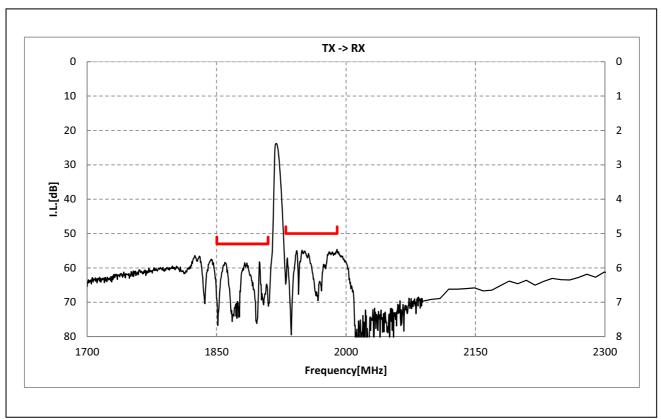

* Typical value at 25±2deg.C

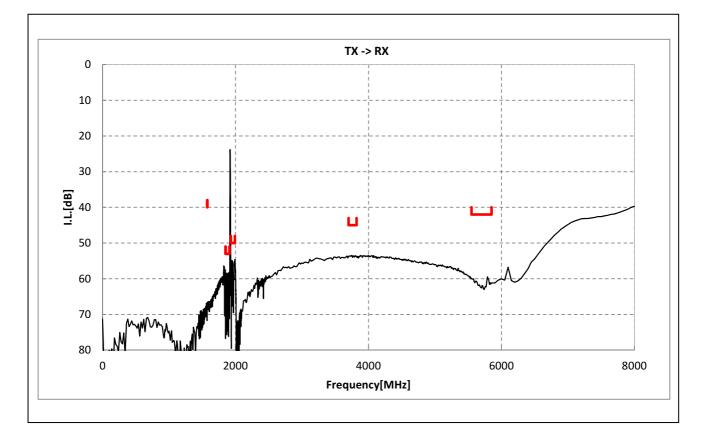
Electrical Characteristic

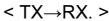




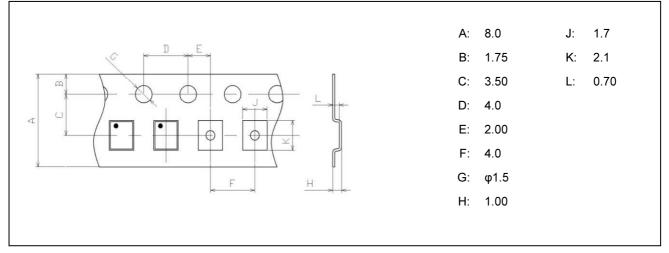
Electrical Characteristic

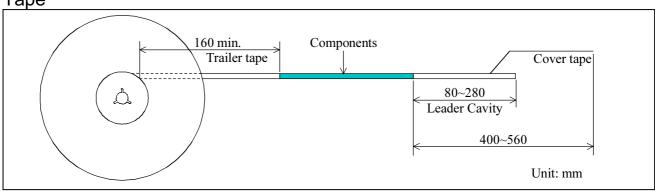




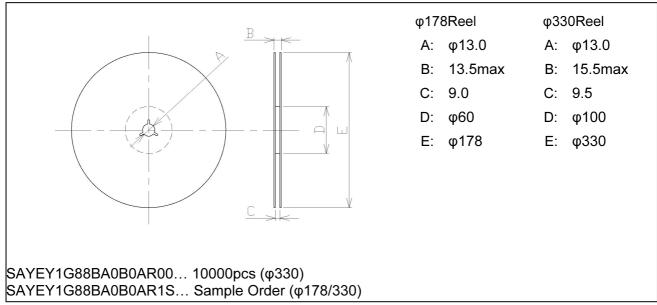


Electrical Characteristic





Dimensions of Tape & Reel unit: mm


Carrier Tape

Tape

Reel

Important Notice (1/2)

PLEASE READ THIS NOTICE BEFORE USING OUR PRODUCTS.

Please make sure that your product has been evaluated and confirmed from the aspect of the fitness for the specifications of our product specified in the front page of this product specifications (the "Product" or "Products") when our Product is mounted to your product. All the items and parameters in this product specification/datasheet/catalog have been prescribed on the premise that our Product is used for the purpose, under the condition and in the environment specified in this specification. You are requested not to use our Product deviating from the condition and the environment specified in this specification.

Please note that the only warranty that we provide regarding the Product is its conformance to the specifications provided herein. Accordingly, we shall not be responsible for any defects in products or equipment incorporating such Products, which are caused under the conditions other than those specified in this specification.

WE HEREBY DISCLAIMS ALL OTHER WARRANTIES REGARDING THE PRODUCTS, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE, THAT THEY ARE DEFECT-FREE, OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS.

The Product shall not be used for any application which requires especially high reliability or accuracy in order to prevent defect which incurs high possibility of damage to the third party's life, body or property such as the applications listed below as item (a) to (j) (the "Prohibited Application"). You acknowledge and agree that, if you use our Products in the Prohibited Applications, we will not be responsible for any damage caused by such use.

Furthermore, YOU AGREE TO INDEMNIFY AND DEFEND US AND OUR AFFILIATES AGAINST ALL CLAIMS, DAMAGES, COSTS, AND EXPENSES THAT MAY BE INCURRED, INCLUDING WITHOUT LIMITATION, ATTORNEY FEES AND COSTS, DUE TO THE USE OF OUR PRODUCTS IN THE PROHIBITED APPLICATIONS.

- (a) Aircraft equipment.
- (b) Aerospace equipment
- (c) Undersea equipment.
- (d) Power plant control equipment -
- (e) Medical equipment.
- (f) Transportation equipment (vehicles, automotive, trains, ships, etc.).
- (g)Traffic signal equipment.
- (h)Disaster prevention / crime prevention equipment.
- (i) Burning / explosion control equipment
- (j) Application of similar complexity and/ or reliability requirements to the applications listed in the above.

For the avoidance of doubt, the Product is not automotive grade, and will not support such requests for automotive as below, also not support other specific requests for automotive.

- AEC-Q200
- PPAP
- IATF16949,VDA6.3
- Zero Defect program
- Long product life cycle
- Automotive 8D failure analysis and report

Important Notice (2/2)

We expressly prohibit you from analyzing, breaking, Reverse-Engineering, remodeling altering, and reproducing our product. Our product cannot be used for the product which is prohibited from being manufactured, used, and sold by the regulations and laws in the world.

Please do not use the Product in molding condition.

This product is ESD (ElectroStatic Discharge) sensitive device. When you install or measure this, you should be careful not to add antistatic electricity or high voltage. Please be advised that you had better check anti serge voltage.

We do not warrant or represent that any license, either express or implied, is granted under any our patent right, copyright, mask work right, or our other intellectual property right relating to any combination, machine, or process in which our Products or services are used. Information provided by us regarding third-party products or services does not constitute a license from us to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from us under our patents or other intellectual property.

Please do not use our Products, our technical information and other data provided by us for the purpose of developing of mass-destruction weapons and the purpose of military use. Moreover, you must comply with "foreign exchange and foreign trade law", the "U.S. export administration regulations", etc.

Please note that we may discontinue the manufacture of our products, due to reasons such as end of supply of materials and/or components from our suppliers.

Customer acknowledges that Murata will, if requested by you, conduct a failure analysis for defect or alleged defect of Products only at the level required for consumer grade Products, and thus such analysis may not always be available or be in accordance with your request (for example, in cases where the defect was caused by components in Products supplied to Murata from a third party).

The Product shall not be used in any other application/model than that of claimed to Murata.

Customer acknowledges that engineering samples may deviate from specifications and may contain defects due to their development status.

We reject any liability or product warranty for engineering samples.

In particular we disclaim liability for damages caused by

• the use of the engineering sample other than for evaluation purposes, particularly the installation or integration in the Product to be sold by you,

·deviation or lapse in function of engineering sample,

·improper use of engineering samples.

We disclaim any liability for consequential and incidental damages.

If you can't agree the above contents, you should inquire our sales.

单击下面可查看定价,库存,交付和生命周期等信息

>>Murata(村田)