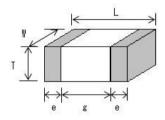
Chip Monolithic Ceramic Capacitor for Automotive limited to Conductive Glue Mounting GCG188R92A104KA03_ (0603, X8R:EIA, 0.1uF, DC100V)

_: packaging code Reference Sheet


1.Scope

This product specification is applied to Chip Monolithic Ceramic Capacitor limited to Conductive Glue Mounting Type used for Automotive Electronic equipment with conductive glue mounting.

2.MURATA Part NO. System

(Ex.) GCG	18	8	R9	2A	104	K	A03	D
	(1)L/W Dimensions	(2)T Dimensions	(3)Temperature	(4)Rated	(5)Nominal	(6)Capacitance	(7)Murata's Control	(8)Packaging Code

3. Type & Dimensions

(Unit:mm)

(1)-1 L	(1)-2 W	(2) T	е	g
1.6±0.2	0.8±0.1	0.8±0.1	0.2 to 0.5	0.5 min.

4.Rated value

Tillated Value						
` , .	e Characteristics ode):X8R(EIA)	(4) Rated	(5) Nominal	(6) Capacitance	Specifications and Test Methods	
Temp. coeff or Cap. Change			Capacitance	Tolerance	(Operating Temp. Range)	
-15 to 15 %	-55 to 150 °C (25 °C)	DC 100 V	0.1 uF	±10 %	-55 to 150 °C	

5.Package

	3-	
mark	(8) Packaging	Packaging Unit
D	φ180mm Reel PAPER W8P4	4000 pcs./Reel
J	φ330mm Reel PAPER W8P4	10000 pcs./Reel

Product specifications in this catalog are as of Apr.15,2016,and are subject to change or obsolescence without notice. Please consult the approval sheet before ordering.

Please read rating and !Cautions first.

■ AEC-Q200 Murata Standard Specification and Test Methods

1	T		Specification.						
No	AEC-Q200	Test Item	Temperature Compensating Type	High Dielectric Type	1		AEC-	Q200 Test Method	
1	Pre-and Post-S	Stress	Compensating type		-				
2			The measured and observed characteristics should satisfy the						
2	High Temperat			eristics should satisfy the	Fix the capacitor to the supporting jig in the same manner and				
	Exposure (Stor	age)	specifications in the following table.		under the same conditions as No.16.				
		Appearance	No marking defects	<u></u>	Set the cap	pacitor for 1	1000±12 h	ours at 150±3°C. Set for	
		Capacitance	Within ±2.5% or ±0.25pF	R7/L8/R9:Within ±12.5%	24±2 hours	s at room te	emperatur	e, then measure.	
		Change	(Whichever is larger)						
		Q/D.F.	30pFmin. : Q≧1000	R7/L8: 0.05 max.					
			30pFmax.: Q ≧400+20C	R9: 0.075max.					
			C: Nominal Capacitance(pF)						
	F		More than 10,000MΩ or 500Ω • F		_				
			R9 : More than 3,000M Ω or 150 Ω · I	F					
			(Whichever is smaller)						
3	Temperature C	ycling	The measured and observed charact	eristics should satisfy the	Fix the cap	acitor to th	e supporti	ng jig in the same manner an	d
			specifications in the following table.		under the s	same condi	tions as N	lo.16. Perform the 1000 cycle	es
		Appearance	No marking defects		-			nents listed in the following to	
		Capacitance	Within ±2.5% or ±0.25pF	R7/L8/R9: Within ±10.0%	_			nperature, then measure	
		Change	(Whichever is larger)		Step	1	2	3	4
		Q/D.F.	30pFmin.: Q ≧1000	R7/L8 W.V.: 25Vmin.: 0.03 max.	Temp.	-55+0/-3	Room Temp.	125+3/-0(for ΔC/R7) 150+3/-0(for 5G/L8/R9)	Room Temp.
			30pFmax.: Q ≧ 400+20C	W.V.: 16V : 0.05 max	(-C)		remp.	150+3/-0(101 5G/L6/R9)	remp.
			C: Nominal Capacitance (pF)	R9: 0.075max.	Time	15±3	1	15±3	1
					(min.)	1013	ı '	10±3	·
		I.R.	More than $10,000M\Omega$ or $500\Omega \cdot F$ (Whichever is smaller)						
			(Whichever is smaller)	 Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/-10 °C for one hour and then set for 24±2 hours at room temperature. 					
					Perform th	e initial me	asuremen	ī.	
4	Destructive		No defects or abnormalities		Per EIA-46	69.			
	Physical Analys								
5	Moisture Resis	tance	The measured and observed charact	eristics should satisfy the	Fix the capacitor to the supporting jig in the same manner and under the same conditions as No.16. Apply the 24-hour heat (25 to 65°C) and humidity (80 to 98%)				
			specifications in the following table.						
					treatment s	shown belo	w, 10 con	secutive times.	
		Appearance	No marking defects	Assessment No marking defeats					
					Set for 24:	±2 hours a	t room ter	nperature, then measure.	
		Capacitance	Within ±3.0% or ±0.30pF	R7/L8/R9: Within ±12.5%	Set for 24:	e	Hu	midity Humidity	
		Capacitance Change	•	R7/L8/R9: Within ±12.5%	Temperatur (°C)	e Hum	Hu	midity Humidity ∼98% Humidity 80∼98% Humi	dity 98%
		· ·	Within ±3.0% or ±0.30pF	R7/L8/R9: Within ±12.5% R7/L8 : 0.05 max.	Temperatur (°C)	e Hum	Hu nidity 80	midity Humidity ~98% Humidity 80~98% Humi	dity 98%
		Change	Within ±3.0% or ±0.30pF (Whichever is larger)		Temperatur (°C) 70 65 60	e Hum	Hu nidity 80	midity Humidity ∼98% Humidity 80∼98% Humi	dity 98%
		Change	Within ±3.0% or ±0.30pF (Whichever is larger) 30pFmin. : Q≧350		Temperatur (°C) 70 65 60 55 50	e Hum	Hu nidity 80	midity Humidity ∼98% Humidity 80∼98% Humi	dity 98%
		Change	Within ±3.0% or ±0.30pF (Whichever is larger) 30pFmin. : Q≧350 10pF and over, 30pF and below:	R7/L8 : 0.05 max.	Temperatur (°C) 70 65 60 55	e Hum	Hu nidity 80	midity Humidity ∼98% Humidity 80∼98% Humi	dity 98%
		Change	Within ±3.0% or ±0.30pF (Whichever is larger) 30pFmin. : Q≧350 10pF and over, 30pF and below: Q≧275+5C/2 10pFmax.: Q ≧200+10C	R7/L8 : 0.05 max.	Temperatur (°C) 70 65 60 55 50 45 40 35	e Hum	Hu nidity 80	midity Humidity ∼98% Humidity 80∼98% Humi	dity 98%
		Change Q/D.F.	Within ±3.0% or ±0.30pF (Whichever is larger) 30pFmin. : Q≧350 10pF and over, 30pF and below: Q≧275+5C/2 10pFmax.: Q ≧200+10C C: Nominal Capacitance(pF)	R7/L8 : 0.05 max.	Temperatur (°C) 70 65 60 55 50 45 40 35 30 30 25	e Hum	Hu 80 ~98%	midity Humidity ∼98% Humidity 80∼98% Humi	dity 98%
		Change	Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30 pFmin. : $Q \ge 350$ 10 pF and over, 30 pF and below: $Q \ge 275+5$ C/2 10 pFmax.: $Q \ge 200+10$ C C: Nominal Capacitance(pF) More than $10,000$ M Ω or 500 Ω ·F	R7/L8 : 0.05 max. R9 : 0.075max.	Temperatur (°C) 70 65 60 55 50 45 40 35 30 25 20 =	e Hum	Hu nidity 80	midity Humidity	dity 98%
		Change Q/D.F.	Within ±3.0% or ±0.30pF (Whichever is larger) 30pFmin. : Q≧350 10pF and over, 30pF and below: Q≧275+5C/2 10pFmax.: Q ≧200+10C C: Nominal Capacitance(pF)	R7/L8 : 0.05 max. R9 : 0.075max.	Temperatur (°C) 70 65 60 55 50 45 40 35 30 25 20 15	e Hum	Huidity 80 -98% +10	midity Humidity	dity 98%
		Change Q/D.F.	Within ±3.0% or ±0.30pF (Whichever is larger) 30pFmin. : $Q \ge 350$ 10pF and over, 30pF and below: $Q \ge 275+5C/2$ 10pFmax.: $Q \ge 200+10C$ C: Nominal Capacitance(pF) More than 10,000M Ω or 500 Ω · F R9 : More than 3,000M Ω or 150 Ω · I	R7/L8 : 0.05 max. R9 : 0.075max.	Temperatur (°C) 70 65 60 55 50 45 40 35 35 35 25 20 15	e Hum	Huidity 80 -98% +10	midity Humidity	dity 98%
		Change Q/D.F.	Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30 pFmin. : $Q \ge 350$ 10 pF and over, 30 pF and below: $Q \ge 275+5$ C/2 10 pFmax.: $Q \ge 200+10$ C C: Nominal Capacitance(pF) More than $10,000$ M Ω or 500 Ω ·F	R7/L8 : 0.05 max. R9 : 0.075max.	Temperatur (°C) 70 65 60 95 945 940 35 30 925 920 915 15 10 95 95 95 95 95 95 95 95 95 95 95 95 95	e Hum	Huidity 80 -98% +10	midity Humidity	dity 98%
		Change Q/D.F.	Within ±3.0% or ±0.30pF (Whichever is larger) 30pFmin. : $Q \ge 350$ 10pF and over, 30pF and below: $Q \ge 275+5C/2$ 10pFmax.: $Q \ge 200+10C$ C: Nominal Capacitance(pF) More than 10,000M Ω or 500 Ω · F R9 : More than 3,000M Ω or 150 Ω · I	R7/L8 : 0.05 max. R9 : 0.075max.	Temperatur (°C) 70 65 60 55 50 45 40 35 30 20 15 10 5 110 5 110 5 111	Hum 90-	Huidity 80 98% +10 -2 °C	midity	98%
		Change Q/D.F.	Within ±3.0% or ±0.30pF (Whichever is larger) 30pFmin. : $Q \ge 350$ 10pF and over, 30pF and below: $Q \ge 275+5C/2$ 10pFmax.: $Q \ge 200+10C$ C: Nominal Capacitance(pF) More than 10,000M Ω or 500 Ω · F R9 : More than 3,000M Ω or 150 Ω · I	R7/L8 : 0.05 max. R9 : 0.075max.	Temperatur (°C) 70 65 60 55 50 45 40 35 30 20 15 10 5 110 5 110 5 111	Hum 90-	Huidity 80 98% +10 -2 °C	midity Humidity 80~98% Humi90~98% Humidity 90~98% Humidity 90~98% Humi0ity 90~	98%
		Change Q/D.F.	Within ±3.0% or ±0.30pF (Whichever is larger) 30pFmin. : $Q \ge 350$ 10pF and over, 30pF and below: $Q \ge 275+5C/2$ 10pFmax.: $Q \ge 200+10C$ C: Nominal Capacitance(pF) More than 10,000M Ω or 500 Ω · F R9 : More than 3,000M Ω or 150 Ω · I	R7/L8 : 0.05 max. R9 : 0.075max.	Temperatur (°C) 70 65 60 55 50 45 40 35 30 20 15 10 5 110 5 110 5 111	Hum 90-	Huidity 80 98% +10 -2 °C	midity	98%
6	Biased Humidi	Change Q/D.F.	Within ±3.0% or ±0.30pF (Whichever is larger) 30pFmin. : $Q \ge 350$ 10pF and over, 30pF and below: $Q \ge 275+5C/2$ 10pFmax.: $Q \ge 200+10C$ C: Nominal Capacitance(pF) More than 10,000M Ω or 500 Ω · F R9 : More than 3,000M Ω or 150 Ω · I	R7/L8 : 0.05 max. R9 : 0.075max.	Temperatur (°C) 70 65 60 055 50 45 40 35 20 15 10 0 -5 -10	Hum 90-	Huidity 80 80 80 80 80 80 80 80 80 80 80 80 80	midity Humidity 80~98% Humi90~98% Humidity 90~98% Humidity 90~98% Humi0ity 90~	98%
6	Biased Humidi	Change Q/D.F.	Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30 pFmin. : $Q \ge 350$ 10 pF and over, 30 pF and below: $Q \ge 275 + 5C/2$ 10 pFmax.: $Q \ge 200 + 10C$ C: Nominal Capacitance(pF) More than $10,000$ M Ω or $500\Omega \cdot F$ R9: More than $3,000$ M Ω or $150\Omega \cdot F$ (Whichever is smaller)	R7/L8 : 0.05 max. R9 : 0.075max.	Temperatur (°C) 70 65 60 95 45 40 35 20 15 10 9-5 -10 L 0	Hum 90-	Huidity 80 80 80 80 80 80 80 80 80 80 80 80 80	midity Humidity 80~98% Humidity 90~98% Humidity 90~98% Humidity 90~98% Humidity Humidity 90~98% Humidity 90~98	98%
6	Biased Humidit	Change Q/D.F. I.R.	Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30pFmin. : $Q \ge 350$ 10pF and over, 30pF and below: $Q \ge 275 + 5C/2$ 10pFmax.: $Q \ge 200 + 10C$ C: Nominal Capacitance(pF) More than $10,000M\Omega$ or $500\Omega \cdot F$ R9 : More than $3,000M\Omega$ or $150\Omega \cdot I$ (Whichever is smaller)	R7/L8 : 0.05 max. R9 : 0.075max.	Temperatur (°C) 70 65 60 95 55 50 45 40 30 25 20 15 10 0 5 -10 L 0	Hum 90-	Huidity 80 80 98% 410 410 410 42 C comt es supportitions as N	midity Humidity 80~98% Humidity 90~98% Humidity 90~98% Humidity 90~98% Humidity Humidity 90~98% Humidity 90~98	98%
6	Biased Humidit	Change Q/D.F. I.R. Appearance	Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30pFmin. : $Q \ge 350$ 10pF and over, 30pF and below: $Q \ge 275+5$ C/2 10pFmax.: $Q \ge 200+10$ C C: Nominal Capacitance(pF) More than $10,000$ M Ω or $500\Omega \cdot$ FR9 : More than $3,000$ M Ω or $150\Omega \cdot$ I (Whichever is smaller)	R7/L8: 0.05 max. R9: 0.075max.	Temperatur (°C) 70 65 60 05 55 50 45 40 30 25 20 15 10 0 -5 -10 L Fix the cap under the s Apply the r	Hum 90-	Huidity 80 80 98% 100 100 100 100 100 100 100 100 100 10	midity Humidity 80~98% Humi90~98% Humi90~98	98%
6	Biased Humidi	Change Q/D.F. I.R. Appearance Capacitance	Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30pFmin. : $Q \ge 350$ 10pF and over, 30pF and below: $Q \ge 275 + 5C/2$ 10pFmax.: $Q \ge 200 + 10C$ C: Nominal Capacitance(pF) More than $10,000M\Omega$ or $500\Omega \cdot F$ R9 : More than $3,000M\Omega$ or $150\Omega \cdot I$ (Whichever is smaller)	R7/L8 : 0.05 max. R9 : 0.075max.	Temperatur (°C) 70 65 60 00 55 50 45 40 30 25 20 15 10 0 5 11 0 Fix the cap under the s Apply the r at 85±3°C	Hum 90-	Huidity 80 80 98% 100 100 100 100 100 100 100 100 100 10	midity Humidity 80~98% Humi90~98% Humi90~98	98% 1 1 2 23 24 d
6	Biased Humidi	Change Q/D.F. I.R. Appearance Capacitance Change	Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30pFmin. : $Q \ge 350$ 10pF and over, 30pF and below: $Q \ge 275 + 5C/2$ 10pFmax.: $Q \ge 200 + 10C$ C: Nominal Capacitance(pF) More than $10,000M\Omega$ or $500\Omega \cdot F$ R9 : More than $3,000M\Omega$ or $150\Omega \cdot F$ (Whichever is smaller) The measured and observed charact specifications in the following table. No marking defects Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger)	R7/L8: 0.05 max. R9: 0.075max. eristics should satisfy the R7/L8/R9: Within ±12.5%	Temperatur (°C) 70 65 60 00 55 50 45 40 35 20 15 10 0 -5 -10 Fix the cap under the s Apply the r at 85±3°C Remove a	Hum 90-	e supportitions as Ne and 1.3 5% humic 4±2 hours	midity Humidity 80~98% Humigity 90~98% Humidity 90~98% Humidity 90~98% Humidity Humidity 90~98% Humidity Humidity 90~98% Humi	98% 1 1 2 23 24 d
6	Biased Humidi	Change Q/D.F. I.R. Appearance Capacitance	Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30 pFmin. : $Q \ge 350$ 10 pF and over, 30 pF and below: $Q \ge 275 + 5C/2$ 10 pFmax.: $Q \ge 200 + 10C$ C: Nominal Capacitance(pF) More than $10,000$ M Ω or 500 Ω · F R9 : More than $3,000$ M Ω or 150 Ω · I (Whichever is smaller) The measured and observed charact specifications in the following table. No marking defects Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30 pF and over: $Q \ge 200$	R7/L8: 0.05 max. R9: 0.075max. eristics should satisfy the R7/L8/R9: Within ±12.5% R7/L8: 0.05 max.	Temperatur (°C) 70 65 60 00 55 50 45 40 35 20 15 10 0 -5 -10 Fix the cap under the s Apply the r at 85±3°C Remove a	Hum 90-	e supportitions as Ne and 1.3 5% humic 4±2 hours	midity Humidity 80~98% Humi90~98% Humi90~98	98% 1 1 2 23 24 d
6	Biased Humidi	Change Q/D.F. I.R. Appearance Capacitance Change	Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30 pFmin. : $Q \ge 350$ 10 pF and over, 30 pF and below: $Q \ge 275 + 5C/2$ 10 pFmax.: $Q \ge 200 + 10C$ C: Nominal Capacitance(pF) More than $10,000$ M Ω or 500 Ω · F R9 : More than $3,000$ M Ω or 150 Ω · I (Whichever is smaller) The measured and observed charact specifications in the following table. No marking defects Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30 pF and over: $Q \ge 200$ 30 pF and below: $Q \ge 100 + 10C/3$	R7/L8: 0.05 max. R9: 0.075max. eristics should satisfy the R7/L8/R9: Within ±12.5%	Temperatur (°C) 70 65 60 00 55 50 45 40 35 20 15 10 0 -5 -10 Fix the cap under the s Apply the r at 85±3°C Remove a	Hum 90-	e supportitions as Ne and 1.3 5% humic 4±2 hours	midity Humidity 80~98% Humigity 90~98% Humidity 90~98% Humidity 90~98% Humidity Humidity 90~98% Humidity Humidity 90~98% Humi	98% 1 1 2 23 24 d
6	Biased Humidi	Change Q/D.F. I.R. Appearance Capacitance Change Q/D.F.	Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30 pFmin. : $Q \ge 350$ 10 pF and over, 30 pF and below: $Q \ge 275 + 5C/2$ 10 pFmax.: $Q \ge 200 + 10C$ C: Nominal Capacitance(pF) More than $10,000$ M Ω or 500 Ω · F R9 : More than $3,000$ M Ω or 150 Ω · I (Whichever is smaller) The measured and observed charact specifications in the following table. No marking defects Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30 pF and over: $Q \ge 200$ 30 pF and below: $Q \ge 100 + 10C/3$ C: Nominal Capacitance(pF)	R7/L8: 0.05 max. R9: 0.075max. eristics should satisfy the R7/L8/R9: Within ±12.5% R7/L8: 0.05 max.	Temperatur (°C) 70 65 60 00 55 50 45 40 35 20 15 10 0 -5 -10 Fix the cap under the s Apply the r at 85±3°C Remove a	Hum 90-	e supportitions as Ne and 1.3 5% humic 4±2 hours	midity Humidity 80~98% Humigity 90~98% Humidity 90~98% Humidity 90~98% Humidity Humidity 90~98% Humidity Humidity 90~98% Humi	98% 1 1 2 23 24 d
6	Biased Humidi	Change Q/D.F. I.R. Appearance Capacitance Change	Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30 pFmin. : $Q \ge 350$ 10 pF and over, 30 pF and below: $Q \ge 275 + 5C/2$ 10 pFmax.: $Q \ge 200 + 10$ C C: Nominal Capacitance(pF) More than $10,000$ MΩ or 500 Ω · F R9 : More than $3,000$ MΩ or 150 Ω · I (Whichever is smaller) The measured and observed charact specifications in the following table. No marking defects Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30 pF and over: $Q \ge 200$ 30 pF and below: $Q \ge 100 + 10$ C/3 C: Nominal Capacitance(pF)	R7/L8: 0.05 max. R9: 0.075max. eristics should satisfy the R7/L8/R9: Within ±12.5% R7/L8: 0.05 max.	Temperatur (°C) 70 65 60 00 55 50 45 40 35 20 15 10 0 -5 -10 Fix the cap under the s Apply the r at 85±3°C Remove a	Hum 90-	e supportitions as Ne and 1.3 5% humic 4±2 hours	midity Humidity 80~98% Humigity 90~98% Humidity 90~98% Humidity 90~98% Humidity Humidity 90~98% Humidity Humidity 90~98% Humi	98% 1 1 2 23 24 d
6	Biased Humidi	Change Q/D.F. I.R. Appearance Capacitance Change Q/D.F.	Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30 pFmin. : $Q \ge 350$ 10 pF and over, 30 pF and below: $Q \ge 275 + 5C/2$ 10 pFmax.: $Q \ge 200 + 10C$ C: Nominal Capacitance(pF) More than $10,000$ M Ω or 500 Ω · F R9 : More than $3,000$ M Ω or 150 Ω · I (Whichever is smaller) The measured and observed charact specifications in the following table. No marking defects Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30 pF and over: $Q \ge 200$ 30 pF and below: $Q \ge 100 + 10C/3$ C: Nominal Capacitance(pF)	R7/L8: 0.05 max. R9: 0.075max. eristics should satisfy the R7/L8/R9: Within ±12.5% R7/L8: 0.05 max.	Temperatur (°C) 70 65 60 00 55 50 45 40 35 20 15 10 0 -5 -10 Fix the cap under the s Apply the r at 85±3°C Remove a	Hum 90-	e supportitions as Ne and 1.3 5% humic 4±2 hours	midity Humidity 80~98% Humigity 90~98% Humidity 90~98% Humidity 90~98% Humidity Humidity 90~98% Humidity Humidity 90~98% Humi	98% 1 1 2 23 24 d

			Snoo	ification					
No	AEC-Q200	Test Item	· ·	ification.			AEC-Q200 T	Test Method	
			Temperature Compensating Type	High Dielectric Type					
7	Operational Life	е	The measured and observed char	acteristics should satisfy the	Fix the	capacitor to th	ne supporting jig ir	the same manner and	
			specifications in the following table	e			itions as No.16.		
		Appearance	No marking defects	1	Apply 200% of the rated voltage for 1000±12 hours at 125±3°C(for				
		Capacitance	Within ±3.0% or ±0.30pF	R7/L8/R9: Within ±12.5%	Δ C/R7), 150±3°C(for 5G/L8/R9). Set for 24±2 hours at room temperature, then measure.				
		Change Q/D.F.	(Whichever is larger)	D7/1 0 - 0.05					
		Q/D.F.	30pFmin. : Q≧350 10pF and over, 30pF and below:	R7/L8 : 0.05 max. R9 : 0.075max.	The charge/discharge current is less than 50mA.				
			Q≧275+5C/2	10.07 Smax.	• Initial	measurement	for high dielectric	constant type	
			10pFmax.: Q ≧200+10C				•	r one hour at the maximum	
			C: Nominal Capacitance(pF)				•	and set for 24±2 hours at	
		I.R.	More than 1,000MΩ or 50Ω •F	1	room te	emperature. Po	erform initial meas	surement.	
			(Whichever is smaller)						
8	External Visual	l	No defects or abnormalities		Visual i	nspection			
9	Physical Dimer	nsion	Within the specified dimensions		Using c	raliners			
Ŭ	i nyolodi zimol		Trialini and opcomed annoncional		o o ig o	,a.i.poro			
10	Resistance to	Appearance	No marking defects		Per MIL	L-STD-202 Me	ethod 215		
	Solvents	Capacitance	Within the specified tolerance		Solven	nt 1 : 1 part (by	volume) of isopro	ppyl alcohol	
		Change				3 parts (b	y volume) of mine	eral spirits	
		Q/D.F.	30pFmin. : Q≧1000	R7/L8 : W.V.: 25Vmin.: 0.025 max.	Solvent 2 : Terpene defluxer				
			30pFmax.: Q ≧400+20C	W.V.: 16V: 0.035 max.	Solvent 3 : 42 parts (by volume) of water		ter		
			C: Nominal Capacitance(pF)	R9: 0.075max.	1pa	art (by volume)	of propylene glyc	ol monomethyl ether	
			, , ,		1 part (by volume) of monoethanolamine		·		
		I.R.	M // 40.000MO 5000 F						
		I.K.	More than 10,000MΩ or $500Ω \cdot F$						
			(Whichever is smaller)						
11	Mechanical	Appearance	No marking defects		Fix the	capacitor to th	ne test iig in the sa	me manner and under the	
	Shock	Capacitance	Ÿ				, ,	s in each direction should be	
		Change			applied along 3 mutually perpendicular axes of the test specimen				
		Q/D.F.	30pFmin. : Q≧1000	R7/L8: W.V.: 25Vmin.: 0.025 max.	(18 shocks).				
			30pFmax.: Q ≧400+20C	W.V.: 16V: 0.035 max.	`	,	se should be Half	-sine and should have a	
			C: Nominal Capacitance(pF)	R9: 0.075max.				l velocity change: 4.7m/s.	
			, , ,			, ,			
		I.R.	More than 10,000MΩ or 500Ω •F						
			(Whichever is smaller)						
40	V. C.		<u>'</u>		F: 4			1 1 4	
12	Vibration	Appearance	No defects or abnormalities					me manner and under the	
		Capacitance	Within the specified tolerance					or should be subjected to a	
		Change	20nFmin . 0 > 1000	D7/(0.1W1/.05)/			•	amplitude of 1.5mm, the	
		Q/D.F.	30pFmin. : Q≧1000	R7/L8 : W.V.: 25Vmin.: 0.025 max.	-		-	een the approximate limits of	
			30pFmax.: Q ≥400+20C	W.V.: 16V : 0.035 max.				from 10 to 2000Hz and	
			C: Nominal Capacitance(pF)	R9: 0.075max.				approximately 20 minutes.	
								cle in each 3 mutually	
		I.R.	More than 10,000MΩ or 500Ω •F		perpendicular directions				
			(Whichever is smaller)						
13	Thermal Shock	<u> </u>	The measured and observed char	racteristics should satisfy the	Fix the	capacitor to th	ne supporting jig ir	the same manner and	
			specifications in the following table	9.	under tl	he same cond	itions as No.16. P	erform the 300 cycles	
		Appearance	No marking defects	1	accordi	ing to the two	heat treatments lis	sted in the following	
		Capacitance	Within ±2.5% or ±0.25pF	R7/L8/R9: Within ±10.0%	table(M	laximum trans	fer time is 20 seco	onds). Set for 24±2 hours at	
	i .	Change	(Whichever is larger)		room te	emperature, th	en measure		
			30pFmin. : Q≧1000	R7/L8: W.V.: 25Vmin.: 0.025 max.		Step	1	2	
		Q/D.F.			1		l	125+3/-0(forΔC/R7)	
		Q/D.F.	30pFmax.: Q ≧400+20C	GCG21BL81H104K: 0.03 max.		Temp.(°C)	-55+0/-3		
		Q/D.F.	30pFmax.: Q ≧400+20C C: Nominal Capacitance(pF)	W.V.: 16V : 0.035 max.			-55+0/-3	150+3/-0 (for 5G/L8/R9)	
			C: Nominal Capacitance(pF)			Temp.(°C) Time (min.)	-55+0/-3 15±3		
		Q/D.F.		W.V.: 16V : 0.035 max.		Time		150+3/-0 (for 5G/L8/R9)	
			C: Nominal Capacitance(pF) More than $10,000M\Omega$ or $500\Omega \cdot F$	W.V.: 16V : 0.035 max.	• Initial	Time (min.)		150+3/-0 (for 5G/L8/R9) 15±3	
			C: Nominal Capacitance(pF) More than $10,000M\Omega$ or $500\Omega \cdot F$	W.V.: 16V : 0.035 max.		Time (min.)	15±3	150+3/-0 (for 5G/L8/R9) 15±3	
			C: Nominal Capacitance(pF) More than $10,000M\Omega$ or $500\Omega \cdot F$	W.V.: 16V : 0.035 max.	Perforn	Time (min.) measurement	15±3	150+3/-0 (for 5G/L8/R9) 15±3	

■AEC-Q200 Murata Standard Specification and Test Methods

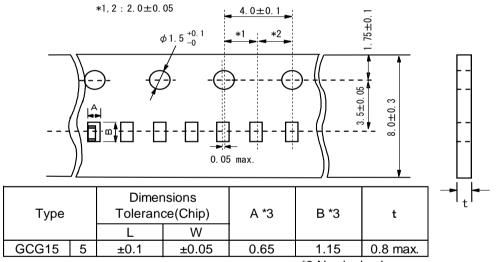
			Specifi	cation.				
No	AEC-Q	200 Test Item	Temperature Compensating Type	High Dielectric Type	AEC-Q200 Test Method			
14	ESD	Appearance	No marking defects		Per AEC-Q200-002			
		Capacitance Change	Within the specified tolerance					
		Q/D.F.	30pFmin. : Q≧1000	R7/L8: W.V.: 25Vmin.: 0.025 max.				
			30pFmax.: Q ≧400+20C	W.V.: 16V :0.035 max.				
			C: Nominal Capacitance(pF)	R9 : 0.075max.				
		I.R.	More than 10,000MΩ or 500Ω • F (Whichever is smaller)					
15	Electrical	Appearance	No defects or abnormalities		Visual inspection.			
15	Chatacteri-		Within the specified tolerance		The capacitance/Q/D.F. should be measured at 25°C at the			
	zation	Change	Within the specified tolerance		frequency and voltage shown in the table.			
	Lation	Q/D.F.	30pFmin. : Q≧1000	R7/L8 : W.V.: 25Vmin.: 0.025 max.				
		Q/D.I .	30pFmax.: Q ≧400+20C	W.V.: 16V : 0.035 max.	Char. ΔC,5G ΔC,5G (more than 1000pF)			
			C: Nominal Capacitance(pF)	R9 : 0.075max.	Item (1000 pF and below)			
			o. Nominal dapacitance(pr)	10.070max.	Frequency 1±0.1MHz 1±0.1kHz			
					Voltage 0.5 to 5Vrms 1±0.2Vrms			
		I.R. 25°C	More than 100,000MΩ or 1000Ω•F	More than 10,000MΩ or 500Ω • F	The insulation resistance should be measured with a DC voltage not			
			(Whichever is smaller)	(Whichever is smaller)	exceeding the rated voltage at 25°C and 125°C(for Δ C/R7)/ 150°C			
					(for 5G/L8/R9) within 2 minutes of charging.			
		I.R. 125°C	More than $10,000M\Omega$ or $100\Omega \cdot F$	More than 1,000MΩ or 10Ω•F				
			(Whichever is smaller)	(Whichever is smaller)				
		I.R. 150°C	More than 10,000MΩ or 100Ω • F	More than 1,000MΩ or 1Ω•F				
			(Whichever is smaller)	(Whichever is smaller)				
		Dielectric	No failure		No failure should be observed when 250% of the rated voltage is			
		Strength			applied between the terminations for 1 to 5 seconds, provided the			
					charge/ discharge current is less than 50mA.			
16	Terminal	Appearance	No marking defects		Mount the capacitor on the test jig in Fig.1 using a conductive glue			
	Strength	Capacitance	Within specified tolerance		(HEREAUS"PC3000"). The conductive glue is hardened at 140°C for 30minites.			
		Change	· ·		Then apply *shear tension in parallel with the test jig for 60sec.			
		Q/D.F.	30pFmin. : Q≧1000	R7/L8: W.V.: 25Vmin.: 0.025 max.				
			30pFmax.: Q ≧400+20C	W.V.: 16V: 0.035max.	*Show in the table 1			
			C: Nominal Capacitance(pF)	R9: 0.075max.				
					Ag Pd electrode Alumina			
		I.R.	More than 10,000M Ω or 500 Ω •F		***			
			(Whichever is smaller)					
					b			
			Type Shar	e Tension				
			GCG15	2. ON				
			GCG18	2. 7N				
			GCG21	4. 9N	Type a b c GCG15 0.4 1.5 0.5			
			GCG31	6. 9N	GCG18 1.0 3.0 1.2			
			GCG32 Table. 1	12. 6N	GCG21 1.2 4.0 1.65			
			Table. I		GCG31 2. 2 5. 0 2. 0			
					GCG32 2.2 5.0 2.9			
					Fig. 1 (in mm)			
	l	1						

■ AEC-Q200 Murata Standard Specification and Test Methods

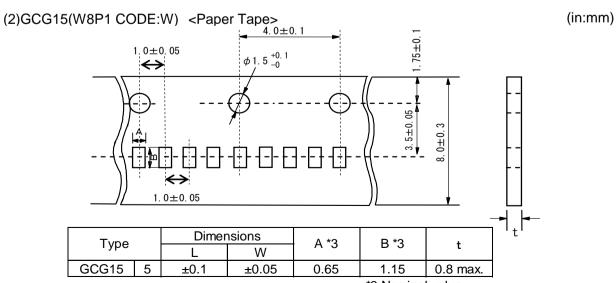
			Spec	ification.	
No	AEC-Q200	Test Item	Temperature Compensating Type	High Dielectric Type	AEC-Q200 Test Method
177	Beam Load Test		Chip thickness < Chip L dimension : 3.2mm mim. : Chip thickness <	> > 0.5mm rank : 20N ≦ 0.5mm rank : 8N	Place the capacitor in the beam load fixture as Fig 2. Apply a force. < Chip Length: 2.5mm max. > Iron Board < Chip Length: 3.2mm min. > Fig.2 Speed supplied the Stress Load: 0.5mm / sec.
18	Capacitance Temperature Characteristics	Capacitance Change Temperature Coefficient	Within the specified tolerance. (Table A) Within the specified tolerance. (Table A)	R7 : Within ±15% (-55°C to +125°C) L8 : Within ±15% (-55°C to +125°C) Within +15/-40% (+125°C to +150°C) R9 : Within ±15% (-55°C to +150°C)	The capacitance change should be measured after 5 min. at each specified temperature stage. (1)Temperature Compensating Type The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step1 through 5 (Δ C: +25°C to +125°C, 5G:+25°C to +150°C other temp. coifficient.:+25°C to +85°C) the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as Table A-1. The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in the step 1,3 and 5 by the cap value in step 3.
		Capacitance Drift	Within ±0.2% or ±0.05 pF (Whichever is larger.)		1 25±2 2 -55±3(for ΔC to R7) 3 25±2 4 125±3(for ΔC/R7), 150±3(for 5G/R9/L8) 5 25±2 (2) High Dielectric Constant Type The ranges of capacitance change compared with the above 25°C value over the temperature ranges shown in the table should be within the specified ranges. Initial measurement for high dielectric constant type. Perform a heat treatment at 150+0/-10°C for one hour and then set for 24±2 hours at room temperature. Perform the initial measurement.

Table A Capacitance Change from 25°C (%) Nominal Values Char. -55 (ppm/°C) Max. Min. Min. Max. Min. Max. 5C/5G 0± 30 0.58 -0.24 0.40 -0.17 0.25 -0.11

Note 1: Nominal values denote the temperature coefficient within a range of 25°C to 125°C (for Δ C)/ 150°C (for 5G).

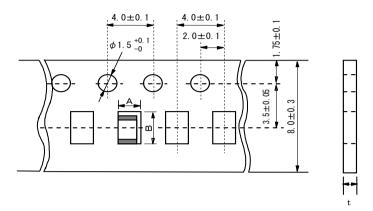

- 1.Tape Carrier Packaging(Packaging Code:D/E/W/F/L/J/K)
- 1.1 Minimum Quantity(pcs./reel)

			φ180mm reel		φ330n	nm reel
Type		Paper	· Tape	Plastic Tape	Paper Tape	Plastic Tape
		Code:D/E Code:W		Code:L	Code:J/ F	Code:K
GCG15	5	10000 (W8P2)	20000 (W8P1)		50000 (W8P2)	
GCG18	8	4000			10000	
	6	4000			10000	
GCG21	9	4000			10000	
	В			3000		10000
GCG31	M			3000		10000
GCG31	С			2000		6000
GCG32	D			1000		4000
GCG32	E			1000		4000

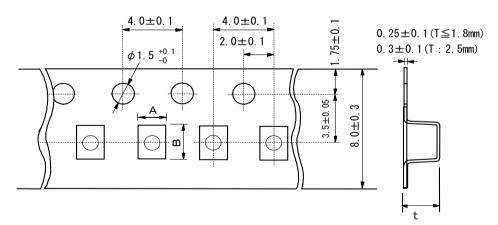

1.2 Dimensions of Tape

(1)GCG15(W8P2 CODE:D/E/J/F) <Paper Tape>

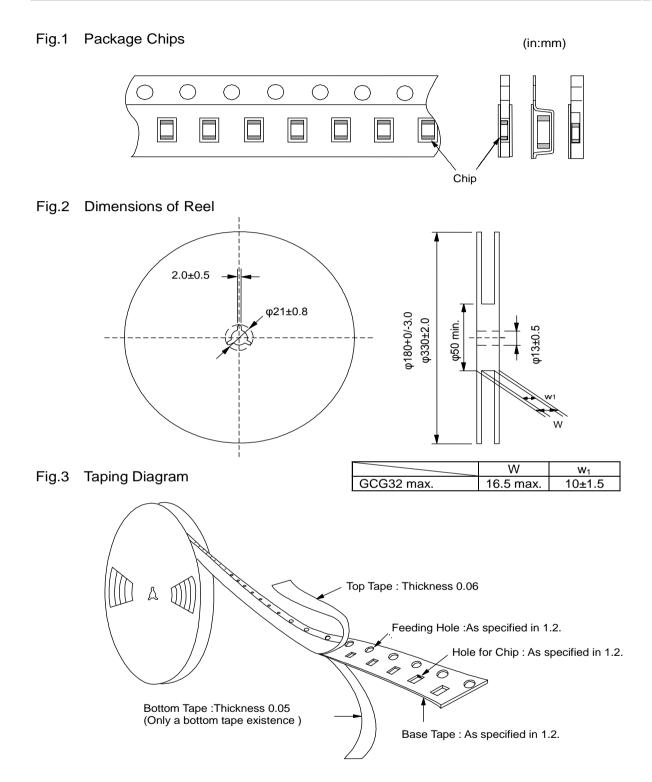
(in:mm)



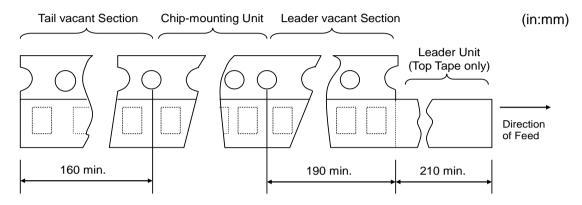
*3 Nominal value


(3)GCG18/21 <Paper Tape>

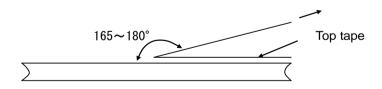
(in:mm)



	Туре		_	nsions ce(Chip)	TDimensions	Α	В	t
			L	W	(Chip)			
	GCG18	8	±0.2	±0.1	0.8±0.1	1.05±0.10	1.85±0.10	
	GCG21	6	±0.3	±0.2	0.6±0.1	1.55±0.15	2.30±0.15	1.1max.
	GCG21	9	±0.3	±0.2	0.85±0.1	1.55±0.15	2.30±0.15	


(4)GCG21/31/32 <Plastic Tape>

Type		_	nsions ce(Chip)	T Dimensions			t		
71		L	W	(Chip)					
GCG21	В	±0.3	±0.2	1.25±0.2	1.45±0.20	2.25±0.20	2.0 max.		
GCG31	М	M ±0.3	±0.3 ±0.3	1.15±0.2	1.90±0.20	3.50±0.20	1.7 max.		
GCG31	С	10.5	10.5	1.6±0.3	1.90±0.20	3.50±0.20	2.5 max.		
CCC33	D :				+ C 2	2.0±0.3	2.80±0.20	2.50 0.00	3.0 max.
GCG32					2.5±0.3	2.00±0.20	3.50±0.20	3.7 max.	



- 1.3 Tapes for capacitors are wound clockwise shown in Fig.3. (The sprocket holes are to the right as the tape is pulled toward the user.)
- 1.4 Part of the leader and part of the vacant section are attached as follows.

- 1.5 Accumulate pitch: 10 of sprocket holes pitch = 40±0.3mm
- 1.6 Chip in the tape is enclosed by top tape and bottom tape as shown in Fig.1.
- 1.7 The top tape and base tape are not attached at the end of the tape for a minimum of 5 pitches.
- 1.8 There are no jointing for top tape and bottom tape.
- 1.9 There are no fuzz in the cavity.
- 1.10 Break down force of top tape : 5N min.

 Break down force of bottom tape : 5N min. (Only a bottom tape existence)
- 1.11 Reel is made by resin and appeaser and dimension is shown in Fig 2.
 There are possibly to change the material and dimension due to some impairment.
- 1.12 Peeling off force: 0.1N to 0.6N in the direction as shown below.

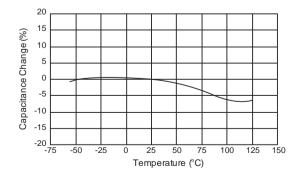
1.13 Label that show the customer parts number, our parts number, our company name, inspection number and quantity, will be put in outside of reel.

■Limitation of Applications

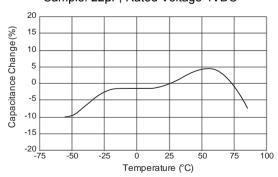
Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

- ①Aircraft equipment ②Aerospace equipment ③Undersea equipment ④Power plant control equipment
- ⑤Medical equipment ⑥Transportation equipment(vehicles,trains,ships,etc.) ⑦Traffic signal equipment
- (1) Application of similar complexity and/or reliability requirements to the applications listed in the above.

■ Storage and Operation condition


- 1. If store the chip monolithic ceramic capacitors in an atmosphere consisting of high temperature or humidity, sulfur or chlorine gases, contaminants attach to the surface of external electrode, and bondability with conductive glue may deteriorate. Do not store the capacitors in an atmosphere consisting of corrosive gas (e.g., hydrogen sulfide, sulfur dioxide, chlorine, ammoria gas, etc.). Storage environment must be at room temperature of +5°C to +40°C and a relative humidity of 20% to 70%, and use the product within six months. In case of packaging, do not open the last wrappend, polyethylene bag, till just before using. After unpacking, immediately reseal, or store in a desiccator containing a desiccant.
- 2. Due to moisture condensation caused by rapid humidity changes, or the photochemical change caused by direct sunlight on the terminal electrodes and/or the resin/epoxy coatings, the bondability with conductive glue and electrical performance may deteriorate. Do not store capacitors under direct sunlight or in high humidity conditions.
- 3. This product is chip monolithic ceramic capacitor limited to conductive glue mounting. Do not apply mounting method other than conductive glue. Flow or reflow soldering can result in a lack of adhesive strength on the outer electrode by poor wettability, which may result in chips breaking loose from the PCB.

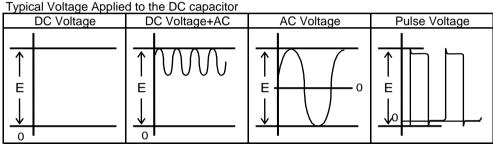
■ Rating


1.Temperature Dependent Characteristics

- 1. The electrical characteristics of the capacitor can change with temperature.
- 1-1. For capacitors having larger temperature dependency, the capacitance may change with temperature changes. The following actions are recommended in order to ensure suitable capacitance values.
 - (1) Select a suitable capacitance for the operating temperature range.
 - (2) The capacitance may change within the rated temperature. When you use a high dielectric constant type capacitor in a circuit that needs a tight (narrow) capacitance tolerance (e.g., a time-constant circuit), please carefully consider the temperature characteristics, and carefully confirm the various characteristics in actual use conditions and the actual system.

[Example of Temperature Caracteristics X7R(R7)] Sample: 0.1µF, Rated Voltage 50VDC

[Example of Temperature Characteristics X5R(R6)] Sample: 22µF, Rated Voltage 4VDC



2.Measurement of Capacitance

- 1. Measure capacitance with the voltage and frequency specified in the product specifications.
- 1-1. The output voltage of the measuring equipment may decrease occasionally when capacitance is high. Please confirm whether a prescribed measured voltage is impressed to the capacitor.
- 1-2. The capacitance values of high dielectric constant type capacitors change depending on the AC voltage applied. Please consider the AC voltage characteristics when selecting a capacitor to be used in a AC circuit.

3.Applied Voltage

- 1. Do not apply a voltage to the capacitor that exceeds the rated voltage as called out in the specifications.
- 1-1. Applied voltage between the terminals of a capacitor shall be less than or equal to the rated voltage.
 - (1) When AC voltage is superimposed on DC voltage, the zero-to-peak voltage shall not exceed the rated DC voltage. When AC voltage or pulse voltage is applied, the peak-to-peak voltage shall not exceed the rated DC voltage.
 - (2) Abnormal voltages (surge voltage, static electricity, pulse voltage, etc.) shall not exceed the rated DC voltage.

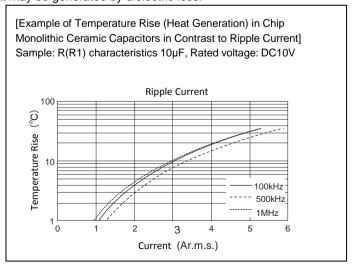
(E : Maximum possible applied voltage.)

1-2. Influence of over voltage

Over voltage that is applied to the capacitor may result in an electrical short circuit caused by the breakdown of the internal dielectric layers.

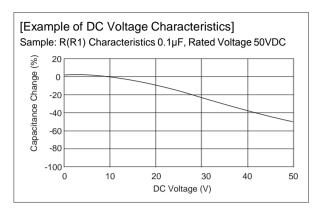
The time duration until breakdown depends on the applied voltage and the ambient temperature.

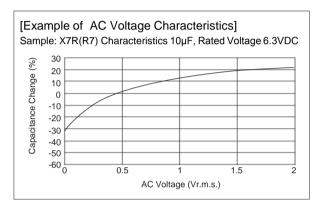
4. Type of Applied Voltage and Self-heating Temperature


1. Confirm the operating conditions to make sure that no large current is flowing into the capacitor due to the continuous application of an AC voltage or pulse voltage.

When a DC rated voltage product is used in an AC voltage circuit or a pulse voltage circuit, the AC current or pulse current will flow into the capacitor; therefore check the self-heating condition.

Please confirm the surface temperature of the capacitor so that the temperature remains within the upper limits of the operating temperature, including the rise in temperature due to self-heating. When the capacitor is used with a high-frequency voltage or pulse voltage, heat may be generated by dielectric loss.


<Applicable to Rated Voltage of less than 100VDC>


1-1. The load should be contained to the level such that when measuring at atmospheric temperature of 25°C, the product's self-heating remains below 20°C and the surface temperature of the capacitor in the actual circuit remains within the maximum operating temperature.

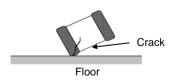
5. DC Voltage and AC Voltage Characteristic

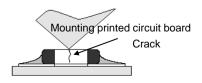
- The capacitance value of a high dielectric constant type capacitor changes depending on the DC voltage applied. Please consider the DC voltage characteristics when a capacitor is selected for use in a DC circuit.
- 1-1. The capacitance of ceramic capacitors may change sharply depending on the applied voltage. (See figure) Please confirm the following in order to secure the capacitance.
- (1) Determine whether the capacitance change caused by the applied voltage is within the allowed range.
- (2) In the DC voltage characteristics, the rate of capacitance change becomes larger as voltage increases, even if the applied voltage is below the rated voltage. When a high dielectric constant type capacitor is used in a circuit that requires a tight (narrow) capacitance tolerance (e.g., a time constant circuit), please carefully consider the voltage characteristics, and confirm the various characteristics in the actual operating conditions of the system.
- The capacitance values of high dielectric constant type capacitors changes depending on the AC voltage applied.
 Please consider the AC voltage characteristics when selecting a capacitor to be used in a AC circuit.



6. Capacitance Aging

1. The high dielectric constant type capacitors have an Aging characteristic in which the capacitance value decreases with the passage of time. When you use a high dielectric constant type capacitors in a circuit that needs a tight (narrow) capacitance tolerance (e.g., a time-constant circuit), please carefully consider the characteristics of these capacitors, such as their aging, voltage, and temperature characteristics. In addition, check capacitors using your actual appliances at the intended environment and operating conditions.

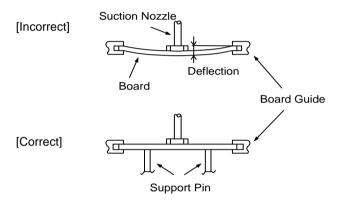

[Example of Change Over Time (Aging characteristics)]



7.Vibration and Shock

- 1. Please confirm the kind of vibration and/or shock, its condition, and any generation of resonance.

 Please mount the capacitor so as not to generate resonance, and do not allow any impact on the terminals.
- Mechanical shock due to being dropped may cause damage or a crack in the dielectric material of the capacitor.Do not use a dropped capacitor because the quality and reliability may be deteriorated.
- 3. When printed circuit boards are piled up or handled, the corner of another printed circuit board should not be allowed to hit the capacitor in order to avoid a crack or other damage to the capacitor.


■ Mounting

1. Selection of Conductive Adhesive, Mounting Process, and Bonding Strength

1.The acuired bonding strength may change greatly depending on the conductive adhesive to be used. Be sure to confirming the desired performance can be acquired in the assumed monting process with the conductive adhesive to be used.

2.Maintenance of the Mounting (pick and place) Machine

- 1. Make sure that the following excessive forces are not applied to the capacitors.
- 1-1. In mounting the capacitors on the printed circuit board, any bending force against them shall be kept to a minimum to prevent them from any damage or cracking. Please take into account the following precautions and recommendations for use in your process.
 - (1) Adjust the lowest position of the pickup nozzle so as not to bend the printed circuit board.
 - (2) Adjust the nozzle pressure within a static load of 1N to 3N during mounting.

2.Dirt particles and dust accumulated between the suction nozzle and the cylinder inner wall prevent the nozzle from moving smoothly. This imposes greater force upon the chip during mounting, causing cracked chips. Also, the locating claw, when worn out, imposes uneven forces on the chip when positioning, causing cracked chips. The suction nozzle and the locating claw must be maintained, checked and replaced periodically.

3.Moisture proof

1.To prevent the silver electrode migration, keep parts under low moisture condition with resin coating and the equivalent.

4.Coating

- 1. A crack may be caused in the capacitor due to the stress of the thermal contraction of the resin during curing process. The stress is affected by the amount of resin and curing contraction. Select a resin with low curing contraction. The difference in the thermal expansion coefficient between a coating resin or a molding resin and the capacitor may cause the destruction and deterioration of the capacitor such as a crack or peeling, and lead to the deterioration of insulation resistance or dielectric breakdown.
 - Select a resin for which the thermal expansion coefficient is as close to that of the capacitor as possible. A silicone resin can be used as an under-coating to buffer against the stress.
- Select a resin that is less hygroscopic.
 Using hygroscopic resins under high humidity conditions may cause the deterioration of the insulation resistance of a capacitor. An epoxy resin can be used as a less hygroscopic resin.
- 3. The halogen system substance and organic acid are included in coating material, and a chip corrodes by the kind of Coating material. Do not use strong acid type.

Others

1. Under Operation of Equipment

- 1-1. Do not touch a capacitor directly with bare hands during operation in order to avoid the danger of an electric shock.
- 1-2. Do not allow the terminals of a capacitor to come in contact with any conductive objects (short-circuit). Do not expose a capacitor to a conductive liquid, inducing any acid or alkali solutions.
- 1-3. Confirm the environment in which the equipment will operate is under the specified conditions.
 - Do not use the equipment under the following environments.
 - (1) Being spattered with water or oil.
 - (2) Being exposed to direct sunlight.
 - (3) Being exposed to ozone, ultraviolet rays, or radiation.
 - (4) Being exposed to toxic gas (e.g., hydrogen sulfide, sulfur dioxide, chlorine, ammonia gas etc.)
 - (5) Any vibrations or mechanical shocks exceeding the specified limits.
 - (6) Moisture condensing environments.
- 1-4. Use damp proof countermeasures if using under any conditions that can cause condensation.

2. Others

2-1. In an Emergency

- (1) If the equipment should generate smoke, fire, or smell, immediately turn off or unplug the equipment.

 If the equipment is not turned off or unplugged, the hazards may be worsened by supplying continuous power.
- (2) In this type of situation, do not allow face and hands to come in contact with the capacitor or burns may be caused by the capacitor's high temperature.

2-2. Disposal of waste

When capacitors are disposed of, they must be burned or buried by an industrial waste vendor with the appropriate licenses.

2-3. Circuit Design

(1) Addition of Fail Safe Function

Capacitors that are cracked by dropping or bending of the board may cause deterioration of the insulation resistance, and result in a short. If the circuit being used may cause an electrical shock, smoke or fire when a capacitor is shorted, be sure to install fail-safe functions, such as a fuse, to prevent secondary accidents.

(2) This series are not safety standard certified products.

2-4. Remarks

Failure to follow the cautions may result, worst case, in a short circuit and smoking when the product is used. The above notices are for standard applications and conditions. Contact us when the products are used in special mounting conditions.

Select optimum conditions for operation as they determine the reliability of the product after assembly.

The data herein are given in typical values, not guaranteed ratings.

Rating

1.Operating Temperature

- 1. The operating temperature limit depends on the capacitor.
- 1-1. Do not apply temperatures exceeding the maximum operating temperature. It is necessary to select a capacitor with a suitable rated temperature that will cover the operating temperature range. It is also necessary to consider the temperature distribution in equipment and the seasonal temperature variable factor.
- 1-2. Consider the self-heating factor of the capacitor

 The surface temperature of the capacitor shall not exceed the maximum operating temperature including self-heating.

2.Atmosphere Surroundings (gaseous and liquid)

- 1. Restriction on the operating environment of capacitors.
- 1-1. Capacitors, when used in the above, unsuitable, operating environments may deteriorate due to the corrosion of the terminations and the penetration of moisture into the capacitor.
- 1-2. The same phenomenon as the above may occur when the electrodes or terminals of the capacitor are subject to moisture condensation.
- 1-3. The deterioration of characteristics and insulation resistance due to the oxidization or corrosion of terminal electrodes may result in breakdown when the capacitor is exposed to corrosive or volatile gases or solvents for long periods of time.

3.Piezo-electric Phenomenon

 When using high dielectric constant type capacitors in AC or pulse circuits, the capacitor itself vibrates at specific frequencies and noise may be generated.
 Moreover, when the mechanical vibration or shock is added to capacitor, noise may occur.

Others

1.Transportation

- 1. The performance of a capacitor may be affected by the conditions during transportation.
- 1-1. The capacitors shall be protected against excessive temperature, humidity and mechanical force during transportation.
 - (1) Climatic condition
 - · low air temperature : -40°C
 - · change of temperature air/air : -25°C/+25°C
 - · low air pressure: 30 kPa
 - · change of air pressure : 6 kPa/min.
 - (2) Mechanical condition

Transportation shall be done in such a way that the boxes are not deformed and forces are not directly passed on to the inner packaging.

- 1-2. Do not apply excessive vibration, shock, or pressure to the capacitor.
 - (1) When excessive mechanical shock or pressure is applied to a capacitor, chipping or cracking may occur in the ceramic body of the capacitor.
 - (2) When the sharp edge of an air driver, tweezers, a chassis, etc. impacts strongly on the surface of the capacitor, the capacitor may crack and short-circuit.
- 1-3. Do not use a capacitor to which excessive shock was applied by dropping etc. A capacitor dropped accidentally during processing may be damaged.

2. Characteristics Evaluation in the Actual System

- 1. Evaluate the capacitor in the actual system,to confirm that there is no problem with the performance and specification values in a finished product before using.
- 2. Since a voltage dependency and temperature dependency exists in the capacitance of high dielectric type ceramic capacitors, the capacitance may change depending on the operating conditions in the actual system. Therefore, be sure to evaluate the various characteristics, such as the leakage current and noise absorptivity, which will affect the capacitance value of the capacitor.
- 3. In addition,voltages exceeding the predetermined surge may be applied to the capacitor by the inductance in the actual system. Evaluate the surge resistance in the actual system as required.

△ NOTE

- 1.Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. Your are requested not to use our product deviating from this product specification.
- 3.We consider it not appropriate to include any terms and conditions with regard to the business transaction in the product specifications, drawings or other technical documents. Therefore, if your technical documents as above include such terms and conditions such as warranty clause, product liability clause, or intellectual property infringement liability clause, they will be deemed to be invalid.

单击下面可查看定价,库存,交付和生命周期等信息

>>Murata(村田)