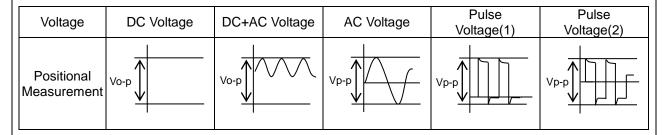


Type SA Safety Standard Certified Lead Type Disc Ceramic Capacitors for General Purpose


Product specifications in this catalog are as of Jun. 2019, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

⚠ CAUTION

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. Applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. When measuring, use a thermocouple of small thermal capacity-K of ϕ 0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.(Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

3. TEST CONDITION FOR WITHSTANDING VOLTAGE

(1) TEST EQUIPMENT

Test equipment for AC withstanding voltage should be used with the performance of the wave similar to 50/60 Hz sine wave.

If the distorted sine wave or over load exceeding the specified voltage value is applied, the defective may be caused.

(2) VOLTAGE APPLIED METHOD

When the withstanding voltage is applied, capacitor's lead or terminal should be firmly connected to the out-put of the withstanding voltage test equipment, and then the voltage should be raised from near zero to the test voltage.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, test voltage should be applied with the *zero cross. At the end of the test time, the test voltage should be reduced to near zero, and then capacitor's lead or terminal should be taken off the out-put of the withstanding voltage test equipment.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, the surge voltage may arise, and therefore, the defective may be caused.

*ZERO CROSS is the point where voltage sine wave pass 0V.

- See the right figure -

voltage sine wave

4. FAIL-SAFE

When capacitor would be broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure would follow an electric shock, fire or fume.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

EGD08E

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

When soldering capacitor with a soldering iron, it should be performed in following conditions.

Temperature of iron-tip: 400 °C max. Soldering iron wattage: 50W max. Soldering time: 3.5s max.

7. BONDING, RESIN MOLDING AND COATING

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of the bonded, molded or coated product in the intended equipment.

In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive, molding resin or coating may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING, RESIN MOLDING AND COATING

When the outer coating is hot (over 100 $^{\circ}$ C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed -10 to 40 °C and 15 to 85%.

Use capacitors within 6 months after delivered. Check the solderability after 6 months or more.

10. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. Power plant control equipment
- 5. Medical equipment
- 6. Transportation equipment (vehicles, trains, ships, etc.)
- 7. Traffic signal equipment
- 8. Disaster prevention / crime prevention equipment
- 9. Data-processing equipment exerting influence on public
- 10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

EGD08E

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min maximum. Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. CAPACITANCE CHANGE OF CAPACITORS

Class 1 capacitors

Capacitance might change a little depending on a surrounding temperature or an applied voltage. Please contact us if you use for the strict time constant circuit.

· Class 2 and 3 capacitors

Class 2 and 3 capacitors like temperature characteristic B, E and F have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

Please contact us if you need a detail information.

3. PERFORMANCE CHECK BY EQUIPMENT

Before using a capacitor, check that there is no problem in the equipment's performance and the specifications.

Generally speaking, CLASS 2 ceramic capacitors have voltage dependence characteristics and temperature dependence characteristics in capacitance. So, the capacitance value may change depending on the operating condition in a equipment. Therefore, be sure to confirm the apparatus performance of receiving influence in a capacitance value change of a capacitor, such as leakage current and noise suppression characteristic.

Moreover, check the surge-proof ability of a capacitor in the equipment, if needed, because the surge voltage may exceed specific value by the inductance of the circuit.

⚠ NOTE

- 1.Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

EGD08E

1. Application

This specification is applied to Safety Standard Certified Lead Type Disc Ceramic Capacitors Type SA used for General Electric equipment.

Type SA is Safety Standard Certified capacitors of Class X1,Y2.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids.

Approval standard and certified number

	Standard number	*Certified number	AC Rated volt. V(r.m.s.)
UL/cUL	UL60384-14	E37921	
ENEC	ENICO204 44	400,400,00	X1:440
(VDE)	EN60384-14	4-14 40042990	
CQC	IEC60384-14	CQC15001137840	

^{*}Above Certified number may be changed on account of the revision of standards and the renewal of certification.

\sim	D - 1!
∠.	Rating

2-1. Operating temperature range $-40 \sim +125$ °C

2-2. Rated Voltage X1:AC440V(r.m.s.) Y2:AC400V(r.m.s.)

DC1kV

2-3. Part number configuration

ex.) <u>DE2</u>	B3	SA	471	K	_A3_	B	Y02F
Product	Temperature	Type	Capacitance	Capacitance	Lead	Packing	Individual
code	characteristic	name		tolerance	code	style code	specification

• Product code

DE2 denotes class X1,Y2.

•Temperature characteristic

Code	Temperature characteristic
1X	SL
B3	В
E3	Е

Please confirm detailed specification on [Specification and test methods].

• Type name

This denotes safety certified type name Type SA.

ETSA01B

• Capacitance

The first two digits denote significant figures; the last digit denotes the multiplier of 10 in pF. ex.) In case of 471.

$$47 \times 10^1 = 470 pF$$

• Capacitance tolerance

Please refer to [Part number list].

• Lead code

Code	Lead style
A*	Vertical crimp long type
J*	Vertical crimp short type
N*	Vertical crimp taping type

^{*} Please refer to [Part number list].

• Packing style code

Code	Packing type
В	Bulk type
Α	Ammo pack taping type

• Individual specification

In case part number cannot be identified without 'individual specification', it is added at the end of part number.

c cha or part hamber.						
Code	Specification					
Y02F	 Rated voltage : X1:AC440V(r.m.s.)					
	 Dielectric strength between lead wires: AC2600V(r.m.s.) 					

Note) Murata part numbers might be changed depending on lead code or any other changes. Therefore, please specify only the type name(SA) and capacitance of products in the parts list when it is required for applying safety standard of electric equipment.

ETSA01B

3. Marking

Type name : SA

Nominal capacitance : Actual value(under 100pF)

3 digit system(100pF and over)

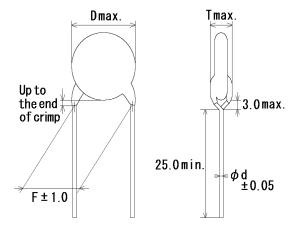
Capacitance tolerance : Code Class code and Rated voltage mark : **X1 440~**

Y2 400~

Manufacturing year : Letter code (The last digit of A.D. year.)

Manufacturing month : Code

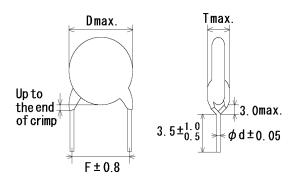
Company name code : (Made in Thailand)


(Example)

SA 471K X1 440~ Y2 400~ 5D (M15

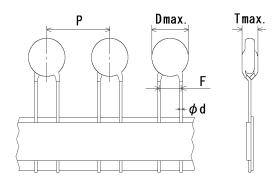
ETSA01B

4. Part number list


Vertical crimp long type (Lead code: A*)

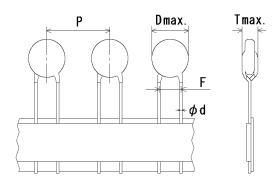
Note) The mark '*' of lead code differ from lead spacing(F) and lead diameter(d).
Please see the following list about details.

						OTHE .	111111			
T.C.	Сар.	Сар.	Customer Part Number	Murata Part Number	Dimension (mm)				Lead	Pack
1.0.	(pF)	tol.	Gustomer Fart Number	Murata Fart Number	D	Т	F	d	code	qty. (pcs)
SL	10	±10%		DE21XSA100KA3BY02F	7.0	5.0	7.5	0.6	А3	250
SL	15	±10%		DE21XSA150KA3BY02F	6.0	6.0	7.5	0.6	А3	500
SL	22	±10%		DE21XSA220KA3BY02F	6.0	5.0	7.5	0.6	А3	500
SL	33	±10%		DE21XSA330KA3BY02F	7.0	5.0	7.5	0.6	А3	250
SL	47	±10%		DE21XSA470KA3BY02F	7.0	5.0	7.5	0.6	А3	250
SL	68	±10%		DE21XSA680KA3BY02F	9.0	5.0	7.5	0.6	А3	250
В	100	±10%		DE2B3SA101KA3BY02F	6.0	5.0	7.5	0.6	А3	500
В	150	±10%		DE2B3SA151KA3BY02F	6.0	5.0	7.5	0.6	А3	500
В	220	±10%		DE2B3SA221KA3BY02F	6.0	6.0	7.5	0.6	А3	500
В	330	±10%		DE2B3SA331KA3BY02F	6.0	5.0	7.5	0.6	А3	500
В	470	±10%		DE2B3SA471KA3BY02F	7.0	5.0	7.5	0.6	А3	250
В	680	±10%		DE2B3SA681KA3BY02F	8.0	5.0	7.5	0.6	А3	250
Е	1000	±20%		DE2E3SA102MA3BY02F	7.0	5.0	7.5	0.6	А3	250
Е	1500	±20%		DE2E3SA152MA3BY02F	8.0	5.0	7.5	0.6	А3	250
Е	2200	±20%		DE2E3SA222MA3BY02F	9.0	5.0	7.5	0.6	А3	250
Е	3300	±20%		DE2E3SA332MA3BY02F	12.0	5.0	7.5	0.6	A3	200
Е	4700	±20%		DE2E3SA472MA3BY02F	13.0	5.0	7.5	0.6	A3	200
Е	10000	±20%		DE2E3SA103MA3BY02F	17.0	6.0	7.5	0.6	А3	100


·Vertical crimp short type (Lead code:J*)

Note) The mark '*' of lead code differ from lead spacing(F) and lead diameter(d).
Please see the following list about details.

	Olli								Office.	111111
T.C.	Сар.		Customer Part Number	Murata Part Number	Dimension (mm)				Lead	Pack
1.0.	(pF)	tol.	Customer Fart Number	Murata i art Number	D	Т	F	d	code	qty. (pcs)
SL	10	±10%		DE21XSA100KJ3BY02F	7.0	5.0	7.5	0.6	J3	500
SL	15	±10%		DE21XSA150KJ3BY02F	6.0	6.0	7.5	0.6	J3	500
SL	22	±10%		DE21XSA220KJ3BY02F	6.0	5.0	7.5	0.6	J3	500
SL	33	±10%		DE21XSA330KJ3BY02F	7.0	5.0	7.5	0.6	J3	500
SL	47	±10%		DE21XSA470KJ3BY02F	7.0	5.0	7.5	0.6	J3	500
SL	68	±10%		DE21XSA680KJ3BY02F	9.0	5.0	7.5	0.6	J3	500
В	100	±10%		DE2B3SA101KJ3BY02F	6.0	5.0	7.5	0.6	J3	500
В	150	\pm 10%		DE2B3SA151KJ3BY02F	6.0	5.0	7.5	0.6	J3	500
В	220	±10%		DE2B3SA221KJ3BY02F	6.0	6.0	7.5	0.6	J3	500
В	330	\pm 10%		DE2B3SA331KJ3BY02F	6.0	5.0	7.5	0.6	J3	500
В	470	$\pm 10\%$		DE2B3SA471KJ3BY02F	7.0	5.0	7.5	0.6	J3	500
В	680	$\pm 10\%$		DE2B3SA681KJ3BY02F	8.0	5.0	7.5	0.6	J3	500
Е	1000	$\pm 20\%$		DE2E3SA102MJ3BY02F	7.0	5.0	7.5	0.6	J3	500
Е	1500	$\pm 20\%$		DE2E3SA152MJ3BY02F	8.0	5.0	7.5	0.6	J3	500
Е	2200	\pm 20%		DE2E3SA222MJ3BY02F	9.0	5.0	7.5	0.6	J3	500
Е	3300	$\pm 20\%$		DE2E3SA332MJ3BY02F	12.0	5.0	7.5	0.6	J3	250
Е	4700	$\pm 20\%$		DE2E3SA472MJ3BY02F	13.0	5.0	7.5	0.6	J3	250
Е	10000	±20%		DE2E3SA103MJ3BY02F	17.0	6.0	7.5	0.6	J3	200


Vartical crimp taping type (Lead code:N*)

Note) The mark '*' of lead code differ from lead spacing(F), lead diameter(d) and pitch of component(P). Please see the following list or taping specification about details.

								Office.	111111		
T.C.	Сар.	Сар.	Customer Part Number	Murata Part Number	Dimension (mm)					Lead	Pack qty.
1.0.	(pF)	tol.	oustomer Fait Number	Murata i art Number	D	Т	F	d	Р	code	(pcs)
SL	10	$\pm 10\%$		DE21XSA100KN3AY02F	7.0	5.0	7.5	0.6	15.0	N3	900
SL	15	$\pm 10\%$		DE21XSA150KN3AY02F	6.0	6.0	7.5	0.6	15.0	N3	900
SL	22	±10%		DE21XSA220KN3AY02F	6.0	5.0	7.5	0.6	15.0	N3	900
SL	33	±10%		DE21XSA330KN3AY02F	7.0	5.0	7.5	0.6	15.0	N3	900
SL	47	±10%		DE21XSA470KN3AY02F	7.0	5.0	7.5	0.6	15.0	N3	900
SL	68	±10%		DE21XSA680KN3AY02F	9.0	5.0	7.5	0.6	15.0	N3	900
В	100	±10%		DE2B3SA101KN3AY02F	6.0	5.0	7.5	0.6	15.0	N3	900
В	150	±10%		DE2B3SA151KN3AY02F	6.0	5.0	7.5	0.6	15.0	N3	900
В	220	±10%		DE2B3SA221KN3AY02F	6.0	6.0	7.5	0.6	15.0	N3	900
В	330	±10%		DE2B3SA331KN3AY02F	6.0	5.0	7.5	0.6	15.0	N3	900
В	470	±10%		DE2B3SA471KN3AY02F	7.0	5.0	7.5	0.6	15.0	N3	900
В	680	±10%		DE2B3SA681KN3AY02F	8.0	5.0	7.5	0.6	15.0	N3	900
Е	1000	±20%		DE2E3SA102MN3AY02F	7.0	5.0	7.5	0.6	15.0	N3	900
Е	1500	±20%		DE2E3SA152MN3AY02F	8.0	5.0	7.5	0.6	15.0	N3	900
Е	2200	±20%		DE2E3SA222MN3AY02F	9.0	5.0	7.5	0.6	15.0	N3	900
Е	3300	±20%		DE2E3SA332MN3AY02F	12.0	5.0	7.5	0.6	15.0	N3	900
Е	4700	±20%		DE2E3SA472MN3AY02F	13.0	5.0	7.5	0.6	15.0	N3	900

Vartical crimp taping type (Lead code:N*)

Note) The mark '*' of lead code differ from lead spacing(F), lead diameter(d) and pitch of component(P). Please see the following list or taping specification about details.

TC	Сар.	Сар.	Customer Part Number	Murata Part Number		Dimer	nsion	(mm)	Lead	Pack
1.0.		tol.	Customer Fait Number	Murata Part Number	D	Т	F	d	Р	TCOOET.	qty. (pcs)
Е	10000	±20%		DE2E3SA103MN7AY02F	17.0	6.0	7.5	0.6	30.0	N7	400

_				eference on						
	ecification and test		Cna	cification	ı		Too	t method		
No. 1	Appearance and o		No marked def form and dime Please refer to	[Part number list		The capacitor for visible evid Dimensions sh	should be lence of d nould be n	efect. neasured v	vith slide	calipers.
2	Marking		To be easily le	gible.		The capacitor should be inspected by naked eyes.				
3	Dielectric strength	Between lead wires	No failure.			The capacitor should not be damaged when AC2600V(r.m.s.) <50/60Hz> is applied between the lead wires for 60 s.				reen
		Body insulation				to the distance of about 3 to 4mm from each terminal. Then, the capacitor should be inserted into a container filled with metal balls of about 1mm diameter. Finally, AC2600V (r.m.s.)<50/60Hz> is applied for 60 s between the capacitor lead wires and metal balls.				About 3 to 4 mm 6 Metal balls a m 7 Z> is
4	Insulation Resista	nce (I.R.)	10000MΩ min.			The insulation with DC500±5 The voltage shadon through a resistant	0V within nould be a	60±5 s of o	charging.	
5	Capacitance		Within specifie	ed tolerance.		The capacitan 1±0.1kHz and	AC1±0.2	√(r.m.s.) m	ax	°C with
6	Dissipation Factor	,	2.5% max.			The dissipation at 20°C with 1) max
7	Temperature chara	acteristic	Char. SL: +350 to -1000 pm/°C (Temp. range: +20 to +85°C) Char. B: Within ±10 % Char. E: Within +20/-55% (Temp. range: -25 to +85°C)			The capacitance measurement should be made at each step specified in Table. 1 2 3 4 5				ade at
				Step Temp.(°C)		1 2 0±2 -25±2	3 20±2	4 85±2	5 20±2	
8	Active flammability	y	The cheese-clo	oth should not be	on	least one but r cheese-cloth. 20 discharges discharges show maintained for the control of the co	the capacity of the capacity of the interest ould be 5 capacity of the interest ould be 5 capacity of the interest ould be 5 capacity of the interest of the i	two complications should read between the last of the	ete layers d be subje en succes c should b discharge. R Ct Oscilloso ±5% 10kV	s of ected to sive pe

			Reference only	
No.	Item		Specification	Test method
9	Robustness of terminations	Tensile	Lead wire should not cut off. Capacitor should not be broken.	Fix the body of capacitor, apply a tensile weight gradually to each lead wire in the radial direction of
		Bending		capacitor up to 10N and keep it for 10±1 s. With the termination in its normal position, the
				capacitor is held by its body in such a manner that
				the axis of the termination is vertical; a mass applying a force of 5N is then suspended from the
				end of the termination. The body of the capacitor is then inclined,
				within a period of 2 to 3 s, through an angle of
				about 90° in the vertical plane and then returned to its initial position over the same period
				of time; this operation constitutes one bend.
				One bend immediately followed by a second bend in the opposite direction.
10	Vibration	Appearance	No marked defect.	The capacitor should be firmly soldered to the
	resistance	Capacitance D.F.	Within the specified tolerance. 2.5% max.	supporting lead wire and vibration which is 10 to 55Hz in the vibration frequency range,1.5mm in
		D.I.	2.570 max.	total amplitude, and about 1min in the rate of
				vibration change from 10Hz to 55Hz and back to 10Hz is applied for a total of 6 h; 2 h each in
				3 mutually perpendicular directions.
11	Solderability of lead	IS	Lead wire should be soldered with uniformly coated on the axial	The lead wire of a capacitor should be dipped into a ethanol solution of 25wt% rosin and then into
			direction over 3/4 of the circumferential direction.	molten solder for 2±0.5 s. In both cases the depth
			circumerential direction.	of dipping is up to about 1.5 to 2.0mm from the root of lead wires.
				Temp. of solder:
12	Soldering effect	Appearance	No marked defect.	245±5°C Lead Free Solder (Sn-3Ag-0.5Cu) Solder temperature: 350±10°C or 260±5°C
	(Non-preheat)	Capacitance	Within ±10%	Immersion time : 3.5±0.5 s
		change I.R.	1000MΩ min.	(In case of 260±5°C: 10±1 s) The depth of immersion is up to about
		Dielectric	Per item 3	1.5 to 2.0mm from the root of lead wires.
		strength		Thermal insulating Capacitor
				1.5
				to 2.0mm
				Pre-treatment : Capacitor should be stored at
				125±2°C for 1 h, and apply the
				AC2000V(r.m.s.) 60s then placed at *1room condition for 24±2 h
				before initial measurements. (Do not apply to Char. SL) Post-treatment: Capacitor should be stored for 1
12	Coldoring offset	Annogrance	No marked defeat	to 2 h at *1room condition.
13	Soldering effect (On-preheat)	Appearance Capacitance	No marked defect. Within ±10%	First the capacitor should be stored at 120+0/-5°C for 60+0/-5 s.
		change		Then, as in figure, the lead wires should be immersed solder of 260+0/-5°C up to 1.5 to 2.0mm
		I.R. Dielectric	1000M Ω min.	from the root of terminal for 7.5+0/-1 s.
		strength	. Si nom o	Thermal insulating Capacitor
				1.5
				to 2.0mm
				Pre-treatment : Capacitor should be stored at
				125±2°C for 1 h, and apply the AC2000V(r.m.s.) 60s then placed
				at *1room condition for 24±2 h
				before initial measurements. (Do not apply to Char. SL)
				Post-treatment: Capacitor should be stored for 1 to 2 h at *1room condition.
*1 "ro	om condition" Tempe	rature: 15 to 35°	C, Relative humidity: 45 to 75%, Atmo	
	•		•	

ESSA01E

Reference only					
No.	Item	ı	Specification	Test method	
14	Flame test		The capacitor flame discontinue as follows. Cycle Time 1 to 4 30 s max. 5 60 s max.	The capacitor should be subjected to applied flame for 15 s. and then removed for 15 s until 5 cycle.	
15	Passive flammability		The burning time should not be exceeded the time 30 s. The tissue paper should not ignite.	The capacitor under test should be held in the flame in the position which best promotes burning. Time of exposure to flame is for 30 s. Length of flame: 12±1mm Gas burner: Length 35mm min. Inside Dia. 0.5±0.1mm Outside Dia. 0.9mm max. Gas: Butane gas Purity 95% min. About 8mm Gas burner About 10mm thick board	
16	Humidity (Under steady state)	Appearance Capacitance change D.F. I.R. Dielectric strength	No marked defect. Char. SL: Within $\pm 5\%$ Char. B: Within $\pm 10\%$ Char. E: Within $\pm 15\%$ Char. SL: 2.5% max. Char. B, E: 5.0% max. $3000M\Omega$ min. Per item 3	Set the capacitor for 500±12 h at 40±2°C in 90 to 95% relative humidity. Pre-treatment: Capacitor should be stored at 125±2°C for 1 h, and apply the AC2000V(r.m.s.) 60s then placed at *1room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment: Capacitor should be stored for 1 to 2 h at *1 room condition.	
17	Humidity loading	Appearance Capacitance change D.F. I.R. Dielectric strength	No marked defect. Char. SL: Within ±5% Char. B: Within ±10% Char. E: Within ±15% Char. SL: 2.5% max. Char. B, E: 5.0% max. 3000MΩ min. Per item 3 C. Relative humidity: 45 to 75%. Atmo	Apply AC440V(r.m.s.) for 500±12 h at 40±2°C in 90 to 95% relative humidity. Pre-treatment: Capacitor should be stored at 125±2°C for 1 h, and apply the AC2000V(r.m.s.) 60s then placed at *1room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment: Capacitor should be stored for 1 to 2 h at *1room condition.	

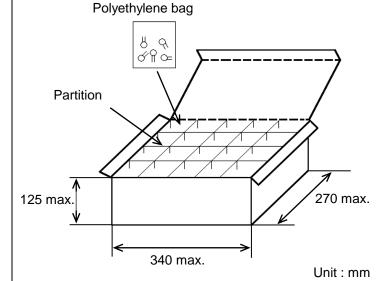
^{*1 &}quot;room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

ESSA01E

No.	Iten	<u> </u>	Reference or Specification	Test method
18	Life	Appearance	No marked defect.	Impulse voltage
10	LIIG	Capacitance	Within ±20%	Each individual capacitor should be subjected to
		change	VVIIII <u>2</u> 2070	a 8kV impulses for three times. Then the capacito
		I.R.	3000M $Ω$ min.	are applied to life test.
		Dielectric	Per item 3	100 (%)
		strength		Front time (11) = 1.7 μ s=1.671
				Time to half-value (T2) = 50μ s
				0 T t
				<u>'T1'</u> _{T2}
				The capacitors are placed in a circulating air over for a period of 1000 h. The air in the oven is maintained at a temperature of 125+2/-0 °C, and relative humidity of 50% max Throughout the test, the capacitors are subjected to a AC680V(r.m.s.)<50/60Hz> alternating voltage of mains frequency, except that once each hour the voltage is increased to AC1000V(r.m.s.) for 0.1 s. Pre-treatment: Capacitor should be stored at 125±2°C for 1 h, and apply the AC2000V(r.m.s.) 60s then placed at *1room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment: Capacitor should be stored for 24±2 h at *1room condition.
10	Tamananatuna and	A	No months of defect	24±2 h at *1room condition.
19	Temperature and	Appearance	No marked defect.	The capacitor should be subjected to 500 temperature cycles, then consecutively to 2
	immersion cycle	Capacitance change	Char. SL: Within ±5% Char. B: Within ±10%	immersion cycles.
		Griarige	Char. E: Within ±10% Char. E: Within ±20%	minoralon dyslos.
		D.F.	Char. SL : 2.5% max.	<pre>< Temperature cycle> Time Time </pre>
		J	Char. B, E : 5.0% max.	
		I.R.	3000MΩ min.	1 -40+0/-3 30 min 2 Room temp. 3 min
		Dielectric	Per item 3	3 +125+3/-0 30 min
		strength	T CI IICIII 3	4 Room temp. 3 min
				Cycle time:500 cycles
				Stan Targetting (SC) Time Immersion
				Step Temperature(°C) Time water
				1 +65+5/-0 15 min Clean
				water
				2 0±3 15 min Salt
				water
				Cycle time:2 cycles
				Pre-treatment: Capacitor should be stored at 125±2°C for 1 h, and apply the AC2000V(r.m.s.) 60s then place at *1room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment: Capacitor should be stored for 24±2 h at *1room condition.
"ro	om condition" Tempe	erature: 15 to 35°	C, Relative humidity: 45 to 75%,	Atmospheric pressure: 86 to 106kPa
	·			

ESSA01E

6.Packing specification


•Bulk type (Packing style code : B)

*1 *2
The number of packing = Packing quantity × n

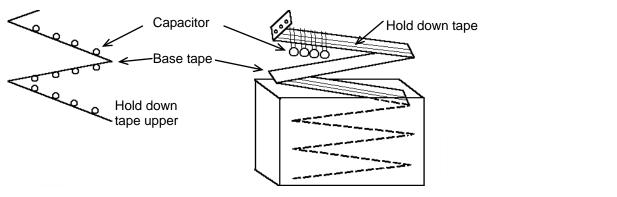
The size of packing case and packing way

*1: Please refer to [Part number list].

*2 : Standard n = 20 (bag)

Note)

The outer package and the number of outer packing be changed by the order getting amount.

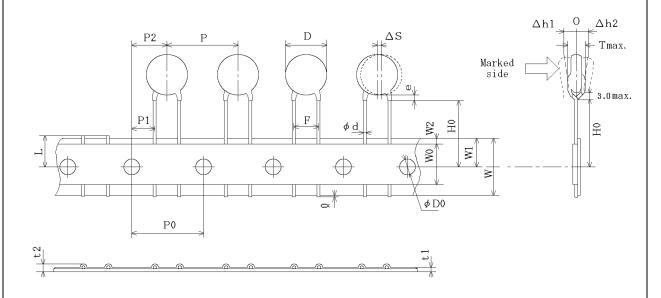

- •Ammo pack taping type (Packing style code : A)
 - · The tape with capacitors is packed zigzag into a case.
 - · When body of the capacitor is piled on other body under it.
- There should be 3 pitches and over without capacitors in leader and trailer.

 The size of packing case and packing way

 Position of label

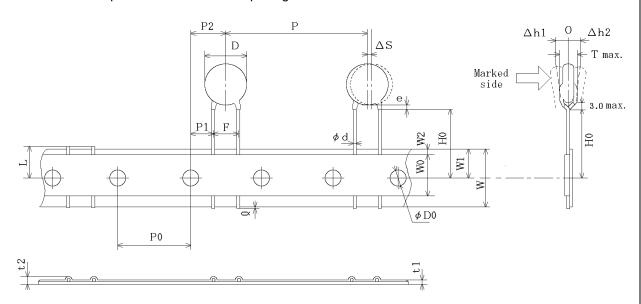
 Position of label

 Unit: mm



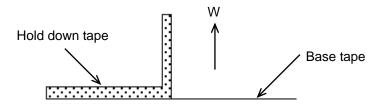
EKBCDE01

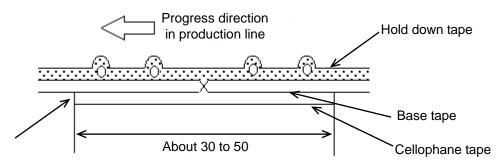
7. Taping specification


7-1. Dimension of capacitors on tape

Vertical crimp taping type < Lead code : N3 > Pitch of component 15.0mm / Lead spacing 7.5mm

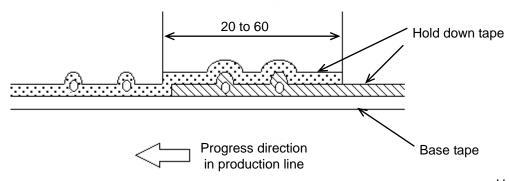
Item	Code	Dimensions	Remarks
Pitch of component		15.0±2.0	
Pitch of sprocket hole	P0	15.0±0.3	
Lead spacing	F	7.5±1.0	
Length from hole center to component center	P2	7.5±1.5	Deviation of annual discretion
Length from hole center to lead	P1	3.75±1.0	Deviation of progress direction
Body diameter	D	Please refer to [Part number list].	
Deviation along tape, left or right	ΔS	0±2.0	They include deviation by lead bend .
Carrier tape width	W	18.0±0.5	
Position of sprocket hole	W1	9.0±0.5	Deviation of tape width direction
Lead distance between reference and bottom planes	H0	18.0± ^{2.0} ₀	
Protrusion length	Q	+0.5~-1.0	
Diameter of sprocket hole	φ D 0	4.0±0.1	
Lead diameter	φd	0.60±0.05	
Total tape thickness	t1	0.6±0.3	
Total thickness, tape and lead wire	t2	1.5 max.	They include hold down tape thickness.
Deviation across tape, front	Δh1 2.0	2.0	
Deviation across tape, rear		2.0 max.	
Portion to cut in case of defect	L	11.0± _{1.0}	
Hold down tape width	W0	11.5 min.	
Hold down tape position	W2	1.5±1.5	
Coating extension on lead	е	Up to the end of crimp	
Body thickness	Т	Please refer to [Part number list].	


Vertical crimp taping type < Lead code : N7 > Pitch of component 30.0mm /Lead spacing 7.5mm


Item	Code	Dimensions	Remarks
Pitch of component		30.0±2.0	
Pitch of sprocket hole		15.0±0.3	
Lead spacing		7.5±1.0	
Length from hole center to component center		7.5±1.5	
Length from hole center to lead	P1	3.75±1.0	Deviation of progress direction
Body diameter	D	Please refer to [Part number list].
Deviation along tape, left or right	ΔS	0±2.0	They include deviation by lead bend.
Carrier tape width	W	18.0±0.5	
Position of sprocket hole	W1	9.0±0.5	Deviation of tape width direction
Lead distance between reference and bottom planes	НО	18.0± ^{2.0}	
Protrusion length	Q	+0.5~-1.0	
Diameter of sprocket hole	φ D 0	4.0±0.1	
Lead diameter	φd	0.60±0.05	
Total tape thickness	t1	0.6±0.3	
Total thickness, tape and lead wire	t2	1.5 max.	They include hold down tape thickness.
Deviation across tape, front	∆h1		
Deviation across tape, rear	Δh2 2.0 max.		
Portion to cut in case of defect	L	11.0± _{1.0}	
Hold down tape width	W0	11.5 min.	
Hold down tape position	W2	1.5±1.5	
Coating extension on lead	е	Up to the end of	crimp
Body thickness	Т	Please refer to [Part number list].

7-2. Splicing way of tape

1) Adhesive force of tape is over 3N at test condition as below.


- 2) Splicing of tape
 - a) When base tape is spliced
 - •Base tape should be spliced by cellophane tape. (Total tape thickness should be less than 1.05mm.)

No lifting for the direction of progressing

Unit: mm

- b) When hold down tape is spliced
 - •Hold down tape should be spliced with overlapping. (Total tape thickness should be less than 1.05mm.)

Unit: mm

- c) When both tape are spliced
 - •Base tape and hold down tape should be spliced with splicing tape.
- 3) Missing components
 - •There should be no consecutive missing of more than three components.
 - •The number of missing components should be not more than 0.5% of total components that should be present in a Ammo pack.

ETP2D03

EU RoHS and Halogen Free

This products of the following crresponds to EU RoHS and Halogen Free

(1) RoHS

EU RoHs 2011/65/EC compliance

maximum concentration values tolerated by weight in homogeneous materials

- •1000 ppm maximum Lead
- •1000 ppm maximum Mercury
- •100 ppm maximum Cadmium
- •1000 ppm maximum Hexavalent chromium
- •1000 ppm maximum Polybrominated biphenyls (PBB)
- •1000 ppm maximum Polybrominated diphenyl ethers (PBDE)

(2) Halogen-Free

The International Electrochemical Commission's (IEC) Definition of Halogen-Free (IEC 61249-2-21) compliance

- •900 ppm maximum chlorine
- •900 ppm maximum bromine
- •1500 ppm maximum total chlorine and bromine

单击下面可查看定价,库存,交付和生命周期等信息

>>Murata(村田)