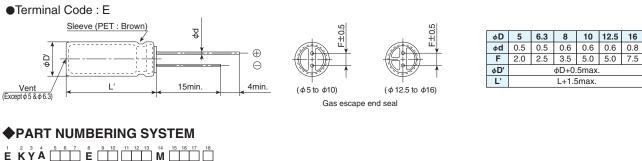
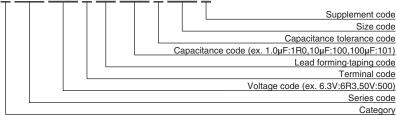


ODownsized from KY series

- Newly innovative electrolyte is employed to minimize impedance
- Endurance with ripple current : 4,000 to 10,000 hours at 105°C On solvent resistant type
- RoHS2 Compliant


♦SPECIFICATIONS


Items	Characteristics											
Category Temperature Range	-40 to +105°C											
Rated Voltage Range	6.3 to 100V _{dc}											
Capacitance Tolerance	±20% (M) (at 20°C, 120Hz)											
Leakage Current	I=0.01CV or 3μA, whichever is greater. Where, I : Max. leakage current (μA), C : Nominal capacitance (μF), V : Rated voltage (V) (at 20°C after 2 minutes)											
Dissipation Factor	Rated volta	ge (V _{dc})	6.3V	10V	16V	25V	35V	50V	63V	100V		
(tan δ)	tan δ (Max.	.)	0.22	0.19	0.16	0.14	0.12	0.10	0.09	0.08		
	When nomi	When nominal capacitance exceeds 1,000μF, add 0.02 to the value above for each 1,000μF increase. (at 20°C, 120Hz)										
Low Temperature	Rated voltage (Vdc)		6.3V	10V	16V	25V	35V	50V	63V	100V		
Characteristics	Z(-25°C)/Z(+20°C)		4	3	2	2	2	2	2	2		
(Max. Impedance Ratio)	Z(-40°C)/Z(+20°C)		8	6	4	3	3	3	3	3		(at 120Hz)
Endurance												
	ripple current is applied (the peak voltage shall not exceed the rated voltage) for the specified period \overline{T} Time 6.3 to $10V_{dc}$ $\phi 5 \& 6.3 : 4,000$ hours $\phi 8 \& 10 : 6,000$ hours $\phi 12.5$ to $16 : 8,000$ hours $\phi 12.5$ hours						i	at 105 C.				
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
	Capacitanc		c	$\leq +25\%$ of the initial value								
	D.F. (tan δ)	$\leq 200\%$ of the initial specified value										
	. ,											
Shelf Life	Leakage current ≦The initial specified value									00 hours at 105°C without		
Shell Life	The following specifications shall be satisfied when the capacitors are restored to 20°C after exposing them for 500 hours at 105°C without voltage applied. Before the measurement, the capacitor shall be preconditioned by applying voltage according to Item 4.1 of JIS C 5101-4.											
	Capacitanc		$\leq \pm 25\%$ of the initial value									
	D.F. (tan δ)			≦200% of the initial specified value								
	Leakage cu	≦The initial specified value										

KYA

Downsized

DIMENSIONS [mm]

Please refer to "Product code guide (radial lead type)"

5 6.3 8 10 12.5 16

2.0 2.5 3.5 5.0 5.0 7.5

φD+0.5max.

L+1.5max.

Product specifications in this catalog are subject to change without notice. Request our product specifications before purchase and/or use. Please use our products based on the information contained in this catalog and product specifications.

KYASeries

♦STANDARD RATINGS

wv	Cap (μF)	Case size φD×L(mm)	Impedance (Ω max./100kHz)		Rated ripple current	Part No.		Сар	ap Case size	Impedance (Ω max./100kHz)		Rated ripple current	Part No.
(Vdc)			20°C	-10℃	(mArms/ 105℃, 100kHz)	Part NO.	(V _{dc})	(μF) φD×L(mm)	20°C	-10℃	(mArms/ 105℃, 100kHz)	i ultito.	
	100	5×11	0.90	3.6	150	EKYA6R3E 101ME11D		3,300	16×25	0.021	0.060	2,930	EKYA250E 332ML25S
	180	5×11	0.40	1.6	250	EKYA6R3E 181ME11D	25	3,900	16×25	0.021	0.060	2,930	EKYA250E 392ML25S
	220	5×11	0.40	1.6	250	EKYA6R3E 221ME11D	20	4,700	16×31.5	0.017	0.050	3,450	EKYA250E 472MLN3S
	330	6.3×11	0.22	0.87	400	EKYA6R3E 331MF11D		5,600	16×35.5	0.015	0.044	3,610	EKYA250E
	470	6.3×11	0.22	0.87	400			33	5×11	0.40	1.6	250	EKYA350E 330ME11D
	820	8×11.5	0.13	0.52	640			47	5×11	0.40	1.6	250	EKYA350E 470ME11D
	1,200	10×12.5 8×15	0.080	0.32	865 840	EKYA6R3E 122MJC5S EKYA6R3E 122MH15D		100 220	6.3×11 8×11.5	0.22	0.87	400 640	EKYA350E 101MF11D EKYA350E 221MHB5D
	1,200	8×15 8×20	0.067	0.35	1,050	EKYA6R3E 152MH20D		220	8×15	0.13	0.32	840	EKYA350E 221MH55D
6.3	1,800	10×16	0.060	0.24	1,300	EKYA6R3E 182MJ16S		330	10×12.5	0.080	0.32	865	EKYA350E 331MJC5S
	2,700	10×20	0.046	0.18	1,400	EKYA6R3E 272MJ20S		390	8×20	0.069	0.27	1,050	EKYA350E 391MH20D
	3,300	10×25	0.042	0.17	1,650	EKYA6R3E 332MJ25S		470	10×16	0.060	0.24	1,300	EKYA350E 471MJ16S
	3,900	12.5×20	0.035	0.12	1,900	EKYA6R3E 392MK20S	50	680	10×20	0.046	0.18	1,400	EKYA350E 681MJ20S
	4,700	12.5×25	0.027	0.089	2,230	EKYA6R3E 472MK25S		820	10×25	0.042	0.17	1,650	EKYA350E B21MJ25S
	5,600	12.5×25	0.027	0.089	2,230	EKYA6R3E 562MK25S		1,000	12.5×20	0.035	0.12	1,900	EKYA350E 102MK20S
	10,000	16×25	0.021	0.060	2,930	EKYA6R3E 103ML25S		1,500	12.5×25	0.027	0.089	2,230	EKYA350E 152MK25S
	12,000	16×31.5	0.017	0.050	3,450	EKYA6R3E 123MLN3S		2,200	16×25	0.021	0.060	2,930	EKYA350E 222ML25S
	15,000	16×35.5	0.015	0.044	3,610	EKYA6R3E 153MLP1S		2,700	16×25	0.021	0.060	2,930	EKYA350E 272ML25S
	100	5×11	0.90	3.6	150	EKYA100E		3,300	16×31.5	0.017	0.050	3,450	EKYA350E 332MLN3S
	120	5×11	0.40	1.6	250			3,900	16×35.5	0.015	0.044	3,610	EKYA350E 392MLP1S
	330	6.3×11	0.22	0.87	400			1.0 2.2	5×11	4.0	16 10	30	EKYA500E
	560 820	8×11.5 8×15	0.13	0.52	640 840	EKYA100E 561MHB5D EKYA100E 821MH15D		3.3	5×11 5×11	2.5 2.2	8.8	43 53	EKYA500E 2R2ME11D EKYA500E 3R3ME11D
	820	10×12.5	0.087	0.35	865	EKYA100E 821MJC5S		4.7	5×11	1.9	7.6	88	EKYA500E 4R7ME11D
	1,000	10×12.5	0.080	0.32	865	EKYA100E		10	5×11	1.5	6.0	100	EKYA500E 100ME11D
	1,200	8×20	0.069	0.27	1,050	EKYA100E		22	5×11	0.70	2.8	180	EKYA500E 220ME11D
10	1,200	10×16	0.060	0.24	1,300	EKYA100E		27	5×11	0.70	2.8	250	EKYA500E 270ME11D
	1,800	10×20	0.046	0.18	1,400	EKYA100E 182MJ20S		47	6.3×11	0.30	1.2	295	EKYA500E 470MF11D
	2,200	10×25	0.042	0.17	1,650	EKYA100E 222MJ25S		56	6.3×11	0.30	1.2	295	EKYA500E 560MF11D
	3,300	12.5×20	0.035	0.12	1,900	EKYA100E 332MK20S		100	8×11.5	0.17	0.68	555	EKYA500E 101MHB5D
	3,900	12.5×25	0.027	0.089	2,230	EKYA100E 392MK25S		150	8×15	0.12	0.48	730	EKYA500E 151MH15D
	6,800	16×25	0.021	0.060	2,930	EKYA100E 682ML25S		180	10×12.5	0.12	0.48	760	EKYA500E 181MJC5S
	10,000	16×31.5	0.017	0.050	3,450	EKYA100E 103MLN3S		180	8×20	0.091	0.36	910	EKYA500E 181MH20D
	12,000	16×35.5	0.015	0.044	3,610	EKYA100E		220	10×16	0.084	0.34	1,050	EKYA500E
	47	5×11	0.40	1.6	250	EKYA160E		330	10×20	0.060	0.24	1,220	EKYA500E 331MJ20S
	100	5×11	0.40	1.6	250			470	10×25	0.055	0.22	1,440	EKYA500E
	220 270	6.3×11 6.3×11	0.22	0.87 0.87	400	EKYA160E 221MF11D EKYA160E 271MF11D		470 560	12.5×20 12.5×20	0.045	0.15	1,660 1,660	EKYA500E 471MK20S EKYA500E 561MK20S
	470	8×11.5	0.22	0.87	640	EKYA160E		820	12.5×20	0.045	0.15	1,950	EKYA500E 821MK205
	680	8×15	0.087	0.35	840	EKYA160E		1,000	16×25	0.025	0.075	2,555	EKYA500E
	680	10×12.5	0.080	0.32	865	EKYA160E		1,200	16×25	0.025	0.075	2,555	EKYA500E
	820	8×20	0.069	0.27	1,050	EKYA160E 821MH20D		1,800	16×31.5	0.022	0.066	3,010	EKYA500E 182MLN3S
	1,000	10×16	0.060		1,300	EKYA160E 102MJ16S		2,200	16×35.5	0.019	0.057	3,150	EKYA500E 222MLP1S
16	1,500	10×20	0.046	0.18	1,400	EKYA160E 152MJ20S		10	5×11	0.88	3.5	173	EKYA630E 100ME11D
	1,800	10×25	0.042	0.17	1,650	EKYA160E 182MJ25S		15	5×11	0.88	3.5	173	EKYA630E 150ME11D
	2,200	12.5×20	0.035		1,900	EKYA160E 222MK20S		33	6.3×11	0.35	1.4	278	EKYA630E 330MF11D
	3,300	12.5×25	0.027		2,230	EKYA160E 332MK25S		56	8×11.5	0.22	0.88	500	EKYA630E 560MHB5D
	4,700	16×25	0.021		2,930	EKYA160E 472ML25S		82	8×15	0.16	0.64	665	EKYA630E 820MH15D
	5,600	16×25	0.021		2,930	EKYA160E		100	10×12.5	0.11	0.44	725	EKYA630E
	6,800	16×31.5	0.017		3,450	EKYA160E		120	8×20	0.12	0.48	820	EKYA630E 121MH20D
	8,200	16×31.5	0.017		3,450	EKYA160E		120	10×16	0.076	0.31	950	EKYA630E
\vdash	10,000 33	16×35.5 5×11	0.015	0.044	3,610 250	EKYA160E 103MLP1S EKYA250E 330ME11D	63	220 330	10×20 10×25	0.056	0.23	1,200 1,350	EKYA630E 221MJ20S EKYA630E 331MJ25S
	47	5×11				EKYA250E 470ME11D		330	12.5×20		0.19		EKYA630E 331MK20S
	68	5×11	0.40	1.6 1.6	250 250	EKYA250E 680ME11D		390	12.5 × 20 12.5 × 20	0.041	0.13	1,570 1,570	EKYA630E 391MK20S
	150	6.3×11	0.40	0.87	400	EKYA250E 151MF11D		470	12.5×25	0.041	0.093	1,990	EKYA630E 471MK25S
	330	8×11.5	0.13	0.52	640	EKYA250E		560	12.5×25	0.031	0.093	1,990	EKYA630E 561MK25S
	390	8×15	0.087	0.35	840	EKYA250E 391MH15D		1,000	16×25	0.025	0.075	2,730	EKYA630E 102ML25S
25	470	10×12.5	0.080		865	EKYA250E 471MJC5S		1,200	16×31.5	0.021	0.063	2,850	EKYA630E 122MLN3S
	560	8×20	0.069		1,050	EKYA250E 561MH20D		1,500	16×35.5	0.019	0.057	2,900	EKYA630E 152MLP1S
	680	10×16	0.060	0.24	1,300	EKYA250E 681MJ16S		1.0	5×11	4.5	15	20	EKYA101E 1R0ME11D
	1,000	10×20	0.046		1,400	EKYA250E 102MJ20S		2.2	5×11	3.0	13	30	EKYA101E 2R2ME11D
	1,200	10×25	0.042		1,650	EKYA250E 122MJ25S	100		5×11	2.7	11	40	EKYA101E 3R3ME11D
	1 500	12.5×20	0.035	0.12	1,900	EKYA250E 152MK20S		4.7	5×11	2.5	10	65	EKYA101E 4R7ME11D
	1,500 2,200	12.5×25	0.027		2,230	EKYA250E 222MK25S		6.8	5×11	1.4	5.6	125	EKYA101E 6R8ME11D

 $\Box \Box$: Enter the appropriate lead forming or taping code.

Production of the products shown in _____ is scheduled to be discontinued.

Product specifications in this catalog are subject to change without notice. Request our product specifications before purchase and/or use. Please use our products based on the information contained in this catalog and product specifications.

KYASeries

♦STANDARD RATINGS

wv	Сар	Case size	Impeo (Ω max.	dance /100kHz)	Rated ripple current	Part No.	
(V _{dc})	(μF)	φD×L(mm)	20℃	-10℃	(mArms/ 105°C, 100kHz)		
	10	6.3×11	0.57	2.3	205	EKYA101E 100MF11D	
	15	6.3×11	0.57	2.3	205	EKYA101E 150MF11D	
	27	8×11.5	0.36	1.4	355	EKYA101E 270MHB5D	
	39	8×15	0.25	1.0	450	EKYA101E 390MH15D	
	47	10×12.5	0.17	0.66	480	EKYA101E 470MJC5S	
	56	8×20	0.19	0.76	565	EKYA101E 560MH20D	
100	68	10×16	0.11	0.47	600	EKYA101E 680MJ16S	
100	100	10×20	0.084	0.34	800	EKYA101E 101MJ20S	
	150	10×25	0.069	0.28	900	EKYA101E	
	180	12.5×20	0.062	0.18	1,100	EKYA101E 181MK20S	
	220	12.5×25	0.047	0.14	1,250	EKYA101E 221MK25S	
	330	16×25	0.038	0.12	1,700	EKYA101E 331ML25S	
	470	16×31.5	0.032	0.095	1,850	EKYA101E 471MLN3S	
	560	16×35.5	0.029	0.086	2,000	EKYA101E	

 $\Box\,\Box$: Enter the appropriate lead forming or taping code.

Production of the products shown in _____ is scheduled to be discontinued.

♦RATED RIPPLE CURRENT MULTIPLIERS

Frequency Multipliers

Capacitance(µF) Frequency(Hz)	120	1k	10k	100k
1.0 to 180	0.40	0.75	0.90	1.00
220 to 560	0.50	0.85	0.94	1.00
680 to 1,800	0.60	0.87	0.95	1.00
2,200 to 3,900	0.75	0.90	0.95	1.00
4,700 to	0.85	0.95	0.98	1.00

The deterioration of aluminum electrolytic capacitors accelerates their life due to the internal heating produced by ripple current. For details, refer to Section "5-3 Ripple Current Effect on Lifetime" in the catalog, Technical Note.

CHEMI-CON ALUMINUM ELECTROLYTIC CAPACITORS

- Always read "Notes on Use" before using the product in order to enable you to use the product correctly and prevent any faults and accidents from occurring.
- Request the Product Specification on the product of NIPPON CHEMI-CON CORPORATION to refer to it as well as this brochure prior to the order of the products. Some specific notes on use of the ordered product may be described in the specifications.
- The products listed in this catalog are designed and manufactured for general electronics equipment use and are not intended for use in applications that can adversely affect human life; where the malfunction of equipment may cause damage to life or property. In addition, our products are not intended to be used in specific applications that may cause a major social impact. Please consult with us in advance of usage of our products in the following listed applications. ① Aerospace equipment ② Power generation equipment such as thermal power, nuclear power etc. ③ Medical equipment ④ Transport equipment (automobiles, trains, ships, etc.) ⑤ Transportation control equipment ⑥ Disaster prevention / crime prevention equipment ⑦ Highly publicized information processing equipment ⑧ Submarine equipment ⑨ Other applications that are not considered general-purpose applications.

The circuits described as examples in this catalog and the "delivery specifications" are featured in order to show the operations and usage of our products, however, this fact does not guarantee that the circuits are available to function in your equipment systems. We are not in any case responsible for any failures or damage caused by the use of information contained herein. You should examine our products, of which the characteristics are described in the "delivery specifications" and other documents, and determine whether or not our products suit your requirements according to the specifications of your equipment systems. Therefore, you bear final responsibility regarding the use of our products.

Please make sure that you take appropriate safety measures such as use of redundant design and malfunction prevention measures in order to prevent fatal accidents and/or fires in the event any of our products malfunction.

- We strongly recommend our customers to purchase Nippon Chemi-Con products only through our official sales channels. We assume no responsibility for any defects or damages caused by using products purchased from outside our official sales channel or of counterfeit goods. In addition, we will ask the customer to pay the investigation cost for products purchased outside our official sales channel.
- We reserve the right to discontinue production and delivery of products. We do not guarantee that all the products included in this catalog will be available in the future. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products
- We continually strive to improve the quality and reliability of our products, but in any case that our product does not meet our published specifications, please stop using it promptly and contact us immediately. As for compensation for non-conforming goods delivered by Chemi-Con, we will limit it only to goods found in non-compliance of our published specifications. This may be accomplished by a no cost replacement of non-conforming individual products, a credit of the piece price paid per each individual non-conforming product, or in other ways deemed necessary.

In addition, we have an established system with enhanced traceability, therefore we will limit the applicable lot items for any potential compensation.

Part Numbering System Part Numbering System (Appendix) Standardization Available Items by Manufacturing Locations Environmental Measures Technical Note Precautions and Guidelines Recommended Soldering Conditions Taping, Lead-preforming and Packaging Available Terminals for Snap-in and Screw Mount Type 单击下面可查看定价,库存,交付和生命周期等信息

>>NCC(贵弥功(黑金刚))