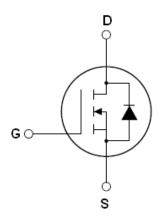


N-Channel Super Junction Power MOSFET III

General Description

The series of devices use advanced trench gate super junction technology and design to provide excellent R_{DS(ON)} with low gate charge. This super junction MOSFET fits the industry's AC-DC SMPS requirements for PFC, AC/DC power conversion, and industrial power applications.


Features

- New technology for high voltage device
- Low on-resistance and low conduction losses
- Small package
- ●Ultra Low Gate Charge cause lower driving requirements
- ●100% Avalanche Tested
- ●ROHS compliant

Application

- Power factor correction (PFC)
- Switched mode power supplies(SMPS)
- Uninterruptible Power Supply (UPS)

V_{DS}	700	V
R _{DS(ON)TYP.}	1100	mΩ
I_D	4	A

Schematic diagram

Package Marking And Ordering Information

Device	Device Package	Marking
NCE70T1K2I	TO-251	NCE70T1K2I
NCE70T1K2K	TO-252	NCE70T1K2K

TO-252

TO-251

Table 1. Absolute Maximum Ratings ($T_c=25^{\circ}$ C)

Parameter	Symbol	Value	Unit
Drain-Source Voltage (V _{GS} =0V)	V _{DS}	700	V
Gate-Source Voltage (VDS=0V) ,AC (f>1 Hz)	V _{GS}	±30	V
Continuous Drain Current at Tc=25°C	I _{D (DC)}	4	Α
Continuous Drain Current at Tc=100°C	I _{D (DC)}	2.5	Α
Pulsed drain current (Note 1)	I _{DM (pluse)}	16	А
Maximum Power Dissipation(Tc=25℃)	P_{D}	41	W
Derate above 25°C		0.328	w/°C
Single pulse avalanche energy (Note2)	Eas	27	mJ
Avalanche current ^(Note 1)	I _{AR}	0.7	Α
Repetitive Avalanche energy , t_{AR} limited by T_{jmax} (Note 1)	E _{AR}	0.1	mJ

Wuxi NCE Power Co., Ltd

Parameter	Symbol	Value	Unit
Drain Source voltage slope, V _{DS} ≤480 V,	dv/dt	50	V/ns
Reverse diode dv/dt, $V_{DS} \le 480 \text{ V}, I_{SD} \le I_D$	dv/dt	15	V/ns
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55+150	°C

Table 2. Thermal Characteristic

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case (Maximum)	R _{thJC}	3.0	°C /W
Thermal Resistance, Junction-to-Ambient (Maximum)	R _{thJA}	62	°C /W

Table 3. Electrical Characteristics (TA=25°Cunless otherwise noted)

Parameter Symbol Condition Min Typ Max Unit On/off states	Table 5. Liectifical Characteristics	5 (TA-23 Culliess Otherwise Hoteu)					
Drain-Source Breakdown Voltage BV _{DSS} V _{GS} =0V I _D =250µA 700 V Zero Gate Voltage Drain Current(Tc=25°C) I _{DSS} V _{DS} =700V,V _{GS} =0V 1 µA Zero Gate Voltage Drain Current(Tc=125°C) I _{DSS} V _{DS} =700V,V _{GS} =0V 50 µA Gate-Body Leakage Current I _{GSS} V _{GS} =±20V,V _{DS} =0V ±100 nA Gate Threshold Voltage V _{GS(III)} V _{DS} =V _{GS,ID} =250µA 3 4 V V Drain-Source On-State Resistance R _{DS(ON)} V _{GS} =10V, I _D =2A 1100 1300 mΩ Dynamic Characteristics V _{DS} =10V,V _{GS} =0V, V _{GS} =10V, I _D =2A 1100 1300 mΩ V _{GS} =10MHz 177 PF PF Reverse Transfer Capacitance C _{GSS} V _{DS} =50V,V _{GS} =0V, V _{GS} =0V, V _{GS} =0V, V _{GS} =10V 177 PF PF Total Gate Charge Q _g V _{DS} =480V,I _D =4A, V _{GS} =10V 4 nC Reverse Transfer Capacitance Q _g V _{DS} =480V,I _D =4A, V _{GS} =10V 4 nC Reverse Transfer Capacitance C _{GSS} Reverse Transfer Capacitance Roseovery Time C _{GSSS} Reverse Transfer Capacitance Roseovery Time	Parameter	Symbol Condition		Min	Тур	Max	Unit
Zero Gate Voltage Drain Current(Tc=25°C) IDSS VDS=700V,VGS=0V 1	On/off states						
Zero Gate Voltage Drain Current(Tc=125°C) Ibss Vbs=700V,Vgs=0V 50 μA Gate-Body Leakage Current Icss Vgs=±20V,Vbs=0V ±100 nA Gate Threshold Voltage Vgs(m) Vbs=Vgs,Ib=250μA 3 4 V Drain-Source On-State Resistance Rbs(oN) Vgs=10V, Vgs=20V, Vgs=20V, Vgs=20V, Vgs=0V, Vgs=20V, Vgs=20V, Vgs=20V, Vgs=20V, Vgs=20V, Vgs=20V, Vgs=20V, Vgs=10V 177 PF Output Capacitance Cgs Vgs=480V,Ib=4A, Vgs=10V 2.3 nC Gate-Source Charge Qgs Vgs=480V,Ib=4A, Vgs=10V 2.3 nC Gate-Drain Charge Qgs Vgs=10V 8 12 nC Switching times Turn-on Delay Time tg(on) Vgs=380V,Ib=2.5A, Rg=5Ω,Vgs=10V 8 nS nS Turn-Off Delay Time tg(off) Tg=25°C 9 18 nS Source- Drain Diode Characteristics Igs Tc=25°C 0.9 1.2 V Reverse Recovery Time Vgs Tj=25°C,Isp=4A,Vgs=0V 0.9 1.2 V	Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	700			V
Cate-Body Leakage Current IGSS VGS=±20V,VDS=0V ±100 nA	Zero Gate Voltage Drain Current(Tc=25℃)	I _{DSS}	V _{DS} =700V,V _{GS} =0V			1	μA
Sate Threshold Voltage V _{GS(th)} V _{DS} =V _{GS} , I _D =250μA 3 4 V Drain-Source On-State Resistance R _{DS(ON)} V _{GS} =10V, I _D =2A 1100 1300 mΩ Dynamic Characteristics Input Capacitance C _{ISS} V _{DS} =50V, V _{GS} =0V, F=1.0MHz 17 PF Reverse Transfer Capacitance C _{rss} C _{TSS} V _{DS} =480V, I _D =4A, V _{GS} =10V 4 n.C Gate-Drain Charge Q _g Q _g V _{DS} =380V, I _D =25A, A 4 n.C Switching times t _r V _{DD} =380V, I _D =25A, A 4 n.S Turn-On Delay Time t _{d(off)} R _G =5Ω, V _{GS} =10V 52 70 n.S Turn-Off Fall Time t _r V _{DD} =380V, I _D =2.5A, A 4 n.S Turn-Off Fall Time t _r T _C =25°C 16 A A Pulsed Source-drain current(Body Diode) I _{SDM} T _C =25°C, I _{SD} =4A, V _{GS} =0V 0.9 1.2 V Reverse Recovery Time t _r 200 n.S Reverse Recovery Time t _r 200	Zero Gate Voltage Drain Current(Tc=125℃)	I _{DSS}	V _{DS} =700V,V _{GS} =0V			50	μΑ
Drain-Source On-State Resistance R _{DS(ON)} V _{GS} =10V, I _D =2A 1100 1300 mΩ Dynamic Characteristics Input Capacitance C _{Iss} V _{DS} =50V,V _{GS} =0V, F=1.0MHz 304 PF Output Capacitance C _{oss} F=1.0MHz 17 PF Reverse Transfer Capacitance C _{rss} F=1.0MHz 8.8 12 nC Gate-Source Charge Q _g V _{DS} =480V,I _D =4A, V _{GS} =10V 2.3 nC nC Gate-Drain Charge Q _g V _{DS} =480V,I _D =4A, V _{GS} =10V 4 nC Switching times Turn-on Delay Time t _Q V _{DD} =380V,I _D =2.5A, R _G =10V 4 nS Turn-Off Delay Time t _Q R _G =5Ω,V _{GS} =10V 52 70 nS Turn-Off Fall Time t _f R _G =5Ω,V _{GS} =10V 52 70 nS Source- Drain Diode Characteristics T _C =25°C 4 A A Source-drain current(Body Diode) I _{SDM} T _C =25°C 0.9 1.2 V Reverse Recovery Time t	Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V			±100	nA
Dynamic Characteristics	Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	3		4	V
Input Capacitance	Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =2A		1100	1300	mΩ
Output Capacitance Coss (Coss Reverse Transfer Capacitance) Coss (Coss Reverse Transfer Capacitance) V _{DS} =50V,V _{GS} =0V, F=1.0MHz 17 PF PF Total Gate Charge Qg V _{DS} =480V,I _D =4A, V _{GS} =10V 8.8 12 nC 2.3 nC nC Gate-Source Charge Qgs V _{DS} =480V,I _D =4A, V _{GS} =10V 4 nC nC Switching times Turn-on Delay Time t _d (on) V _{DD} =380V,I _D =2.5A, R _G =5Ω,V _{GS} =10V 4 nS nS Turn-Off Delay Time t _d (off) R _G =5Ω,V _{GS} =10V 52 70 nS nS Source- Drain Diode Characteristics T _C =25°C 4 A A Source-drain current(Body Diode) I _{SDM} T _C =25°C, I _{SD} =4A,V _{GS} =0V 0.9 1.2 V Reverse Recovery Time t _{tr} 200 nS	Dynamic Characteristics						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Capacitance	C _{Iss}	\/ -50\/\/ -0\/		304		PF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Capacitance	Coss			17		PF
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reverse Transfer Capacitance	C _{rss}	Γ-1.UIVIΠZ		0.5		PF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total Gate Charge	Qg	\/ -400\/ -40		8.8	12	nC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Source Charge	Q _{gs}			2.3		nC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Drain Charge	Q_{gd}	V _{GS} -10V		4		nC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Switching times			•			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-on Delay Time	t _{d(on)}			8		nS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-on Rise Time	t _r	V_{DD} =380V, I_{D} =2.5A,		4		nS
	Turn-Off Delay Time	t _{d(off)}	$R_G=5\Omega,V_{GS}=10V$		52	70	nS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-Off Fall Time	t _f			9	18	nS
Pulsed Source-drain current(Body Diode) I_{SDM} $T_{C}=25^{\circ}C$ 16 A Forward On Voltage V_{SD} $T_{J}=25^{\circ}C,I_{SD}=4A,V_{GS}=0V$ 0.9 1.2 V Reverse Recovery Time t_{rr} 200 nS	Source- Drain Diode Characteristics						
Pulsed Source-drain current(Body Diode) I _{SDM} 16 A Forward On Voltage V _{SD} Tj=25°C,I _{SD} =4A,V _{GS} =0V 0.9 1.2 V Reverse Recovery Time t _{rr} 200 nS	Source-drain current(Body Diode)	I _{SD}	T -25°C			4	Α
Reverse Recovery Time t _{rr} 200 nS	Pulsed Source-drain current(Body Diode)	I _{SDM}	1 _C =25 C			16	Α
	Forward On Voltage	V _{SD}	Tj=25°C,I _{SD} =4A,V _{GS} =0V		0.9	1.2	V
Reverse Recovery Charge Q _{rr} Tj=25°C,I _F =2A,di/dt=100A/µs 0.6 uC	Reverse Recovery Time	t _{rr}			200		nS
	Reverse Recovery Charge	Q _{rr}	Tj=25°C,I _F =2A,di/dt=100A/µs		0.6		uC
Peak reverse recovery current I _{rrm} 6 A	Peak reverse recovery current	I _{rrm}			6		Α

Notes: 1.Repetitive Rating: Pulse width limited by maximum junction temperature

2. Tj=25°C,VDD=50V,VG=10V, R_G =25 Ω

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS (curves)

Figure 1. Safe operating area

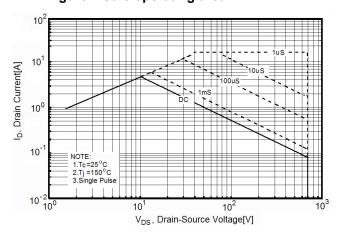


Figure 2. Source-Drain Diode Forward Voltage

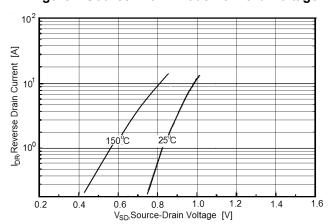


Figure 3. Output characteristics

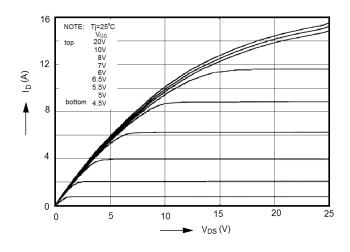


Figure 4. Transfer characteristics

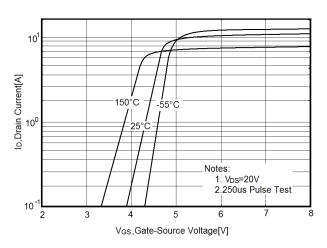


Figure 5. Static drain-source on resistance

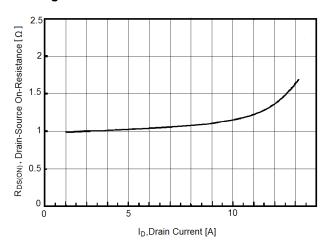
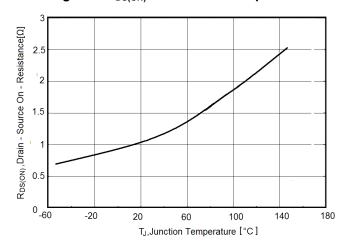



Figure 6. R_{DS(ON)} vs Junction Temperature

Wuxi NCE Power Co., Ltd

Page

Figure 7. BV_{DSS} vs Junction Temperature

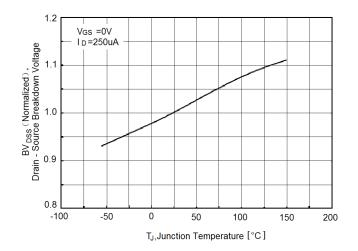


Figure 8. Maximum I_D vs Junction Temperature

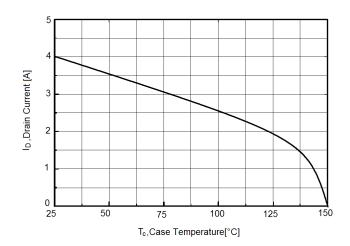


Figure 9. Gate charge waveforms

Figure 10. Capacitance

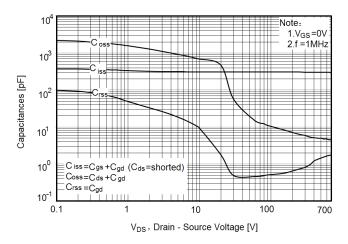
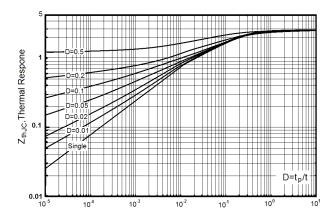
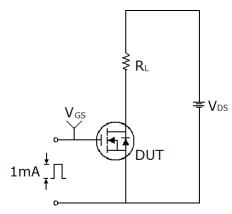
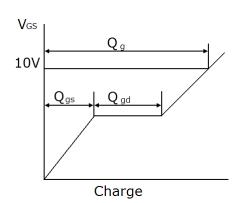
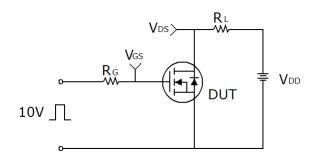
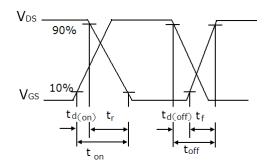



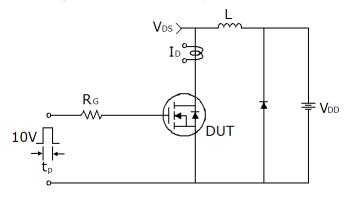
Figure 11. Transient Thermal Impedance

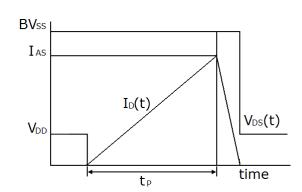




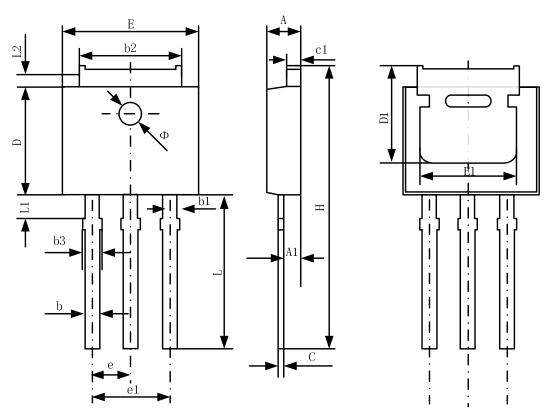

Test circuit


1) Gate charge test circuit & Waveform




2) Switch Time Test Circuit:

3) Unclamped Inductive Switching Test Circuit & Waveforms


TO-252-2 Package Information

Symbol	Dimension	s In Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
A	2.20	2.38	0.087	0.094	
A1	0.00	0.10	0.000	0.004	
A2	0.90	1.10	0.035	0.043	
b	0.72	0.85	0.028	0.033	
b1	0.72	0.90	0.028	0.035	
b2	5.13	5.46	0.202	0.215	
С	0.47	0.60	0.019	0.024	
D	6.00	6.20	0.236	0.244	
D1	5.25		0.207		
E	6.50	6.70	0.256	0.264	
E1	4.70		0.185		
e	2.19	2.39	0.086	0.094	
Н	9.80	10.40	0.386	0.409	
L	1.40	1.70	0.055	0.067	
L1	2.9	90 REF	0.114	1 REF	
L2	0.5	08 BSC	0.020) BSC	
L3	0.90	1.25	0.035	0.049	
L4	0.60	1.00	0.024	0.039	
L5	0.15	0.75	0.006	0.030	
L6	1.8	BO REF	0.07	1 REF	
Ф	1.20	1.40	0.047	0.055	
θ	0°	8°	0°	8°	

TO-251 Package Information

Complete al	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	2.20	2.35	0.087	0.093	
A1	0.90	1.10	0.035	0.043	
b	0.56	0.69	0.022	0.027	
b1	0.77	0.90	0.030	0.035	
b2	5.23	5.43	0.206	0.214	
b3		1.05	0.000	0.041	
С	0.46	0.59	0.018	0.023	
c1	0.46	0.59	0.018	0.023	
D	6.00	6.20	0.236	0.244	
D1	5.20		0.205		
E	6.50	6.70	0.256	0.264	
E1	4.60	5.00	0.181		
e	2.24	2.34	0.088	0.092	
e1	4.47	4.67	0.176	0.184	
Н	16.18	16.78	0.637	0.661	
L	9.00	9.60	0.354	0.378	
L1	0.95	1.35	0.037	0.053	
L2	0.90	1.25	0.035	0.049	

ATTENTION:

- Any and all NCE products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your NCE representative nearest you before using any NCE products described or contained herein in such applications.
- NCE assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all NCE products described or contained herein.
- Specifications of any and all NCE products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- NCE Power Semiconductor CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all NCE products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of NCE Power Semiconductor CO.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. NCE believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the NCE product that you intend to use.
- This catalog provides information as of Mar. 2010. Specifications and information herein are subject to change without notice.

单击下面可查看定价,库存,交付和生命周期等信息

>>NCEPOWER(无锡新洁能)