

20-bit bus-interface D-type flip-flop; positive-edge trigger; 3-state

Rev. 4 — 9 July 2024

1. General description

The 74ALVCH16821 has two 10-bit, edge triggered registers, with each register coupled to a 3-state output buffer. The two sections of each register are controlled independently by the clock (nCP) and output enable $n\overline{OE}$ control gates.

Each register is fully edge triggered. The state of each nDn input, one set-up time before the LOW-to-HIGH clock transition, is transferred to the corresponding flip-flop's nQn output.

When $n\overline{OE}$ is LOW, the data in the register appears at the outputs. When $n\overline{OE}$ is HIGH, the outputs are in high impedance OFF state. Operation of the $n\overline{OE}$ input does not affect the state of the flip-flops.

The 74ALVCH16821 has active bus hold circuitry which is provided to hold unused or floating data inputs at a valid logic level. This feature eliminates the need for external pull-up or pull-down resistors.

2. Features and benefits

- Wide supply voltage range from 1.2 V to 3.6 V
- CMOS low-power consumption
- Direct interface with TTL levels
- Current drive ± 24 mA at 3.0 V
- MULTIBYTE[™] flow-through standard pin-out architecture
- Low inductance multiple V_{CC} and GND pins for minimum noise and ground bounce
- Output drive capability 50 Ω transmission lines at 85°C
- All data inputs have bushold
- Complies with JEDEC standard no. 8-1A
- Complies with JEDEC standards:
 - JESD8-5 (2.3 V to 2.7 V)
 - JESD8B/JESD36 (2.7 V to 3.6 V)
- ESD protection:
 - HBM: ANSI/ESDA/JEDEC JS-001 class 2 exceeds 2000 V
 - CDM: ANSI/ESDA/JEDEC JS-002 class C3 exceeds 1000 V
- Specified from -40 °C to +85 °C

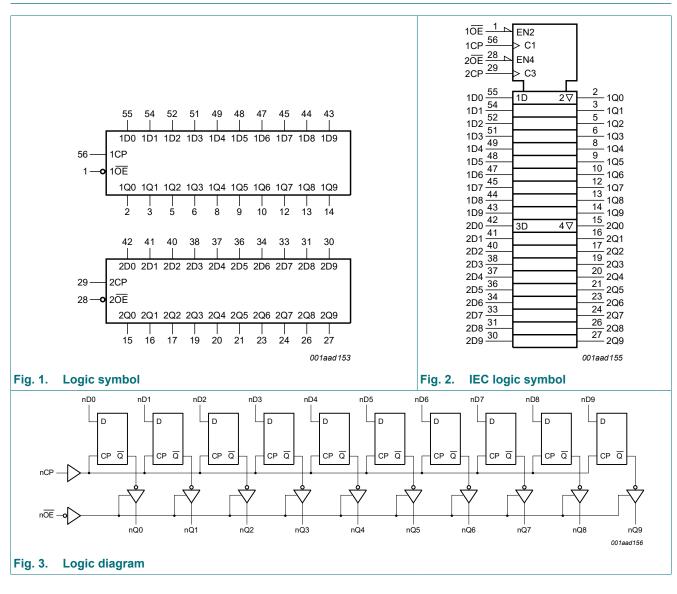
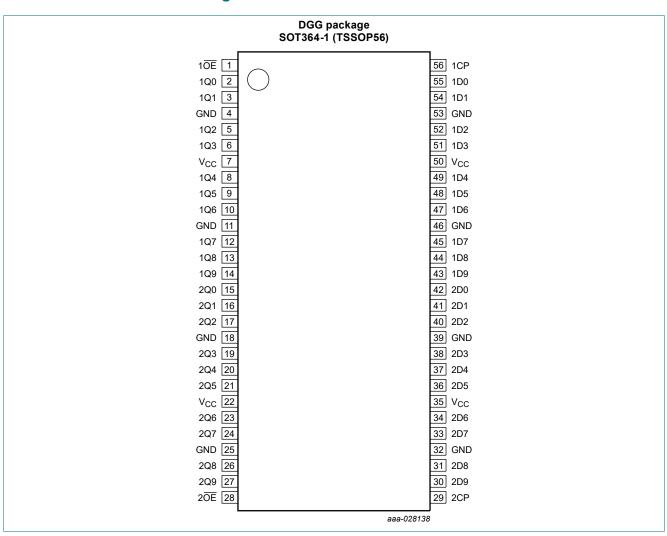

3. Ordering information

Table 1. Ordering information


Type number	Package			
	Temperature range	Name	Description	Version
74ALVCH16821DGG	−40 °C to +85 °C		plastic thin shrink small outline package; 56 leads; body width 6.1 mm	<u>SOT364-1</u>

ne<mark>x</mark>peria

4. Functional diagram

5. Pinning information

5.1. Pinning

. .

20-bit bus-interface D-type flip-flop; positive-edge trigger; 3-state

Symbol	Pin	Description
1D0, 1D1, 1D2, 1D3, 1D4, 1D5, 1D6, 1D7, 1D8, 1D9	55, 54, 52, 51, 49, 48, 47, 45, 44, 43	data inputs
2D0, 2D1, 2D2, 2D3, 2D4, 2D5, 2D6, 2D7, 2D8, 2D9	42, 41, 40, 38, 37, 36, 34, 33, 31, 30	data inputs
1Q0, 1Q1, 1Q2, 1Q3, 1Q4, 1Q5, 1Q6, 1Q7, 1Q8, 1Q9	2, 3, 5, 6, 8, 9, 10, 12, 13, 14	data outputs
2Q0, 2Q1, 2Q2, 2Q3, 2Q4, 2Q5, 2Q6, 2Q7, 2Q8, 2Q9	15, 16, 17, 19, 20, 21, 23, 24, 26, 27	data outputs
10E, 20E	1, 28	output enable inputs (active LOW)
1CP, 2CP	56, 29	clock pulse inputs (active rising edge)
GND	4, 11, 18, 25, 32, 39, 46, 53	ground (0 V)
V _{CC}	7, 22, 35, 50	supply voltage

5.2. Pin description

6. Functional description

Table 3. Function table

H = HIGH voltage level; h = HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition; L = LOW voltage level; I = LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition; NC = no change; X = don't care; $Z = high-impedance OFF-state; <math>\uparrow = LOW$ -to-HIGH clock transition.

Operating mode	Input			Internal register	Output
	nOE	nCP	nDn		nQn
Load and read register	L	1	1	L	L
	L	1	h	Н	Н
Hold	L	NC	Х	NC	NC
Disable outputs	Н	NC	Х	NC	Z
	Н	1	nDn	nDn	Z

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+4.6	V
VI	input voltage	For control pins	[1] -0.5	+4.6	V
		For data inputs	[1] -0.5	V _{CC} + 0.5	V
Vo	output voltage		[1] -0.5	V _{CC} + 0.5	V
I _{IK}	input clamping current	V _I < 0 V	-50	-	mA
I _{ОК}	output clamping current	$V_{\rm O}$ > $V_{\rm CC}$ or $V_{\rm O}$ < 0 V	-	±50	mA
I _{O(sink/source)}	output sink or source current	$V_{O} = 0 V$ to V_{CC}	-	±50	mA
I _{CC}	supply current		-	100	mA
I _{GND}	ground current		-100	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \degree C$ to +85 $\degree C$	-	500	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter Conditions		Min	Max	Unit
V _{CC}	supply voltage	supply voltage 2.5 V range for maximum speed performance at 30 pF output load		2.7	V
		3.3 V range for maximum speed performance at 50 pF output load	3.0	3.6	V
VI	input voltage		0	V _{CC}	V
Vo	output voltage		0	V _{CC}	V
T _{amb}	ambient temperature	in free air	-40	+85	°C
Δt/ΔV	input transition rise and fall rate	V _{CC} = 2.3 V to 3.0 V	-	20	ns/V
		V _{CC} = 3.0 V to 3.6 V	-	10	ns/V

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	−40 °C to +85 °C			
			Min	Typ[1]	Max	1
VIH	HIGH-level	V _{CC} = 2.3 V to 2.7 V	1.7	1.2	-	V
	input voltage	V _{CC} = 2.7 V to 3.6 V	2.0	1.5	-	V
VIL	LOW-level	V _{CC} = 2.3 V to 2.7 V	-	1.2	0.7	V
	input voltage	V _{CC} = 2.7 V to 3.6 V	-	1.5	0.8	V
V _{OH}	HIGH-level	V _I = V _{IH} or V _{IL}				
	output voltage	I_{O} = -100 µA; V_{CC} = 2.3 V to 3.6 V	V _{CC} - 0.2	V _{CC}	-	V
		I _O = -6 mA; V _{CC} = 2.3 V	V _{CC} - 0.3	V _{CC} - 0.08	-	V
		I _O = -12 mA; V _{CC} = 2.3 V	V _{CC} - 0.6	V _{CC} - 0.26	-	V
		I _O = -12 mA; V _{CC} = 2.7 V	V _{CC} - 0.5	V _{CC} - 0.14	-	V
		I _O = -12 mA; V _{CC} = 3.0 V	V _{CC} - 0.6	V _{CC} - 0.09	-	V
		I _O = -24 mA; V _{CC} = 3.0 V	V _{CC} - 1.0	V _{CC} - 0.28	-	V
V _{OL}	LOW-level	V _I = V _{IH} or V _{IL}				+
	output voltage	I_{O} = 100 µA; V_{CC} = 2.3 V to 3.6 V	-	GND	0.20	V
		I _O = 6 mA; V _{CC} = 2.3 V	-	0.07	0.40	V
		I _O = 12 mA; V _{CC} = 2.3 V	-	0.15	0.70	V
		I _O = 12 mA; V _{CC} = 2.7 V	-	0.14	0.40	V
		I _O = 24 mA; V _{CC} = 3.0 V	-	0.27	0.55	V
lı	input leakage current	V_{CC} = 2.3 V to 3.6 V; V_{I} = V_{CC} or GND	-	0.1	5	μA
I _{OZ}	OFF-state output current	V_{CC} = 2.7 V to 3.6 V; V _I = V _{IH} or V _{IL} ; V _O = V _{CC} or GND	-	0.1	10	μA
I _{CC}	supply current	V_{CC} = 2.3 V to 3.6 V; $V_{\rm I}$ = V_{CC} or GND; $I_{\rm O}$ = 0 A	-	0.2	40	μA
∆l _{CC}	additional supply current	V_{CC} = 2.3 V to 3.6 V; V _I = V _{CC} - 0.6 V; I _O = 0 A	-	150	750	μA
I _{BHL}	bus hold LOW current	V _{CC} = 2.3 V; V _I = 0.7 V	45	-	-	μA
		V _{CC} = 3.0 V; V _I = 0.8 V	75	150	-	μA
I _{BHH}	bus hold HIGH current	V _{CC} = 2.3 V; V _I = 1.7 V	-45	-	-	μA
		V _{CC} = 3.0 V; V _I = 2.0 V	-75	-175	-	μA
I _{BHLO}	bus hold LOW overdrive current	per data input; V _{CC} = 3.6 V	500	-	-	μA
I _{BHHO}	bus hold HIGH overdrive current	per data input; V _{CC} = 3.6 V	-500	-	-	μA
CI	input capacitance		-	5.0	-	pF

[1] All typical values are measured at T_{amb} = 25 °C.

10. Dynamic characteristics

Table 7. Dynamic characteristics

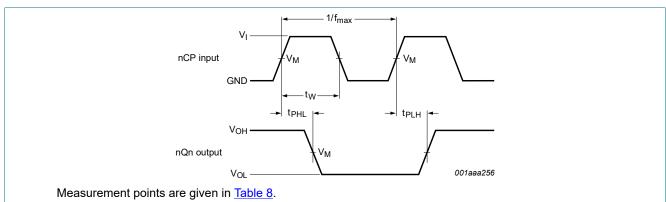
At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 7.

Symbol	Parameter	varameter Conditions		−40 °C to +85 °C			
				Min	Typ[1]	Max	
t _{pd}	propagation	nCP to nQn; see Fig. 4	[2]				
	delay	V _{CC} = 2.3 V to 2.7 V		1.0	2.6	5.8	ns
		V _{CC} = 2.7 V		1.0	2.8	5.3	ns
		V _{CC} = 3.0 V to 3.6 V		1.0	2.5	4.5	ns
t _{en}	enable time	nOE to nQn; see <u>Fig. 6</u>	[2]				
		V _{CC} = 2.3 V to 2.7 V		1.0	2.8	6.6	ns
		V _{CC} = 2.7 V		1.0	3.2	6.2	ns
		V _{CC} = 3.0 V to 3.6 V		1.0	2.3	5.1	ns
t _{dis}	disable time	nOE to nQn; see <u>Fig. 6</u>	[2]				
		V _{CC} = 2.3 V to 2.7 V		1.0	2.2	5.7	ns
		V _{CC} = 2.7 V		1.0	3.1	5.0	ns
		V _{CC} = 3.0 V to 3.6 V		1.0	2.8	4.6	ns
t _{su} set-up time		nDn to nCP; see <u>Fig. 5</u>					
		V _{CC} = 2.3 V to 2.7 V		1.4	0.3	-	ns
		V _{CC} = 2.7 V		1.2	0.3	-	ns
		V _{CC} = 3.0 V to 3.6 V		1.0	0.2	-	ns
t _h	hold time	nDn to nCP; see <u>Fig. 5</u>					
		V _{CC} = 2.3 V to 2.7 V		0.4	0.0	-	ns
		V _{CC} = 2.7 V		0.6	-0.3	-	ns
		V _{CC} = 3.0 V to 3.6 V		0.8	0.4	-	ns
t _W	pulse width	nCP HIGH or LOW; see Fig. 4					
		V _{CC} = 2.3 V to 2.7 V		3.0	1.8	-	ns
		V _{CC} = 2.7 V		3.3	1.7	-	ns
		V _{CC} = 3.0 V to 3.6 V		3.3	0.2	-	ns
f _{max}	maximum	nCP; see <u>Fig. 4</u>					-
	frequency	V _{CC} = 2.3 V to 2.7 V		150	250	-	MHz
		V _{CC} = 2.7 V		150	300	-	MHz
		V _{CC} = 3.0 V to 3.6 V		150	350	-	MHz
C _{PD}	power	per latch; V_I = GND to V_{CC}	[3]				
	dissipation capacitance	outputs enabled		-	33	-	pF
	capacitance	outputs disabled		-	17	-	pF

[1] Typical values are measured at T_{amb} = 25 °C

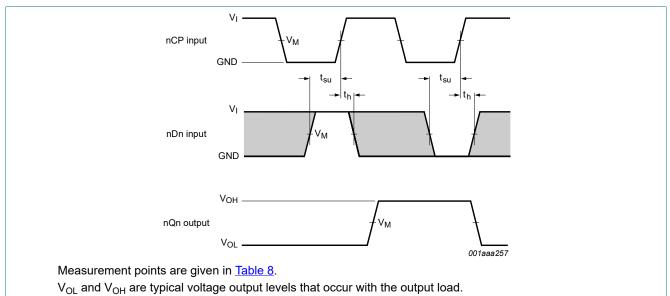
Typical values for V_{CC} = 2.3 V to 2.7 V are measured at V_{CC} = 2.5 V.

Typical values for V_{CC} = 3.0 V to 3.6 V are measured at V_{CC} = 3.3 V.


[2]

 t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{en} is the same as t_{PZL} and t_{PZH} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} . C_{PD} is used to determine the dynamic power dissipation (P_D in μ W). $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \sum (C_L \times V_{CC}^2 \times f_o)$ where: [3]

 f_i = input frequency in MHz; f_o = output frequency in MHz; C_L = output load capacitance in pF;


 V_{CC} = supply voltage in Volts; N = total load switching outputs; $\sum (C_L \times V_{CC}^2 \times f_0)$ = sum of outputs.

V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.


Fig. 4. Propagation delay clock input (nCP) to output (nQn), clock pulse (nCP) width and maximum clock frequency

The shaded areas indicate when the input is permitted to change for predictable output performance.

Fig. 5. Set-up times and hold times data input (nDn) to clock input (nCP)

20-bit bus-interface D-type flip-flop; positive-edge trigger; 3-state

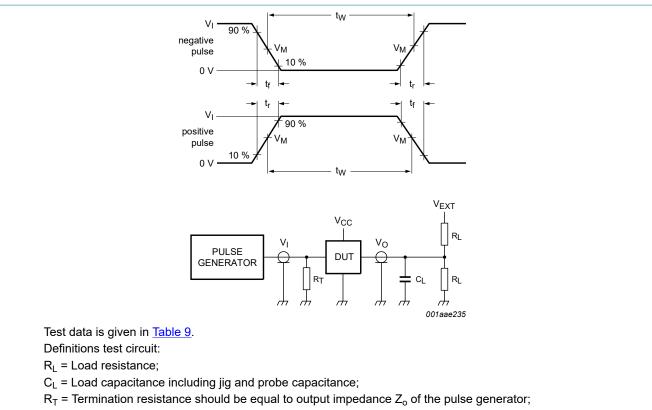

V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

Fig. 6. OFF-state to HIGH and LOW propagation delays and LOW and HIGH to OFF-state propagation delays

Table 8. Measurement points

V _{cc}	Input		Output		
	VI	V _M	V _M	V _X	V _Y
< 2.7 V	V _{CC}	0.5 × V _{CC}	0.5 × V _{CC}	V _{OL} + 0.15 V	V _{OH} - 0.15 V
≥ 2.7 V	2.7 V	1.5 V	1.5 V	V _{OL} + 0.3 V	V _{OH} - 0.3 V

20-bit bus-interface D-type flip-flop; positive-edge trigger; 3-state

V_{EXT} = External voltage for measuring switching times.

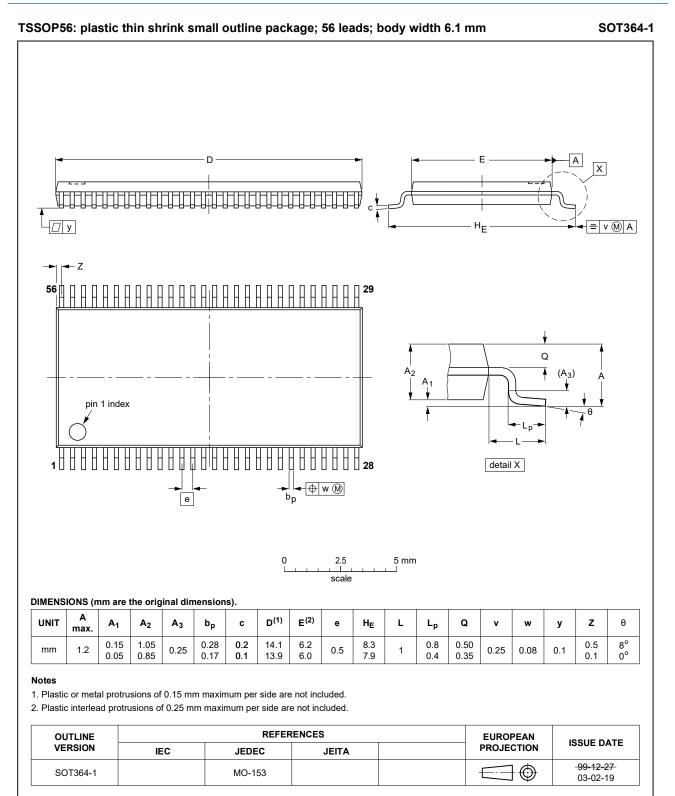

Fig. 7. Test circuit for measuring switching times

Table 9. Test data

Input		Load		V _{EXT}			
V _{cc}	VI	t _r , t _f	RL	CL	t _{PHZ} , t _{PZH}	t _{PLZ} , t _{PZL}	t _{PLH} , t _{PHL}
< 2.7 V	V _{CC}	≤ 2.0 ns	500 Ω	30 pF	GND	$2 \times V_{CC}$	open
≥ 2.7 V	2.7 V	≤ 2.5 ns	500 Ω	50 pF	GND	2 × V _{CC}	open

20-bit bus-interface D-type flip-flop; positive-edge trigger; 3-state

11. Package outline

Fig. 8. Package outline SOT364-1 (TSSOP56)

12. Abbreviations

Table 10. Abbrevia	Table 10. Abbreviations				
Acronym	Description				
ANSI	American National Standards Institute				
CDM	Charged Device Model				
CMOS	Complementary Metal-Oxide Semiconductor				
DUT	Device Under Test				
ESDA	ElectroStatic Discharge Association				
HBM	Human Body Model				
JEDEC	Joint Electron Device Engineering Council				
TTL	Transistor-Transistor Logic				

13. Revision history

Table 11. Revision history						
Document ID	Release date	Data sheet status	Change notice	Supersedes		
74ALVCH16821 v.4	20240709	Product data sheet	-	74ALVCH16821 v.3		
Modifications:		 <u>Table 4</u>: P_{tot} total power dissipation updated. <u>Section 2</u>: ESD specification updated according to the latest JEDEC standard. 				
74ALVCH16821 v.3	20180202	Product data sheet	-	74ALVCH16821 v.2		
Modifications:	Nexperia. Legal texts have 	 The format of this data sheet has been redesigned to comply with the identity guidelines of Nexperia. Legal texts have been adapted to the new company name where appropriate. Type number 74ALVCH16821DL (SOT371-1 / SSOP56) removed 				
74ALVCH16821 v.2	19980529	Product specification	-	74ALVCH16821 v.1		
74ALVCH16821 v.1	19980529	Product specification	-	-		

14. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

 Please consult the most recently issued document before initiating or completing a design.

- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at <u>https://www.nexperia.com</u>.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal

injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <u>http://www.nexperia.com/profile/terms</u>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Contents

1. General description	1
2. Features and benefits	1
3. Ordering information	1
4. Functional diagram	2
5. Pinning information	3
5.1. Pinning	3
5.2. Pin description	4
6. Functional description	4
7. Limiting values	5
8. Recommended operating conditions	5
9. Static characteristics	6
10. Dynamic characteristics	7
10.1. Waveforms and test circuit	8
11. Package outline	11
12. Abbreviations	12
13. Revision history	12
14. Legal information	13

© Nexperia B.V. 2024. All rights reserved

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 9 July 2024

74ALVCH16821

单击下面可查看定价,库存,交付和生命周期等信息

>>Nexperia(安世)