ne<mark>x</mark>peria

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of <u>http://www.nxp.com</u>, <u>http://www.philips.com/</u> or <u>http://www.semiconductors.philips.com/</u>, use <u>http://www.nexperia.com</u>

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use **salesaddresses@nexperia.com** (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

Dual N-channel $\mu \text{TrenchMOS}$ standard level FET

Rev. 02 — 19 April 2010

Product data sheet

1. Product profile

1.1 General description

Dual N-channel enhancement mode field-effect transistor in a small SOT363 (SC-88) Surface-Mounted Device (SMD) plastic package using TrenchMOS technology.

1.2 Features and benefits

- Surface-mounted package
- Standard level threshold voltage
- Low on-state resistance

1.3 Applications

Driver circuits

1.4 Quick reference data

- $\bullet \quad V_{DS} \leq 60 \ V$
- $P_{tot} \le 0.41 \text{ W}$

- Footprint 40 % smaller than SOT23
- Fast switching
- Dual device
- Switching in portable appliances
- I_D \leq 0.49 A
- $\blacksquare \quad R_{DSon} \le 920 \ m\Omega$

2. Pinning information

Pin	Decerintien	Cinemplifie of a station of	Creation averation
PIN	Description	Simplified outline	Graphic symbol
1	source1 (S1)		
2	gate1 (G1)		D ₁ D ₂
3	drain2 (D2)		
4	source2 (S2)		
5	gate2 (G2)	1 2 3	
6	drain1 (D1)	SOT363 (SC-88)	S_1 G_1 S_2 G_2
			msd901

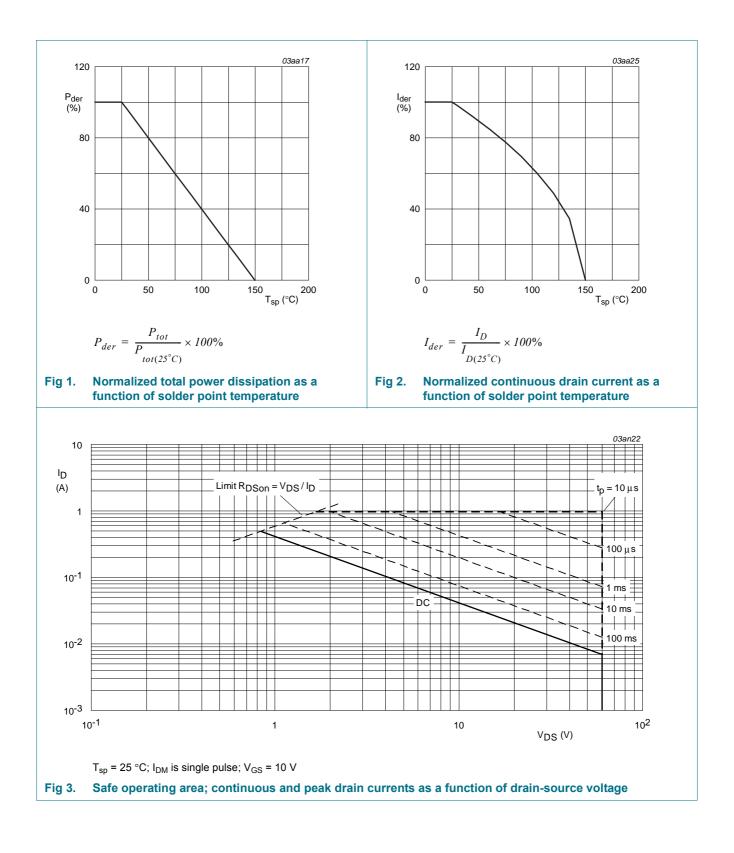
Dual N-channel µTrenchMOS standard level FET

3. Ordering information

Table 2. Ordering information					
Type number	Package	Package			
	Name	Description	Version		
PMGD780SN	SC-88	plastic surface-mounted package; 6 leads	SOT363		

4. Limiting values

Table 3. Limiting values


In accordance with the Absolute Maximum Rating System (IEC 60134).

Parameter	Conditions	Min	Max	Unit
		-		V
<u> </u>	,	_		V
		-	±20	V
drain current	T_{sp} = 25 °C; V_{GS} = 10 V; <u>Figure 2</u> and <u>3</u>	<u>[1]</u> _	0.49	А
	T _{sp} = 100 °C; V _{GS} = 10 V; <u>Figure 2</u>	<u>[1]</u> _	0.31	А
peak drain current	T_{sp} = 25 °C; pulsed; $t_p \leq$ 10 $\mu s;$ Figure 3	<u>[1]</u> _	0.99	А
total power dissipation	T _{sp} = 25 °C; <u>Figure 1</u>	-	0.41	W
storage temperature		-55	+150	°C
junction temperature		-55	+150	°C
drain diode				
source current	T _{sp} = 25 °C	<u>[1]</u> _	0.34	А
peak source current	T_{sp} = 25 °C; pulsed; $t_p \leq$ 10 μs	<u>[1]</u> _	0.69	А
	peak drain current total power dissipation storage temperature junction temperature drain diode source current	drain-source voltage $25 \text{ °C} \leq T_j \leq 150 \text{ °C}$ drain-gate voltage $25 \text{ °C} \leq T_j \leq 150 \text{ °C}; R_{GS} = 20 \text{ k}\Omega$ gate-source voltage $25 \text{ °C} \leq T_j \leq 150 \text{ °C}; R_{GS} = 20 \text{ k}\Omega$ drain current $T_{sp} = 25 \text{ °C}; V_{GS} = 10 \text{ V}; Figure 2 \text{ and } 3$ $T_{sp} = 100 \text{ °C}; V_{GS} = 10 \text{ V}; Figure 2$ peak drain current $T_{sp} = 25 \text{ °C}; \text{ pulsed}; t_p \leq 10 \mu\text{s}; Figure 3$ total power dissipation $T_{sp} = 25 \text{ °C}; Figure 1$ storage temperaturejunction temperaturechrain diodesource current $T_{sp} = 25 \text{ °C}$	$\begin{array}{c c c c c c c } \mbox{drain-source voltage} & 25 \ ^{\circ}\text{C} \leq \text{T}_{j} \leq 150 \ ^{\circ}\text{C} & - & & \\ \mbox{drain-gate voltage} & 25 \ ^{\circ}\text{C} \leq \text{T}_{j} \leq 150 \ ^{\circ}\text{C}; \ \text{R}_{GS} = 20 \ \text{k}\Omega & - & & \\ \mbox{gate-source voltage} & & & - & & \\ \mbox{drain current} & & & & & \\ \mbox{T}_{sp} = 25 \ ^{\circ}\text{C}; \ \text{V}_{GS} = 10 \ \text{V}; \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$ \begin{array}{ccccccc} drain-source \ voltage & 25 \ ^{\circ}C \leq T_{j} \leq 150 \ ^{\circ}C & & - & 60 \\ drain-gate \ voltage & 25 \ ^{\circ}C \leq T_{j} \leq 150 \ ^{\circ}C; \ R_{GS} = 20 \ k\Omega & - & 60 \\ gate-source \ voltage & & - & \pm 20 \\ drain \ current & & T_{sp} = 25 \ ^{\circ}C; \ V_{GS} = 10 \ V; \ Figure \ 2 \ and \ 3 & 11 \ - & 0.49 \\ \hline T_{sp} = 100 \ ^{\circ}C; \ V_{GS} = 10 \ V; \ Figure \ 2 & 11 \ - & 0.31 \\ peak \ drain \ current & & T_{sp} = 25 \ ^{\circ}C; \ pulsed; \ t_{p} \leq 10 \ \mu s; \ Figure \ 3 & 11 \ - & 0.41 \\ storage \ temperature & & & -55 \ +150 \\ junction \ temperature & & & -55 \ +150 \\ chrain \ diode & & & \\ source \ current & & T_{sp} = 25 \ ^{\circ}C & 11 \ - & 0.34 \\ \end{array} $

[1] Single device conducting.

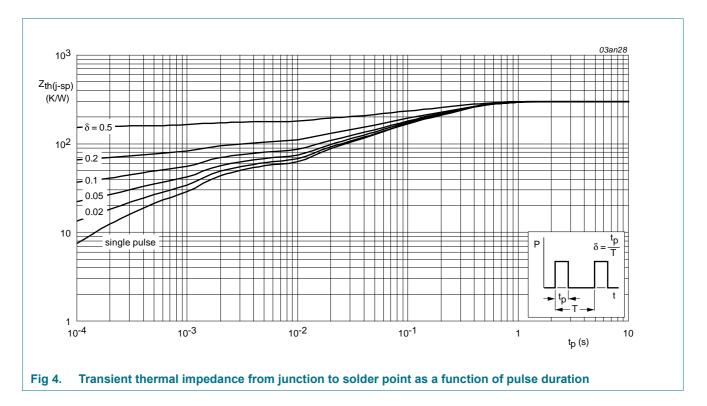
PMGD780SN

Dual N-channel µTrenchMOS standard level FET

PMGD780SN_2 Product data sheet

All information provided in this document is subject to legal disclaimers.

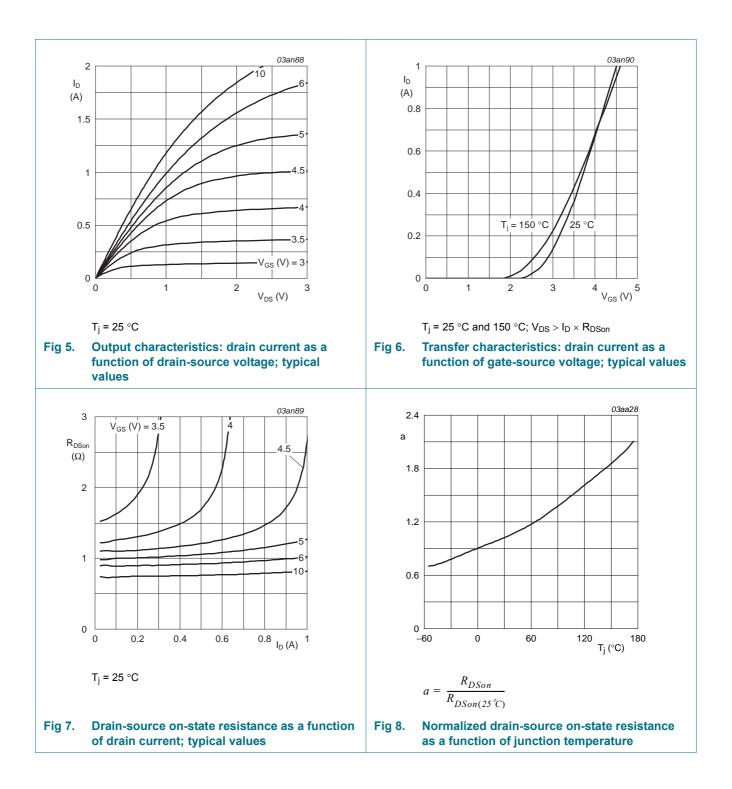
Rev. 02 — 19 April 2010


© NXP B.V. 2010. All rights reserved.

Dual N-channel µTrenchMOS standard level FET

5. Thermal characteristics

Table 4.Thermal characteristics

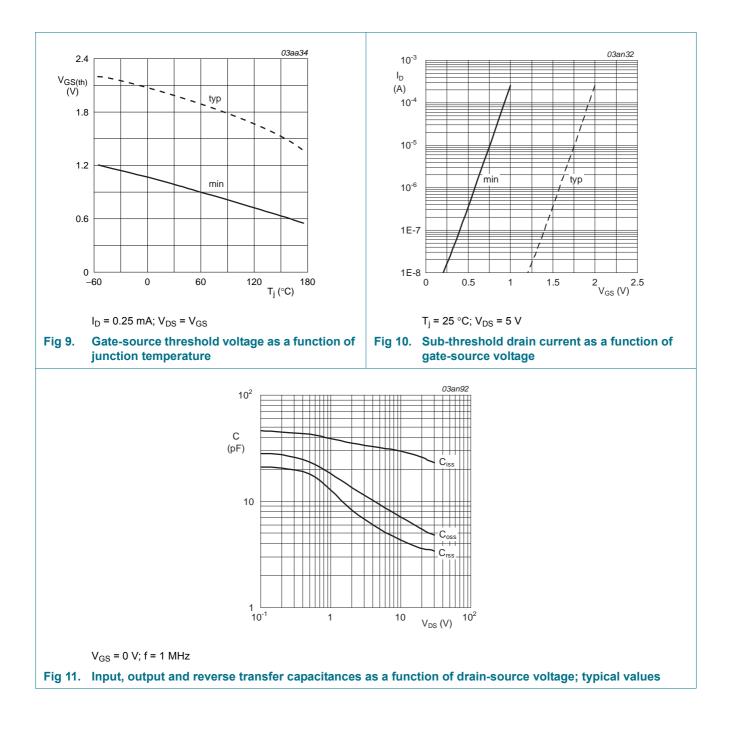

Dual N-channel µTrenchMOS standard level FET

6. Characteristics

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Table 5. T _j = 25 ୧୯	Characteristics Cunless otherwise specified.					
$ V_{(BR)DSS} \ \ \ \ \ \ \ \ \ \ \ \ \ $	Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
$ \frac{T_{j} = 25 \ ^{\circ}C}{T_{j} = -55 \ ^{\circ}C} \qquad 60 - - V \\ \hline T_{j} = -55 \ ^{\circ}C} \qquad 55 - - V \\ \hline T_{j} = -55 \ ^{\circ}C} \qquad 1 \qquad 2 \qquad 2.5 V \\ \hline T_{j} = 25 \ ^{\circ}C} \qquad 1 \qquad 2 \qquad 2.5 V \\ \hline T_{j} = 150 \ ^{\circ}C} \qquad 0.6 - - V \\ \hline T_{j} = -55 \ ^{\circ}C} \qquad - - 0.6 - - V \\ \hline T_{j} = -55 \ ^{\circ}C} \qquad - - 0.6 - - V \\ \hline T_{j} = -55 \ ^{\circ}C} \qquad - - 0.05 1 \mu A \\ \hline T_{j} = 25 \ ^{\circ}C} \qquad - - 0.05 1 \mu A \\ \hline T_{j} = 150 \ ^{\circ}C} \qquad - - 0.05 1 \mu A \\ \hline T_{j} = 150 \ ^{\circ}C} \qquad - - 0.05 1 \mu A \\ \hline T_{j} = 150 \ ^{\circ}C} \qquad - - 0.05 1 \mu A \\ \hline T_{j} = 150 \ ^{\circ}C} \qquad - - 100 \mu A \\ \hline R_{DSon} \qquad drain \ - source \ on-state \ resistance \qquad V_{GS} = 10 \ V; \ V_{DS} = 0 \ V \qquad - 10 100 nA \\ \hline R_{DSon} \qquad drain \ - source \ on-state \ resistance \qquad V_{GS} = 10 \ V; \ V_{DS} = 0 \ V \qquad - - 1445 1700 mA \\ \hline P_{Manic} \ characteristics \qquad - - 1445 1700 mA \\ \hline P_{GS} \qquad gate \ - - 1445 1700 mA \\ \hline P_{GS} \ gate \ - - 1445 1700 mA \\ \hline P_{GS} \ gate \ - - 1445 1700 mA \\ \hline P_{GS} \ gate \ - - 1445 1700 mA \\ \hline P_{GS} \ gate \ - - 1445 1700 mA \\ \hline P_{GS} \ gate \ - - 1445 1700 mA \\ \hline P_{GS} \ gate \ - - 1445 1700 mA \\ \hline P_{GS} \ gate \ - - 1445 1700 mA \\ \hline P_{GS} \ gate \ - - 1445 1700 mA \\ \hline P_{GS} \ gate \ - - 1445 1700 mA \\ \hline P_{GS} \ gate \ - - 1445 1700 mA \\ \hline P_{GS} \ gate \ - - 1445 1700 mA \\ \hline P_{GS} \ gate \ - - - 1445 1700 mA \\ \hline P_{GS} \ gate \ - - - 1445 - 0 C \\ \hline P_{GS} \ gate \ - - - 1445 - 0 C \\ \hline P_{GS} \ gate \ - - - - - - 0 C \\ \hline P_{GS} \ gate \ - - - - - - - - - 0 C \\ \hline P_{GS} \ gate \ - - - - - - - - - -$	Static cl	naracteristics					
$ \frac{1}{T_{j}} = -55 \ ^{\circ}C \qquad 55 \qquad - \qquad - \qquad V \\ V_{GS(th)} \qquad \text{gate-source threshold voltage} \qquad \frac{1}{D_{D}} = 0.25 \ ^{\circ}R, V_{DS} = V_{GS;} \ \overline{Figure 9} \\ \hline T_{j} = 25 \ ^{\circ}C \qquad 1 \qquad 2 \qquad 2.5 \qquad V \\ \hline T_{j} = 150 \ ^{\circ}C \qquad 0.6 \qquad - \qquad - \qquad V \\ \hline T_{j} = -55 \ ^{\circ}C \qquad - \qquad - \qquad - \qquad 3.5 \qquad V \\ \hline V_{DS} = 60 \ ^{\circ}V \ ^{\circ}V_{GS} = 0 \ V \\ \hline T_{j} = -55 \ ^{\circ}C \qquad - \qquad - \qquad - \qquad 0.05 \qquad 1 \qquad \mu A \\ \hline T_{j} = 150 \ ^{\circ}C \qquad - \qquad - \qquad 0.05 \qquad 1 \qquad \mu A \\ \hline T_{j} = 150 \ ^{\circ}C \qquad - \qquad - \qquad 0.05 \qquad 1 \qquad \mu A \\ \hline T_{j} = 150 \ ^{\circ}C \qquad - \qquad - \qquad 0.05 \qquad 1 \qquad \mu A \\ \hline T_{j} = 150 \ ^{\circ}C \qquad - \qquad - \qquad 0.05 \qquad 1 \qquad \mu A \\ \hline R_{DSon} \qquad drain-source on-state resistance \qquad V_{GS} = 10 \ V; \ V_{DS} = 0 \ V \\ \hline T_{j} = 25 \ ^{\circ}C \qquad - \qquad - \qquad 780 920 mS \\ \hline T_{j} = 150 \ ^{\circ}C \qquad - \qquad - \qquad 1445 1700 mA \\ \hline R_{DSon} \qquad drain-source on-state resistance \qquad V_{GS} = 10 \ V; \ V_{DS} = 10 \ V; \ Figure 7 \ and 8 \qquad - \qquad 1100 1400 mS \\ \hline Dynamic \ Characteristics \qquad - \qquad - \qquad 1445 1700 mS \\ \hline Dynamic \ Characteristics \qquad - \qquad - \qquad 1445 1700 mS \\ \hline Dynamic \ Characteristics \qquad - \qquad $	V _{(BR)DSS}	drain-source breakdown voltage	I _D = 250 μA; V _{GS} = 0 V				
$ V_{GS(th)} \mbox{gate-source threshold voltage} \mbox{I_{D}} = 0.25 \mbox{ M}; V_{DS} = V_{GS}; \mbox{Figure 9} \\ \hline T_{j} = 25 \mbox{ C} & 1 & 2 & 2.5 & V \\ \hline T_{j} = 150 \mbox{ C} & 0.6 & - & - & V \\ \hline T_{j} = -55 \mbox{ C} & - & - & 3.5 & V \\ \hline V_{DS} = 60 \ V; V_{GS} = 0 \ V & - & 100 & \mu A \\ \hline T_{j} = 25 \ C & - & 0.05 & 1 & \mu A \\ \hline T_{j} = 25 \ C & - & 0.05 & 1 & \mu A \\ \hline T_{j} = 150 \ C & - & - & 100 & \mu A \\ \hline R_{DSon} & drain-source on-state resistance & V_{GS} = 10 \ V; \ V_{DS} = 0 \ V & - & 10 & 100 & nA \\ \hline R_{DSon} & drain-source on-state resistance & V_{GS} = 10 \ V; \ V_{DS} = 0 \ V & - & 10 & 100 & nA \\ \hline P_{GS} = 4.5 \ V; \ V_{DS} = 0.75 \ A; \ Figure 7 \ and 8 & - & 1100 & 1440 & nC \\ \hline T_{j} = 25 \ C & - & 1445 & 1700 & nC \\ \hline T_{j} = 150 \ C & - & 1445 & 1700 & nC \\ \hline T_{j} = 150 \ C & - & 1445 & 1700 & nC \\ \hline T_{GS} = 4.5 \ V; \ I_{D} = 0.075 \ A; \ Figure 7 \ and 8 & - & 1100 & 1400 & nC \\ \hline P_{GS} = 4.5 \ V; \ I_{D} = 0.075 \ A; \ Figure 7 \ and 8 & - & 1100 & 1400 & nC \\ \hline P_{GS} = 4.5 \ V; \ I_{D} = 0.075 \ A; \ Figure 10 \ V; \ Figure 13 \ C_{GS} & 0.2 \$			T _j = 25 °C	60	-	-	V
$ \frac{T_{j} = 25 \ ^{\circ} C}{T_{j} = 150 \ ^{\circ} C} & 0.6 & - & - & V \\ T_{j} = -55 \ ^{\circ} C & - & 0.6 & - & - & V \\ T_{j} = -55 \ ^{\circ} C & - & - & 3.5 & V \\ \end{bmatrix} $			T _j = −55 °C	55	-	-	V
$ \frac{1}{T_{j}} = 150 \ ^{\circ}\ C & 0.6 & - & - & V \\ \hline T_{j} = -55 \ ^{\circ}\ C & - & - & 3.5 & V \\ \hline P_{DSS} & drain leakage current & V_{DS} = 60 \ V; \ V_{GS} = 0 \ V \\ \hline T_{j} = 25 \ ^{\circ}\ C & - & 0.05 & 1 & \mu \\ \hline T_{j} = 150 \ ^{\circ}\ C & - & - & 100 & \mu \\ \hline P_{GS} & gate leakage current & V_{GS} = \pm 20 \ V; \ V_{DS} = 0 \ V & - & 10 & 100 & n \\ \hline P_{DSon} & drain-source on-state resistance & V_{GS} = 10 \ V; \ P_{DS} = 0 \ V & - & 100 & 100 & n \\ \hline P_{DSS} & drain-source on-state resistance & V_{GS} = 10 \ V; \ P_{DS} = 0 \ V & - & 100 & 100 & n \\ \hline P_{DSon} & drain-source on-state resistance & V_{GS} = 10 \ V; \ P_{DD} = 0.3 \ A; \ Figure 7 \ and 8 & - & 1100 & 1400 & m \\ \hline P_{J} = 25 \ ^{\circ}\ C & - & 1445 & 1700 & m \\ \hline T_{J} = 150 \ ^{\circ}\ C & - & 1445 & 1700 & m \\ \hline T_{J} = 150 \ ^{\circ}\ C & - & 1445 & 1700 & m \\ \hline T_{J} = 150 \ ^{\circ}\ C & - & 1445 & 1700 & m \\ \hline P_{GS} & gate-source charge & I_{D} = 1 \ A; \ V_{DD} = 30 \ V; \ V_{GS} = 10 \ V; \ Figure 13 & - & 1.05 \ - & n \\ \hline Q_{GS} & gate-drain charge & V_{GS} = 0 \ V; \ V_{DS} = 30 \ V; \ Figure 11 & - & 2.3 \ - & P \\ \hline C_{rss} & input capacitance & V_{GS} = 0 \ V; \ V_{DS} = 30 \ V; \ Figure 11 & - & 2.3 \ - & P \\ \hline C_{rss} & reverse transfer capacitance & V_{DD} = 30 \ V; \ P_{S} = 30 \ V; \ P_{S} = 10 \ V; \ P_{S} = 6 \ \Omega & - & 2 \ - & n \\ \hline T_{r} & rise time & V_{DD} = 30 \ V; \ P_{L} = 30 \ \Omega; \ V_{GS} = 10 \ V; \ R_{G} = 6 \ \Omega & - & 2 \ - & n \\ \hline T_{r} & rise time & T \ Tise time & T \ T$	V _{GS(th)}	gate-source threshold voltage	I _D = 0.25 mA; V _{DS} = V _{GS} ; <u>Figure 9</u>				
$\begin{tabular}{ c c c c } \hline T_{j} = -55 \ ^{\circ}\ C & - & 0.5 \ V \\ \hline T_{j} = -55 \ ^{\circ}\ C & - & 0.05 \ I & \mu\ A \\ \hline T_{j} = 25 \ ^{\circ}\ C & - & 0.05 \ I & \mu\ A \\ \hline T_{j} = 25 \ ^{\circ}\ C & - & 0.05 \ I & \mu\ A \\ \hline T_{j} = 150 \ ^{\circ}\ C & - & 0.05 \ I & \mu\ A \\ \hline T_{j} = 150 \ ^{\circ}\ C & - & 0.05 \ I & 0.05 \ I & \mu\ A \\ \hline T_{j} = 150 \ ^{\circ}\ C & - & 0.05 \ I & 0.05 \ I & \mu\ A \\ \hline T_{j} = 25 \ ^{\circ}\ C & - & 0.05 \ I & 0.05 \ I & \mu\ A \\ \hline T_{j} = 25 \ ^{\circ}\ C & - & 0.05 \ I $			T _j = 25 °C	1	2	2.5	V
$ \begin{split} & \mbox{I}_{DSS} & \mbox{drain leakage current} & \begin{tabular}{ c c c c } & V_{DS} & = 60 \ V; \ V_{GS} & = 0 \ V \\ \hline T_{j} & = 25 \ ^{\circ} C & & & & & & & & & & & & & & & & & & $			T _j = 150 °C	0.6	_	_	V
$ \begin{array}{ c c c c } \hline T_{j} = 25 \ ^{\circ} C & - & 0.05 & 1 & \mu A \\ \hline T_{j} = 150 \ ^{\circ} C & - & 100 & \mu A \\ \hline I_{GSS} & gate leakage current & V_{GS} \pm 20 \ V; \ V_{DS} = 0 \ V & - & 10 & 100 & nA \\ \hline R_{DSon} & drain-source on-state resistance & V_{GS} = 10 \ V; \ I_{D} = 0.3 \ A; \ Figure \ 7 \ and \ 8 & - & 1445 & 1700 & mC \\ \hline T_{j} = 25 \ ^{\circ} C & - & 780 & 920 & mC \\ \hline T_{j} = 150 \ ^{\circ} C & - & 1445 & 1700 & mC \\ \hline V_{GS} = 4.5 \ V; \ I_{D} = 0.075 \ A; \ Figure \ 7 \ and \ 8 & - & 1100 & 1400 & mC \\ \hline \end{array} $			T _j = −55 °C	_	_	3.5	V
$\begin{tabular}{ c c c c c } \hline T_{j} = 150 \ ^{\circ}\ C & - & 100 \ ^{\mu}\ A \\ \hline I_{GSS} & gate leakage current & V_{GS} = \pm 20 \ ^{\circ}\ ^{\circ}\ V_{DS} = 0 \ ^{\circ}\ V \\ \hline R_{DSon} & drain-source on-state resistance & V_{GS} = 10 \ ^{\circ}\ ^{\circ}\ I_{D} = 0.3 \ ^{\circ}\ Figure 7 \ and 8 & - & 100 \ ^{\circ}\ A \\ \hline T_{j} = 25 \ ^{\circ}\ C & - & 780 \ ^{\circ}\ 920 \ ^{\circ}\ M \\ \hline T_{j} = 150 \ ^{\circ}\ C & - & 1445 \ ^{\circ}\ 1700 \ ^{\circ}\ M \\ \hline V_{GS} = 4.5 \ ^{\circ}\ ^{\circ}\ I_{D} = 0.075 \ ^{\circ}\ Figure 7 \ and 8 & - & 1100 \ ^{\circ}\ 1445 \ ^{\circ}\ 1700 \ ^{\circ}\ M \\ \hline V_{GS} = 4.5 \ ^{\circ}\ ^{\circ}\ I_{D} = 0.075 \ ^{\circ}\ Figure 7 \ and 8 & - & 1100 \ ^{\circ}\ 1445 \ ^{\circ}\ 1700 \ ^{\circ}\ M \\ \hline Dynamic characteristics & & & & & & & & & & & & & & & & & & &$	I _{DSS}	drain leakage current	V_{DS} = 60 V; V_{GS} = 0 V				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			T _j = 25 °C	-	0.05	1	μA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			T _j = 150 °C	-	-	100	μA
$ \begin{array}{ c c c c c } \hline T_{j} = 25 \ ^{\circ} C & & & & & & & & & & & & & & & & & & $	I _{GSS}	gate leakage current	V_{GS} = ±20 V; V_{DS} = 0 V	-	10	100	nA
$\begin{tabular}{ c c c c } \hline T_j = 150 \ \mbox{°C} & - & 1445 \ 1700 \ \mbox{mc} \\ \hline V_{GS} = 4.5 \ \mbox{°}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	R _{DSon}	drain-source on-state resistance	V_{GS} = 10 V; I _D = 0.3 A; <u>Figure 7</u> and <u>8</u>				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			T _j = 25 °C	-	780	920	mΩ
$ \begin{array}{ c c c c } \hline \text{Dynamic characteristics} \\ \hline \text{Q}_{G(tot)} & \text{total gate charge} & \text{I}_{D} = 1 \text{ A}; \text{V}_{DD} = 30 \text{ V}; \text{V}_{GS} = 10 \text{ V}; \hline \text{Figure 13} & - & 1.05 & - & nC \\ \hline \text{Q}_{GS} & \text{gate-source charge} & - & 0.22 & - & nC \\ \hline \text{Q}_{GD} & \text{gate-drain charge} & - & 0.22 & - & nC \\ \hline \text{C}_{iss} & \text{input capacitance} & \text{V}_{GS} = 0 \text{ V}; \text{V}_{DS} = 30 \text{ V}; \text{f} = 1 \text{ MHz}; \hline \text{Figure 11} & - & 23 & - & pF \\ \hline \text{C}_{oss} & \text{output capacitance} & - & 5 & - & pF \\ \hline \text{C}_{rss} & \text{reverse transfer capacitance} & - & 3.5 & - & pF \\ \hline \text{C}_{rss} & \text{reverse transfer capacitance} & - & 3.5 & - & pF \\ \hline \text{t}_{d(on)} & \text{turn-on delay time} & \text{V}_{DD} = 30 \text{ V}; \text{R}_{L} = 30 \Omega; \text{ V}_{GS} = 10 \text{ V}; \text{R}_{G} = 6 \Omega & - & 2 & - & ns \\ \hline \text{t}_{r} & \text{rise time} & - & 4 & - & ns \\ \hline \text{t}_{d(off)} & \text{turn-off delay time} & - & 5 & - & nS \\ \hline \text{t}_{r} & \text{fall time} & - & 2.2 & - & ns \\ \hline \text{Source-drain diode} & \hline \end{array}$			T _j = 150 °C	-	1445	1700	mΩ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			V_{GS} = 4.5 V; I_{D} = 0.075 A; Figure 7 and 8	-	1100	1400	mΩ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Dynami	c characteristics					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Q _{G(tot)}	total gate charge	I_D = 1 A; V_{DD} = 30 V; V_{GS} = 10 V; <u>Figure 13</u>	-	1.05	-	nC
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Q_{GS}	gate-source charge		-	0.2	-	nC
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Q_{GD}	gate-drain charge		-	0.22	-	nC
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C _{iss}	input capacitance	V _{GS} = 0 V; V _{DS} = 30 V; f = 1 MHz; <u>Figure 11</u>	-	23	-	pF
$ \begin{array}{c c} t_{d(on)} & turn-on \ delay \ time \\ t_r & rise \ time \\ t_{d(off)} & turn-off \ delay \ time \\ t_f & fall \ time \\ \end{array} \begin{array}{c c} V_{DD} = 30 \ V; \ R_L = 30 \ \Omega; \ V_{GS} = 10 \ V; \ R_G = 6 \ \Omega \\ \hline & - & 4 & - & ns \\ \hline & - & 5 & - & ns \\ \hline & - & 2.2 & - & ns \\ \hline & - & 5 & - & ns \\ \hline & - & 2.2 & - & ns \\ \hline & - & - & 2.2 & - & ns \\ \hline & - & - & 2.2 & - & ns \\ \hline & - & - & - & - & - \\ \hline & - & - & - & - & - \\ \hline & - & - & - & - & - \\ \hline & - & - & - & - & - \\ \hline & - & - & - & - & - \\ \hline & - & - & - & - & - \\ \hline & - & - & - & - \\ \hline & - & - & - & - & - \\ \hline & - & - & - & - \\ \hline & - & - & - & - \\ \hline & - & - & - & - \\ \hline & - & - & - & - \\ \hline & - & - & - & - \\ \hline & - & - & - & - \\ \hline & - & - & - \\$	C _{oss}	output capacitance			5	-	pF
tr rise time - 4 - ns t_d(off) turn-off delay time - 5 - ns t_f fall time - 2.2 - ns Source-drain diode - 2.2 - ns	C _{rss}	reverse transfer capacitance		-	3.5	-	pF
turn-off delay time - 5 - ns t _f fall time - 2.2 - ns Source-drain diode - 2.2 - ns	t _{d(on)}	turn-on delay time	V_{DD} = 30 V; R_{L} = 30 $\Omega;$ V_{GS} = 10 V; R_{G} = 6 Ω	-	2	-	ns
t _f fall time - 2.2 - ns Source-drain diode	t _r	rise time			4	-	ns
Source-drain diode	t _{d(off)}	turn-off delay time		-	5	-	ns
	t _f	fall time		-	2.2	-	ns
V_{SD} source-drain voltage I _S = 0.3 A; V_{GS} = 0 V; Figure 12 - 0.83 1.2 V	Source-	drain diode					
	V _{SD}	source-drain voltage	I _S = 0.3 A; V _{GS} = 0 V; <u>Figure 12</u>	-	0.83	1.2	V

PMGD780SN

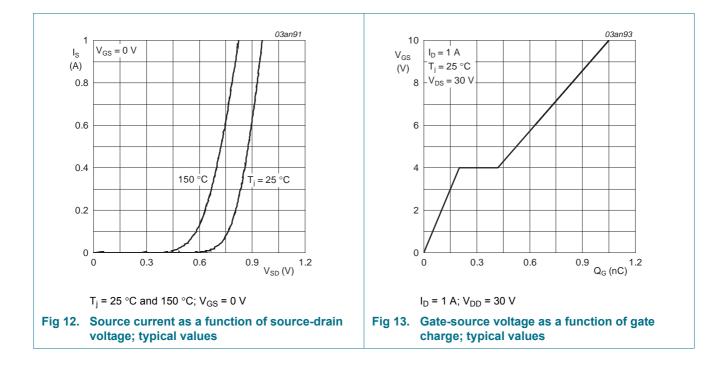
Dual N-channel μ TrenchMOS standard level FET



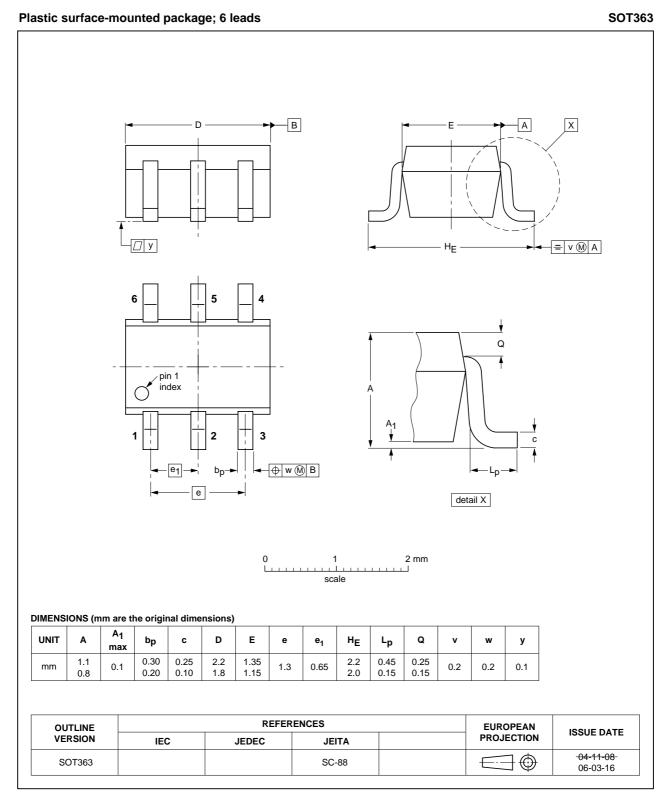
All information provided in this document is subject to legal disclaimers.

Rev. 02 — 19 April 2010

PMGD780SN


Dual N-channel µTrenchMOS standard level FET

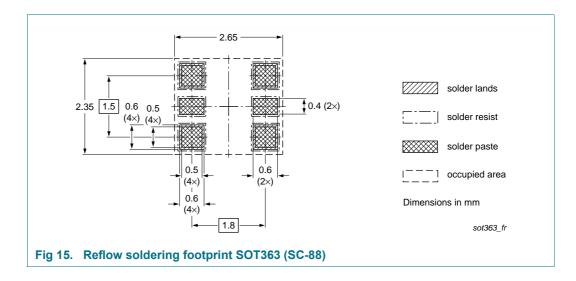
PMGD780SN_2


PMGD780SN

Dual N-channel µTrenchMOS standard level FET

Dual N-channel µTrenchMOS standard level FET

7. Package outline


Fig 14. Package outline SOT363 (SC-88)

All information provided in this document is subject to legal disclaimers.

PMGD780SN_2

Dual N-channel μ TrenchMOS standard level FET

8. Soldering

PMGD780SN_2

Dual N-channel μ TrenchMOS standard level FET

9. Revision history

Table 6. Revision hi	istory			
Document ID	Release date	Data sheet status	Change notice	Supersedes
PMGD780SN_2	20100419	Product data sheet	-	PMGD780SN_1
Modifications:		of this data sheet has been f NXP Semiconductors.	n redesigned to comply w	ith the new identity
	 Legal texts I 	have been adapted to the	new company name whe	re appropriate.
	 Table 5 "Cha 	aracteristics": added V _{GS(tt}	n) maximum value at cond	dition T _j = 25 °C
	 Section 10 " 	Legal information": update	d	
PMGD780SN_1	20040211	Product data	-	-

Dual N-channel µTrenchMOS standard level FET

10. Legal information

10.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

10.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

10.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on a weakness or default in the customer application/use or the application/use of customer's third party customer(s) (hereinafter both referred to as "Application"). It is customer's sole responsibility to check whether the NXP Semiconductors product is suitable and fit for the Application planned. Customer has to do all necessary testing for the Application in order to avoid a default of the Application and the product. NXP Semiconductors does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

Product data sheet

PMGD780SN 2

All information provided in this document is subject to legal disclaimers. Rev. 02 — 19 April 2010 © NXP B.V. 2010. All rights reserved. 12 of 14

Dual N-channel µTrenchMOS standard level FET

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

11. Contact information

For more information, please visit: <u>http://www.nxp.com</u>

For sales office addresses, please send an email to: salesaddresses@nxp.com

10.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. **TrenchMOS** — is a trademark of NXP B.V.

Dual N-channel μ TrenchMOS standard level FET

12. Contents

1	Product profile 1
1.1	General description 1
1.2	Features and benefits 1
1.3	Applications 1
1.4	Quick reference data 1
2	Pinning information 1
3	Ordering information 2
4	Limiting values 2
5	Thermal characteristics 4
6	Characteristics 5
7	Package outline 9
8	Soldering 10
9	Revision history 11
10	Legal information 12
10.1	Data sheet status 12
10.2	Definitions 12
10.3	Disclaimers
10.4	Trademarks 13
11	Contact information 13
12	Contents 14

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2010.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 19 April 2010 Document identifier: PMGD780SN_2 单击下面可查看定价,库存,交付和生命周期等信息

>>Nexperia(安世)