ne<mark>x</mark>peria

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of <u>http://www.nxp.com</u>, <u>http://www.philips.com/</u> or <u>http://www.semiconductors.philips.com/</u>, use <u>http://www.nexperia.com</u>

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use **salesaddresses@nexperia.com** (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

60 V, 310 mA N-channel Trench MOSFET Rev. 02 — 29 July 2010

Product data sheet

Product profile 1.

1.1 General description

N-channel enhancement mode Field-Effect Transistor (FET) in a very small SOT323 (SC-70) Surface-Mounted Device (SMD) plastic package using Trench MOSFET technology.

1.2 Features and benefits

- AEC-Q101 qualified
- Logic-level compatible

1.3 Applications

- High-speed line driver
- Low-side loadswitch

- Trench MOSFET technology
- Very fast switching
- Relay driver
- Switching circuits

1.4 Quick reference data

Table 1. Quick reference data

Parameter	Conditions		Min	Тур	Max	Unit
drain-source voltage	T _{amb} = 25 °C		-	-	60	V
gate-source voltage			-20	-	20	V
drain current	V_{GS} = 10 V; T_{amb} = 25 °C	<u>[1]</u>	-	-	310	mA
racteristics						
drain-source on-state resistance	$\label{eq:VGS} \begin{array}{l} V_{GS} = 10 \text{ V; } I_D = 500 \text{ mA;} \\ T_j = 25 \text{ °C; } t_p \leq 300 \mu\text{s; pulsed;} \\ \delta \leq 0.01 \end{array}$		-	1	1.6	Ω
	drain-source voltage gate-source voltage drain current racteristics drain-source on-state	$\begin{array}{c} \mbox{drain-source} \\ \mbox{voltage} \\ \mbox{gate-source} \\ \mbox{voltage} \\ \mbox{drain current} \\ \mbox{drain current} \\ \mbox{V}_{GS} = 10 \ \mbox{V}; \ \mbox{T}_{amb} = 25 \ \ \mbox{°C} \\ \mbox{racteristics} \\ \mbox{drain-source} \\ \mbox{on-state} \\ \mbox{V}_{GS} = 10 \ \ \mbox{V}; \ \mbox{I}_{D} = 500 \ \ \mbox{mA}; \\ \mbox{T}_{j} = 25 \ \ \ \mbox{°C}; \ \ \mbox{t}_{p} \leq 300 \ \ \mbox{µs}; \ \ \mbox{pulsed}; \end{array}$	$\begin{tabular}{ c c c c } \hline drain-source & voltage & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c} \mbox{drain-source} \\ \mbox{voltage} \\ \mbox{gate-source} \\ \mbox{voltage} \\ \mbox{drain current} \\ \mbox{drain current} \\ \mbox{V}_{GS} = 10 \ \mbox{V}; \ \mbox{T}_{amb} = 25 \ \ \mbox{°C} \\ \mbox{fill} \\ \mbox{-20} \\ $	$\begin{array}{c} \mbox{drain-source} \\ \mbox{voltage} \\ \mbox{gate-source} \\ \mbox{voltage} \\ \mbox{drain current} \\ \mbox{drain current} \\ \mbox{V}_{GS} = 10 \ \mbox{V}; \ \mbox{T}_{amb} = 25 \ \ \mbox{°C} \\ \mbox{fill} \\ \mbox{fill} \\ \mbox{-20} \\$	$\begin{array}{c} \mbox{drain-source} \\ \mbox{voltage} \\ \mbox{gate-source} \\ \mbox{voltage} \\ \mbox{drain current} \\ \mbox{drain current} \\ \mbox{V}_{GS} = 10 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $

[1] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for drain 1 cm².

2. Pinning information

Table 2.	Pinning	information		
Pin	Symbol	Description	Simplified outline	Graphic symbol
1	G	gate		-
2	S	source		
3	D	drain	1 ⊟ 2 SOT323 (SC-70)	G F S

3. Ordering information

Table 3. Orderin	g information		
Type number	Package		
	Name	Description	Version
2N7002PW	SC-70	plastic surface-mounted package; 3 leads	SOT323

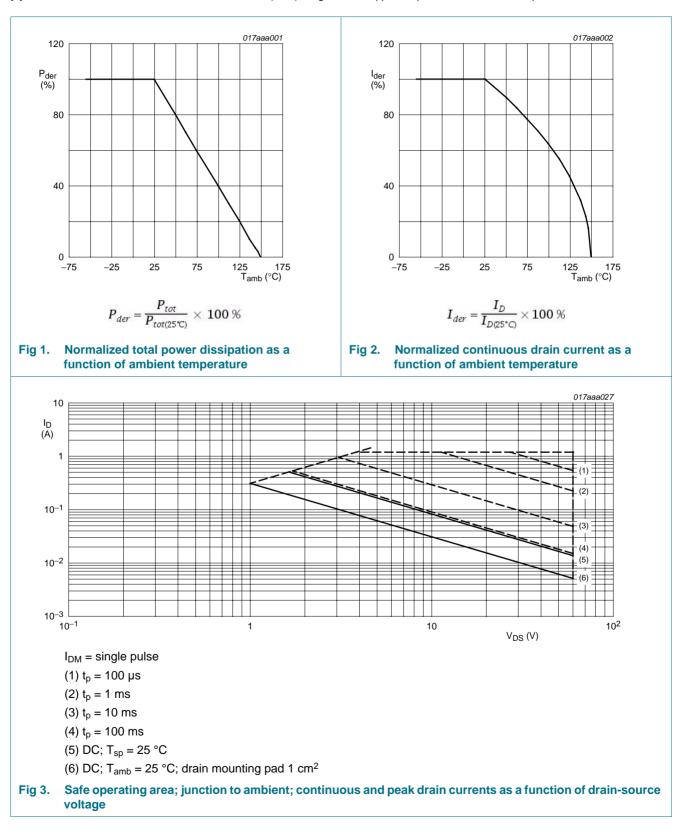
4. Marking

Table 4. Marking codes	
Type number	Marking code ^[1]
2N7002PW	X8%

[1] % = -: made in Hong Kong; % = p: made in Hong Kong; % = t: made in Malaysia; % = W: made in China

5. Limiting values

Table 5. Limiting values


In accordance with the Absolute Maximum Rating System (IEC 60134).

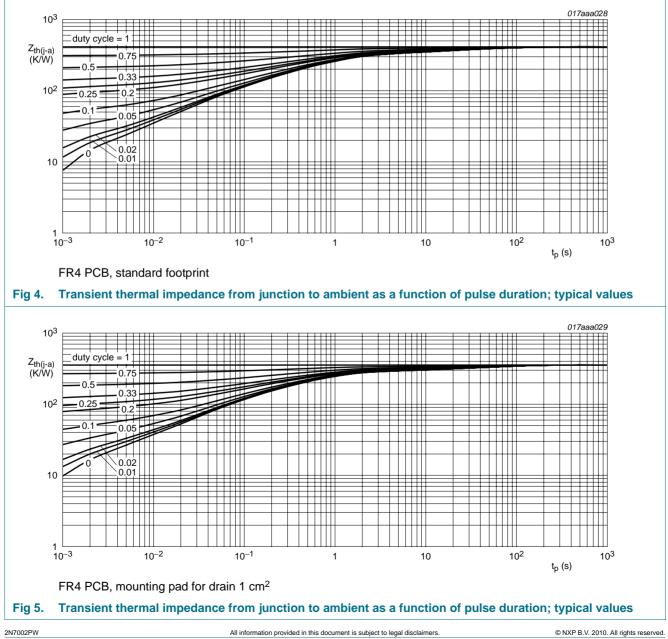
Symbol	Parameter	Conditions		Min	Max	Unit
V _{DS}	drain-source voltage	T _{amb} = 25 °C		-	60	V
V _{GS}	gate-source voltage			-20	20	V
I _D drain current	drain current	V_{GS} = 10 V; T_{amb} = 25 °C	[1]	-	310	mA
		V_{GS} = 10 V; T_{amb} = 100 °C	<u>[1]</u>	-	240	mA
I _{DM}	peak drain current	$T_{amb} = 25 \text{ °C}$; single pulse; $t_p \le 10 \mu\text{s}$		-	1.2	А
P _{tot}	total power dissipation	T _{amb} = 25 °C	[2]	-	260	mW
			[1]	-	310	mW
		T _{sp} = 25 °C		-	830	mW
Tj	junction temperature			-	150	°C
T _{amb}	ambient temperature			-55	150	°C
T _{stg}	storage temperature			-65	150	°C
Source-dra	in diode					
Is	source current	T _{amb} = 25 °C	[1]	-	310	mA

[1] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for drain 1 cm².

2N7002PW

2N7002PW

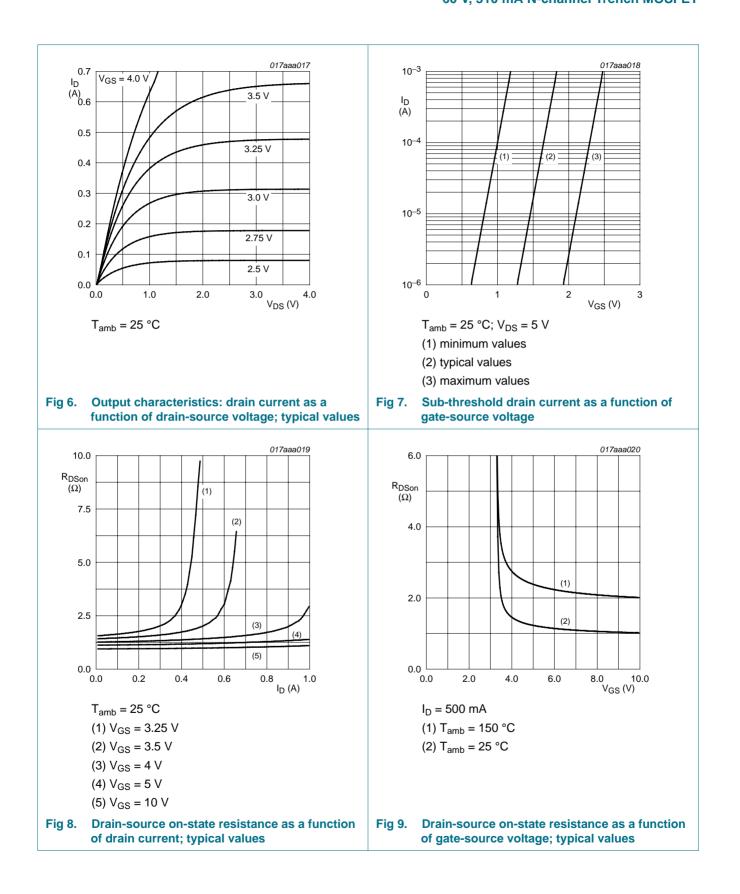
[2] Device mounted on an FR4 Printed-Circuit Board (PCB), single-sided copper, tin-plated and standard footprint.


© NXP B.V. 2010. All rights reserved.

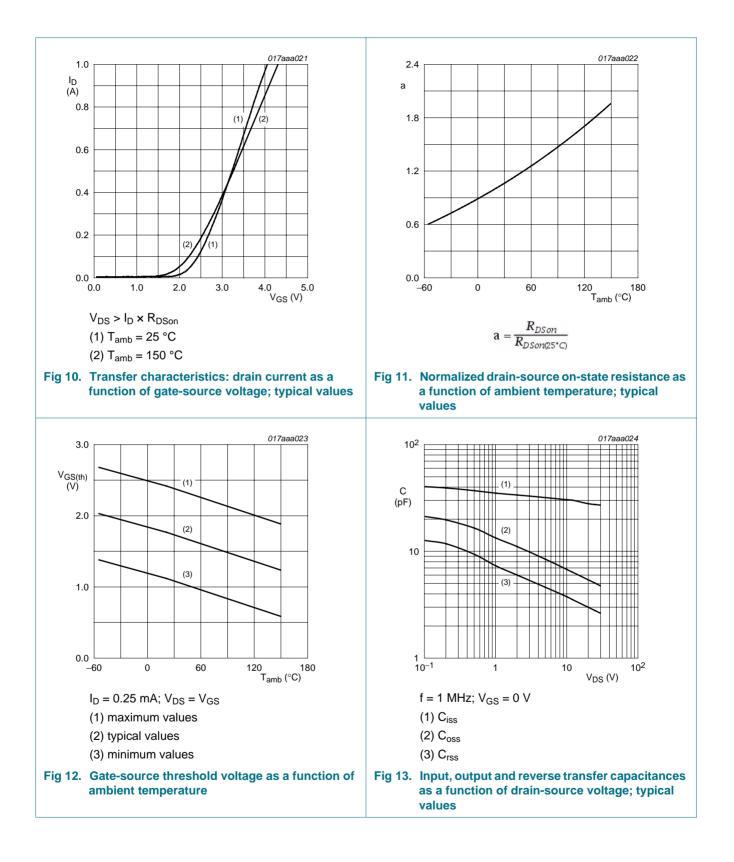
6. Thermal characteristics

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
R _{th(j-a)}	thermal resistance	in free air	<u>[1]</u>	-	415	480	K/W
	from junction to ambient		[2]	-	350	400	K/W
R _{th(j-sp)}	thermal resistance from junction to solder point			-	-	150	K/W

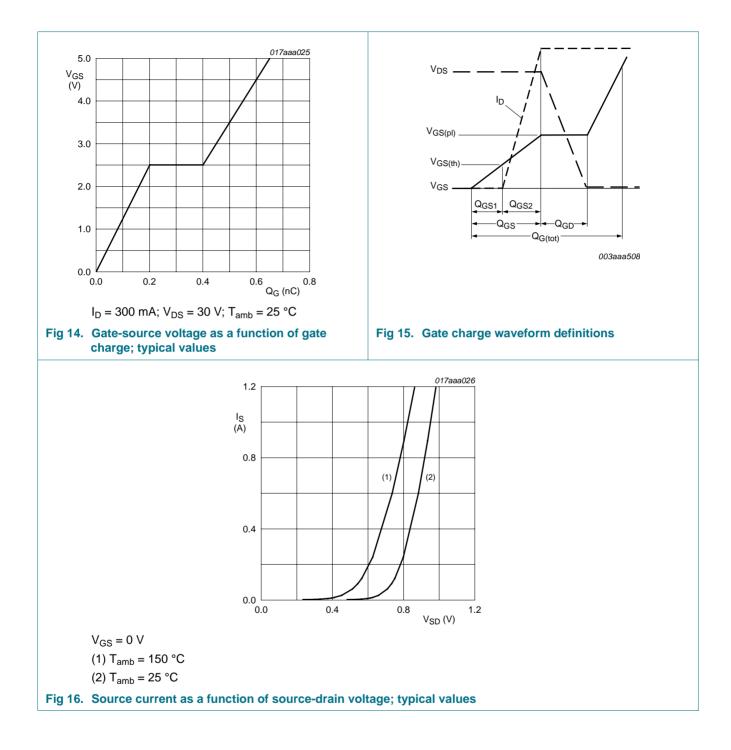
[1] Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint.


[2] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for drain 1 cm².

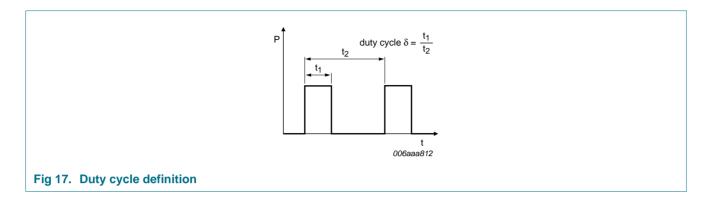
7. Characteristics

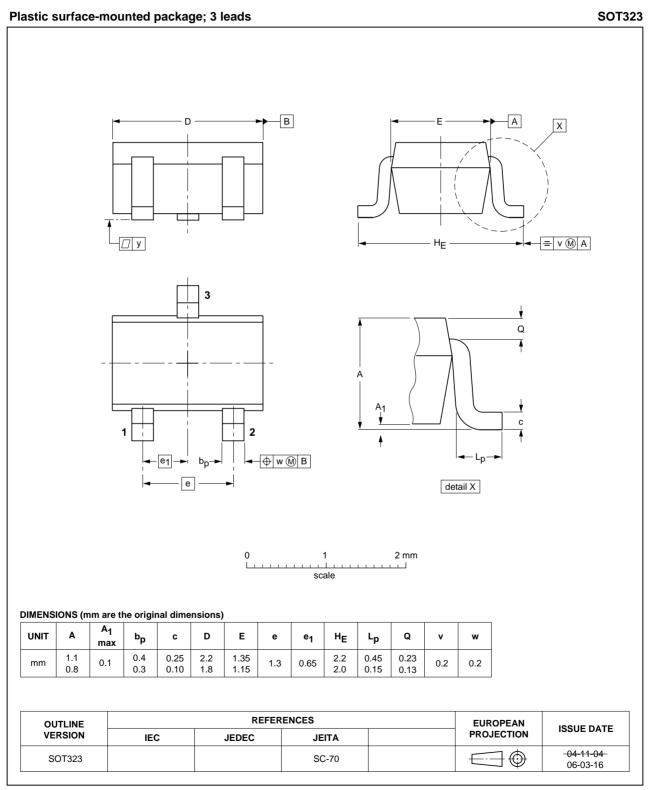

Table 7.	Characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static cha	aracteristics					
V _{(BR)DSS}	drain-source breakdown voltage	$I_D = 10 \ \mu A; \ V_{GS} = 0 \ V; \ T_j = 25 \ ^\circ C$	60	-	-	V
V _{GSth}	gate-source threshold voltage	$I_D = 250 \ \mu A; \ V_{DS} = V_{GS}; \ T_j = 25 \ ^{\circ}C$	1.1	1.75	2.4	V
I _{DSS}	drain leakage current	$V_{DS} = 60 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	-	1	μA
		$V_{DS} = 60 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 150 \text{ °C}$	-	-	10	μA
I _{GSS}	gate leakage current	$V_{GS} = 20 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	-	100	nA
		V_{GS} = -20 V; V_{DS} = 0 V; T_j = 25 °C	-	-	100	nA
R _{DSon} drain-source on-state resistance	drain-source on-state resistance	V _{GS} = 5 V; I _D = 50 mA; pulsed; t _p ≤ 300 μs; δ ≤ 0.01 ; T _j = 25 °C	-	1.3	2	Ω
	V_{GS} = 10 V; I _D = 500 mA; pulsed; t _p ≤ 300 μs; δ ≤ 0.01 ; T _j = 25 °C	-	1	1.6	Ω	
9 _{fs}	forward transconductance	V_{DS} = 10 V; I _D = 200 mA; pulsed; t _p ≤ 300 µs; δ ≤ 0.01 ; T _j = 25 °C	-	400	-	mS
Dynamic	characteristics					
Q _{G(tot)}	total gate charge	I_D = 300 mA; V_{DS} = 30 V; V_{GS} = 4.5 V;	-	0.6	0.8	nC
Q _{GS}	gate-source charge	T _j = 25 °C	-	0.2	-	nC
Q _{GD}	gate-drain charge		-	0.2	-	nC
C _{iss}	input capacitance	$V_{GS} = 0 V; V_{DS} = 10 V; f = 1 MHz;$	-	30	50	pF
C _{oss}	output capacitance	T _j = 25 °C	-	7	-	pF
C _{rss}	reverse transfer capacitance		-	4	-	pF
t _{d(on)}	turn-on delay time	$V_{DS} = 50 \text{ V}; \text{ R}_{L} = 250 \Omega; V_{GS} = 10 \text{ V};$	-	3	6	ns
t _r	rise time	$R_{G(ext)} = 6 \Omega; T_j = 25 °C$	-	4	-	ns
t _{d(off)}	turn-off delay time		-	10	20	ns
t _f	fall time		-	5	-	ns
Source-d	rain diode					
V _{SD}	source-drain voltage	I _S = 115 mA; V _{GS} = 0 V; T _i = 25 °C	0.47	0.75	1.1	V

2N7002PW 60 V, 310 mA N-channel Trench MOSFET



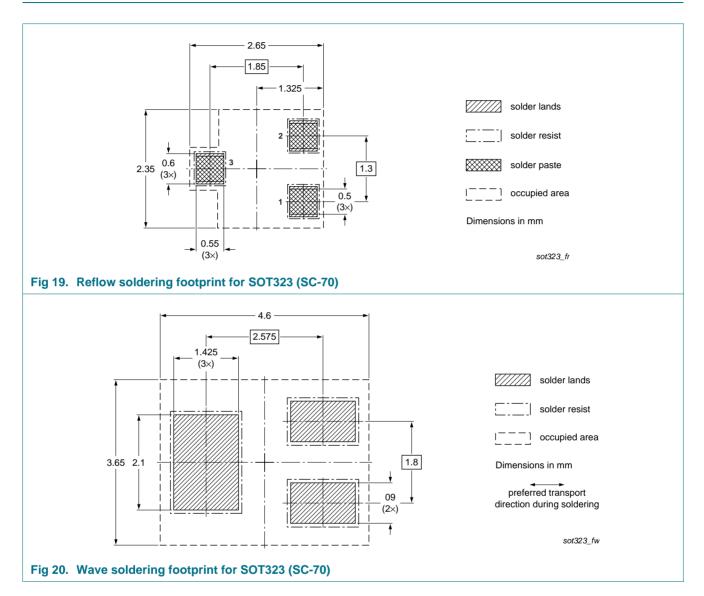
© NXP B.V. 2010. All rights reserved.


60 V, 310 mA N-channel Trench MOSFET


60 V, 310 mA N-channel Trench MOSFET

8. Test information

9. Package outline


2N7002PW

Product data sheet

Downloaded From Oneyac.com

60 V, 310 mA N-channel Trench MOSFET

10. Soldering

11. Revision history

Table 8. Revisio	n history			
Document ID	Release date	Data sheet status	Change notice	Supersedes
2N7002PW v.2	20100729	Product data sheet	-	2N7002PW_1
Modifications:	 Correction of t 	hermal values.		
	 Correction of v 	arious characteristics value	s including related grap	hs.
2N7002PW_1	20100422	Product data sheet	-	-

12. Legal information

12.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions"

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

12.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

12.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors products product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Notice: All referenced brands, product names, service names and trademarks

Adelante, Bitport, Bitsound, CoolFlux, CoReUse, DESFire, EZ-HV,

TrenchMOS, TriMedia and UCODE - are trademarks of NXP B.V.

HD Radio and HD Radio logo - are trademarks of iBiquity Digital

FabKey, GreenChip, HiPerSmart, HITAG, I2C-bus logo, ICODE, I-CODE,

ITEC, Labelution, MIFARE, MIFARE Plus, MIFARE Ultralight, MoReUse, QLPAK. Silicon Tuner, SiliconMAX, SmartXA, STARplug, TOPFET,

12.4 Trademarks

Corporation.

are the property of their respective owners.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

13. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

2N7002PW

14. Contents

1	Product profile1
1.1	General description1
1.2	Features and benefits1
1.3	Applications1
1.4	Quick reference data1
2	Pinning information2
3	Ordering information2
4	Marking2
5	Limiting values2
6	Thermal characteristics4
7	Characteristics5
8	Test information9
9	Package outline10
10	Soldering11
11	Revision history12
12	Legal information13
12.1	Data sheet status13
12.2	Definitions
12.3	Disclaimers
12.4	Trademarks14
13	Contact information14

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2010.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 29 July 2010 Document identifier: 2N7002PW

单击下面可查看定价,库存,交付和生命周期等信息

>>Nexperia(安世)