74LVC132A

Quad 2-input NAND Schmitt trigger

Rev. 6 — 12 February 2024

Product data sheet

1. General description

The 74LVC132A provides four 2-input NAND gates with Schmitt trigger inputs. It is capable of transforming slowly-changing input signals into sharply defined, jitter-free output signals.

The inputs switch at different points for positive and negative-going signals. The difference between the positive voltage V_{T+} and the negative voltage V_{T-} is defined as the input hysteresis voltage V_{H-} .

Inputs can be driven from either 3.3~V or 5~V devices. This feature allows the use of these devices as translators in mixed 3.3~V and 5~V environment.

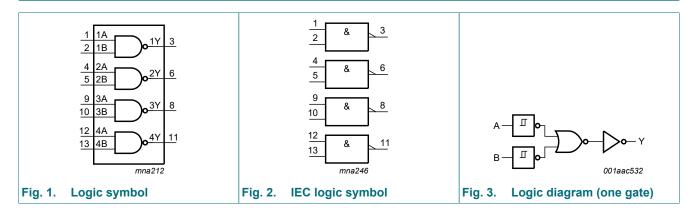
2. Features and benefits

- Wide supply voltage range from 1.2 V to 3.6 V
- 5 V tolerant inputs for interfacing with 5 V logic
- CMOS low-power consumption
- · Direct interface with TTL levels
- Unlimited input rise and fall times
- Inputs accept voltages up to 5.5 V
- Complies with JEDEC standard JESD8-C/JESD36 (2.7 V to 3.6 V)
- ESD protection:
 - HBM: ANSI/ESDA/JEDEC JS-001 class 2 exceeds 2000 V
 - CDM: ANSI/ESDA/JEDEC JS-002 class C3 exceeds 1000 V
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

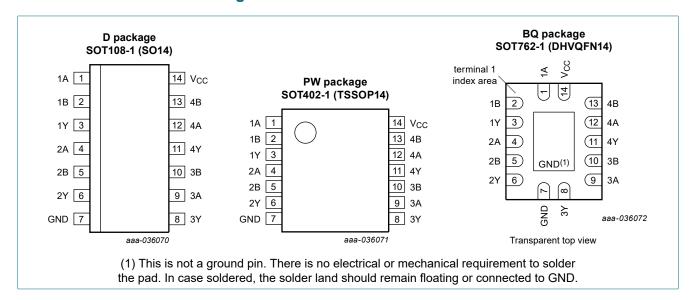
3. Applications

- · Wave and pulse shapers for highly noisy environments
- Astable multivibrator
- Monostable multivibrator.

4. Ordering information


Table 1. Ordering information

Type number	Package					
	Temperature range	Name	Description	Version		
74LVC132AD	-40 °C to +125 °C	SO14	plastic small outline package; 14 leads; body width 3.9 mm	SOT108-1		
74LVC132APW	-40 °C to +125 °C	TSSOP14	plastic thin shrink small outline package; 14 leads; body width 4.4 mm	SOT402-1		
74LVC132ABQ	-40 °C to +125 °C	DHVQFN14	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body 2.5 × 3 × 0.85 mm	SOT762-1		


Quad 2-input NAND Schmitt trigger

5. Functional diagram

6. Pinning information

6.1. Pinning

6.2. Pin description

Table 2. Pin description

Symbol	Pin	Description
1A, 2A, 3A, 4A	1, 4, 9, 12	data input
1B, 2B, 3B, 4B	2, 5, 10, 13	data input
1Y, 2Y, 3Y, 4Y	3, 6, 8, 11	data output
GND	7	ground (0 V)
V _{CC}	14	supply voltage

Quad 2-input NAND Schmitt trigger

7. Functional description

Table 3. Function table

 $H = HIGH \ voltage \ level; \ L = LOW \ voltage \ level.$

Input	Output	
nA	nB	nY
L	L	Н
L	Н	Н
Н	L	Н
Н	Н	L

8. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+6.5	V
VI	input voltage	[1]	-0.5	+6.5	V
Vo	output voltage	[2]	-0.5	V _{CC} + 0.5	V
I _{IK}	input clamping current	V _I < 0 V	-50	-	mΑ
I _{OK}	output clamping current	$V_O > V_{CC}$ or $V_O < 0 V$	-	±50	mΑ
I _O	output current	$V_O = 0 V \text{ to } V_{CC}$	-	±50	mΑ
I _{CC}	supply current		-	100	mΑ
I_{GND}	ground current		-100	-	mΑ
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$ [3]	-	500	mW

^[1] The minimum input voltage ratings may be exceeded if the input current ratings are observed.

9. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{CC}	supply voltage		1.65	-	3.6	V
		functional	1.2	-	-	V
VI	input voltage		0	-	5.5	V
Vo	output voltage		0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	-	+125	°C

^[2] The output voltage ratings may be exceeded if the output current ratings are observed.

^{3]} For SOT108-1 (SO14) package: P_{tot} derates linearly with 10.1 mW/K above 100 °C.

For SOT402-1 (TSSOP14) package: Ptot derates linearly with 7.3 mW/K above 81 °C.

For SOT762-1 (DHVQFN14) package: Ptot derates linearly with 9.6 mW/K above 98 °C.

Quad 2-input NAND Schmitt trigger

10. Static characteristics

Table 6. Static characteristics

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ [1]	Max	Unit
T _{amb} = -	40 °C to +85 °C					
V _{OH}	HIGH-level output	$V_I = V_{T+}$ or V_{T-}				
	voltage	I _O = -100 μA; V _{CC} = 1.65 V to 3.6 V	V _{CC} - 0.2	-	-	V
		I _O = -4 mA; V _{CC} = 1.65 V	V _{CC} - 0.45	-	-	V
		I_{O} = -8 mA; V_{CC} = 2.3 V	V _{CC} - 0.5	-	-	V
		I_{O} = -12 mA; V_{CC} = 2.7 V	V _{CC} - 0.5	-	-	V
		I_{O} = -18 mA; V_{CC} = 3.0 V	V _{CC} - 0.6	-	-	V
		I_{O} = -24 mA; V_{CC} = 3.0 V	V _{CC} - 0.8	-	-	V
V _{OL}	LOW-level output	$V_I = V_{T+}$ or V_{T-}				
	voltage	I_{O} = 100 μ A; V_{CC} = 1.65 V to 3.6 V	-	-	0.2	V
		I _O = 4 mA; V _{CC} = 1.65 V	-	-	0.45	V
		I_{O} = 8 mA; V_{CC} = 2.3 V	-	-	0.6	V
		I _O = 12 mA; V _{CC} = 2.7 V	-	-	0.4	V
		I _O = 24 mA; V _{CC} = 3.0 V	-	-	0.55	V
I _I	input leakage current	V _{CC} = 3.6 V; V _I = 5.5 V or GND	-	±0.1	±5	μA
I _{CC}	supply current	$V_{CC} = 3.6 \text{ V}; V_{I} = V_{CC} \text{ or GND}; I_{O} = 0 \text{ A}$	-	0.1	10	μΑ
ΔI _{CC}	additional supply current	per input pin; $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V};$ $V_I = V_{CC} - 0.6 \text{ V}; I_O = 0 \text{ A}$	-	5	500	μΑ
Cı	input capacitance	V_{CC} = 0 V to 3.6 V; V_I = GND to V_{CC}	-	4.0	-	pF
T _{amb} = -	40 °C to +125 °C			'		
V _{OH}	HIGH-level output	$V_I = V_{T+}$ or V_{T-}				
	voltage	I _O = -100 μA; V _{CC} = 1.65 V to 3.6 V	V _{CC} - 0.3	-	-	V
		I _O = -4 mA; V _{CC} = 1.65 V	V _{CC} - 0.6	-	-	V
		I_{O} = -8 mA; V_{CC} = 2.3 V	V _{CC} - 0.65	-	-	V
		I_{O} = -12 mA; V_{CC} = 2.7 V	V _{CC} - 0.65	-	-	V
		I_{O} = -18 mA; V_{CC} = 3.0 V	V _{CC} - 0.75	-	-	V
		I_{O} = -24 mA; V_{CC} = 3.0 V	V _{CC} - 1	-	-	V
V _{OL}	LOW-level output	$V_I = V_{T+}$ or V_{T-}				
	voltage	I_{O} = 100 μ A; V_{CC} = 1.65 V to 3.6 V	-	-	0.3	V
		I _O = 4 mA; V _{CC} = 1.65 V	-	-	0.65	V
		I _O = 8 mA; V _{CC} = 2.3 V	-	-	0.8	V
		I _O = 12 mA; V _{CC} = 2.7 V	-	-	0.6	V
		I _O = 24 mA; V _{CC} = 3.0 V	-	-	0.8	V
I _I	input leakage current	V _{CC} = 3.6 V; V _I = 5.5 V or GND	-	-	±20	μA
I _{CC}	supply current	$V_{CC} = 3.6 \text{ V}; V_{I} = V_{CC} \text{ or GND}; I_{O} = 0 \text{ A}$	-	-	40	μA
ΔI _{CC}	additional supply current	per input pin; $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V};$ $V_{I} = V_{CC} - 0.6 \text{ V}; I_{O} = 0 \text{ A}$	-	-	5	mA

^[1] All typical values are measured at V_{CC} = 3.3 V (unless stated otherwise) and T_{amb} = 25 °C.

Quad 2-input NAND Schmitt trigger

11. Dynamic characteristics

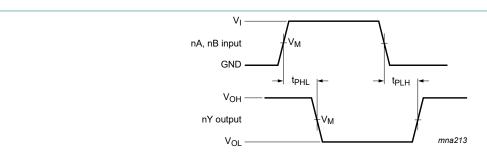
Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V). For test circuit see Fig. 5.

Symbol	Parameter	Conditions	-40	-40 °C to +85 °C			-40 °C to +125 °C	
			Min	Typ [1]	Max	Min	Max	
t _{pd}	propagation delay	nA, nB to nY; see Fig. 4 [2]						
		V _{CC} = 1.2 V	-	18.0	-	-	-	ns
		V _{CC} = 1.65 V to 1.95 V	2.0	7.2	12.8	2.0	16.0	ns
		V _{CC} = 2.3 V to 2.7 V	1.5	4.0	7.6	1.5	9.6	ns
		V _{CC} = 2.7 V	1.5	3.8	7.6	1.5	9.6	ns
		V _{CC} = 3.0 V to 3.6 V	1.5	3.4	6.4	1.5	8.0	ns
t _{sk(o)}	output skew time	[3]	-	-	1.0	-	1.5	ns
C _{PD}	1:	per buffer; V_I = GND to V_{CC} [4]						
capacitance	V _{CC} = 1.65 V to 1.95 V	-	10.5	-	-	-	pF	
		V _{CC} = 2.3 V to 2.7 V	-	10.8	-	-	-	pF
		V _{CC} = 3.0 V to 3.6 V	-	11.4	-	-	-	pF

- Typical values are measured at T_{amb} = 25 °C and V_{CC} = 1.2 V, 1.8 V, 2.5 V, 2.7 V, and 3.3 V respectively.
- [2] t_{pd} is the same as t_{PLH} and t_{PHL}.
- [3]
- Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W). $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

f_i = input frequency in MHz; f_o = output frequency in MHz;

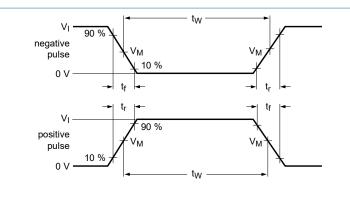

N = number of inputs switching;

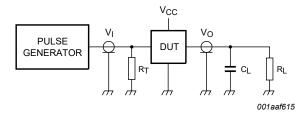
C_L = output load capacitance in pF;

V_{CC} = supply voltage in V;

 $\Sigma(C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs.}$

11.1. Waveforms and test circuit


 $V_M = 1.5 \text{ V at } V_{CC} \ge 2.7 \text{ V}.$


 $V_M = 0.5 \times V_{CC}$ at $V_{CC} < 2.7$ V.

 V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig. 4. The input (nA, nB) to output (nY) propagation delays

Quad 2-input NAND Schmitt trigger

Test data is given in <u>Table 8</u>. Definitions for test circuit:

R_L = Load resistance

C_L = Load capacitance including jig and probe capacitance

 R_{T} = Termination resistance should be equal to output impedance Z_{o} of the pulse generator.

Fig. 5. Test circuit for measuring switching times

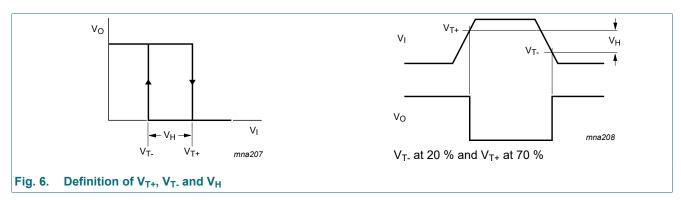
Table 8. Test data

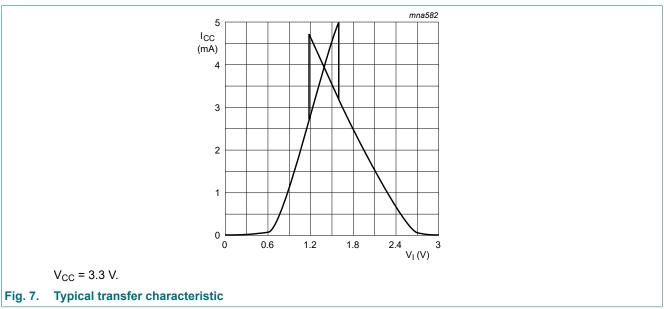
Supply voltage	Input	Input		
	V _I	t _r , t _f	CL	R _L
1.2 V	V _{CC}	≤ 2 ns	30 pF	1 kΩ
1.65 V to 1.95 V	V _{CC}	≤ 2 ns	30 pF	1 kΩ
2.3 V to 2.7 V	V _{CC}	≤ 2 ns	30 pF	500 Ω
2.7 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω
3.0 V to 3.6 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω

Quad 2-input NAND Schmitt trigger

12. Transfer characteristics

Table 9. Transfer characteristics


Voltages are referenced to GND (ground = 0 V); see Fig. 6.


Symbol	Parameter	Conditions	-40 °C t	o +85 °C	-40 °C to	Unit	
			Min	Max	Min	Max	
V _{T+}	positive-going threshold	V _{CC} = 1.2 V	0.2	1.0	0.2	1.0	V
	voltage	V _{CC} = 1.65 V	0.4	1.3	0.4	1.3	V
		V _{CC} = 1.95 V	0.6	1.5	0.6	1.5	V
		V _{CC} = 2.3 V	0.8	1.7	0.8	1.7	V
		V _{CC} = 2.5 V	0.9	1.7	0.9	1.7	V
		V _{CC} = 2.7 V	1.1	2	1.1	2	V
		V _{CC} = 3 V	1.2	2	1.2	2	V
		V _{CC} = 3.6 V	1.2	2	1.2	2	V
V _{T-}	negative-going threshold	V _{CC} = 1.2 V	0.12	0.75	0.12	0.75	V
	voltage	V _{CC} = 1.65 V	0.15	0.85	0.15	0.85	V
		V _{CC} = 1.95 V	0.25	0.95	0.25	0.95	V
		V _{CC} = 2.3 V	0.4	1.1	0.4	1.1	V
		V _{CC} = 2.5 V	0.4	1.2	0.4	1.2	V
		V _{CC} = 2.7 V	8.0	1.4	0.8	1.4	V
		V _{CC} = 3 V	0.8	1.5	0.8	1.5	V
		V _{CC} = 3.6 V	8.0	1.5	0.8	1.5	V
V _H	hysteresis voltage	V _{CC} = 1.2 V	0.1	1.0	0.1	1.0	V
	(V _{T+} - V _{T-})	V _{CC} = 1.65 V	0.2	1.15	0.2	1.15	V
		V _{CC} = 1.95 V	0.2	1.25	0.2	1.25	V
		V _{CC} = 2.3 V	0.3	1.3	0.3	1.3	V
		V _{CC} = 2.5 V	0.3	1.3	0.3	1.3	V
		V _{CC} = 2.7 V	0.3	1.1	0.3	1.1	V
		V _{CC} = 3 V	0.3	1.2	0.3	1.2	V
		V _{CC} = 3.6 V [1]	0.3	1.2	0.3	1.2	V

^[1] Typical transfer characteristic is displayed in Fig. 7.

Quad 2-input NAND Schmitt trigger

12.1. Waveforms transfer characteristics

Quad 2-input NAND Schmitt trigger

13. Package outline

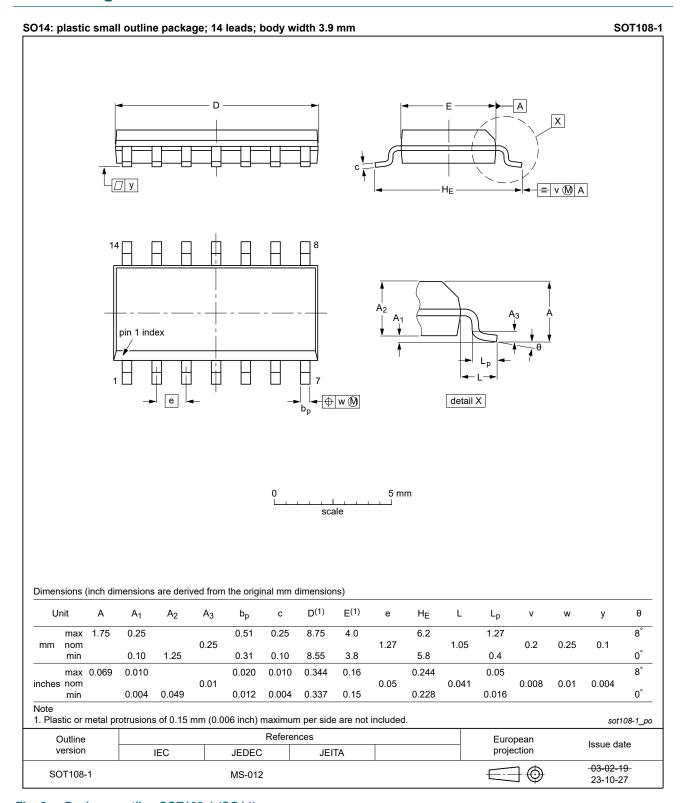


Fig. 8. Package outline SOT108-1 (SO14)

Quad 2-input NAND Schmitt trigger

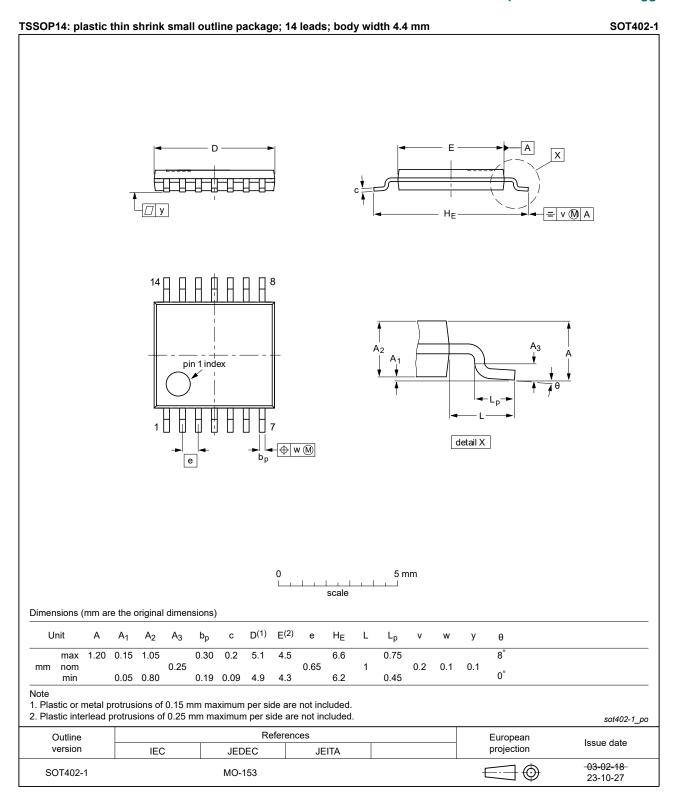


Fig. 9. Package outline SOT402-1 (TSSOP14)

Quad 2-input NAND Schmitt trigger

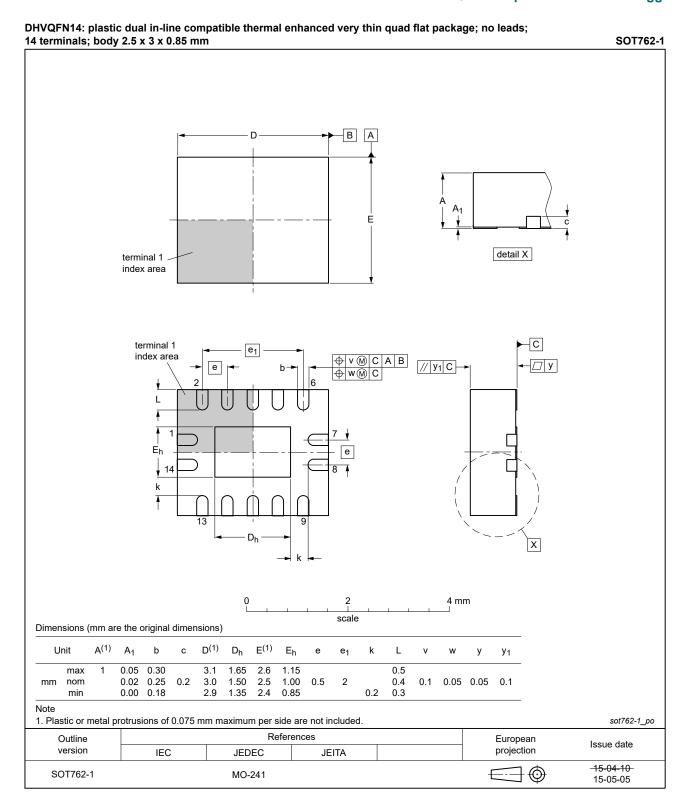


Fig. 10. Package outline SOT762-1 (DHVQFN14)

Quad 2-input NAND Schmitt trigger

14. Abbreviations

Table 10. Abbreviations

Acronym	escription	
CDM	Charged Device Model	
CMOS	Complementary Metal Oxide Semiconductor	
DUT	Device Under Test	
ESD	ElectroStatic Discharge	
НВМ	uman Body Model	
TTL	ransistor-Transistor Logic	

15. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes		
74LVC132A v.6	20240212	Product data sheet	-	74LVC132A v.5		
Modifications:	• <u>Fig. 8, Fig. 9</u> MO-153.	 Fig. 8, Fig. 9: Aligned SO and TSSOP package outline drawings to JEDEC MS-012 and MO-153. 				
74LVC132A v.5	20230803	Product data sheet	-	74LVC132A v.4		
Modifications:	Section 2: E	SD specification updated	according to the la	atest JEDEC standard.		
74LVC132A v.4	20200706	Product data sheet	-	74LVC132A v.3		
Modifications:	guidelines of Legal texts Table 4: De	Legal texts have been adapted to the new company hame where appropriate.				
74LVC132A v.3	20111207	Product data sheet	-	74LVC132A v.2		
Modifications:	Legal pages	Legal pages updated.				
74LVC132A v.2	20110829	Product data sheet	-	74LVC132A v.1		
74LVC132A v.1	20061215	Product data sheet	-	-		

Quad 2-input NAND Schmitt trigger

16. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal

injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

74LVC132A

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2024. All rights reserved

Quad 2-input NAND Schmitt trigger

Contents

1. General description	1
2. Features and benefits	1
3. Applications	1
4. Ordering information	1
5. Functional diagram	2
6. Pinning information	2
6.1. Pinning	2
6.2. Pin description	2
7. Functional description	3
8. Limiting values	3
9. Recommended operating conditions	3
10. Static characteristics	4
11. Dynamic characteristics	5
11.1. Waveforms and test circuit	5
12. Transfer characteristics	7
12.1. Waveforms transfer characteristics	8
13. Package outline	9
14. Abbreviations	12
15. Revision history	12
16. Legal information	13

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 12 February 2024

Product data sheet

[©] Nexperia B.V. 2024. All rights reserved

单击下面可查看定价,库存,交付和生命周期等信息

>>Nexperia(安世)